
İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

SOFTWARE CONFIGURATION

MANAGEMENT

Dr. SELİN METİN
Orion Innovation Türkiye

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Software Configuration Management Overview

• What is Software Configuration Management?
• Source Control Basics
• Why Do We Need Source Code Management?
• Features of Source Code Management
• Types of Version Control Systems

– Centralized vs. Distributed

• What is ClearCase ?
– Basic Terminology of ClearCase
– Check out-edit-check in model
– Merging Your Work
– ClearCase Versions, Elements and VOBs
– Versions and Config Spec
– Working with Branches

• What is Git?
– Main Sections of a Git Project
– The Basic Git Workflow
– Basic Concepts
– Working with Branches
– Local / Remote Workflow

• The Golden Rules of Version Control
• Continuous Integration
• Continuous Deployment
• Continuous Delivery

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

What is Software Configuration Management?

• A Software Configuration Management (SCM) system is an essential part
of almost any effective software development project. It can provide
solutions to different challenges faced by the many roles in a development
team - software engineers/developers, project leaders, release engineers,
process engineers, engineering managers, and even engineering
executives.

• Source control (or version control) is the practice of tracking and managing
changes to code.

• A Source Code Management (SCM) is a software tool used by
programmers to manage the source codes.

• SCM systems provide a running history of code development and help to
resolve conflicts when merging contributions from multiple sources.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Source Control Basics

• Whether you are writing a simple application or a collaborating on a
large software development project as part of a team, source
control is a vital component of the Software Development Life
Cycle (SDLC).

• SCM systems allow you to track your code change, see a revision
history for your code, and revert to previous versions of a project
when needed.

• With SCM systems, you can collaborate on code with your team,
isolate your work until it is ready, and quickly trouble-shoot issues
by identifying who made changes and what the changes were.

• SCM systems help streamline the development process and provide
a centralized source for all your code.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Why Do We Need Source Code Management?

• You would have probably made up your own version control system
without realizing it. Got any of these?
– Source Code Management _ 20Jan2020
– Source Code Management _ 22Jan2020
– Source Code Management _ 10Feb2020

• It is why we use “Save As” when we want a new file without changing the
old one.

• We can save the file with a different name if it’s our school project or one-
time papers but for a well-equipped software development? Not a chance.

• Big projects need a version control system to track the changes and avoid
misunderstanding.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Features of Source Code Management

• SCMs are used to give versions/revisions to the program.
– Each version is given a timestamp and includes the person responsible

for the change.
– Even various versions can be compared and merged with other

versions.
– This is why SCM is also referred to Version Control, Revision Control or

Source Control.

• Below are some of the basic features of a source code management
system:
– Authenticated access for commits
– Revision history on files
– Atomic commits of multiple files
– Versioning/Tagging

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Features of Source Code Management

• A good SCM does the following:
– Backup and Restore – Files can be saved at any moment and can be restored

from the last saved.
– Synchronization – Programmers can get the latest code and fetch the up-to-

date codes from the repository.
– Short-Term Undo – Working with a file and messed it up. We can do a short-

term undo to the last known version.
– Long-Term Undo – It helps when we have to make a release version rollback.

Something like going to the last version which was created a year ago.
– Track Changes – We can track the changes as when anyone is making any

change, he can leave a commit message as for why the change was done.
– Ownership – With every commit made to the master branch, it will ask the

owner permission to merge it.
– Branching and Merging – You can create a branch of your source code and

create the changes. Once the changes are approved, you can merge it with the
master branch.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Time Machine

• When properly used, an SCM system will capture
every key change in the evolution of a software
system.
– Not only checking in (committing) new versions of

artifacts when a task is complete but also checking in
intermediate states that capture notable progress.

• An effective SCM system will make it easy to
reconstruct the software system at any point in
the past. In that sense, an SCM system functions
as a time machine.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Parallel Development

• All development projects need a way to progress on one set of tasks in
isolation from progress on other tasks.
– Eg: One part of a team might have to implement a feature that will take a

week to complete and introduces numerous incompatible changes. Being able
to implement the feature in isolation from the rest of the project and then
deliver the completed change all at once can save the rest of the team from
constantly adapting to incremental changes or worse, being unable to make
progress on their tasks until the project stabilizes again.

• Many software systems have multiple versions used by their customer
base simultaneously. If a defect is discovered in a released version, the
team must be able to reconstruct the software system as it was when that
version was released, fix the defect, and then release an update to the
customers. They must be able to do this in a way that does not pick up
features that were implemented in later releases.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Parallel Development

• SCM Systems typically support
parallel development through
the use of branches or streams.

– A starting point (often referred
to as a foundation which is
usually a baseline or equivalent,
a set of versions of files that
compose a consistent and
compatible set)

– Create a branch for a given file
if and when a change is needed
to that file.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Parallel Development

• In most circumstances, changes made on one branch are
later needed on one or more other branches.
– Eg: a defect fix to an early release of a software system is usually

also needed in the later releases.

• SCM systems often provide a mechanism to merge changes
from one branch to another.
– The more powerful this mechanism is (including three-way

merge support, effective common ancestor computation,
powerful compare/merge GUIs and command line support), the
lower the burden on the person performing the merge
operation and the more effective the system will be handling
large software systems with a huge number of files that may
require merging.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Traceability

• Project Lifecycle Traceability allows related artifacts to be traced
through much, if not all of the project lifecycle.

• Change traceability allows the history of changes in the SCM
system to be retrieved. It can typically answer the “Who?”,
“What?”, “Where”, and “When” questions of each change. It may
also capture the “Why?” question (especially if there is a linkage to
an associated task in the change management system). Examining
the changes in the versions involved (greatly aided by effective
compare/diff tools) can answer the “How?” question.

• Build and Release Traceability allows a release / build artifact to be
traced back to the versions of files that were used to build that
artifact. This can be a significant time saver when trying to track
down numerous problems.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Other SCM Features

• Process Automation and Enforcement: Most software projects have a
defined process. Teams can follow process checklists to manually ensure
proper procedures are followed but this can be tedious and error prone.
The degree to which the process can be automated and enforced by the
tools involved can greatly increase the ease of adhering to the process and
can avoid costly mistakes.

• Security: Different security requirements exist. E.g. Open source projects
are open to all but still need to limit who can deliver a change to a stream
that will be used to build a release. It may be important to restrict who has
access to data that was copied out of the SCM repository to a client disk.

• Subcontracting: Many projects involve contracting at least portions of the
project to an external organization. The contractors may work on-site or
off-site. There are often additional security requirements that must be
managed. Mechanisms to automate and enforce the development
process enforced by the SCM system are important.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Other SCM Features (continued)

• Classified Development: Many military and
government projects have stringent
requirements that span security, process
enforcement, and traceability. The degree to
which the SCM tool provides solutions to
classification challenges can greatly impact
the cost of development and level of
confidence that the project requirements
are met.

• Scalability: The size of the software development team and the size of the
software code base affect the load placed on the SCM system. It’s important not
only to understand the current size of a project but also to predict what it is likely
to look like as it evolves over the years. Choosing an SCM system that is flexible
and powerful enough to scale to the estimated needs of at least the next few years
can avoid having to risk changing an important part of the development team’s
infrastructure at some inconvenient point in the future, which can be a very
disruptive undertaking.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Types of Version Control Systems

• There are two main types of Version Control
System:

– Centralized

– Decentralized (or Distributed)

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Centralized Version Control

• Centralized Version Control works in a client and server relationship. The repository is located in
one place and allows access to multiple clients.

• There is a single, (centralized) master copy of the code base, and pieces of the code that are being
worked on are typically locked, (or “checked out”) so that only one developer is allowed to work on
that part of the code at any one time. Access to the code base and the locking is controlled by the
server. When the developer checks their code back in, the lock is released so it’s available for
others to check out.

– It’s very similar to FTP where you have FTP clients which connect to FTP server. Here all the user changes
and commits have to pass through the central server.

– E.g: IBM Rational Clearcase, CVS, Subversion (SVN).

• The benefits of centralized version control:
– It’s easy to understand.
– There are more GUI and IDE clients.
– You have more control over the users and access.

• We do have drawbacks also:
– It is dependent on the access to the server.
– It can be slower because every command from the client has to pass the server.
– Branching and merging strategies are difficult to use.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Distributed Version Control

• These systems are newer to use.
• These systems work on a peer-to-peer model: the code base is distributed amongst the individual developers’

computers. In fact, the entire history of the code is mirrored on each system - each user has their own copy of the
entire repository as well as the files and history.

• There is still a master copy of the code base, but it’s kept on a client machine rather than a server. There is no
locking of parts of the code; developers make changes in their local copy and then, once they’re ready to integrate
their changes into the master copy, they issue a request to the owner of the master copy to merge their changes
into the master copy.

• The emphasis switches from versions to changes, and so a new version of the code is simply a combination of a
number of different sets of changes. That’s quite a fundamental change in the way many developers work.

– E.g: Git and Mercurial

• The benefits of distributed version control are:
– More powerful and easy change tracking.
– No need of a centralized server. Most of the functionalities work in offline mode also apart from sharing the repositories.
– Branching and Merging strategies are more easy and reliable.
– It’s faster than the centralized one.

• Though we have drawbacks:
– It is harder to understand.
– It’s new, so less GUI clients.
– It is easier to make mistakes until you are

familiar with the model.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Centralized vs. Distributed

• The key difference is that there is no locking of elements in a distributed system.
– Every new set of changes that a developer makes is essentially like a new branch of the code,

that needs to be merged back into the master repository.

• Distributed model
– It’s possible for two developers to be working on the same source file at the same time.
– Performance of distributed systems is better, because there is no waiting for locks to happen

across potentially slow network connections. Also, the complete code base is already on your
local system.

– Branching and merging is much easier to achieve in a distributed system, largely because it’s
built in to the way the system works.

– You don’t need to be connected to the network all the time.

• Centralized systems
– Typically easier to understand.
– Access control is easier, since everything is controlled from one place (the server).
– Unless you want to, you don’t have to merge different versions of the same code, which can

be tricky.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

SCM / Version Control Tools

• There are various tools associated with Source Code Management.
Below are the few widely used tools:

– GitHub
– GitLab
– BitBucket
– IBM Rational Clearcase
– SourceForge
– Beanstalk
– Apache Allura
– AWS CodeCommit
– Launchpad
– Phabricator
– GitBucket

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

What is ClearCase ?

• It’s a comprehensive configuration management system that
manages multiple variants of evolving software systems.

• ClearCase maintains a complete version history of all software
development artifacts, including code, requirements, models,
scripts, test assets, and directory structures.

• It performs audited system builds, enforces site-specific
development policies, offers multiple developer workspaces, and
provides advanced support for parallel development.

• ClearCase imbeds itself into the native file system of the platform’s
operating system.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Basic Terminology of ClearCase

• File element
– A file element is a file that contains software source code, a

document, HTML code, XML code, or other data that can be stored in
a file system. A directory element contains file elements and other
directory elements.

• Version
– A version is a specific revision of an element. For instance, instead of

overwriting the same copy of your draft each time you work on it, you
store a copy of the first version, the second version, and so on .

• Versioned object base (VOB)

• Check out-edit-check in model

• View

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Elements and Their Versions

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Check out-edit-check in model

checkout

checkin

3

3

4

checkout checkout
3

3

4

checkin

checkin + merge with 4

5

LATEST

LATEST

CHECKEDOUT

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Check out-edit-check in model

main

fix

checkout

merge

main

merge

checkin

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Reserved & Unreserved Checkout

• In some version-control systems, only one user at a time can
reserve the right to create a new version on a branch (base
ClearCase). In other systems, many users can compete to create the
same new version.

• ClearCase supports both models by allowing two kinds of
checkouts: reserved and unreserved.

• The view with a reserved checkout has the exclusive right to check
in a new version for a given branch or stream.

• Many views can have unreserved checkouts.
• An unreserved checkout does not guarantee the right to create the

successor version.
• If several views have unreserved checkouts, the first view to check

in the element on a branch or stream creates the successor;
developers working in other views must merge the checked-in
changes into their own work before they can check in.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Merging Your Work

• Merging is the action of combining the contents of two or more
files or directories into a single new file or directory.
– You merge your work from your development branch to the

integration branch when you want to make your changes visible to
others on your team.

– You merge from the integration branch to your development branch
when you want to see other developers’ changes.

• Merging Differences
– The deliver operation compares the versions being delivered from the

development stream with their counterparts in the target integration
stream and invokes the ClearCase Merge Manager as needed which
automatically resolves trivial differences.

• Trivial differences are those that can be resolved without your manual
intervention.

• For nontrivial differences, ClearCase Merge Manager prompts you to resolve
them manually when the merging occurs.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Merging Versions

• If another team member modified and delivered
a version of the same file, you must perform a
merge operation when you rebase to a baseline
that contains the delivered version.

• As it does in a deliver operation, ClearCase
merges all nonconflicting differences.

• For conflicting differences, ClearCase will prompt
you to start the Merge Manager to resolve the
conflicts.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

How ClearCase Merges

• It identifies the base contributor.
• Next, it compares each contributor against the base contributor.
• For any line that is unchanged between the base contributor and any

other contributor, ClearCase copies the line to the merge output file.
• For any line that has changed between the base contributor and another

contributor, ClearCase performs a trivial merge by accepting the change in
the contributor. Note, however, that depending on how you started the
merge operation, ClearCase may copy the change to the merge output file.
However, you can disable the automated merge capability for any given
merge operation. If you disable this capability, you must approve each
change to the merge output file.

• For any line that has changed between the base contributor and more
than one other contributor, ClearCase requires that you resolve the
conflicting difference.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Rebasing

• Project managers organize delivered activities
into baselines. When baselines reach a
satisfactory level of stability, after several cycles
of testing and fixing defects, project managers
will designate a recommended baseline.

• As a developer, you need to update your
development work area with the recommended
baseline as soon as it becomes available.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Overview of the Rebase Process

• Prepare your work area beforehand by finding all your checkouts and checking them in because
the rebase operation cannot start from a view that contains checkouts. You can also check for
differences between the earlier checked-in version, and see the check-in comments.

• Start the rebase operation. ClearCase will present you with the latest recommended baseline.

• Be prepared to perform merge operations. If another team member has modified and delivered a
version of the same element you modified in your development stream, you will have to perform a
merge operation when you rebase to a baseline that contains the delivered version. ClearCase
merges all nonconflicting differences and will prompt you to decide how to resolve conflicting
differences.

• Test your undelivered work after the rebase. After ClearCase reconfigures your work area and any
conflicting merges have been resolved, you must verify that any undelivered work builds
successfully in your work area using the most up-to-date elements of the new baseline. In the
event of build errors, you will first need to resolve any conflicts before you can proceed to delivery
your work.

• Complete the rebase operation when you are satisfied with your test builds.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

ClearCase Versions, Elements and VOBs

• Each time a file or directory is
revised from a view,
ClearCase creates a new
version of it.

• Files and directories under
ClearCase control are called
elements and are stored in
VOBs.

• Depending on the size and
complexity of the
development environment,
ClearCase elements may be
distributed across more than
one VOB. VOB

0

1

2

3

4

/main

NFXSF.java

0

1

/main

prov.scripts

0

1

2

3

/main

diameter.c

0

1

2

3

4

/main

Starcode.java

elements

versions

latest

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Elements and VOBs

main

Src

main
mainSrc/Hello.c

Src/util.c

VOB DB

VIEW DB

PVOB DB

VOB DB/mcp/mcp_key /mcp/mcp_mas_apps

/mcp/mcp_pvob

stream:mcp_unistimTraffic_09_int (Integration Stream)

Project:mcp_unistimTraffic_09

stream:yesim_mcp_unistimTraffic_09 (development stream)

main
main main

Applets/call.c Applets/recall.c

Applets

activity:butt_9.0_3

activity:butt_11.0_1

util.c

checkout
checkin

View Config spec

Src

Hello.c util.c

Test.txt

Test.txt

Applets

call.c recall.c

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Versions and Config Spec

main main main main main main

r1

r1 r1 r1

r1

Config Spec

element * CHECKEDOUT
element * r1
element * /main/LATEST

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Version Tree

• Displays a graphical view of
the version history for an
element.

• Each version of a resource is
displayed as a node on the
tree, and the version currently
selected by your view is
marked.

• You can use the ClearCase
Version Tree view to perform
ClearCase operations on
resources by right-clicking on
a version node, a branch, or a
merge arrow and then
selecting a ClearCase
operation.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Controlling the Contents of Views

• A view is the mechanism ClearCase uses to
provide access to a specific version of files and
directories under source control.

• Rules determine which version of each element is
visible and accessible through the view.

• The set of rules that determines which version of
an element to display is referred to as the view’s
config spec.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Understanding the Role of the config spec

• Config specs are used to achieve a degree of
control over project work.

• Project managers use config specs for any of the
following reasons:

– To control which versions developers see and what
operations developers can perform in specific views.

– To prohibit checkouts of all selected versions or
restrict checkouts to specific branches.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Working with Branches

• Branches organize the different versions of files, directories
and objects that are placed under version control.

• A branch is an object that specifies a linear sequence of
versions of an element.

• The entire set of an element’s versions is called a version
tree.

• By default, ClearCase provides for every single element in a
VOB one principal branch, called the main branch.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

When to Use Branches

• A branch represents an independent line of development. Typically,
different kinds of work is done on different branches.
– E.g., to separate the work that is related to defect fixing from the

regular development work, you can create a separate branch for the
defect fixing of the main branch. The team working on the defect fixes
can do their work without affecting or being affected by the work
being done on the development branch.

• When the work on the subbranch is completed, you can integrate
onto the main branch.
– This is done by merging the most up-to-date version on the subbranch

onto the elements’ main branch.

• The decision to use multiple branches for your project is part of a
careful development planning strategy.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

What is Git?

• The major difference between Git and any other SCM is the way Git thinks about
its data. Conceptually, most other systems store information as a list of file-based
changes. These other systems think of the information they store as a set of files
and the changes made to each file over time.

• Instead, Git thinks of its data more like a series of snapshots of a miniature
filesystem.

– Every time you commit, or save the state of your project, Git basically takes a picture of what
all your files look like at that moment and stores a reference to that snapshot.

– To be efficient, if files have not changed, Git doesn’t store the file again, just a link to the
previous identical file it has already stored.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Git – Most Important Aspects

• Nearly Every Operation Is Local
– Most operations in Git need only local files and resources to

operate — generally no information is needed from another computer
on your network.

– There is very little you can’t do if you’re offline or off VPN.

• Git Has Integrity
– Everything is checksummed before it is stored and is then referred to

by that checksum.

• Git Generally Only Adds Data
– Nearly all your actions in Git only add data to the Git database. After

you commit a snapshot into Git, it is very difficult to lose, especially if
you regularly push your database to another repository.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

The Three States

• Git has three main states that your files can
reside in:

– Modified means that you have changed the file but
have not committed it to your database yet.

– Staged means that you have marked a modified file in
its current version to go into your next commit
snapshot.

– Committed means that the data is safely stored in
your local database.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Main Sections of a Git Project

• The working tree is a single checkout of one version of the project. These files are
pulled out of the compressed database in the Git directory and placed on disk for
you to use or modify.

• The staging area is a file, generally contained in your Git directory, that stores
information about what will go into your next commit.

• The Git directory is where Git stores the metadata and object database for your
project. This is the most important part of Git, and it is what is copied when you
clone a repository from another computer.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

The Basic Git Workflow

1. You modify files in your working tree.

2. You selectively stage just those changes you
want to be part of your next commit, which adds
only those changes to the staging area.

3. You do a commit, which takes the files as they
are in the staging area and stores that snapshot
permanently to your Git directory.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Basic Concepts - 1

• Repository
– Think of a repository as a kind of database where your SCM stores all the versions and

metadata that accumulate in the course of your project.
– In Git, the repository is just a simple hidden folder named ".git" in the root directory of your

project.
– A "local" repository resides on your local computer, as a ".git" folder inside your project's root

folder. You are the only person that can work with this repository, by committing changes to it.
– A "remote" repository, in contrast, is typically located on a remote server on the internet or in

your local network. Teams are using remote repositories to share & exchange data: they serve
as a common base where everybody can publish their own changes and receive changes from
their teammates.

• Commit
– A commit is a wrapper for a specific set of changes. The author of a commit has to comment

what he did in a short "commit message". This helps other people (and himself) to understand
later what his intention was when making these changes.

– Every set of changes implicitly creates a new, different version of your project. Therefore,
every commit also marks a specific version. It's a snapshot of your complete project at that
certain point in time. The commit knows exactly how all of your files and directories looked
and can therefore be used, e.g., to restore the project to that certain state.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Basic Concepts - 2

• The Commit Hash
– Every commit has a unique identifier: a 40-character checksum called the "commit hash".

While in centralized version control systems like Subversion or CVS, an ascending revision
number is used for this, this is simply not possible anymore in a distributed system like Git:
The reason is that, in Git, multiple people can work in parallel, committing their work offline,
without being connected to a shared repository. In this scenario, you can't say anymore whose
commit is #5 and whose is #6.

– Since in most projects, the first 7 characters of the hash are enough for it to be unique,
referring to a commit using a shortened version is very common.

• The Stash
– Think of the Stash as a clipboard on steroids: it takes all the changes in your working copy and

saves them for you on a new clipboard. You're left with a clean working copy, i.e. you have no
more local changes.

– Later, at any time, you can restore the changes from that clipboard in your working copy - and
continue working where you left off.

– You can create as many Stashes as you want - you're not limited to storing only one set of
changes. Also, a Stash is not bound to the branch where you created it: when you restore it,
the changes will be applied to your current HEAD branch, whichever this may be.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Basic Concepts - 3

• Checkout, HEAD, and Your Working Copy
– A branch automatically points to the latest commit in that context.

And since a commit references a certain version of your project, Git
always knows exactly which files belong to that branch.

– At each point in time, only one branch can be HEAD / checked out /
active. The files in your working copy are those that are associated
with this exact branch. All other branches (and their associated files)
are safely stored in Git's database.

– To make another branch (say, "contact-form") active, the "git
checkout" command is used. This does two things for you:

• It makes "contact-form" the current HEAD branch.
• It replaces the files in your working directory to match exactly the revision that

"contact-form" is at.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Working with Branches

• Branches aren't optional in Git: you are always
working on a certain branch (the currently
active, or "checked out", or "HEAD" branch).

• The "master" branch is created by Git
automatically for us when we start the
project. You can rename or delete it.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Integrating Branches

• When starting a merge, you don't have to (and cannot) pick
individual commits that shall be integrated. Instead, you tell Git
which branch you want to integrate - and Git will figure out which
commits you don't have in your current working branch. Only these
commits will then be integrated as a result.

• The target of such an integration is always your current HEAD
branch and, thereby, your working copy.

• In some situations, merging will result in one or more "merge
conflicts". In such a case, Git wasn't able to combine changes, e.g.
because the exact same line was modified in two different ways.
You'll then have to decide yourself which content you want.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Local / Remote Workflow

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Software Configuration Management

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

The Golden Rules of Version Control

• Write Good Commit/Checkin Messages
– Time spent on crafting a good message is time spent well: it will make

it easier to understand what happened for your teammates (and after
some time also for yourself).

• Use Branches Extensively
– Branches are the perfect tool to help you avoid mixing up different

lines of development. You should use branches extensively in your
development workflows: for new features, bug fixes, experiments,
ideas…

• Never Commit/Checkin Half-Done Work
– You should only commit code when it’s completed. This doesn’t mean

you have to complete a whole, large feature before committing. Quite
the contrary: split the feature’s implementation into logical chunks
and remember to commit early and often. But don’t commit just to
get half-done work out of your way when you need a "clean working
copy".

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Continuous Integration

• Continuous Integration (CI) is a development practice where developers
integrate code into a shared repository frequently, preferably several
times a day.

• Each integration can then be verified by an automated build and
automated tests. While automated testing is not strictly part of CI it is
typically implied.

• One of the key benefits of integrating regularly is that you can detect
errors quickly and locate them more easily. As each change introduced is
typically small, pinpointing the specific change that introduced a defect
can be done quickly.

• In recent years CI has become a best practice for software development
and is guided by a set of key principles. Among them are revision control,
build automation and automated testing.

Continuous Integration doesn’t get rid of bugs, but it does make them
dramatically easier to find and remove.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Continuous Deployment

• Continuous Deployment is closely related to
Continuous Integration and refers to keeping your
application deployable at any point or even
automatically releasing to a test or production
environment if the latest version passes all automated
tests.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Continuous Delivery

• Continuous Delivery is the practice of keeping
your codebase deployable at any point.

• Beyond making sure your application passes
automated tests it has to have all the
configuration necessary to push it into
production. Many teams then do push changes
that pass the automated tests into a test or
production environment immediately to ensure a
fast development loop.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Benefits of CI

• A good CI setup speeds up your workflow and encourages the team to push every change without
being afraid of breaking anything.

• Reduces Risk
– If you test and deploy code more frequently, it will eventually reduce the risk level of the project you are

working on as you can detect bugs and code defects earlier. Defects are easier to fix and you can fix them
sooner which makes it cheaper to fix them.

• Better Communication
– With a CI process in place that is hooked into a Continuous Delivery workflow it’s easy to share your code

regularly. This code sharing helps to achieve more visibility and collaboration between team members.
Eventually this increases communication speed and efficiency within your organization as everybody is on
the same page, always.

• Faster iterations
– As you release code often, the gap between the application in production and the one the developer is

working on will be much smaller. As every small change will be tested automatically and the whole team can
know about these changes you will want to work on small, incremental changes when developing new
features. This results in less assumptions as you can build features quicker and test and deploy them
automatically for your users to see as soon as possible, thus gaining valuable feedback from them faster. 
Agile thinking

• Faster feedback on business decisions
– As a software development manager, you have more data available which you can analyze to check if the

product is heading into the right direction. This continuous data flow and the timeline of metrics (like
dependency, unit tests, complexity, and code smell) can also help to reflect on the progress of the project
more frequently which enables faster technological and business decisions.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Some other benefits of using CI and CD

• Reduces overhead across the development and deployment process
• Reduces the time and effort for integrations of different code changes
• Enables a quick feedback mechanism on every change
• Allows earlier detection and prevention of defects
• Helps collaboration between team members so recent code is always

shared
• Reduces manual testing effort
• Building features more incrementally saves time on the debugging side so

you can focus on adding features
• First step into fully automating the whole release process
• Prevents divergence in different branches as they are integrated regularly
• If you have a long running feature you're working on, you can continuously

integrate but hold back the release with feature flags.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Continuous Delivery Checklist

1. Before submitting changes, check to see if a build is currently in the
"Successful" status. If not, you should assist in fixing a build before
submitting new code.

2. If the status is currently "Successful", you should rebase your personal
workspace to this configuration.

3. Build and test locally to ensure the update doesn't break functionality.

4. If Successful, check in new code.

5. Allow CI to complete with new changes.

6. If build fails, stop and fix on your machine. Return to step 3.

7. If build passes, continue to work on the next item.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Key Tools & Best Practices

• Jenkins for automated builds

• Automated testsuites for the technologies you are using, for example
Rspec and Jasmine.

• Version control systems like Git, Subversion or Perforce.

• Desktop Subversion and Git Clients like Cornerstone

• Code reviews like Github pull requests or Assembla merge requests, etc.

• Deployment & staging setup scripts like Capistrano, Shipit, Fabric, etc.

• Integrations with collaboration tools you’re already using like Slack so you
can deploy via commands directly in your channel.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

E.g. Branch Strategy for Releases - 1

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

E.g. Branch Strategy for Releases - 2

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

E.g. Branch Strategy for Releases - 3

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

Summary

• What is Software Configuration Management?
• Source control (or version control) is the practice of tracking and managing changes to code.
• SCM systems provide a running history of code development and help to resolve conflicts when merging

contributions from multiple sources. SCM systems allow you to track your code change, see a revision history for
your code, and revert to previous versions of a project when needed.

• An effective SCM system will make it easy to reconstruct the software system at any point in the past.
• Centralized vs. Distributed version control
• Merging is the action of combining the contents of two or more files or directories into a single new file or

directory.
• A branch is an object that specifies a linear sequence of versions of an element.
• You need to update your development work area with the recommended baseline as soon as it becomes available.
• ClearCase

– Check out-edit-check in model
– ClearCase Versions, Elements and VOBs
– Versions and Config Spec

• Git - data is more like a series of snapshots of a miniature filesystem
– Three states: Modified, Staged, Committed

– Commits, commit hash, repository, stash
– Local / Remote Workflow: push, pull

• The Golden Rules of Version Control
• Continuous Integration (CI) is a development practice where developers integrate code into a shared repository

frequently, preferably several times a day.
• Continuous Deployment refers to keeping your application deployable at any point automatically.
• Continuous Delivery is the practice of keeping your codebase deployable at any point.

İTÜ ♦ Faculty of Computer & Informatics Engineering ♦ Project Management in Engineering

References

• https://www.slideserve.com/carys/configuration-management

• https://www.youtube.com/watch?v=AaHaLjuzUm8

