
FUNCTIONAL PROGRAMMING, 2017-2018 SPRING, FINAL EXAM

105 minutes May 31, 2018

Id Full Name Signature Q 1 Q 2 Q 3 Q 4 Total

/ 25 / 25 / 20 / 30 / 100

No questions are allowed. Answer the questions to the best of your understanding. If you need to make extra assumptions,
state them clearly. Make sure that all your answers are su�ciently (and mathematically) explained.

1. Consider the functions given below.

foo [] = return []

foo (x:xs) = do v <- x

vs <- foo xs

return (v : vs)

getInt = do line <- getLine

return (read line :: Int)

(a) What is the most general type for the function foo? Explain.

(b) What would be the behavior of the function call foo [getInt, getInt, getInt]?

(c) Write a function that will make the function call in (b) and print the result.

2. Consider the code given below for calculating the roots of a second degree polynomial.

data VariedResult a = None | Single a | Multiple [a]

deriving Show

roots :: (Float, Float, Float) -> VariedResult Float

roots (a, b, c)

| disc < 0 = None

| disc == 0 = Single ((-b) / (2 * a))

| otherwise = Multiple [x1, x2]

where

disc = b * b - 4 * a * c

discr = sqrt disc

x1 = (-b + discr) / (2 * a)

x2 = (-b - discr) / (2 * a)

(a) What are the results of the following expressions? Brie�y explain.

i. roots (1, -4, 4)

ii. roots (1, 1, -6)

iii. roots (1, 1, 1)

(b) Make the VariedResult type a Functor instance so that the expressions below will produce the signs of the roots.
The signum function returns the sign of a real number (1.0 for positive, 0 for zero, -1.0 for negative). Explain.

signum <$> roots (1, 1, 1) -- expected result: None

signum <$> roots (1, -4, 4) -- expected result: Single 1.0

signum <$> roots (1, 1, -6) -- expected result: Multiple [1.0, -1.0]

Id Full Name Signature

3. The Prelude.sqrt function returns the NaN value (�not a number�) for negative inputs. In question (2), assume that
the sqrt function is de�ned as follows:

sqrt :: Float -> Float

sqrt x

| x < 0 = error "negative input"

| otherwise = Prelude.sqrt x

Explain how the code in question (2) would behave under this de�nition and why. Compare this behavior to a similarly
structured code in Python.

4. In the questions below, check only one option and for the other options VERY BRIEFLY EXPLAIN why it is false.

(a) Choose the equivalent of the following list comprehension [f x | x <- xs, g x]:.

[] map g (map f xs)

[] filter g (map f xs)

[] map f (filter g xs)

[] map f (takeWhile g xs)

(b) Choose the option that implements the Prelude function map:

[] map f = foldr (\x xs -> xs ++ [f x]) []

[] map f = foldr (\x xs -> f x ++ xs) []

[] map f = foldl (\xs x -> f x : xs) []

[] map f = foldl (\xs x -> xs ++ [f x]) []

(c) Choose the option that implements the Prelude function filter:

[] filter p = foldl (\xs x -> if p x then x : xs else xs) []

[] filter p = foldr (\x xs -> if p x then x : xs else xs) []

[] filter p = foldr (\x xs -> if p x then xs ++ [x] else xs) []

[] filter p = foldl (\x xs -> if p x then xs ++ [x] else xs) []

