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Abstract—1t is shown how a system consisting of two neuronlike
adaptive elements can solve a difficult leaning control problem. The task is
to balance a pole that is hinged to a movable cart by applying forces to the
cart’s base. It is assumed that the equations of motion of the cart—pole
system are not known and that the only feedback evaluating performance is
a failure signal that occurs when the pole falls past a certain angle from the
vertical, or the cart reaches an end of a track. This evaluative feedback is
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of much lower quality than is required by standard adaptive control
techniques. It is argued that the learning problems faced by adaptive
elements that are components of adaptive networks are at least as difficult
as this version of the pole-balancing problem. The learning system consists
of a single associative search element (ASE) and a single adaptive critic
element (ACE). In the course of learning to balance the pole, the ASE
constructs associations between input and output by searching under the
influence of reinforcement feedback, and the ACE constructs a more
informative evaluation function than reinforcement feedback alone can
provide. The differences between this approach and other attempts to solve
problems using neuronlike elements are discussed, as is the relation of this
work to classical and instrumental conditioning in animal learning studies
and its possible implications for research in the neurosciences.
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I. INTRODUCTION

ronlike elements have been studied both as models
of specific neural circuits and as abstract, though biologi-
cally inspired, computational architectures. As models of
specific neural circuits, network models can provide theo-
ries to explain anatomical and physiological data. As com-
putational architectures, they represent attempts to explore
possible substrates for intelligent behavior, both natural
and artificial. Networks of this second category are rele-
vant to brain and behavioral science to the extent that their
behavior can be related to phenomena of animal behavior
for which no plausible mechanisms are known, thereby
suggesting novel lines of empirical research. They are rele-
vant to artificial intelligence to the extent that they exhibit
forms of problem solving, knowledge acquisition, or data
storage that are difficult to achieve by more conventional
means.

In this article we illustrate an abstract neural network
approach that we believe can have relevance for both
neuroscience and computer science. Advances in our ap-
preciation of the complexity of biological cells make it
clear that the 35-year old metaphor that places the neuron
at the level of the computer logic gate is inadequate.
Neurons and synapses have information processing capa-
bilities that make use of both short- and long-term infor-
mation storage, locally implemented by complex biochemi-
cal mechanisms. Biochemical networks within cells are
known to perform functions that had previously been
attributed to networks of interacting cells. These facts
call for new neural metaphors. Moreover, advances in
computer science suggest the possibility of achieving
sophisticated problem-solving capacity through networks
of interacting components that are themselves powerful
problem-solving systems (e.g., [1] and [2]). In our approach,
network components are neuronlike in their basic structure
and behavior and communicate by means of excitatory and
inhibitory signals rather than by symbolic messages, but
they are much more complex than neuronlike adaptive
elements studied in the past. Rather than asking how very
primitive components can be interconnected in order to
solve problems, we are pursuing questions about how
components that are themselves capable of solving rela-
tively difficult problems can interact in order to solve
problems that are even more difficult.

This article is devoted to the justification of the design of
two types of neuronlike adaptive elements and an illus-
tration of the problem-solving capacities of a system con-
sisting of a single element of each type. We call one
element an associative search element (ASE) and the other
an adaptive critic element (ACE). As a vehicle for intro-
ducing our adaptive elements, we describe an earlier adap-
tive problem-solving system, called “boxes,” developed by
Michie and Chambers [3], [4]. We show that a learning
strategy similar to theirs can be implemented by a single
ASE, and we show how its learning performance can be
improved by the addition of a single ACE. To illustrate the

MATHEMATICALLY formulated networks of neu-
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problem-solving capabilities of these elements, we use the
pole-balancing control problem posed by Michie and
Chambers to illustrate their boxes algorithm, and we com-
pare the performance of their system with that of our own.
We conclude with a brief discussion of behavioral interpre-
tations of our adaptive elements and their possible implica-
tions for neuroscience. A strong analogy exists between the
behavior of the ACE and animal behavior in classical
conditioning experiments, and parallels can be seen be-
tween the behavior of the ASE/ACE system and animal
behavior in instrumental learning experiments. The adap-
tive elements we describe are refinements of those we have
discussed previously [5]-[10] and were suggested by the
work of Klopf [11], [12]. Our approach also has similarities
with the work of Widrow and colleagues [13], [14] on what
they called “bootstrap adaptation.”

The significance of endowing single adaptive elements
with this level of problem-solving capability is twofold.
First, we wish to suggest neural metaphors, constrained by
the computational demands of problem-solving, that pos-
tulate functions for the complex cellular mechanisms that
are rapidly being elucidated as the study of the cellular
basis of learning progresses. Second, we wish to suggest
that if adaptive elements are to learn effectively as network
components, then they must possess adaptive capabilities at
least as robust as those of the elements discussed here. As
we argue in the following, the learning problem faced by
an adaptive element that is deeply embedded in the interior
of a network is characterized by some of the same types of
complexities that are present in the pole-balancing task
considered here.

Thus, although the algorithms that we implement by
means of single adaptive elements can obviously be imple-
mented by networks of many simpler elements, we are
attempting to delineate those properties required of com-
ponents if they are to learn how to function as intercon-
nected, cooperating components of networks. The
extensive history of attempts to construct powerful adap-
tive networks and the generally acknowledged failure of
these attempts suggest that network components as simple
as those usually considered are not adequate. This lesson
from previous theoretical studies, together with our conten-
tion that the view of neural function that constrained these
studies was too limited, leads us to study elements as
complex as the ASE and ACE. Despite our ultimate inter-
est in networks, we do not present results in this paper that
show that the elements discussed here are able to learn as
components of powerful adaptive networks. However, pre-
vious simulation experiments with networks of similar ele-
ments have provided preliminary support for our approach
to adaptive networks [5], [6], [8], and the research discussed
here represents an initial attempt to move toward more
difficult learning problems.

Although we intend to raise questions about the level in
the functional hierarchy of the nervous system at which
neurons can be said to act, we are not claiming that there is
necessarily a strict correspondence between single neurons
and ACE’s and ASE’s. Some of the features of these
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elements cléarly are not neuronlike but can be imple-
mented in standard ways by elements more faithful to
neural limitations. For example, the ASE can “fire” w1th
both negative and positive output values, but it can be
implemented by a pair of recrprocally inhibiting elements,
each capable only of ‘positive “spikes.” Consequently, by
the term “neuronlike element” we do not mean a literal
neuron model, and we purposefully exclude well-known
neuron propertles which would “have no clear functional
role in the present problem.

Our interest in the pole-balancmg problem arises from
its convenience as a test bed for explonng a variety of
algorithms that' may enable elements to learn effectWely
when embedded in networks. We are not interested in pole
balancing per se, and our formuldtion of the problem,
following that of Michie and Chambers [3}, [4], makes it
much more difficult than it would need to be if one were
51mp1y interested in controlling thlS type of dynamical
system. We assume that the controller’s design must be
based upon very little knowledge of the controlled system’s
dynamics and that the evaluative feedback provided to the
controller is of much lower quality than is required by
standard adaptive control methods. These constraints pro-
duce a difficult learning control problem and reflect some
of the conditions that we believe characterize the tasks
faced by network components. While a variety of well-
developed adaptive control methods can be (and have
been) successfully applied to pole balancing, we know of
none that are directly applicable to the problem subject to
the constraints we impose. Additionally, the algorithm we
describe can be apphed to nonnumerical problems as well
as to problems requmng the control of dynanncal systems.

II. LEARNING WITHIN NETWORKS

Many of the previous studies of adaptive networks of
neuronlike elements focused on adaptive elements that are
capable of solving certain types of pattern classification
problems. Elements such as the ADALINE (adaptive lin-
ear element [16]) and those employed in the.Perceptron [15]
perform supervised learning pattern classification (see, for
example, [17]). These elements form linear discrimination

rules by adjusting a set of “synaptic” weights in an attempt.

to match their response to each training input pattern with
a desired response, or correct classification, that is pro-
vided by a “teacher.” The resulting discrimination rule can
be used to classify new pattern instances (perhaps incor-
rectly), thereby providing a form of generalization. The
algorithms implemented by these adaptive elements . are
closely related to iterative regression methods used in
adaptive control for the identification of unknown system
parameters [17].

Unfortunately, a network composed of these types of
adaptive elements can only learn if its environment con-
tains ‘a teacher that can supply each component adaptive
element with its individual desired response for each pat-
tern in a training sequence. This is the Achilles’ heel of
supervised learning pattern classifiers as network compo-

nents. In many problem-solving tasks, the network’s en-
vironment may be able ‘to provide assessments of certain
conséquerices of the collective activity of all of the network
components but the environment cannot know the' desired
responses of individaal elements or even ‘evaluate the be-
havior of individual elements. To use terms encountered in
the artificial intelligence literature (e. g [18]), the network’s
mternal ‘mechanism 1s not very transparent” to the
“critic.” :

Other approaches to the problem of learning within
adaptive networks rely on adaptive elements’ that’ require
neither teachers nor’critics. These elements employ some
form of unsupeﬂ/i‘sed learning, or clustering, algorithm,
often based on Hebb’s [19] hypothesis that repeated pair-
ing of pre- and postsynaptic activity strengthens synaptic
efficacy. Whlle clustering is likely to play an important role
in sophlstlcated problem-solving ‘systems, it does not by
itself provide the necessary means for a system to improve
performance in tasks determined by factors external to the
system, such as, for example, the task of controlling an
environment having initially unknown dynamics. For these
types of tasks, a leafning system must not just cluster
information but must form those clusters that are useful in
terms of the sysiem’s interaction with its environment.
Thus it seems necessary to consider networks that learn
under the influence of some sort of evaluative feedback,
but this feedback cannot be so informative as to provide
individualized instruction to each:adaptive element.

These considerations have led us to study adaptive ele-
ments that are capable of learning to improve performance
with respect to' an evaluation function that assesses the
consequences, ‘which may be' quite indirect, of element
actions but does not directly specify these actions. Further,
these elements are capable of improving performance un-
der conditions of considerable uncertainty. Since evaluative
feedback; or reinforcement feedback, will generally assess
the performance of the entire network rather than the
performance of individual elements, a high degree of un-
certainty is necessa'rily present in the optimization problem
faced by any individual component. Additional uncertainty
arises from any delay that might exist between the time of
an element’s action and the time it receives the resulting
reinforcement. The reinforcement feedback received by a
network component at any time will generally depend
upon factors other than its own action taken some' fixed
time earlier; it will additionally depend upon the actions of
a large number of components taken at a variety of earher
trmes

" The ASE implements one part of our approach to these
problems. Since we assume its environment is unable to
provide desired responses, the ASE must discover what
responses lead to improvements in’ performance. It em-
ploys a trial-and-error, or generate-and-test, search process.
In the presence of input signals, it generates actions by a
random process. Based on feedback that evaluates the
problem-solving consequences of the actions, the ASE
“tunes in” input signals to bias the -action generation
process, conditionally on the input, so that it will more
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likely generate the actions leading to improved perfor-
mance. Different actions can be optimal when taken in the
presence of different input signals. Actions that lead to
improved performance when taken in the presence of cer-
tain input signals become associated with those signals in a
developing input-output mapping. This type of stochastic
search allows the ASE to improve performance under
conditions of uncertainty. We have called this general
process associative search [8] to emphasize both its associa-
tion formation and generate-and-test search aspects.

In providing elements with these capabilities, we have
been guided by the hypothesis of Klopf [11], [12] that
neurons implement a strategy for attempting to maximize
the frequency of occurrence of one type of input signal and
minimize the frequency of occurrence of another type.
According to this hypothesis, in other words, neurons can
be conditioned in an operant or instrumental manner,
where certain types of inputs act as rewarding stimuli and
others act as punishing stimuli. A neuron learns how to
attain certain types of inputs and avoid others by adjusting
the transmission efficacy of its synapses according to the
consequences of its discharges as fed back through path-
ways both internal to the nervous system and external to
the animal. The ASE departs in several ways from Klopf’s
hypothesis, but his underlying idea remains the same.

I11. ERROR CORRECTION VERSUS REINFORCEMENT

LEARNING

Considerable misunderstanding is evident in the litera-
ture about how this type of “reinforcement learning” dif-
fers from supervised learning pattern classification as
performed, for example, by Perceptrons and ADALINE'’s.
It is important to emphasize these differences before we
describe our adaptive elements. Supervised learning pat-
tern classification elements are sometimes formulated in
such 1 manner that the training process occurs as follows.
A training pattern is presented to the element which re-
sponds as directed by its current set of weights; based on
knowledge of the correct response, the element’s environ-
ment feeds back an error signal giving the difference
between the actual and correct resonses; the element uses
this error signal to update its weight values. This sequence
is repeated for all of the training patterns until the error
signals become zero. These error signals are response-con-
tingent feedback to the adaptive element, but it is mislead-
ing to view this process as a general form of reinforcement
learning.

One important difference between the error-correction
process just described and reinforcement learning as imple-
mented by the ASE is that the latter does not rely exclu-
sively on its weight values to determine its actions. Instead,
it generates actions by a random process that is merely
biased by the combination of its weight values and the
input patterns. Actions are thus not appropriately viewed
strictly as responses to input patterns. The random compo-
nent of the generation process introduces the variety that is
necessary to serve as the basis for subsequent selection by
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evaluative feedback. The ASE therefore searches in its
action space in a manner that supervised learning pattern
classification machines do not. :

Additionally, significant differences exist between gen-
eral performance evaluation signals and the signed error
signals required by supervised learning pattern classifica-
tion elements. To supply a signed error signal, the environ-
ment must know both what the actual action was and what
it should have been.! Evaluation of performance, on the
other hand, may be based on a relative assessment of
certain consequences of the element’s actions rather than
on knowledge of both the correct and actual actions.
Widrow et al. [13] used the phrase “learning with a critic”
to distinguish this type of process from learning with a
teacher, as supervised learning pattern classification is
sometimes called.

Very few studies have been made of neuronlike elements
capable of learning under reinforcement feedback that is
less informative than are signed error signals (Farley and
Clark [20}; Minsky [21); and Widrow ez al. [13]). Indeed,
considerable confusion arises from an unfortunate incon-
sistency in the usage of the term “error.” What psycholo-
gists mean by trial-and-error learning is not the same as the
error-correction process used by supervised learning pat-
tern classification machines. Like the process employed by
our ASE, trial-and-error learning is a “selectional” rather
than an “instructional” process (cf. the usage of these
terms by Edelman [22], although the selectional mechanism
of the ASE is quite different from the one he proposes).
Much more could be said about these issues, but we shall
let the following example further clarify them. It will be
apparent that elements such as Perceptrons and
ADALINE’s cannot by themselves solve the control preb-
lem we will consider.

IV. THE CREDIT ASSIGNMENT PROBLEM

One can view the uncertainty discussed in the foregoing
as a result of a fundamental problem that faces any learn-
ing system, whether it is natural or artificial, that has been
called the “credit-assignment” problem by artificial intel-
ligence researchers [18], [23). This is the problem of
determining what parts of a complex interacting or inter-
locking set of mechanisms, decisions, or actions deserve
credit (blame) for improvements (decrements) in the over-
all performance of the system. The credit-assignment prob-
lem is especially acute when evaluative feedback to the
learning system occurs infrequently, for example, upon the
completion of a long series of decisions or actions.

Given the widely acknowledged importance of the
credit-assignment problem for adaptive problem-solving
systems, it is surprising that techniques for its solution
have not been more intensely studied. The most successful,

1t is thus possible to formulate this training paradigm as one in which
the learning machine’s environment provides training patterns together
with their desired responses (as we have done in Section II), and the
system itself determines its error. This formulation does not involve
feedback that passes through the machine’s environment and more clearly
reveals the limited nature of this type of process.
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and perhaps the most extensible, solution to date was used
in the checkers-playing program written by Samuel [24]
more than two decade ago. A few isolated studies using
similar techniques have been undertaken (Doran [25];
Holland [26]; Minsky {21], [23]; and Witten [27]), but the
current approaches to the credit-assignment problem in
artificial intelligence largely rely on providing the critic
with domain-specific knowledge [18], [27]. Samuel’s method,
on the other hand, is one by which the system improves its
own internal critic by a learning process.

The ACE implements a strategy most closely related to
the methods of Samuel [24] and Witten [27] for reducing
the severity of the credit-assignment problem. It adaptively
develops an evaluation function that is more informative
than the one directly available from the learning system’s
environment. This reduces the uncertainty under which the
ASE must learn. The ACE was developed primarily by
Sutton as a refinement of the adaptive element model of
classical conditioning introduced by Sutton and Barto [9].

V. A LEARNING CONTROL PROBLEM: POLE
BALANCING

Fig. 1 shows a schematic representation of a cart to
which a rigid pole is hinged. The cart is free to move within
the bounds of a one-dimensional track. The pole is free to
move only in the vertical plane of the cart and track. The
controller can apply an impulsive “left” or “right” force F
of fixed magnitude to the cart at discrete time intervals.
The cart-pole system was simulated by digital computer
using a very detailed model that includes all of the nonlin-
earities and reactive forces of the physical system (the
Appendix provides details of the cart—pole model and
simulations). The cart—pole model has four state variables:

position of the cart on the track,
angle of the pole with the vertical,
cart velocity, and

rate of change of the angle.

D D X

Parameters specify the pole length and mass, cart mass,
coefficients of friction between the cart and the track and
at the hinge between the pole and the cart, the impulsive
control force magnitude, the force due to gravity, and the
simulation time step size.

The control problem we pose is identical to the one
studied by Michie and Chambers. We assume that the
equations of motion of the cart—pole system are not known
and that there is no preexisting controller that can be
imitated. At each time step, the controller receives a vector
giving the cart-pole system’s state at that instant. If the
pole falls or the cart hits the track boundary, the controller
receives a failure signal, the cart—pole system (but not the
controller’s memory) is reset to its initial state, and another
learning trial begins. The controller must attempt to gener-
ate controlling forces in order to avoid the failure signal for
as long as possible. No evaluative feedback other than the
failure signal is available.

Learning to avoid the failure signal under these con-
straints is a very different problem than learning to balance
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Fig. 1. Cart—pole system to be controlled. Solution of system’s equa-

tions of motion approximated numerically (see Appendix).

the pole under the conditions usually assumed by control
theorists. Since the failure signal will occur only after a
long sequence of individual control decisions, a difficult
credit-assignment problem arises in the attempt to de-
termine which decisions were responsible for the failure.
Neither a continuously available error signal nor a continu-
ously available performance evaluation signal exists, as is
the case in more conventional formulations of pole balanc-
ing. For example, Widrow and Smith [14] used a linear
regression method, implemented by an ADALINE, to ap-
proximate the bang-bang control law required for balanc-
ing the pole. In order to use this method, however, they
had to supply the controller with a signed error signal at
each time step whose determination required external
knowledge of the correct control decision for that time
step. The present formulation of the problem, on the other
hand, requires the learning system to discover for itself
which control decisions are correct, and in so doing, solve a
difficult credit-assignment problem that is completely ab-
sent in the usual versions of this problem.

V1. THE BOXES SYSTEM

By first describing Michie and Chambers’ [3], [4] boxes
system, we can provide much of the justification for the
design of our adaptive elements. The strategy of these
authors was to decompose the pole-balancing problem into
a number of independent subproblems and to use an
identical generate-and-test rule for learning to solve each
subproblem. They divided the four-dimensional cart-pole
state space into disjoint regions (or boxes) by quantizing
the four state variables. They distinguished three grades of
cart position, six of the pole angle, three of cart velocity,
and three of pole angular velocity [4]. We use a similar
partition of the state space based on the following quanti-
zation thresholds:

1) x: £0.8, +2.4 m,

2) 6:0, 1, £6, £12°,
3) x: £0.5, + 00 m/s,
4) 8: +50, + 00° /s.



BARTO ef al.: ADAPTIVE NEURON-LIKE ELEMENTS

This yields 3 X 3 X 6 X 3 = 162 regions corresponding to
all of the combinations of the intervals. The physical units
of these thresholds differ from those used in [3] and [4]. We
chose these values and units to produce what seemed like a
physically realistic control problem, given our para-
meterization of the cart-pole simulation (Michie and
Chambers did not publish the parameters of their cart—pole
simulation. See the Appendix for our parameter values). At
present we assume, as Michie and Chambers did, that this
quantization is provided from the start (see Section X).

Each box is imagined to contain a local demon whose job
is to choose a control action (left or right) whenever the
system state enters its box. The local demon must learn to
choose the action that will tend to be correlated with long
system lifetime, that is, a long time until the occurrence of
the failure signal. A global demon inspects the incoming
state vector at each time step and alerts the local demon
whose box contains that system state. When a failure signal
is received, the global demon distributes it to all local
demons. Each local demon maintains estimates of the
expected lifetimes of the system following a left decision
and following a right decision. A local demon’s estimate of
the expected lifetime for left is a weighted average of actual
system lifetimes over all past occasions that the system
state entered the demon’s box and the ‘decision left was
made. The expected lifetime for the decision right is de-
termined in the same way for occasions in which a rlght
decision was made.

More specifically, upon being signaled by the global
demon that the system state has entered its box, a local
demon does the following.

1) It chooses the control action left or right according to
which has the longest lifetime estimate. The control system
emits the control action as soon as the decision is made.

2) It remembers which action was just taken and begins
to count time steps.

3) When a failure signal is received, it uses its current
count to update the left or right lifetime estimate, depend-
ing on which action it chose when its box was entered.

Michie and Chambers’ actual algorithm is somewhat
more complicated than this, but this description is suffi-
cient for our present purposes. Details are provided in [3]
where it is shown that the system is capable of learning to
balance the pole for extended periods of time (in one
reported run, the pole was balanced for a time approxi-
mately corresponding to one hour of real time). Notice that
since the effect of a demon’s decision will depend on the
decisions made by other demons whose boxes are visited
during a trial (where a trial is the time period from reset to
‘failure), the environment of a local demon, consisting of
the other demons as well as the cart—pole system, does not

consistently evaluate the demon’s actions.
i :

VII. THE ASSOCIATIVE SEARCH ELEMENT (ASE)

Obviously, many possibilities exist for implementing a
system like boxes using neuronlike elements. We know, for
example, that any algorithm can be implemented by a
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network of McCulloch—Pitts abstract neurons acting as
logic gates and delay units. Such an implementation would
illustrate the neural metaphor resulting from the very
earliest contact between neuroscience and digital technol-
ogy [29]. More recent neural metaphors suggest that each
local demon might be implemented by a network of adap-
tive neurons that would be set into reverberatory activity
under conditions correspondmg to the demon’s box being
entered by the state vector. Upon receipt of the failure
signal, the magnitude of this reverberatory activity would
somehow alter synapses used for triggering control actions.
The global demon might be implemented by a neural
network responsible for quantizing the system state vec-
tors, conjunctively combining the results, and activating
appropriate local demon networks (a neural decoder—see
Section X). Finally, an element or network of elements
would be required for channeling the action of each local
demon network to a common efferent pathway.

In the neuronlike implementation we are pursuing, how-
ever, a local demon corresponds to the mechanism of a
single synapse (to use the language of neural metaphor),
and the output pathway of the postsynaptic element (the
ASE) provides the common efferent pathway for control
signals. At each synapse of the ASE are both a long-term
memory trace that determines control actions and a short-
term memory trace that is required to update the long-term
trace, a role similar to that of a local demon’s counter in
the boxes algorithm. To accomplish the global demon’s job
of activating the appropriate local demon, we assume the
existence of a decoder that has four real-valued input
pathways (for the system state vector) and 162 binary
valued output pathways corresponding to the boxes of
Michie and Chambers’ system (Fig. 2). The decoder trans-
forms each state vector into a 162-component binary vector
whose components are all zeros except for a single one in
the position corresponding to the box containing the state
vector. This vector is provided as input to the ASE and
effectively selects the synapse corresponding to the ap-
propriate box. For the other job of the global demon, that
of distributing a failure signal to all of the local demons,
we just let the adaptive element receive the failure signal
via its reinforcement pathway and distribute the informa-
tion to all of of its afferent synapses. In this way the entire
boxes algorithm can be implemented by a single neuronlike
ASE and an appropriate decoder.

In more detail, an ASE is defined as follows. The ele-
ment has a reinforcement input pathway, n pathways for
nonreinforcement input, and a single output pathway (Fig.
2). Let x,(¢),1 < i < n, denote the real-valued signal on
the ith nonreinforcement input pathway at time ¢, and let
y(t) denote the output at time . Associated with each
honreinforcement input pathway i is a real-valued welght
with value at time ¢ denoted by w;(?).

The element’s output y(t)is determmed from the input
vector X(t) = (x,(¢), - -,x,(2)) as follows:

y(1)=f 2 ()

i(t)xi(t)\-iinoise(t)
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Reinforcement

e Decoder

Cart-Pole
System
Control action
+1 . right 6 'y X X

=1 deft

State Vector

Fig. 2. ASE controller for cart-pole system. ASE’s input is determined from current cart—pole state vector by decoder that
produces output vector consisting of zeros with single one indicating which of 162 boxes contains state vector. ASE’s output
determines force applied to cart. Reinforcement is constant throughout trial and becomes —1 to signal faiture.

where noise (¢) is a real random variable with probability
density function 4 and f is either a threshold, sigmoid, or
identity function. For the pole-balancing illustration, d is
the mean zero Gaussian distribution with variance ¢2, and
f is the following threshold function:

- |

This follows the usual linear threshold convention common
in adaptive network studies, but our approach does not
depend strongly on the specifics of the input/output func-
tion of the element.

According to (1), actions are emitted even'in the absence
of nonzero input signals. The element’s output is de-
termined by chance, with a probability biased by the
weighted sum of the input signals. If that sum is zero, the
left and right control actions are equally probable. Assum-
ing the decoder input shown in Fig. 2, a positive weight w;,
for example, would make the decision right more probable
than left when box i is entered by the system state vector.
The value of a weight, therefore, plays a role corresponding
to the difference between the expected lifetimes for the left
and right actions stored by a local demon in the boxes
system. However, unlike the boxes system, the weight only
determines the probability of an action rather than the
action itself. The learning process updates the action prob-
abilities. Also note that an input vector need not be of the
restricted form produced by the decoder in order for (1)
and the equations that follow to the meaningful.

The weights w;,1 < i < n, change over (discrete) time as
follows:

+1,
-1,

if x>0 (control action right)

ifx <0 (control action left).

w(t+1)=w(t) +ar(r)e(r)

()

where
a positive constant determining the rate of change
of w;,
r(t) real-valued reinforcement at time ¢, and
e, (1) eligibility at time 7 of input pathway i.

The basic idea expressed by (2) is that whenever certain
conditions (to be discussed later) hold for input pathway i,
then that pathway becomes eligible to have its. weight

modified, and it remains eligible for some period of time
after the conditions cease to hold. How w, changes depends
on the reinforcement received during periods of eligibility.
If the reinforcement indicates improved performance, then
the weights of the eligible pathways are changed so as to
make the element more likely to do whatever it did that
made those pathways eligible. If reinforcement indicates
decreased performance, then the weights of the eligible
pathways are changed to make the element more likely to
do something else. The term “eligibility” and this weight
update scheme are derived from the theory of Klopf [11],
[12] and have precursors in the work of Farley and Clark
[20], Minsky [21}, and others. This general approach to
reinforcement learning is related to the theory of stochastic
learning automata [30], [31], which has its roots in the work
of Bush and Mostellér [32] and Tsetlin [33].

Reinforcement: Positive r indicates the occurrence of a
rewarding event and negative r indicates the occurrence of
a punishing event.? It can be regarded as a measure of the
change in the value of a performance criterion as com-
monly used in control theory. For the pole-balancing prob-
lem, r remains zero throughout a trial and becomes —1
when failure occurs.

Eligibility: Klopf [11] proposed that a pathway should
reach maximum eligibility a short time after the occurrence
of a pairing of a nonzero input signal on that pathway with
the “firing” of the element. Eligibility should decay there-
after toward zero. Thus, when the consequences of the
element’s firing are fed back to the element, credit or
blame can be assigned to: the weights that will alter the
firing probability when a similar input pattern occurs in
the future. More generally, the eligibility of a pathway
reflects the extent to which input activity on that pathway
was paired in the past with element output activity. The
eligibility of pathway i at time ¢ is therefore a trace of the
product y(7)x,(7) for times 7 preceding ¢. If either or both
of the quantities y(7) and x,(7) are negative (as they can
be for the ASE defined earlier), then credit is assigned

2A negative value of r is not the same as a psychologists’s “negative
reinforcement.” In psychology, negative reinforcement is reinforcement
due to the cessation of an aversive stimulus.
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appropriately via (2) if eligibility is a trace of the signed
product y(7)x;(7).

For computational simplicity, we generate exponentially
decaying eligibility traces e; using the following linear
difference equation:

e;(t+1) =8¢, (1) +(1 - 8)y(1)x,(1), (3)
where 8,0 < § < 1, determines the trace decay rate. Note
that each synapse has its own local eligibility trace.

Eligibility plays a role analogous to the part of the boxes
local-demon algorithm that, when the demon’s box is en-
tered and an action has been chosen, remembers what
action was chosen and begins to count. The factor x,(¢) in
(3) triggers the eligibility trace, a kind of count, or contrib-
utes to an ongoing trace, whenever box i is entered (x,(¢)
= 1). Instead of explicitly remembering what action was
.chosen, our system contributes a different amount to the
eligibility trace depending on what action was chosen (via
the term y(¢) in (3)). Thus the trace contains information
not only about how long ago a box was entered but also
about what decision was made when it was entered.

Unlike the count initiated by a local demon in the boxes
system, however, the eligibility trace effectively counts
down rather than up (more precisely, its magnitude decays
toward zero). Recall that reinforcement r remains zero
until a failure occurs, at which time it becomes —1. Thus
whatever control decision was made when a box was
visited will always be made less likely when the failure
occurs, but the longer the time interval between the deci-
sion and the occurrence of the failure signal, the less this
decrease in probability will be. From one perspective, this
process seems appropriate. Since the failure signal always
eventually occurs, the action that was taken may deserve
some of the blame for the failure. However, this view
misses the point that even though both actions inevitably
lead to failure, one action is probably better than the other.
The learning process defined by (1)-(3) needs to be more
subtle to ensure convergence to the actions that yield the
least punishment in cases in which only punishment is
available. In the present article, we build this subtlety into
the ACE rather than into the ASE. Among its other
functions, the ACE constructs predictions of reinforcement
so that if punishment is less than its expected level, it acts
as reward. For the pole-balancing task, the ASE as defined
here must operate in conjunction with the ACE.

Although the boxes system and the version of the pole-
balancing problem described earlier serve well to make an
ASE’s design understandable, the ASE does not represent
an attempt to duplicate the boxes algorithm in neuronlike
form. We are interested in tasks more general than the
pole-balancing problem and in learning systems that are
more general than the boxes system. An ASE is less
restricted than the boxes system in several ways. First, the
boxes system is based on the subdivision of the problem
space into a finite number of nonoverlapping regions, and
no generalization is attempted between regions. It develops
a control rule that is effectively specified by means of a
lookup table. Although a form of generalization can be
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easily added to the boxes algorithm by using an averaging
process over neighboring boxes (see Section X) it is not
immediately obvious how to extend the algorithm to take
advantage of the other forms of generalization that would
be possible if the controlled system’s states could be repre-
sented by arbitrary vectors rather than only by the stan-
dard unit basis vectors which are produced by a suitable
decoder. The ASE can accept arbitrary input vectors and,
although we do not illustrate it in this article, can be
regarded as a step toward extending the type of generaliza-
tion produced by error-correction supervised learning
pattern classification methods to the less restricted rein-
forcement learning paradigm (see Section III).

The boxes system is also restricted in that its design was
based on the a priori knowledge that the time until failure
was to serve as the evaluation criterion and that the
learning process would be divided into distinct trials that
would always end with a failure signal. This knowledge
permitted Michie and Chambers to reduce the uncertainty
in the problem by restricting each local demon to choosing
the same action each time its box was entered during any
given trial. The ASE, on the other hand, is capable of
working to achieve rewarding events and to avoid punish-
ing events which might occur at any time. It is not exclu-
sively failure-driven, and its operation is specified without
reference to the notion of a trial.

VIII. THE ADAPTIVE CrITIC ELEMENT (ACE)

Fig. 3 shows an ASE together with an ACE configured
for the pole-balancing task. The ACE receives the exter-
nally supplied reinforcement signal which it uses to de-
termine how to compute, on the basis of the current
cart—pole state vector, an improved reinforcement signal
that it sends to the ASE. Expressed in terms of the boxes
system, the job of the ACE is to store in each box a
prediction or expectation of the reinforcement that can
eventually be obtained from the environment by choosing
an action for that box. The ACE uses this prediction to
determine a reinforcement signal that it delivers to the ASE
whenever the box is entered by the cart-pole state, thus
permitting learning to occur throughout the pole-balancing
trials rather than solely upon failure. This greatly decreases
the uncertainty faced by the ASE. The central idea behind
the ACE algorithm is that predictions are formed that
predict not just reinforcement but also future predictions
of reinforcement.

Like the ASE, the ACE has a reinforcement input path-
way, n pathways for nonreinforcement input, and a single
output pathway (Fig. 3). Let r(¢) denote the real-valued
reinforcement at time 7; let x;(£),1 < i < n, denote the
real-valued signal on the ith nonreinforcement input path-
way at time ; and let 7(¢) denote the real-valued output
signal ‘at time . Each nonreinforcement input pathway i
has a weight with real value v;(¢) at time ¢. The output # is
the improved reinforcement signal that is used by the ASE
in place of r in (2).
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Fig. 3. ASE and ACE configured for pole-balancing task. ACE receives same nonreinforcing input as ASE and uses it to
compute an improved or internal reinforcement signal to be used by ASE.

In order to produce 7(¢), the ACE must determine a
prediction p(r) of eventual reinforcement that is a function
of the input vector X(¢) (which in the boxes paradigm,
simply selects a box). We let

n

p(1) = X v,(1)x,(1)

i=1

(4)

and seek a means of updating the weights v; so that p(7)
converges to an accurate prediction. The updating rule we
use is

v,(1+1) = v,(1) + B[r(t) + yp(1) - p(1 - D] 5,(2),

. )
where B is a positive constant determining the rate of
change of v; v,0 <y <1, is a constant to be explained
below; r(t) is the reinforcement signal supplied by the
environment at time f; and X;(¢) is the value at time ¢ of a
trace of the input variable x;.

It is beyond the scope of the present paper to explain the
derivation of this learning rule fully (see {7] and [9]). Very
briefly, the trace X, acts much like the eligibility trace e,
defined by (3). Here, however, an input pathway gains
positive eligibility whenever a nonzero signal is present on
that pathway, irrespective of what the element’s action is.
We compute X; using the following linear difference equa-
tion (cf. (3)):

x(1+ 1) =Ax,(1) +(1 = N)x,(2),

where A,0 < A < 1 determines the trace decay rate.
According to (6), an eligible pathways’s weight changes
whenever the actual reinforcement r(¢) plus the current
prediction p(t) differs from the value p(¢r — 1) that was
predicted for this sum. Closely related to the ADALINE
learning rule and related regression techniques, this rule
provides a means of finding weight values such that p(¢ —
1) approximates r(¢) + yp(t), or, equivalently, such that
p(t) approximates r(t + 1) + yp(t + 1). By attempting to

(6)

predict its own prediction, the learning rule produces pre-
dictions that tend to be the earliest possible indictions of
eventual reinforcement. The constant y, related to Witten’s
[27] “discount factor,” provides for eventual extinction of
predictions in the absence of external reinforcement. If
v = 1, predictions will be self-sustaining in the absence of
external reinforcement; whereas if 0 < y < 1, predictions
will decay in the absence of external reinforcement. In our
simulations, y = 0.95.

The ACE’s output, the improved or internal reinforce-
ment signal, is computed from these predictions as follows:

#e) =r() +yp(1) —p(t - 1). ™

This is the same expression appearing in (5). The reader
should note that with 7 substituted for r in (2), the weight
updating rules for the ASE and ACE ((2) and (5), respec-
tively) differ only in their forms of eligibility traces. The
ASE’s traces are conditional on its output, whereas the
ACE’s are not.

Although this process works for arbitrary input vectors,
it is easiest to justify (7) by again specializing to the boxes
input representation. According to (7), as the cart-pole
state moves between boxes without failure occurring (i.e.,
r(t) = 0), the reinforcement 7(t) sent to the ASE is the
difference between the prediction of reinforcement of the
current box (discounted by y) and the prediction of rein-
forcement of the previous box. Increases in reinforcement
prediction therefore become rewarding events (assuming
v = 1), and decreases become penalizing events.

When failure occurs, the situation is slightly different.
Given the way the control problem is represented, when
failure occurs the cart—pole state is not in any box. Thus
all x;,(¢) are equal to zero at failure, and according to (4),
so is p(t). Upon failure, then, the reinforcement sent to the
ASE is the externally supplied reinforcement r(t) = —1,
minus the previous prediction p(¢ — 1). Consequently, an
unpredicted failure results in #(¢) being negative. This both
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punishes the actions made preceding the failure and, via
(5), increments the predictions of failure (i.e., decrements
the p’s) of the boxes entered before the failure. A fully
predicted failure generates no punishment. However, when
a box with such a high prediction of failure is entered from
a box with a lower prediction of failure, the recently made
actions are punished and the recent predictions of failure
are incremented, just as they were initially upon failure.
Similarly, if the cart—pole state moves from a box with a
higher prediction of failure to a box with a lower predict-
ion, the recent actions are rewarded and recent predictions
of failure are decremented (i.e., the p’s are incremented).
The system thus learns which boxes are “safe” and which
are “dangerous.” It punishes itself for moving from any
box to a more dangerous box and rewards itself for moving
from any box to a safer box. In the following we discuss
the relation between the behavior of the ACE and that of
animals in classical conditioning experiments.

IX. SIMULATION RESULTS

We implemented the boxes system as described in [3]
and [4] as well as our systems shown in Fig. 2 (ASE alone)
and Fig. 3 (ASE with ACE). We wanted to determine what
kinds of neuronlike elements could attain or exceed the
performance of the boxes system. Our results suggest that a
system using an ASE with internal reinforcement supplied
by an ACE is easily able to outperform the boxes system.
We must emphasize at the outset, however, that it is not
our intention to criticize Michie and Chambers’ program:
the boxes system they described was in an initial state of
development and clearly could be extended to include a
mechanism analogous to our ACE. We make comparisons
with the performance of the boxes system because it pro-
vides a convenient reference point.

We simulated a series of runs of each learning system
attempting to control the same cart—pole simulation (see
the Appendix). Each run consisted of a sequence of trials,
where each trial began with thecart-pole state x =0,
%x=0,0=0,0=0, and ended with a failure signal indi-
cating that @ left the interval [—12°, 12°] or x left the
interval [ — 2.4 m, 2.4 m]. We also set all the trace variables
e, to zero at the start of each trial. The learning systems
were “naive” at the start of each run (i.e., all the weights w;
and v, were set to zero). At the start of each boxes run, we
supplied a different seed value to the pseudorandom num-
ber generator that we used to initialize the state of the
learning system and to break ties in comparing expected
lifetimes in order to choose control actions. We did not
reset the cart—pole state to a randomly chosen state at the
start of each trial as was done in the experiments reported
in [3] and [4]. At the start of each run of an ASE system,
we supplied a different seed to the pseudorandom number
generator that we used to generate the noise used in (1).
We approximated this Gaussian random variable by the
usual procedure of summing uniformly distributed random
variables (we used an eightfold sum). Since the ASE runs
began with weight vectors equal to zero, initial actions for
each box were equiprobable, and initial ACE predictions
were zero. Except for the random number generator seeds,
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Fig. 4. Simulation results, Performance of boxes system and ASE/ACE
system averaged over ten runs. See text for complete explanation.

identical parameter values were used for all runs. Runs
consisted of 100 trials unless the run’s duration exceeded
500 000 time steps (approximately 2.8 h of simulated real
time), in which case the run was terminated. For our
implementation of the boxes system, we used the parame-
ter values published in [3]. We experimented with other
parameter values without obtaining consistently better per-
formance. We did not attempt to optimize the performance
of the systems using the ASE. We picked values that
seemed reasonable based on our previous experience with
similar adaptive elements. -

Figs. 4 and 5 show the results of our simulations of
boxes and the ASE/ACE system. The graphs of Fig. 4 are
averages of performance over the ten runs that produced
the individual graphs shown in Fig. 5. In both figures, a
single point is plotted for each bin of five trials giving the
number of time steps until failure averaged over those five
trials. Almost all runs of the ASE/ACE system, and one
run of the boxes system, were terminated after 500 000
time steps before all 100 trials took place (those whose
graphs terminate short of 100 trials in Fig. 5). We stopped
the simulation before failure on the last trials of these runs.
To produce the averages for all 100 trials shown in Fig. 4,
we needed to make special provision for the interrupted
runs. If the duration of the trial that was underway when
the run was interrupted was less than the duration of the
immediately preceding (and therefore complete) trial, then
we assigned to fictitious remaining trials the duration of
that preceding trial. Otherwise, we assigned to fictitious
remaining trials the duration of the last trial when it was
interrupted. We did this to prevent any short interruptec
trials from producing deceptively low averages.

The ASE/ACE system achieved much longer runs than
did the boxes system. Fig. 5 shows that the ACE/ASE
system tended to solve the problem before it had experi-
enced 100 failures, whereas the boxes system tended not to.
Obviously, we cannot make definitive statements about the
relative performance of these systems, or about the generai
utility of the ASE /ACE system solely on the basis of these
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Fig. 5. Simulation results. Performance of boxes system and ASE /ACE
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experiments. However, these results encourage us to con-
tinue developing the principles upon which the ASE/ACE
system is based.

The parameter values used in producing these results
were o = 1000, 8 =0.5, § = 0.9, y = 0.95, A = 0.8, and
o = 0.01. Except for one set of extreme values, these were
the only values we tried. The large value of a was chosen so
that large changes in the weights w; occurred upon rein-
forcement. This caused the probability of a rewarded ac-
tion to become nearly one and the probability of a penal-
ized action to become nearly zero. We did this in an
attempt to implement in our system the feature of the
boxes system that causes each local demon to choose the
same action each time its box is entered in any given trial.
This greatly reduces the uncertainty in the problem but
would be inappropriate, we think, for problems in which
other reinforcing events could occur during trials. The
parameters 8 and A determine the durations of the eligibil-
ity traces. Their values, 0.9 and 0.8, respectively, cause
long, slowly decaying traces to form, as seemed ap-
propriate given the nature of the problem.

The good performance of the ASE/ACE system was
almost entirely due to the ACE’s supplying reinforcement
throughout trials. For the boxes system and for an ASE
without an ACE, learning occurs only upon failure, an
event that becomes less frequent as learning proceeds. With
the ACE in place, an ASE can receive feedback on every
time step. The learning produced by this feedback causes
the system to attempt to enter particular parts of the state
space and to avoid others. We simulated the control prob-
lem using an ASE without an ACE, using the same par-
ameter settings that worked well for the ASE/ACE
experiments. The ASE was not able to attain the level of
performance shown by the boxes system. These shortcom-
ings of the ASE are due to difficulties in the convergence
process in tasks involving only penalizing feedback, as

discussed in Section VII. The use of reinforcement com-
puted by the ACE markedly changes this property of the
pole-balancing problem. At present, we have little experi-
ence with ASE-like elements operating without ACE sup-
plied reinforcement in the pole-balancing problem.

X. THE DECODER

We have assumed the existence of a decoder that effec-
tively divides the cart-pole state space into a number of
disjoint regions by transforming each state vector into a
vector having 162 components, all but one of which is zero.
We call this a decoder after a similar device used in
computer memory circuits to transform each memory ad-
dress into a signal on the wire connected to the physical
location having that address. With this decoder providing
its input, the ASE essentially fills in a lookup table of
control actions. Similarly, the ACE fills in a table of
reinforcement predictions. Each item of information is
stored by the setting of the value of a single synaptic
weight at a given location.

As a consequence of this localized storage scheme, no
generalization occurs beyond the confines of a given box.
Given the relative smoothness of the cart—pole dynamics,
learning would be faster if information stored in a box
could be extrapolated to neighboring boxes (using the
Euclidean metric). This can be accomplished by using a
kind of decoder that produces activity on overlapping sets
of output pathways. It is interesting to note that in several
theories of sensorimotor learning, it is postulated that the
granular layer of the cerebellum implements just this kind
of decoder and that Purkinje cells are adaptive elements
[34], [35).2

Localized extrapolation is not the only type of generali-
zation that can be useful. There has lately been increasing
interest in “associative memory networks” that use distrib-
uted representations in which dispersed rather than local-
ized patterns of activity encode information [36], [37].
Rather than implementing table-lookup storage, associative
memories use weighted summations to compute output
vectors from input vectors. This style of information stor-
age provides generalization among patterns according to
where they lie with respect to a set of linear discriminant
functions. Since the ASE and ACE use weighted summa-
tions that are defined for arbitrary input vectors, they
implement linear discriminant functions and are capable of
forming information storage networks having all of the
properties that have generated interest in associative mem-
ory networks. Unlike the associative memory networks
discussed in the literature, however, networks of ASE-like
components are capable of discovering via reinforcement
learning what information is useful to store. These aspects

3In these theories, the adaptive elements perform supervised learning
pattern classification, with climbing fiber input providing the desired
responses, and not the type of reinforcement learning with which the
present article is concerned. If the adaptive capacity of a Purkinje cell
were limited to that postulated in these theories, then a Purkinje cell
would not be able to solve the type of problem illustrated by the
pole-balancing task described in this article.
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of ASE’s are emphasized by Barto et a/. [8] where associa-
tive search networks are discussed.

Whether environmental states are represented using
localized or distributed patterns, the problem remains of
how to choose the specifics of the representations in order
to facilitate learning. In this article we followed Michie and
Chambers in choosing a state—space partition based on
special knowledge of the control task. As they point out, it
is easy to choose a partition that makes the task impossible
[4]. For the next stage of development of the boxes system,
Michie and Chambers planned to give the system the
ability to change the boundaries of the boxes by the
processes of “splitting” and “lumping” [4]. We are not
aware of any results they published on these processes, but
we were motivated in part by their comments to experi-
ment with layered networks of ASE-like adaptive elements
in order to examine the feasibility of implementing a kind
of adaptive decoder. Some preliminary results, reported in
{5], were encouraging, and we are continuing our investiga-
tion in this direction.

XI. ANIMAL LEARNING

Minsky has pointed out [23] that methods for reducing
the severity of the credit-assignment problem like the one
used in Samuel’s checkers player are suggestive of sec-
ondary or conditioned reinforcement phenomena in animal
learning studies. A stimulus acquires reinforcing qualities
(i-e., becomes a secondary reinforcer) if it predicts either
primary reinforcement (e.g., food or shock) or some other
secondary reinforcer. It is generally held that higher order
classical conditioning, whereby previously conditioned
conditioned stimuli (CS’s) can act as unconditioned stimuli
(US’s) for earlier potential CS’s, is the basis for the devel-
opment of secondary reinforcement [38].

The ACE is a refinement of the model of classical
conditioning that was presented in [9]. That model’s behav-
ior is consistent with the Rescorla—Wagner model of classi-
cal conditioning [39]. While not without certain problems,
the Rescorla—Wagner model has been the most influential
model of classical conditioning for the last ten years [40].
One interpretation of the basic premise of the
Rescorla-Wagner model is that the degree to which an
event is ““unexpected” or “surprising” determines the de-
gree to which it enters into associations with earlier events.
Stimuli lose their reinforcing qualities to the extent that
they are expected on the basis of the occurrence of earlier
stimuli. The model upon which the ACE is based extends
the basic mechanism of the Rescorla-Wagner model to
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provide for some of the features of higher order condition-
ing, the influence of relative event timing within trials, ané
the occurrence of conditioned responses (CR’s) that antic-
ipate the US. In these terms, the failure signal r cor-
responds to the US, the signals x; from the decoder
correspond to potential CS’s, and the prediction p corre-
sponds to a component of the CR. We have not yet
thoroughly investigated the extent to which the ACE /ASE
system is a valid model of animal behavior in instrumental
conditioning experiments.

XII. CoONCLUSION

It should be clear that our approach differs from that of
the pioneering adaptive neural-network theorists of the
1950’s and 1960’s. We have built into single neuronlike
adaptive elements a problem-solving capacity that in many
respects exceeds that achieved in the past by entire simu-
lated neural networks. The metaphor for neural functior
suggested by this approach provides, at least to us, the firs:
convincing inkling of how nervous tissue could possibly be
capable of its exquisite feats of problem solving and con-
trol.

We argued that components of powerful adaptive net-
works must be at least as sophisticated as the components
described in this article. If this were true for biologica!
networks as well as for artificial networks, then it would
suggest that parallels might exist between neurons and the
adaptive elements described here. It would suggest, for
example, that 1) there are single neuron analogs of instru-
mental conditioning and chemically specialized reinforcing
neurons that may themselves be adaptive (see [41]); 2) the
random component of an instrumental neuron’s behavior
is necessary for generating variety to serve as the basis for
subsequent selection; and 3) mechanisms exist for main-
taining relatively long-lasting synaptically local traces of
activity that modulate changes in synaptic efficacy. Al-
though some of these implications are supported in varying
degrees by existing data, there are no data that provide
direct support for the existence of the specific mechanisms
used in our adaptive elements. By showing how neuronlike
elements can solve genuinely difficult problems that are
solved routinely by many animals, we hope to stimulate
interest in the relevant experimental research.

APPENDIX
DETAILS OF THE CART-POLE SIMULATION

The cart-pole system is modeled by the following non-
linear differential equations (see [42]):
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where
g = —9.8 m/s?, acceleration due to gravity,
m = 1.0 kg, mass of cart

m = 0.1 kg, mass of pole,
! = 0.5 m, half-pole length,

©

.= 0.0005, coefficient of friction of cart on track,

p,= 0.000002, coefficient of friction of pole on cart,
F, = £10.0 newtons, force applied to cart’s center of

mass at time ¢.

We initially used the Adams—-Moulton predictor—corrector
method to approximate numerically the solution of these
equations, but the results reported in this article were
produced using Euler’s method with a time step of 0.02 s
for the sake of computational speed. Comparisons of solu-
tions generated by the Adams—Moulton methods and the
less accurate Euler method did not reveal discrepencies
that we deemed significant for the purposes of this article.
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