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Perceptron Simulation Experiments*
FRANK ROSENBLATTY

Summary—An experimental simulation program, which has been
in progress at the Cornell Aeronautical Laboratory since 1957, is
described. This program uses the IBM 704 computer to simulate per-
ceptual learning, recognition, and spontaneous classification of visual
stimuli in the perceptron, a theoretical brain model which has been
described elsewhere. The paper includes a brief review of the or-
ganization of simple perceptrons, and theoretically predicted per-
formance curves are compared with those obtained from the simula-
tion programs, in several types of experiments, designed to study
“forced” and “spontaneous” learning of pattern discriminations.

INTRODUCTION

NUMBER of papers and reports have been pub-
A lished describing the theory of a new brain

model called the perceptron. The perceptron is a
minimally constrained “nerve net” consisting of logi-
cally simplified neural elements, which has been shown
to be capable of learning to discriminate and to recog-
nize perceptual patterns [5]-[8]. This paper is con-
cerned with a report of digital simulation experiments
which have. been carried out on the perceptron, using
the IBM 704 computer at the Cornell Aeronautical Lab-
oratory. These experiments are intended to demonstrate
the performance of particular systems in typical en-
vironmental situations, free from any approximations
which have been used in the previously published
mathematical analyses. In the simulation programs, the
action of every cell and every connection in the network
is represented in detail, and visual stimuli are repre-
sented by dot patterns corresponding to illuminated
points in a retinal mosaic.

Several related experiments have been conducted
previously, using a digital computer for the simula-
tion of a nerve net in learning experiments [1], [2], [4].
Rochester and associates, at IBM, have reported on sev-
eral attempts to simulate the formation of “cell as-
semblies,” in a model based on the work of Hebb [3]
Hebb proposes that a set of neurons which is repeatedly
activated by a particular sensory stimulus becomes
organized into a functional unit, which can be triggered
as a whole by sensory patterns sufficiently similar to the
original one. Hebb’s book, however, does not attempt
to specify in a rigorous manner the exact organization
or parameters under which the predicted effects would
be obtained, so that the IBM group found it necessary
to improvise several models and variations of their own,
having various degrees of biological plausibility, in an
attempt to construct a definite system. The results of
these experiments seem ambiguous, not only because
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of the uncertain relationship of the final model to the
nerve net originally suggested, but also because the
phenomenon which was sought after has never been de-
fined in a fashion precise enough so that one might
say whether or not it has actually occurred. These ex-
periments illustrate the importance of selecting a suit-
able measure of performance in work of this type; it is
essential that a clearly defined test should be specified
for the “learning” which has presumably taken place, or
else it is impossible to say either how well a particular
system has performed or to compare its performance
with any other system, or class of systems, in a system-
atic fashion.

~ From this standpoint, the experiments reported by
Farley and Clark [1], [2] seem to have been better con-
ceived. In this model, a network of eight randomly con-
nected neurons was simulated. Inputs consisted of stim-
uli applied to one of two disjunct pairs of “input cells,”
and outputs were measured as the activity of two pairs
of “output cells.” In later experiments, the size of the
network was increased to sixteen cells. It was demon-
strated that this system can learn to favor the output
from one set of output cells following the presentation
of one of the two stimuli, and the alternative output set
following presentation of the other stimulus. The prob-
lem of generalization was considered only in terms of
relatively slight displacements or alterations of the
stimulus patterns, and it was suggested that, under these
conditions, the response would be most likely to occur
which was previously associated to the stimulus having
the greatest overlap with the altered stimulus. The prob-
lem of generalization to similar but completely disjunct
stimuli was not specifically considered. Nonetheless,
the process of generalization advocated as a result of
these experiments has much in common with our early
work on the perceptron. A more thorough consideration
of this problem will be published elsewhere [8].

The design of a simulation program for studies of pat-
tern recognition and perceptual generalization in nerve
nets should fulfill at least three basic conditions, each
of which has been ignored too frequently in previous
work along these lines.

1) Simulation should not, in general, be attempted
without a theoretical analysis of the nerve net in ques-
tion, sufficient to indicate suitable parameters and rules
of organization, and to indicate questions of theoretical
interest. The examination of arbitrary networks in the
hope that they will yield something interesting, or the
simulation of networks which have been specially de-
signed to compute a particular function by a definite
algorithmic procedure seem to be about equally lacking
in value.
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2) Suitable measures of performance must be de-
fined. This means that some task must be set for the
system, the outcome of which can be clearly recognized,
and, preferably, counted or quantified in some manner.
Signal strengths, waiting times for achievement of a
criterion, or percentage of correct decisions are ex-
amples of suitable measures.

3) Experiments should be designed with suitable
controls against trivial or ambiguous results. If we are
interested in teaching a device to generalize a response
to visual forms, for example, it is essential that a dis-
crimination test should be made involving at least two
different responses, to make sure that the system has
not simply generalized the desired response universally
to all stimuli, regardless of their similarity to one an-
other. Moreover, it is often important to make sure that
the cue for the response is the actual form of the stim-
ulus, rather than its location on the retina, or some
other unintentional source of information. This last
condition is often quite tricky to satisfy, and in most of
our current work we make use of Born-von Kirmén
boundary conditions (in which patterns shifted off of
one edge of a retinal field re-enter on the opposite side,
as in a toroidally connected space) in order to guarantee
the logical equivalence of all points in the retinal space.
Given such a retinal field, it is sufficient to place each
stimulus pattern with equal probability or frequency at
all possible locations in the retinal space, in order to
guarantee that the illumination of a particular retinal
point does not convey any information about which
stimulus is present. It should be noted that this condi-
tion is not always observed in the experiments reported
in this paper, stimuli often being confined to some sub-
field of the retina in order to increase the rate of learn-
ing. In at least one case (the experiment with the “con-
tinuous transducer perceptron” shown in Fig. 8) a dis-
crimination has thus been obtained which would not
hold up if the field were uniformly covered with the
stimulus patterns.

ORGANIZATION OF A PERCEPTRON

Any perceptron, or nerve net, consists of a network
of “cells,” or signal generating units, and connections
between them. The perceptron is defined by two sets of
rules: 1) a set of rules specifying the topological con-
straints upon the network organization, such as the
number of connections to a given unit, or the direction
in which connections are made, and 2) a set of rules
specifying the dynamic properties of the system, such as
thresholds, signal strengths, and memory functions. A
“fully random network” would be one in which only
the number of cells and the number of connections is
specified, each connection being equally likely to orig-
inate or terminate on any cell of the system. The topo-
logical rules for the organization of a perceptron take
the form of constraints applied to such a random net-
work, and it is assumed that all connection properties
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other than those specified remain “random,” in the sense
just indicated.

A simplified version of the known features of a mam-
malian visual system is shown in Fig. 1, for a compari-
son with the organization of a perceptron, which will be
described presently. At the extreme left we see a mosaic
of light-sensitive points, or retina, from which signals
are transmitted to the visual projection area, in the
cerebral cortex. Several intermediate relay stations
exist in a tvpical biological system, which are not shown
here. These connections preserve topological charac-
teristics of the stimulus in a reasonably intact form.
Beyond the projection area, however, connections ap-
pear to be largely random. lmpulses are delivered
through a large number of paths to the association areas
of the cortex, where local feedback loops are activated,
so that activity may persist for some time past the termi-
nation of the original visual stimulus. From the associa-
tion area, signals are transmitted to the motor cortex,
which again has a clear topological organization cor-
responding to the location of muscle groups to be con-
trolled.

Association
Area (Ovter
Layer)

Retina Projection Area

Raise

Arm

tower
Left

Arm

Topographic
o .

s Cirtuits

Fig. 1-—Organization of a biological brain. (Heavy black
areas indicate active cells, responding to the letter X.)

This general plan of organization has been consider-
ably simplified in the perceptron. First of all, we will
eliminate the projection area, and assume that the
retinal points are directly coupled to association cells,
or “A units.” The number of input connections to each
A unit is specified, but the locations of the origin points
for the connections are selected at random from the set
of sensory points. Each A unit receives some number, x,
of excitatory connections, and some number, v, of
inhibitory connections. The connection system from the
sensory to association system is a many-to-many sys-
tem. An excitatory connection from an illuminated
sensory point is assumed to transmit a unit positive sig-
nal, while an inhibitory connection carries a unit nega-
tive signal. Each A unit has a fixed threshold, 6, and is
triggered to deliver an output pulse if the algebraic sum
() of the signals received from the x-+vy input con-
nections is equal to or greater than 6. A further sim-
plification is introduced at the output side of the associa-
tion system. Instead of delivering its output signals at
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random to a large number of “motor area” cells, the
cells of the association system are connected to one or
more binary response units, which are turned to their
“1” state if they receive a positive signal from the asso-
ciation system, or to their “0” state if they receive a
negative signal. The magnitude of the output signal
generated by an active A unit is called the “value” of
that unit, and is represented by the symbol v. The
values of the units are stochastic variables, which
change as a function of the history of the system. The
organization of a simple perceptron with a single binary
response is shown in Fig. 2. The total signal delivered
by the set of A units is equal to Za;*v; where a;* is equal
to 1 if unit a, is active, and 0 if @, is inactive, and v, is
the current value of unit @, Note that there are two
feedback lines from the response unit (or R unit) to the
set of A units. These feedbacks control the “reinforce-
ment,” or changes in value, of the A units. In general,
if the response R=1 occurs, active A units will gain in
value, while if the response R=0 occurs, active units
will lose in value. The value of the A unit thus acts as
the memory variable for the system. It has been shown
to be desirable to further modify the values of the A
units by the rule that if some subset of units gains or
loses in value, then the remainder of the units must
change in the opposite direction just sufficiently to
balance out the net change to zero. Thus, one unit can
only gain parasitically, at the expense of the other units,
and the total value of all of the A units is kept equal to
zero at all times. A perceptron with this property is
called a “gamma system.” The theory of such systems
has been considered in detail elsewhere [5], [6].

Fig. 2—Organization of a simple perceptron.

DESCRIPTION OF SIMULATION PROGRAMS

Fig. 3 shows the organization of a typical simulation
program, for the study of perceptron performance in an
environment of visual forms. Actually, four basically
different programs have so far been written with a num-
ber of variations of each, but the two programs which
were used for most of the experiments reported here
are both organized in the manner illustrated. The third
program involves more direct methods of computation
rather than true simulation, while the fourth program
(designed to study “cross-coupled systems,” in which
A units may be connected to one another as well as to
S points and R units) has proven too slow to be used
successfully.!
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The simulation programs have tour main tasks, each
of which is actually performed by a separate, self-suf-
ficient program, which is stored on tape, and called into
the computer by a supervisory routine. The supervisory
routine reads instruction cards provided by the experi-
menter, which provide information on parameters, and
control the sequence of subprograms performed in the
course of the experiment. When each subprogram has
been completed, control is passed back to the super-
visory routine, which reads the next card for further
instructions. In a typical experiment, the sequence is as
follows:

UPERVISORY 1
READ INSTRUCTION CARD
AND SET UP NEXT PROGRAM
CONSTRUCT ;fm)u::s TRAINING TESTING
PERCEPTRON PROTOTYPES PROGRAM PROGRAM

TRAINING PROGRAM TESTING PROGRAM

COMPOSE COMPOSE
STIMULUS STIMULUS
TRANSFORM TRANSFORM
[l
COMPUTE COMPUTE
INPUT SIGNALS INPUT SIGNALS
T A-UNITS TO A-UNITS
]
MARK MARK
ACTIVE ACTIVE
A-UNITS A-UNITS
'] 1
COMPUTE COMPUTE
SIGNALS TO SIGNALS TO
R-UNITS R- UNITS
¥ I
REINFORCE | G0 TO NEXT CORRECT B0 TO NEXT
A-SYSTEM -
STIMULUS RESPONSES STIMULUS

Fig. 3—Flow diagram for simulation program.

1) The perceptron construction routine is called into
the core memory, and reads in a set of parameters de-
scribing the perceptron to be constructed. These param-
eters include the number of A units, the number of ex-
citatory and inhibitory connections to each unit, the
thresholds of the units, the number of R units, the num-
ber of R units connected to each A unit, the decay rate
for A unit values (which decay with time in some
models) and a random number to be used for priming
the pseudo-random-number generator used to control
the choice of connections. The program then selects for
each A unit a set of x4y sensory points to be assigned
as origins for the input connections. This is done by gen-
erating a random number number modulo N, (the num-
ber of sensory points) for each connection. This number
is used to locate one of the N, storage locations in which

! The cross-coupled system was successfully simulated, and pre-
dicted effects obtained in December, 1959, using an improved pro-
gram. Results will be reported in later publications.
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the state of each sensory point is indicated when a “vis-
ual” pattern is presented.? The perceptron construction
routine prepares a table listing all of these connections.
In the first simulation program this table was stored on
tape; but in the second program, by cutting down the
admissible number of A units and connections, it was
possible to store the entire table in the core memory,
saving a factor of about five in running time of the pro-
gram. The R units to which each A unit is connected are
similarly assigned at random in each of the first two
programs, which permit multiple output connections
from each A unit. Since, in practice, all experiments
have been concerned only with simple binary discrim-
ination problems, more recent programs have been de-
signed with only one R unit, to which all A units are
connected. In the second program, it is also possible to
assign an initial random distribution of values to the A
units, although in most experiments it is assumed that
the values start out uniformly from zero.

2) The second stage in the experiment calls for read-
ing a set of “prototype stimulus patterns” into the
memory of the computer. These patterns consist of ac-
tual dot images of the stimuli to be used, punched as
patterns of holes in IBM cards. Thus, if it is planned to
teach the perceptron the first four letters of the alpha-
bet, we would read in the images of the letters A, B, C,
and D, which are stored for future reference by later
routines. These prototypes are never altered, but are
used by the stimulus transformation routines which are
included in the remaining two programs, to construct
variously displaced, rotated, or contracted patterns
which are the stimuli actually “shown” to the percep-
tron.

3) Having constructed the connection tables and read
in the prototype stimuli, the computer is ready to begin
the actual learning experiment. This consists of an
alternation between the two remaining programs, one
of which attempts to “teach” the perceptron to recog-
nize the stimulus patterns, while the other evaluates
the performance of the perceptron at intervals specified
by the control cards. For example, in a typical experi-
ment, the discrimination of the letters “E” and “X,” the
procedure is as follows. First, a control card calls for the
training program to show ten different transformations
of the letter “E” (the first stimulus). Each of these is
generated by applying a vertical and lateral shift of
random magnitudes between zero units of retinal dis-
tance and a maximum shift specified by the control card,

2 In each of the first two simulation programs, multiple connec-
tions from the same A unit to the same S point are prohibited. In the
second program, an inverse constraint was originally employed, fixing
the number of connections originating from each sensory point, and
assigning termini at random in the association system. This was
later modified by the addition of a scheme to obtain, as nearly as pos-
sible, uniform numbers of inputs to each A unit as well as fixed num-
bers of outputs from the sensory units. These variations have not
seriously affected the performance of the program, but it appears
that somewhat better performance is obtained with the numbers of
inputs to the A units is kept uniform.
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a rotation between zero degrees and a specified maxi-
mum, and a size somewhere between a specified lower
and upper bound. Random numbers generated by the
routine determine the exact transformation to be ap-
plied to each stimulus, and a new image is composed.
The control card then specifies that the response “1”
is to be reinforced as the appropriate response for the
letter “E.” The program accordingly calculates the sig-
nals received by each A unit from the transformed stim-
ulus, determines which A units are active, and rein-
forces the units according to the rules for reinforcement
of the R=1 condition, for the gamma system, i.e., each
active A unit gains an increment in value, while the in-
active units lose a compensating amount. In the second
of the simulation programs, it is also possible for the
stimulus to persist for a designated number of cycles,
undergoing a random walk during this time, consisting
of unit displacements, rotations, or size changes from
the position in which it first appeared. This procedure is
characteristic of the “forced learning mode” of experi-
ment, which is the only mode possible for the first simu-
lation program. In this mode, the desired response is
turned on, or forced, by the training program at the
same time that a stimulus is presented. The second pro-
gram is also designed to permit a “spontaneous learning
mode,” in which stimuli occur in a random sequence,
and the response spontaneously occurring upon presen-
tation of the stimulus is reinforced, regardless of whether
or not it is the response ultimately desired. Most of the
experiments to be described in this paper were per-
formed in the forced learning mode. After having pre-
sented the ten transformations of the letter “E” which
were called for, and reinforced the response R=1 for
each transformation, control is returned to the super-
visory routine, which reads the next control card. In
this typical experiment, we next call for ten transforma-
tions of the letter “X,” to be associated to the response
R =0. This procedure is carried out in the same manner
as before.

We now switch to the testing program, which com-
poses a series of stimulus transformations in the same
manner as the training program, and goes through an
identical set of calculations to determine the active A
units in each case. Instead of reinforcing the association
units, however, this program merely records the re-
sponse, and checks it against the desired response for
correctness. If the response is correct, it increments a
tally of correct responses. Typically, we may look at
twenty transformations of the “E” and twenty trans-
formations of the “X,” determining in each case the
percentage of correct responses (R=1 or R=0, respec-
tively). During this procedure, a running description
of the responses of the system, numbers of active units,
and other analytic data, are printed out by the com-
puter. We may now present another ten E’s and another
ten X's, reinforcing the system as before, then test the
performance once more, to find out whether this addi-
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tional training has improved the performance, and thus
continue alternating between training and testing pro-
grams indefinitely. It is also possible to reverse the as-
signed responses in the middle of the experiment, thus
reversing previous learning. In order to obtain unam-
biguous comparisons of performance in different parts
of the training series, the testing series are generally
“primed” with the same random number to guarantee
that the same stimulus transformations will be used on
each repetition of the program. The training programs,
on the other hand, continue to select stimuli at random,
independently of what has gone before. A comparison
of the organization of the training and testing programs
is presented in the flow diagrams in Fig. 3.

The two main simulation programs total about 5000
words each. The first program was designed to handle
up to 1000 A units, and a 72 by 72 sensory mosaic. It
was found that this large sensory system presented
stimuli with a fineness of grain considerably better than
the limits of discrimination of a thousand-unit percep-
tron, and at the same time, required an excessive
amount of time for stimulus transformations, since each
illuminated point in the stimulus must be transformed
individually into its image point. The second program
reduced the retina to a 20 by 20 mosaic, and limited the
number of A units to 500. For the first system, the com-
puting time averaged about 15 seconds per stimulus
cycle, while in the second system the time was cut to
about 3 seconds per cycle. Subsequent improvements in
programming techniques indicate that it should be pos-
sible to reduce the computing time still further—say to
about one second per cycle—for perceptrons of the size
allowed by the second program. At the same time, how-
ever, analytic developments have suggested a way of
actually calculating the exact performance of a given
perceptron of the type discussed above, provided all
possible stimuli are known, and a matrix of g co-
efficients, describing the interactions of each pair of
stimuli, is computed for the particular network in ques-
tion. This technique is discussed in the appendix to [7],
and is the method employed in the third of our simula-
tion programs for the analysis of spontaneous learning
in infinite perceptrons. In that program, the response of
the system is obtained analytically, rather than simu-
lated, but the sequence of stimuli is governed by a series
of random numbers generated by the program. We will
consider some of the results of this program later in this

paper.

THEORETICAL PREDICTIONS AND PROBLEMS

Before considering the results of the simulation ex-
periments, let us review the main predictions coming
from the theory of the perceptron (see [5]-[7]). The
simulation experiments were designed in part to verify
these predictions, and in part to study problems which
were suggested by the theoretical investigations.
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Fig. 4 shows a set of theoretical performance curves
for perceptrons of three different sizes, in the problem
of discriminating a square from a circle. The broken
curves (for P,) show the probability of giving the correct
response to a stimulus which is identical in position,
size, etc., to one which was shown previously, during the
training period. The horizontal axis indicates the
number of stimuli of each class (squares and circles)
which were presented during the training period. The
solid curves indicate the probability of correct response
to any square or circle, regardless of whether it was used
as a training stimulus or not. Note that both sets of
curves approach the same asymptotes as the number of
training stimuli becomes large. The first task of the
simulation program was to check the general character
of these learning curves for typical stimulus material,
such as letters of the alphabet or geometric patterns.
In particular, it was essential to determine whether the
rates of learning agreed with the predicted rates, at least
to a reasonable approximation.
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Fig. 4—Learning curves for three typical perceptrons.

A second problem concerned the effect of particuiar
types of transformations, such as shifting of stimuli,
rotations, or size changes, upon the learning curves. The
original theory did not distinguish among these types of
transformations, and it was important to find out
whether the system would work equally well for all of
them. While sufficient demonstrations have now been
made of performance under shifting and rotation condi-
tions, the problem of size changes remains a serious one,
with a number of special cases. One such special case
involves the assignment of different responses to two
stimuli, one of which could be considered a “part” of the
other, such as a small circle which could be completely
imbedded in a larger one, or the letter “F,” which can
be considered as an “E” with the lower bar missing. It
was predicted that such discriminations would be possi-
ble only with a mixture of excitatory and inhibitory in-
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put connections, excitatory connections alone being
insufficient.?

Related to the problem of size variation in the stimuli
is the problem of frequency variation, i.e., some kinds
of stimuli being more frequent than others. The response
assigned to the more frequent stimulus type will gen-
erally tend to dominate the response assigned to the less
frequent type, unless the system is designed in such a
way as to minimize interaction between different classes
of stimuli. The extent of this frequency bias was one of
the problems originally set for the simulation programs,
but a systematic investigation has not yet been com-
pleted.

A different problem area concerns the performance of
linear systems. At one stage of the perceptron program,
we were particularly interested in systems in which no
threshold at all was employed in the A units, the output
simply being equal to av (the algebraic product of the
input signal and the stored value) rather than a*v, as in
the model described above. The values were to be aug-
mented by a quantity equal to aif R=1, and diminished
by a if R=0. It can easily be shown that in such a sys-
tem, if a stimulus pattern can occur with equal proba-
bility anywhere in the retinal space (and eliminating
special boundary conditions, as in the toroidally con-
nected model), the expected value of every A unit after
a long series of stimulus exposures will be exactly zero.
Such a system clearly would not learn at all, if stimuli
were distributed uniformly in space. If the stimuli were
not uniformly distributed, however, the values would
tend to correlate with any bias existing in the input
signals, and it was predicted that such a system should
learn to discriminate. The second simulation program
was originally set up to study linear systems of this tvpe,
both in forced learning and spontaneous learning experi-
ments. The theoryv of such systems in spontaneous
learning is considered elsewhere [7]. While linear sys-
tems have now been abandoned, a typical experiment
will be considered presently, as it illustrates several
points of interest.

The problem of spontaneous learning—the ability of
a perceptron to form meaningful classifications of stimu-
lus patterns without any assignment of “correct” re-
sponses by a human experimenter-—has prompted an
extensive series of experiments. The effect was originally
demonstrated with the second simulation program,
where two disjunct classes of stimuli were properly
separated, in a number of experiments. More interesting
results were obtained with the third program, which
eventually pointed the way to the development of the
“cross-coupled association system,” which promises to
yield substantially improved performance in a large
variety of problems [8]. In studying these spontaneous

3 F. Rosenblatt, “The Perceptron: A Theory of Statistical Separa-
bility in Cognitive Systems,” Cornell Aero. Lab., Buffalo, N. Y.,
Rept. no. VG-1196-G-1; January, 1958. See p. 53.
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learning effects, the first question was whether they
could actually be obtained at all, and the second was
how much experience would be required, a question for
which no satisfactory theoretical answer had been found
at the time the simulation experiments were under-
taken. In this area, there has been particularly close
feedback between simulation work and development of
the theory, the simulation program frequently demon-
strating the existence of special cases, involving particu-
lar parameters or particular stimulus forms, which had
not been anticipated. More recent theoretical models
owe a great deal to this period of empirical exploration.

RESULTS OF SIMULATION EXPERIMENTS

The first experiments which we shall consider are
concerned with the discrimination of the letters “E” and
“X” in a forced learning situation, and are illustrated
in Fig. 5. The stimuli were constrained to a central por-
tion of the field (as shown by the insert) partly to facili-
tate learning, and partly to prevent truncation at the
boundaries, since the toroidal stimulus space was not
used 1in this program. Fig. 5(a) shows the probability of
correct generalization (P,) as measured on a sample of
20 X’s and 20 E’s. The stimulus sequence consisted of
ten X's followed by ten E’s, followed by a test of per-
formance; then ten more X'’s, ten more E’s, and a second
test, for a total of 100 training stimuli. The data points
shown in the figure are means obtained from ten 100 A
unit perceptrons, each of them having a different con-
nection network, but exposed to the same sequence of
stimuli. The curves in Fig. 5(b) show the performance
of a larger (1000 A unit) perceptron, on a more difficult
variation of the same problem. In the solid curve, we see
the performance of the system for stimuli rotated by
some integral number of degrees selected at random be-
tween 0 and 30 degrees. This rotation is combined with
vertical and horizontal translations selected within the
same limits as in the preceding case. For rotations up
to 30 degrees, note that the svstem attains perfect per-
formance after only ten stimuli of each type. The broken
curve shows the performance of the same system for
rotations up to 359 degrees, combined with translations
as above. In this case, there is a definite decline in the
perceptron’s performance, although it has attained a
P, of better than 0.90 after 30 stimuli of each tvpe.

The next experiment (Fig. 6) was designed to check
the hypothesis that performance on outline figures
should be better than on solid figures, since unlike fig-
ures represented by their contours would have a mini-
mum intersection on the retina, while solid areas might
still have a large intersection even though their shape
was different. The figures used were squares (illustrated
in the inset) and diamonds, which covered the same
areas as the squares, rotated 45 degrees. As shown by
the two curves, the outline figures did indeed yield a
better performance than the solid figures, giving a per-

Authorized licensed use limited to: ULAKBIM UASL ISTANBUL TEKNIK UNIV. Downloaded on October 30,2020 at 07:18:22 UTC from IEEE Xplore. Restrictions apply.



1960
1.0 x . R 10 30°ROTATION
x
€ € e 359° ROTATION
\V’
0.8 08
R Py
0.6 06
(NOTE TMAT "X” wiTH
04 ABOUT 7% LARGER 04
AREA, TENDS TO
DOMINATE “€*)
MAXIMUM DISPLACEMENTS
0.2 N? 02
7|
o o
[o] 40 80 o 40 80

TIME (NO. OF STIMULI) TIME (NO. OF STIMULI)

(2) (b)

Fig. 5—(a) Experiment 10. “E” vs “X.” No rotation. Centers placed
in 13 by 13 field, in 72 by 72 retina. N4=100, =2, x=35, and
y=S5. (b) Experiments 20, 21. “E” vs “X” with shifting plus rota-
tion. No=1000, =4, x=10, and y=0.
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Fig. 6—Experiments 16, 17. Square-diamond discrimination. N4 = 1000,
x=10, y=0, and §=4. Centers placed in 13 by 13 field.

fect response record after 60 training stimuli (30 of each
class). In this experiment, of course, rotation was
eliminated to avoid confusion of squares and diamonds,
and the figures were merely displaced in the same man-
ner as the E’s and X’s in the preceding experiment.

Fig. 7 shows two experiments concerned with part-
whole discrimination, which was discussed in the pre-
ceding section. In Experiment 18, illustrated in Fig. 7(a)
a system with only excitatory connections to the A units
was simulated. The stimulus is shifted at random in the
central portion of the field, as before. In this case, the
letter “E” was correctly learned, but the system was
unable to learn to give the opposite response to the letter
“F.” In Experiment 22, shown in Fig. 7(b), we see that
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Fig. 7—(a) Experiment 18. “E” vs “F.” N,=100, x=10, 6=4, and
y=0. Centers placed in 13 by 13 field. (b) Experiment 22. “E”
vs “F.” Ny=1000, x=S5, §=3, and y=35.
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Fig. 8—Linear system experiments (“E” vs “X”). (a) Experiment
4-14, 15. N4=500, x=4, y=4. Centers placed in 13 by 13 field.
(b) Experiment 4-16. N4 =500, x =4, and y=4. Centers placed in
5 by 5 field.

a system, in which half of the connections to the A units
are inhibitory, is able to learn the correct response to
both classes of stimuli, although the F response is con-
siderably less consistent then the E response. Experi-
ments 18 and 22 are, unfortunately, not fully compara-
ble, as the perceptron in the second case was a thousand-
unit system, while in Experiment 18 only a hundred A
units were used. The character of the curves in these
experiments, however, is definitely not a function of the
size of the systems, but rather of the stimulus relation-
ships, as shown by supporting evidence from many other
cases. These results are in closer agreement with the
theoretical predictions referred to earlier.

The next experiment (Fig. 8) was performed with the
second simulation program, and represents the learning
which is possible with a purely linear model, if the stim-
uli are constrained to one region of the retinal field. In
this experiment, instead of testing the perceptron after
every twenty stimuli, as in previous experiments, it was
tested after every ten stimuli, which yields the charac-
teristic pattern of converging oscillations shown in the
figure. The first ten stimuli were all E’s, and after these
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ten exposures, we find that the system has learned the
“E” perfectly, but always gives the wrong response to
stimuli of the opposite class (the letter “X”). The per-
ceptron was then shown ten X’s, to which the opposite
response was forced, and we find at time 20 that it has
now learned to give the desired response to the X, but
has almost completely forgotten the proper response to
the letter E. The amplitudes of such oscillations are apt
to be increased by a large decay rate for the values of
the A units (which makes more recent reinforcement
more effective than earlier experience), but in the ex-
periment illustrated here the decay rate was zero. Note
that in Experiment 4-16 [illustrated Fig. 8(b)] the
mean learning curve, shown by the broken line, climbs
towards a high probability level as experience with both
stimuli increases. At the same time, the swings in per-
formance become considerably less pronounced, as each
series of ten stimuli represents a progressively diminish-
ing portion of the total experience of the system. The
important conclusion from this experiment is that dis-
crimination learning 7s possible for a linear system, pro-
vided the stimuli are sufficiently constrained in location.
The retinal field in this case was 20 by 20 units, and the
centers of the stimuli were constrained to a 5 by 5 region
in the center of the retina. In Experiment 4-14 [shown
in Fig. 8(a)], where the stimuli were distributed more
freely over the retina (with the centers in a 13 by 13
field), no learning was demonstrated even after 200
stimuli. As a methodological experiment, these results
indicate the importance of making sure that the stimu-
lus distribution employed does not include “location
cues” which are sufficient to indicate which stimulus is
present, if we wish to test the ability of the perceptron
to discriminate pattern characteristics exclusive of loca-
tion. This can be fully guaranteed, in general, only by
a uniform stimulus distribution over the entire field,
with the elimination of special boundary effects by as-
suming a closed space, or an infinite space, as with the
Born-von Kirmén boundary conditions referred to in
the Introduction.

Experiment 4-36, shown in Fig. 9, was again carried
out with the second simulation program, this time with
a more conventional perceptron. The threshold of zero,
employed here, is sufficient to make the system funda-
mentally nonlinear, by eliminatihg the output of A units
in the presence of negative input signals. The experi-
ment was designed to show the performance of the sys-
tem in the presence of a high degree of randomness, or
noise, in the initial values of the A units. The stimuli
for this experiment were vertical and horizontal bars, 4
units in width and 20 units long. A 5 per cent decay rate
was introduced for the values of the A units. Note that
in spite of the high decay rate and high initial noise
level, the system achieved perfect performance on both
classes of stimuli after a total of only 50 stimuli. This
should be compared with the performance of very large
(or infinite) perceptrons, in a spontaneous learning ex-
periment with the same types of stimuli, which is illus-
trated in Fig. 10.
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Fig. 9—Experiment 4-36. Forced learning experiment with vertical
and horizontal bars. 500 A units. §=0.05, =0, x=4, y=4, and
Vo=between +500 and —500. Centers in 5 by 5 field, in 20 by 20
retina.
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Fig. 10—Experiment 5-4. (a) Spontaneous organization of infinite
perceptron in environment of 4 by 20 vertical and horizontal
bars. (b) Expected waiting time to perfect performance, as a
function of decay rate (means of 10 runs).

In the experiment shown in Fig. 10, stimuli were
placed with equal probability at any position in a 20 by
20 retinal field, with Born-von Kirmén boundary con-
ditions. The stimuli were 4 by 20 horizontal and vertical
bars, as in the previous case. The perceptron used in
this experiment is one in which the A units are reinforced
for the response R=1, but are left unaltered if the re-
sponse R=0 occurs. Unlike all of the previously illus-
trated experiments, this is a spontaneous learning ex-
periment, in which no attempt is made to control the
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response during the learning procedure, reinforcement
being applied for whichever response is elicited by a
given stimulus. The perceptron here was assumed to
have an infinite number of A units, and the calculations
were done with the third program, which was specif-
ically designed to handle these conditions. The family
of curves in Fig. 10(a) shows the performance as a func-
tion of the decay rate, 8. We find that for a zero decay
rate, the system eventually learns to dichotomize the
bars correctly 100 per cent of the time, 7.e., it learns to
assign one response to all horizontal bars, and the op-
posite response to all vertical bars. However, this takes
upwards of 3000 stimuli in most cases.! As the decay
rate increases, performance improves progressively,
until a decay rate is reached (0.05 in this case) for which
the system is unstable, and never attains perfect per-
formance. The effect of the decay short of the instability
level appears to be to keep previous reinforcements from
accumulating to such a degree that they are difficult or
impossible to undo, as the system settles into a more
satisfactory terminal state; in other words, the decay
keeps the system flexible, by making it possible to re-
verse the effects of previous learning more readily. At
the instability level, previous reinforcements are re-
versed so readily that they are unable to maintain their
effect at all, and associations are likely to be lost and
reformed continually. The curve in Fig. 10(b) which
shows expected waiting time to perfect performance, for
the same series of runs, indicates the same phenomenon.
We find that there is a clear optimum in performance
as a function of the decay rate, for § =approximately
0.01. Beyond this point, instability begins to occur, as
indicated by the broken curve in the figure.

This experiment is the best demonstration to date of
the “self-organizing” capability of a perceptron. None-
theless, it can be demonstrated that minor changes in
the stimulus environment will make it impossible for the
same perceptron to achieve a satisfactory dichotomy.
For example, if the 4 by 20 horizontal bars are replaced
by double bars, composed of two 2 by 20 vertical bars
separated by a space of 3 units, the perceptron will never
spontaneously learn to distinguish the double bars from
the single bars. Other classes of stimuli can be set up
which are equally difficult, or impossible, for the system
to learn spontaneously, although in each of these cases
the problem would present no difficulty in a forced
learning situation. Moreover, the curves in Fig. 10 are
convex, indicating increasing difficulty in correctly as-
sociating the last few stimuli after most of the class has
been learned. In a human subject faced with this task
we would expect concave curves instead. These con-
siderations indicate that the spontaneous learning capa-
bility of this perceptron, while interesting, is not suf-
ficient to provide a basis for a biological theory of per-
ceptual organization. This problem is considered in
further detail elsewhere [8].

4 Individual runs differ from one another due to differences in
stimulus sequence, even though the perceptrons are infinite; the
curves shown are means of ten different runs.
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CONCLUSIONS

The simulation experiments described above have
gone a long way toward demonstrating the feasibility of
a perceptron as a pattern-recognizing device. Both
forced learning and spontaneous learning performances
have been investigated, and some insight has been
gained into conditions under which different systems
break down, or deviate from typical biological learning
phenomena. Although digital simulation is apt to be
time-consuming and expensive, particularly for large
networks, improved programming methods have cut
down the running time considerably, so that for early
investigations of all systems proposed up to this time,
digital simulation is still competitive with the construc-
tion of actual hardware models. As the number of con-
nections in the network increases, however, the burden
on a conventional digital computer soon becomes ex-
cessive, and it is anticipated that some of the models
now under consideration [8] may require actual con-
struction before their capabilities can be fully explored.

Digital programs undertaken to date have been con-
cerned exclusively with the logical properties of the net-
work, rather than with any particular hardware em-
bodiment; that is, there has been no attempt to intro-
duce simulation of electronic noise, component varia-
tion, or other factors which might affect the performance
of an actual system. The results of these programs,
therefore, should be interpreted as indicating perform-
ances which might be expected from an “ideal,” or per-
fectly functioning system, and not necessarily as repre-
sentative of any particular engineering design. A Mark
I perceptron, recently completed at the Cornell Aero-
nautical Laboratory, is expected to provide data on
the performance of an actual physical system, which
should be useful for comparative study.

A new program is currently being employed to simu-
late the “cross-coupled perceptron” described else-
where [8]. The results of this study will be reported
separately when they are available.
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