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Summary-An experimental simulation program, which has been
in progress at the Cornell Aeronautical Laboratory since 1957, is
described. This program uses the IBM 704 computer to simulate per-
ceptual learning, recognition, and spontaneous classification of visual
stimuli in the perceptron, a theoretical brain model which has been
described elsewhere. The paper includes a brief review of the or-
ganization of simple perceptrons, and theoretically predicted per-
formance curves are compared with those obtained from the simula-
tion programs, in several types of experiments, designed to study
"forced" and "spontaneous" learning of pattern discriminations.

INTRODUCTION

A NUMBER of papers and reports have been pub-
lished describing the theory of a new brain
model called the perceptron. The perceptron is a

minimally constrained "nerve net" consisting of logi-
cally simplified neural elements, which has been shown
to be capable of learning to discriminate and to recog-
nize perceptual patterns [5]- [8]. This paper is con-
cerned with a report of digital simulation experiments
which have been carried out on the perceptron, using
the IBM 704 computer at the Cornell Aeronautical Lab-
oratory. These experiments are intended to demonstrate
the performance of particular systems in typical en-
vironmental situations, free from any approximations
which have been used in the previously published
mathematical analyses. In the simulation programs, the
action of every cell and every connection in the network
is represented in detail, and visual stimuli are repre-
sented by dot patterns corresponding to illuminated
points in a retinal mosaic.

Several related experiments have been conducted
previously, using a digital computer for the simula-
tion of a nerve net in learning experiments [1], [2], [4].
Rochester and associates, at IBM, have reported on sev-
eral attempts to simulate the formation of "cell as-
semblies," in a model based on the work of Hebb [3]
Hebb proposes that a set of neurons which is repeatedly
activated by a particular sensory stimulus becomes
organized into a functional unit, which can be triggered
as a whole by sensory patterns sufficiently similar to the
original one. Hebb's book, however, does not attempt
to specify in a rigorous manner the exact organization
or parameters under which the predicted effects would
be obtained, so that the IBM group found it necessary
to improvise several models and variations of their own,
having various degrees of biological plausibility, in an
attempt to construct a definite system. The results of
these experiments seem ambiguous, not only because
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of the uncertain relationship of the final model to the
nerve net originally suggested, but also because the
phenomenon which was sought after has never been de-
fined in a fashion precise enough so that one might
say whether or not it has actually occurred. These ex-
periments illustrate the importance of selecting a suit-
able measure of performance in work of this type; it is
essential that a clearly defined test should be specified
for the "learning" which has presumably taken place, or
else it is impossible to say either how well a particular
system has performed or to compare its performance
with any other system, or class of systems, in a system-
atic fashion.
From this standpoint, the experiments reported by

Farley and Clark [1 ], [2 ] seem to have been better con-
ceived. In this model, a network of eight randomly con-
nected neurons was simulated. Inputs consisted of stim-
uli applied to one of two disjunct pairs of "input cells,"
and outputs were measured as the activity of two pairs
of "output cells." In later experiments, the size of the
network was increased to sixteen cells. It was demon-
strated that this system can learn to favor the output
from one set of output cells following the presentation
of one of the two stimuli, and the alternative output set
following presentation of the other stimulus. The prob-
lem of generalization was considered only in terms of
relatively slight displacements or alterations of the
stimulus patterns, and it was suggested that, under these
conditions, the response would be most likely to occur
which was previously associated to the stimulus having
the greatest overlap with the altered stimulus. The prob-
lem of generalization to similar but completely disjunct
stimuli was not specifically considered. Nonetheless,
the process of generalization advocated as a result of
these experiments has much in common with our early
work on the perceptron. A more thorough consideration
of this problem will be published elsewhere [8].
The design of a simulation program for studies of pat-

tern recognition and perceptual generalization in nerve
nets should fulfill at least three basic conditions, each
of which has been ignored too frequently in previous
work along these lines.

1) Simulation should not, in general, be attempted
without a theoretical analysis of the nerve net in ques-
tion, sufficient to indicate suitable parameters and rules
of organization, and to indicate questions of theoretical
interest. The examination of arbitrary networks in the
hope that they will yield something interesting, or the
simulation of networks which have been specially de-
signed to compute a particular function by a definite
algorithmic procedure seem to be about equally lacking
in value.
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2) Suitable measures of performanice mllust be de-
fined. This means that some task must be set for the
systemii, the outcomiie of which can be clearlv recognized,
and, preferably, counted or quantified in sonme manniier.
Signal strengths, waitinig times for achievemiient of a
criterioni, or percentage of correct decisionis are ex-
amples of suitable imieasures.

3) Experimiienits should be designed with suitable
controls against trivial or ambiguous results. If we are
interested in teaching a device to generalize a response
to visial formus, for example, it is essenitial that a dis-
criminiationi test should be mncade involving at least two
different responses, to make sure that the systemn has
niot simnply genieralized the desired responise universally
to all stimllllLi, regardless of their similarity to onie ani-
other. i\loreover, it is often important to make sure that
the cLue for the response is the actual form of the stimn-
ulus, rather than its locationi on the retinia, or somiie
other uninitentionial source of iniformationi. This last
condition is often quite tricky to satisfy, and in most of
our current work we nmake use of Born-von Karmia'n
boundary coniditions (in which patterns shifted off of
one edge of a retinal field re-enter oni the opposite side,
as in a toroidally connected space) in order to guaranitee
the logical equivalence of all poinits in the retinal space.
Given stuch a retinal field, it is sufficienit to place each
stimulus pattern with equal probability or frequenicy at
all possible locations in the retinal space, in order to
guarantee that the illuminationi of a particular retinial
point does Ilot convey aniiy informiation- about which
stimulus is presenit. It should be noted that this conidi-
tionl is not always observed in the experimeints reported
in this paper, stimuli often being confined to some sub-
field of the retina in order to increase the rate of learni-
ing. In at least onie case (the experimiienit with the "con-
tinuous transducer perceptron" showtn in Fig. 8) a dis-
crimination has thus been obtained which would niot
hold up if the field were uniformly covered with the
stimulus patterns.

ORGANIZATION OF A PERCEPTRON

Any perceptron, or nierve net, consists of a network
of "cells," or signal generating units, and conniections
between them. The perceptron is defined by two sets of
rules: 1) a set of rules specifying the topological con-
strainits upon the network organizationi, such as the
number of connectionis to a given unit, or the direction
in which conniiections are made, and 2) a set of rules
specifying the dynamic properties of the system, such as
thresholds, signal strengths, and memory functionis. A
"fully randomii network" would be one in which onily
the nmtniber of cells and the number of coninectionls is
specified, each coinnectioni being equally likely to orig-
inate or terminate on any cell of the system. The topo-
logical rules for the organization of a perceptron take
the form of constraints applied to such a random nhet-
work, and it is assumed that all connection properties

other thani those specified remiiain "ranidom," in the senise
just in-dicated.
A simplified version of the known features of a mlam-

malian visual system-i is shown in Fig. 1, for al comiipari-
son1 with the organization of a perceptron, which will be
described presently. At the extreme left we see a mlosaic
of light-sensitive poilnts, or retina, from xwhich sign-als
are transmitted to the visual projectioi atrea, in the
cerebral cortex. Several initermediate relay stations
exist in a typical biological system, which are nlot shown
here. These conniiectionis preserve topological chalrac-
teristics of the stimnulus in a reasoniably intact form.
Beyond the projection area, however, conniiectionis ap-
pear to be largely ranidomii. I iiipulses are dlelivered
through a large niumnber of paths to the association areas
of the cortex, where local feedback loops are activated,
so that activitv miiay persist for somiie timiie past the termiii-
nlatioin of the originial visual stimutilus. Fromii the associa-
tion1 area, signials are tranismnitted to the miiotor cortex,
which againi has a clear topological organization cor-
responiding to the locationi of muscle groups to be coni-
trolled.

Association ASUKiOti*n Moto,
Areo (Outer Aree (Depew Cortex

Retina Projection Aree Leyer)leyes)

Fig. 1 Organization of a biological brain. (Heavy black
areas indicate active cells, responding to the letter X.)

This general plan of organizationi has beeni consider-
ably simuplified in the perceptron. First of all, we will
eliminiate the projectioni area, anid assumle that the
retinial poinlts are directly coupled to associationi cells,
or "A uInitS." The number of inlput conniiectionis to each
A unit is specified, but the locations of the origini poinits
for the connections are selected at ranidoml from the set
of sensory poinlts. Each A unlit receives somiie niiiumber, x,
of excitatory connections, and somile nlumilber, y, of
inihibitory conniiections. The connectioni system fromii the
senisory to associationi system is a maniy-to-maniy sys-
temii. An excitatory conlniectioni from ani illuminiated
senlsory poinlt is assumed to tranismit a Ullit positive sig-
nal, while ani inhibitory conlniectioni carries ai uInlit niega-
tive signial. Each A unlit has a fixed tlhreshold, 0, anld is
triggered to deliver an output pulse if the algebraic suml
(at) of the signials received fromii the x-fy iniput coni-
nectionis is equal to or greater than 0. A further slilu-
plification is introduced at the output side of the associa-
tion systemii. instead of delivering its output signials at
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random to a large number of "motor area" cells, the
cells of the association system are connected to one or
more binary response units, which are turned to their
"1" state if they receive a positive signal from the asso-

ciation system, or to their "O" state if they receive a
negative signal. The magnitude of the output signal
generated by an active A unit is called the "value" of
that unit, and is represented by the symbol v. The
values of the units are stochastic variables, which
change as a function of the history of the system. The
organization of a simple perceptron with a single binary
response is shown in Fig. 2. The total signal delivered
by the set of A units is equal to lai*vi where ai* is equal
to 1 if unit ai is active, and 0 if at is inactive, and vi is
the current value of unit as. Note that there are two
feedback lines from the response unit (or R unit) to the
set of A units. These feedbacks control the "reinforce-
ment," or changes in value, of the A units. In general,
if the response R= 1 occurs, active A units will gain in
value, while if the response R=O occurs, active units
will lose in value. The value of the A unit thus acts as

the memory variable for the system. It has been shown
to be desirable to further modify the values of the A
units by the rule that if some subset of units gains or

loses in value, then the remainder of the units must
change in the opposite direction just sufficiently to
balance out the net change to zero. Thus, one unit can

only gain parasitically, at the expense of the other units,
and the total value of all of the A units is kept equal to
zero at all times. A perceptron with this property is
called a "gamma system." The theory of such systems
has been considered in detail elsewhere [5], [6].

The simulation programs have tour imaini tasks, each
of which is actually performed by a separate, self-suf-
ficient program, which is stored on tape, and called into
the computer by a supervisory routine. The supervisory
routine reads instruction cards provided by the experi-
menter, which provide information on parameters, and
control the sequence of subprograms performed in the
course of the experiment. When each subprogram has
been completed, control is passed back to the super-

visory routine, which reads the next card for further
instructions. In a typical experiment, the sequence is as

follows:

SUPERVISORY ROUTINE
READ INSTRUCTION CARD

AND SET UP NEXT PROGRAM

CONSTRUCT READ IN

PERCEPTRON PROTOTYPES PROGRAM PROGRAM

TRAINING PROGRAM TESTING PROGRAM

Fig. 3-Flow diagram for simulation program.

Fig. 2-Organization of a simple perceptron.

DESCRIPTION OF SIMULATION PROGRAMS

Fig. 3 shows the organization of a typical simulation
program, for the study of perceptron performance in an

environment of visual forms. Actually, four basically
different programs have so far been written with a num-

ber of variations of each, but the two programs which
were used for most of the experiments reported here
are both organized in the manner illustrated. The third
program involves more direct methods of computation
rather than true simulation, while the fourth program

(designed to study "cross-coupled systems," in which
A units may be connected to one another as well as to
S points and R units) has proven too slow to be used
successfully. 1

1) The perceptron construction routine is called into
the core memory, and reads in a set of parameters de-
scribing the perceptron to be constructed. These param-

eters include the number of A units, the number of ex-

citatory and inhibitory connections to each unit, the
thresholds of the units, the number of R units, the num-

ber of R units connected to each A unit, the decay rate
for A unit values (which decay with time in some

models) and a random number to be used for priming
the pseudo-random-number generator used to control
the choice of connections. The program then selects for
each A unit a set of x+y sensory points to be assigned
as origins for the input connections. This is done by gen-

erating a random number number modulo N8 (the num-

ber of sensory points) for each connection. This number
is used to locate one of the N, storage locations in which

1 The cross-coupled system was successfuilly simulated, and pre-
dicted effects obtained in December, 1959, using an improved pro-
gram. Results will be reported in later publications.
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the state of each senisory point is inidicated when a "vis-
ual" pattern is presented.2 The perceptron construction
routine prepares a table listing all of these connections.
In the first simulation program this table was stored on
tape; but in the second program, by cutting down the
admissible nunmber of A units and conniectionis, it was
possible to store the entire table in the core imnemory,
saving a factor of about five in runninag timie of the pro-
gram. The R units to which each A unit is conniiected are
similarly assigned at random in each of the first two
programs, which permit nmultiple output connectionis
from each A unit. Since, in practice, all experiments
have been concerned oiliy with simple binary discrim-
ination problems, more recent programs have been de-
signed with only one R unit, to which all A units are
connected. In the second program, it is also possible to
assign an initial random1 distribution of values to the A
units, although in most experiments it is assumed that
the values start out uniformly from zero.

2) The second stage in the experimenit calls for read-
ing a set of "prototype stimulus patterns" into the
memory of the conmputer. These patterns conlsist of ac-
tual dot images of the stimiiuli to be used, puniched as
patterns of holes in IBMI cards. Thus, if it is planned to
teach the perceptron the first four letters of the alpha-
bet, we would read in the images of the letters A, B, C,
and D, which are stored for future referenice by later
routines. These prototypes are never altered, but are
used by the stimulus transformationi routiines which are
included in the remiiainiing two programiis, to construct
variously displaced, rotated, or contracted patterns
which are the stimiiuli actually "showni" to the percep-
tron.

3) Having constructed the coinnectioni tables and read
in the prototype stinmuli, the comlputer is ready to begin
the actual learning experiment. This conisists of an
alternation between the two remaining programs, one
of which attempts to "teach" the perceptron to recog-
nize the stimulus patterns, while the other evaluates
the performance of the perceptron at intervals specified
by the control cards. For example, in a typical experi-
ment, the discrimination of the letters "E" and "X," the
procedure is as follows. First, a control card calls for the
training program to show ten different transformations
of the letter "E" (the first stimulus). Each of these is
generated by applying a vertical and lateral shift of
random magnitudes between zero units of retinal dis-
tance and a maximum shift specified by the control card,

2 In each of the first two simulation programs, multiple connec-
tions from the same A unit to the same S point are prohibited. In the
second program, an inverse constraint was originally employed, fixing
the number of connections originating from each sensory point, and
assigning termini at random in the association system. This was
later modified by the addition of a scheme to obtain, as nearly as pos-
sible, uniform numbers of inputs to each A unit as well as fixed num-
bers of outputs from the sensory units. These variations have not
seriously affected the performance of the program, but it appears
that somewhat better performance is obtained with the numbers of
inputs to the A units is kept uniform.

a rotation between zero degrees and a specified mlaxi-
munm, anid a size somewhere between a specified lower
and upper bound. Random1 inumbers generated by the
routine determiine the exact transformiiation to be ap-
plied to each stimulus, and a new imiiage is composed.
The control card then specifies that the response "1"
is to be reinforced as the appropriate response for the
letter "E." The program accordingly calculates the sig-
nials received by each A unit from the transformiied stillm-
ulus, deternmines which A unlits are active, and rein-
forces the unlits according to the rules for reiniforcemiienit
of the R= 1 condition, for the gammna system, i.e., each
active A unit gains an incremiient in value, while the in-
active uInits lose a compensatinig amoun11t. In the seconid
of the simulatioin programs, it is also possible for the
stimulus to persist for a designated number of cycles,
undergoing a random walk during this timne, coInsistinlg
of unit displacements, rotations, or size changes from
the positioIn in which it first appeared. This procedure is
characteristic of the "forced learning miiode" of experi-
ment, which is the only mode possible for the first simu-
lation program. In this mode, the desired response is
turned on1, or forced, by the traininig program at the
same time that a stimulus is presented. The second pro-
gramn is also designed to periiiit a "spontanieous learning
miiode," in which stimuli occur in a ranidomii sequenice,
and the response spointanieously occtirring uiponl presenl-
tationi of the stimiiulus is reiniforced, regardless of whether
or not it is the response ultimately desired. M/lost of the
experimenits to be described in this paper were per-
formed in the forced learning miiode. After havinig pre-
senited the teni tranisformations of the letter "E" which
wN-ere called for, and reinforced the responise R = 1 for
each transformationi, conitrol is returnied to the super-
visory routine, xvhich reads the next control card. In
this typical experiment, we next call for teni transforimia-
tionls of the letter "X," to be associated to the response
R = 0. This procedure is carried out in the samiie manniier
as before.
We now switch to the testing programii, which com-

poses a series of stimulus transfornmationis in the same
manner as the training programn, and goes through an
identical set of calculationis to determ-line the active A
units in each case. Instead of reinforcinig the association
units, however, this program merely records the re-
sponse, and checks it against the desired response for
correctness. If the response is correct, it increnmenits a
tally of correct responses. Typically, we m1ay look at
twenty transformations of the "E" anid twenty trans-
formations of the "X," determininig in each case the
percentage of correct responses (R = 1 or R =0, respec-
tively). During this procedure, a running description
of the responses of the system, nuumbers of active units,
and other analytic data, are printed out by the com-
puter. We may now present another ten E's and another
ten X's, reinforcing the system as before, then test the
performance once more, to find out whether this addi-
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tional training has improved the performance, and thus
continue alternating between training and testing pro-
grams indefinitely. It is also possible to reverse the as-
signed responses in the middle of the experiment, thus
reversing previous learning. In order to obtain unam-
biguous comparisons of performance in different parts
of the training series, the testing series are generally
"primed" with the same random number to guarantee
that the same stimulus transformations will be used on
each repetition of the program. The training programs,
on the other hand, continue to select stimuli at random,
independently of what has gone before. A comparison
of the organization of the training and testing programs
is presented in the flow diagrams in Fig. 3.
The two main simulation programs total about 5000

words each. The first program was designed to handle
up to 1000 A units, and a 72 by 72 sensory mosaic. It
was found that this large sensory system presented
stimuli with a fineness of grain considerably better than
the limits of discrimination of a thousand-unit percep-
tron, and at the same time, required an excessive
amount of time for stimulus transformations, since each
illuminated point in the stimulus must be transformed
individually into its image point. The second program
reduced the retina to a 20 by 20 mosaic, and limited the
number of A units to 500. For the first system, the com-
puting time averaged about 15 seconds per stimulus
cycle, while in the second system the time was cut to
about 3 seconds per cycle. Subsequent improvements in
programming techniques indicate that it should be pos-
sible to reduce the computing time still further-say to
about one second per cycle for perceptrons of the size
allowed by the second program. At the same time, how-
ever, analytic developments have suggested a way of
actually calculating the exact performance of a given
perceptron of the type discussed above, provided all
possible stimuli are known, and a matrix of g co-
efficients, describing the interactions of each pair of
stimuli, is computed for the particular network in ques-
tion. This technique is discussed in the appendix to [7],
and is the method employed in the third of our simula-
tion programs for the analysis of spontaneous learning
in infinite perceptrons. In that program, the response of
the system is obtained analytically, rather than simu-
lated, but the sequence of stimuli is governed by a series
of random numbers generated by the program. We will
consider some of the results of this program later in this
paper.

THEORETICAL PREDICTIONS AND PROBLEMS

Before considering the results of the simulation ex-
periments, let us review the main predictions coming
from the theory of the perceptron (see [5]-[7]). The
simulation experiments were designed in part to verify
these predictions, and in part to study problems which
were suggested by the theoretical investigations.

Fig. 4 shows a set of theoretical performance curves
for perceptrons of three different sizes, in the problem
of discriminating a square from a circle. The broken
curves (for Pr) show the probability of giving the correct
response to a stimulus which is identical in position,
size, etc., to one which was shown previously, during the
training period. The horizontal axis indicates the
number of stimuli of each class (squares and circles)
which were presented during the training period. The
solid curves indicate the probability of correct response
to any square or circle, regardless of whether it was used
as a training stimulus or not. Note that both sets of
curves approach the same asymptotes as the number of
training stimuli becomes large. The first task of the
simulation program was to check the genieral character
of these learning curves for typical stimulus material,
such as letters of the alphabet or geometric patterns.
In particular, it was essential to determine whether the
rates of learning agreed with the predicted rates, at least
to a reasonable approximation.

r,
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Solid cures (Pg) = probability of corr ct genwlition.e
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Fig. 4-Learning curves for three typical perceptrons.

A second problem concerned the effect of particuiar
types of transformations, such as shifting of stimuli,
rotations, or size changes, upon the learninlg curves. The
original theory did not distinguish amonig these types of
transformations, and it was important to find out
whether the system would work equally well for all of
them. While sufficient demonstrations have now been
made of performance under shifting and rotation condi-
tions, the problem of size changes remains a serious one,
with a number of special cases. One such special case
involves the assignment of different responses to two
stimuli, one of which could be considered a "part" of the
other, such as a small circle which could be completely
imbedded in a larger one, or the letter "F," which can
be considered as an "E" with the lower bar missing. It
was predicted that such discriminations would be possi-
ble only with a mixture of excitatory and inhibitory in-

broken curves (Pr) pro6ability of correct response to training stimulus
...........
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put connectionis, excitatory coniiectionis alone beinig
insufficient.3

Related to the problem of size variation in the stimiiuli
is the problem of frequenicy variation, i.e., somne kinids
of stimuli beinig more frequent thani others. The response
assigned to the nmore frequent stimulus type will gen-
erally tenid to dominate the response assigned to the less
frequent type, unless the system is designed in such a
way as to minimize interaction between differenit classes
of stimuli. The extent of this frequency bias was onie of
the problemns originally set for the simutlationi programiis,
but a systemiiatic inivestigation has not yet beeni coin-
pleted.
A different problemn area concernis the performance of

linear systemiis. At one stage of the perceptroni programi,
we were particularly interested in systemls in which nio
threshold at all was employed in the A unlits, the output
simply beinig equal to av (the algebraic product of the
iniput signal anid the stored value) rather than a*v, as in
the model described above. The values were to be aug-
miienited by a quaintity equal to a if R = 1, and diminiished
by a if R=0. It can easily be showni that iln such a sys-
tem, if a stimiulus patterni canl occur with equal proba-
bility anyivhere in the retinial space (aind elimninatinig
special boundary conditions, as in the toroidally coni-
nected model), the expected value of every A unit after
a long series of stinmtulus exposures will be exactly zero.
Such a system clearly would not learn at all, if stimnuli
were distributed uniformly in space. If the stimiuli were
not uniformly distributed, however, the values wouild
tend to correlate with any bias existing in the iniput
signlals, acnd it was predicted that such a system should
learn to (liscrimiinlate. The seconld simlluilationi program
was originially set up to study linlear systemns of this type,
botil in forced leairnini;g and sponltaneous learniing experi-
mlenits. The theory, of such systemiis in sponitanieous
learninag is conlsidered elsewhere [7]. While linlear sys-
temils hiave inow beeni cabanidonied, a typical experimnenit
will be conisidered presently, aIs it illustrates several
points of initerest.
The problem of sponltanieous learning the ability of

a perceptron to formii miieaninlgful classifications of stimilu-
lus patterns without acny assignlment of "correct" re-
sponises by a humani experimenter--has promnpted ani
extenisive series of experimiients. The effect was originally
demiionstrated with the seconid simulationi program,
where two disjulnct classes of stimiiuli were properly
separated, in a niumtiber of experimiients. M\/Iore interestinlg
results were obtained with the third program, which
eventually pointed the way to the development of the
"cross-coupled associationi system," which promises to
yield substantially improved performance in a large
variety of problems [8]. In studying these spontanieous

3F. Rosenblatt, "The Perceptron:A Theory of Statistical Separa-
bility in Cognitive Systems," Cornell Aero. Lab., Buffalo, N. Y.,
Rept. no. VG-I 196-G-1; January, 1958. See p. 53.

learninig effects, the first question was whether they
could actuallv be obtained at all, and the second wIas
how imiuch experienice would be required, a question for
which nlo satisfactory theoretical anliswer had beeni foun(d
at the time the simulatioin experimenits were under-
takeni. In this area, there has beeni particularly close
feedback between simulationi work and developmeent of
the theory, the simulation prograim frequently demiioni-
stratinig the existeince of special cases, involvinig particu-
lar paramiieters or particular stimulus formiis, which had
niot beeni anticipated. Mlore recenit theoretical imodels
owe a great deal to this period of emiipirical exploratioll.

RFSITLTS OF SIMULATION EXPERIMENTS

The first experiments which we shall conisider aIre
conicernied with the discriminiation of the letters "E" an-id
"X" in a forced learning situation, anid are illustratted
in Fig. 5. The stimuli were conistrainied to a cenitral por-
tioIn of the field (as shown by the inisert) partly to facili-
tate learninig, anid partly to prevenit trunicationi at the
bounidaries, sinice the toroidal stimiulu}s space was ilot
used inl this program. Fig. 5(a) shows the probability of
correct generalizationi (Pj) as mieasured oni a samiiple of
20 X's anid 20 E's. The stimiiulus sequenice conisistedl of
tel X's followed by teii E's, followed by a. test of per-
formancta-ce; thenl tenl mlore X's, teni imiore E's, anid a secondcl
test, for a total of 100 tra-inin6g stimiuli. The dLata poinlts
showxv in the figture are imieanis obtainied fromii tenl 100 A
unlit perceptronis, each of themii halvinig a different CoIn-
niectioni nietwork, but exposed to the samiie seqtuenice of
stimtuli. The curves in Fig. 5(b) show the performance
of a larger (1000 A Unlit) perceptroil, onl at ml]ore diffictilt
v\ariation of the samne probleml. Ini the solid curve, we see
the performance of the sy,stemi ftior stlimiili rotattedl 1
somiie integral nlumllber of degrees selectedl at ranidonii be-
tweeni 0 andcl 30 (legrees. TIhlis r-otatioin is combinie(l wvith
vertical anlld hiorizonitall trailslation-s selected wit-hiii the
samiiie limits as in the preceding case. For- rotatioins tul)
to 30 degrees, niote that the system attains perf-ect pcr-
formiianlce after onlly tenl stimiuli of each ty)pe. The brolkeni
curve shows the perforimance of the samiie system for
rotatiolns tup to 359 degrees, comiibined with trallslationls
as above. hI this case, there is a (lefihuite declinle inl the
perceptron-'s performance, although it hais attaline]
Pq of better than 0.90 after 30 StimulI]i of each tvpe.
The next experimiienit (Fig. 6) was clesignie(d to check

the hypothesis that perforimianlce oni outline figures
should be better thani oni solid figures, since uLlike fig-
ures represenited by their conitours would have a mini-
miium intersectioni oni the retinia, while solid areas imight
still have a large intersection eveni though their shape
was differenit. The figures used were squares (illustrated
in the inset) anid diamonids, which covered the samiie
areas as the squares, rotated 45 degrees. As shown- by
the two curves, the outlinie figures did indeed yield a
better performance than the solid figures, givinig a per-
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Fig. 5 (a) Experiment 10. "E" vs "X." No rotation. Centers placed
in 13 by 13 field, in 72 by 72 retina. NA= 100, 0=2, x=5, and
y = 5. (b) Experiments 20, 21. "E " vs "X" with shifting plus rota-
tion. NA= 1000, 0=4, x= 10, and y=O.
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Fig. 6-Experiments 16, 17. Square-diamond discrimination. NA = 1000,

x = 10, y =O, and 0= 4. Centers placed in 13 by 13 field.

fect response record after 60 training stimuli (30 of each
class). In this experiment, of course, rotation was

eliminated to avoid confusion of squares and diamonds,
and the figures were merely displaced in the same man-

ner as the E's and X's in the preceding experiment.
Fig. 7 shows two experiments concerned with part-

whole discrimination, which was discussed in the pre-
ceding section. In Experiment 18, illustrated in Fig. 7(a)
a system with only excitatory connections to the A units
was simulated. The stimulus is shifted at random in the
central portion of the field, as before. In this case, the
letter "E" was correctly learned, but the system was

unable to learn to give the opposite response to the letter
"F." In Experiment 22, shown in Fig. 7(b), we see that

Pg

E-X-E-X-E-X-E-X-

- E E E E

o x 20 40 60-----200 0 X 20 X 40 60 80

TIME (NO OF STIMULI) TIME (NO. OF STIMULI)

(a) (b)
Fig. 8-Linear system experiments ("E" vs "X"). (a) Experiment

4-14, 15. NA=500, x=4, y=4. Centers placed in 13 by 13 field.
(b) Experiment 4-16. NA =500, x=4, and y=4. Centers placed in
5 by 5 field.

a system, in which half of the connections to the A unlits
are inhibitory, is able to learn the correct response to
both classes of stimuli, although the F response is coin-
siderably less consistent then the E response. Experi-
ments 18 and 22 are, unfortunately, not fully compara-

ble, as the perceptron in the second case was a thousanid-
unit system, while in Experiment 18 only a hundred A
units were used. The character of the curves in these
experiments, however, is definitely not a function of the
size of the systems, but rather of the stimulus relationi-
ships, as shown by supporting evidence from many other
cases. These results are in closer agreement with the
theoretical predictions referred to earlier.
The next experiment (Fig. 8) was performed with the

second simulation program, and represents the learning
which is possible with a purely linear model, if the stim-
uli are constrained to one region of the retinal field. In
this experiment, instead of testing the perceptron after
every twenty stimuli, as in previous experiments, it was
tested after every ten stimuli, which yields the charac-
teristic pattern of converging oscillations shown in the
figure. The first ten stimuli were all E's, and after these
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PROCEEDINGS OF THIE IRE

ten exposures, we find that the system has learned the
"E" perfectly, but always gives the wrong responise to
stimuli of the opposite class (the letter "X"). The per-
ceptroni was then shown ten X's, to which the opposite
response was forced, and we find at time 20 that it has
nlow learned to give the desired response to the X, but
has almost completely forgotten the proper response to
the letter E. The amplitudes of such oscillatiolns are apt
to be increased by a large decay rate for the values of
the A units (which makes more recent reiniforcemlenit
mlore effective than earlier experience), but in the ex-
periment illustrated here the decay rate was zero. Note
that in Experiment 4-16 [illustrated Fig. 8(b)] the
mean learning curve, shown by the broken line, climiibs
towards a high probability level as experienice with both
stimuli increases. At the same time, the swings in per-
formance become considerably less pronounced, as each
series of ten stimiiuli represents a progressively diminish-
ing portion of the total experience of the system. The
important conclusion fromn this experimlenit is that dis-
criminiationi learning is possible for a linlear system, pro-
vided the stimuli are sufficiently constrainied in locationi.
The retinal field in this case was 20 by 20 units, and the
centers of the stimulli were conistrained to a 5 by 5 region
in the center of the retina. In Experimenit 4-14 [shown
in Fig. 8(a)], where the stimnuli were distributed more
freely over the retina (with the centers in a 13 by 13
field), nlo learniing was demonistrated even after 200
stimuli. As a methodological experimenit, these results
inidicate the importanlce of making sure that the stimiu-
lus distributioni employed does not include "location
cues" vwhich are sufficient to indicate which stimulus is
present, if we wish to test the ability of the perceptron
to discriminiate pattern characteristics exclusive of loca-
tion. This canl be fully guaranteed, in general, only by
a uniform stimulus distribution over the entire field,
with the elimination of special boundary effects by as-
suming a closed space, or an infiniite space, as with the
Born-von Karman boundary conditionis referred to inI
the Introduction.

Experiment 4-36, shown in Fig. 9, was again carried
out with the second simulation program, this time with
a more conventional perceptron. The threshold of zero,
employed here, is sufficient to make the system funda-
menitally nonlinear, by eliminatihg the output of A units
in the presence of negative input signals. The experi-
ment was designed to show the performance of the sys-
tem in the presence of a high degree of randomness, or
noise, in the initial values of the A units. The stimuli
for this experiment were vertical and horizontal bars, 4
units in width and 20 units long. A 5 per cent decay rate
was introduced for the values of the A units. Note that
in spite of the high decay rate and high initial nioise
level, the system achieved perfect performance on both
classes of stimuli after a total of only 50 stimuli. This
should be compared with the performance of very large
(or infinite) perceptrons, in a spontaneous learning ex-
periment with the same types of stimuli, which is illus-
trated in Fig. 10.
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Fig. 9-Experiment 4-36. Forced learniing experimiienit with vertical

and horizonital bars. 500 A units. 6=0.05, 0=0, x=4, y=4, and
Vo=between +500 and -500. Cenlters in 5 by 5 field, in 20 1b 20
retina.
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Fig. 10 Experiment 5-4. (a) Sponitaneous organiizationi of infinite
perceptron in environment of 4 by 20 vertical anid horizontal
bars. (b) Expected waiting time to perfect performance, as a
function of decay rate (means of 10 ruLns).

In the experiment shown in Fig. 10, stimuli were
placed with equal probability at any positioIn in a 20 by
20 retinal field, with Born-von Kairmain bounidary con-
ditions. The stimuli were 4 by 20 horizontal anid vertical
bars, as in the previous case. The perceptron used in
this experiment is one in which the A units are reinforced
for the response R = 1, but are left unaltered if the re-
sponse R=0 occurs. Unlike all of the previously illus-
trated experiments, this is a spontaneous learning ex-
periment, in which no attemnpt is made to control the
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response during the learning procedure, reinforcement
being applied for whichever responise is elicited by a
given stimulus. The perceptron here was assumed to
have an infinite number of A units, and the calculations
were done with the third program, which was specif-
ically designed to handle these conditions. The family
of curves in Fig. 10(a) shows the performance as a func-
tion of the decay rate, 3. We find that for a zero decay
rate, the system eventually learns to dichotomize the
bars correctly 100 per cent of the time, i.e., it learns to
assign one response to all horizontal bars, and the op-
posite response to all vertical bars. However, this takes
upwards of 3000 stimuli in most cases.4 As the decay
rate increases, performance improves progressively,
until a decay rate is reached (0.05 in this case) for which
the system is unstable, and never attains perfect per-
formance. The effect of the decay short of the instability
level appears to be to keep previous reinforcements from
accumulating to such a degree that they are difficult or
impossible to undo, as the system settles into a more
satisfactory terminal state; in other words, the decay
keeps the system flexible, by making it possible to re-
verse the effects of previous learning more readily. At
the instability level, previous reinforcements are re-
versed so readily that they are unable to maintain their
effect at all, and associations are likely to be lost and
reformed continually. The curve in Fig. 10(b) which
shows expected waiting time to perfect performance, for
the same ser-ies of runs, indicates the samne phenomenion.
WAe find that there is a clear optimum in performance
as a function of the decay rate, for 3=approximatelv
0.01. Beyond this point, instability begins to occur, as
indicated by the broken curve in the figure.

This experiment is the- best demonstration to date of
the "self-organizing" capability of a perceptron. None-
theless, it can be demonstrated that minor changes in
the stimulus environmenit will make it impossible for the
same perceptron to achieve a satisfactory dichotomy.
For example, if the 4 by 20 horizontal bars are replaced
by double bars, composed of two 2 by 20 vertical bars
separated by a space of 3 units, the perceptron will never
spontaneously learn to distinguish the double bars from
the single bars. Other classes of stimuli can be set up
which are equally difficult, or impossible, for the system
to learn spontaneously, although in each of these cases
the problem would present no difficulty in a forced
learning situation. Moreover, the curves in Fig. 10 are
convex, indicating increasing difficulty in correctly as-
sociating the last few stimuli after most of the class has
been learned. In a human subject faced with this task
we would expect concave curves instead. These con-
siderations indicate that the spontaneous learning capa-
bility of this perceptron, while interesting, is not suf-
ficient to provide a basis for a biological theory of per-
ceptual organization. This problem is considered in
further detail elsewhere [8 ].

4 Individual runs differ from one another due to differences in
stimulus sequence, even though the perceptrons are infinite; the
curves showni are means of ten different runs.

CONCLUSIONS
The simulation experiments described above have

gone a long way toward demonstrating the feasibility of
a perceptron as a pattern-recognizing device. Both
forced learning and spontaneous learning performances
have been investigated, and some insight has been
gained into conditions under which different systems
break down, or deviate from typical biological learning
phenomena. Although digital simulation is apt to be
time-consuming and expensive, particularly for large
networks, improved programming methods have cut
down the running time considerably, so that for early
investigations of all systems proposed up to this time,
digital simulation is still competitive with the construc-
tion of actual hardware models. As the number of coIn-
nections in the network increases, however, the burden
on a conventional digital computer soon becomes ex-
cessive, and it is anticipated that some of the models
now under consideration [8] may require actual con-
struction before their capabilities can be fully explored.

Digital programs undertaken to date have been coIn-
cerned exclusively with the logical properties of the net-
work, rather than with any particular hardware em-
bodiment; that is, there has been no attempt to intro-
duce simulation of electronic noise, componient varia-
tion, or other factors which might affect the performance
of an actual system. The results of these programs,
therefore, should be interpreted as indicating perform-
ances which might be expected from an "ideal," or per-
fectly functioning system, and not necessarily as repre-
sentative of any particular engineering design. A Mark
I perceptron, recently completed at the Cornell Aero-
nautical Laboratory, is expected to provide data oni
the performance of an actual physical system, which
should be useful for comparative study.
A new program is currently being employed to simu-

late the "cross-coupled perceptroni" described else-
where [8]. The results of this study will be reported
separately when they are available.
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