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Unrestricted English text can be converted to speech by 
applying phonological rules and handling exceptions with a 
look-up table. However, this approach is highly labor inten- 
sive since each entry and rule must be hand-crafted. NETtalk 
is an alternative approach that is based on an automated 
learning procedure for a parallel network of deterministic 
processing units. ~ f t e r '  training on a corpus of informal con- 
tinuous speech, it achieves good performance and generalizes 
to novel words. The distributed internal representations of 
the phonological regularities discovered by the network are 
damage resistant. 

Introduction 

English is amongst the most difficult languages to read 
aloud. Most phonological rules for transforming let- 
ters to speech sounds have exceptions that are often 
context-sensitive (1). For example, the "a" in almost all 
words ending in "ave", such as "brave" and "gave", is 
a long vowel, but-not in "have", and there are some 
words such as "survey" that can vary in pronunication 
with their syntactic role. The problem of reconciling 
rules and exceptions in converting text to speech shares 
some characteristics with difficult problems in artificial 
intelligence that have traditionally been approached 
with rule-based knowledge representations (2), such as 
natural language translation and abduction in expert 
systems (3). 

DECtalk (4) is a commercial product that can pro- 
duce intelligible speech synthesis in a restricted domain. 
DECtalk uses two methods for first converting text to 
phonemes (5): A word is first looked up in a pronuncia- 
tion dictionary of common words; if it is not found 
there, then a set of phonological rules is applied. 
Phonemes and stress assignments are then converted 
into speech sounds using transition rules and digital 
speech synthesis. For novel words that are not cor- 
rectly pronounced, this approach requires explicit 
intervention to update the dictionary and rules (6). 

An alternative approach to knowledge representa- 
tion is based on massively-parallel network models 
(7,8). Knowledge in these models is distributed over 
many processing units and the behavior of the network 
in response to a particular input pattern is a collective 

decision based on the exchange of information between 
the processing units. These are called connectionist 
models because they are "programmed" by specifying 
the connectivity of the network and the strength or 
weight of each connection. In some cases the connec- 
tions can be determined using insights from the prob- 
lem domain, particularly when the networks have a 
regular pattern (9). It would be desireable to generate 
networks automatically, and one method is to "com- 
pile" a network from a description of a problem, such 
as a parser for a grammar (10). Another automatic 
method is incremental learning, which allows networks 
to be created by repetitive training on examples. 

Rumelhart and McClelland (1 1) have successfully 
taught a one-layer network model to produce the past 
tenses of English verbs using the perceptron learning 
algorithm (12). The verb-learning network is rule- 
following but not rule-based in the sense that no rules 
are explicitly programmed into the network, but after 
training, the network behaves as if it were following 
rules. This is a consequence of the learning algorithm, 
which takes advantage of regularities of past tense 
endings to minimize the number of weights needed in 
the network, as shown by the ability of the network 
to generalize to novel verbs and pseudoverbs. How- 
ever, a network with one layer of modifiable weights is 
severely restricted in its ability to discover higher-order 
features (13,14). 

Until recently, learning in multilayered networks 
was an unsolved problem and considered by some 
impossible (13, p. 231). In a multilayered machine the 
internal, or hidden, units can be used as feature detec- 
tors which perform a mapping between input units and 
output units, and the difficult problem is to discover 
the proper features. The Boltzmann machine learning 
algorithm is capable of finding features that allow a 
network to generalize from examples (8,14,15), and 
several other learning algorithms are now known for 
multilayered networks which can also discover good 
features (16,17). 

In this paper we explore the applicability of network 
learning algorithms with one to three layers of modifi- 
able connections to the problem of converting text to 
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Figure 1 (a) Schematic model of a processing unit receiving 
inputs from other processing units. (b) Transformation between 
summed inputs and output of a processing unit, as given by Eq. 2. 

speech. The model, which we call NETtalk, demon- 
strates that a relatively small network can capture most 
of the significant regularities in English pronunciation 
as well as absorb many of the irregularities. NETtalk 
can be trained on any dialect of any language and 
the resulting network can be implemented directly in 
hardware. 

We will first describe the network architecture and 
the learning algorithm that we used, and then present 
the results obtained from simulations. Finally, we dis- 
cuss the computational complexity of NETtalk and 
some of its biological implications. 

Network ~rchitecture 

Processing Units 
The network is composed of processing units that non- 
linearly transform their summed, continuous-valued 
inputs, as illustrated in Fig. 1. The connection strength, 
or weight, linking one unit to another unit can be a 
positive or negative real value, representing either an 
excitatory or an inhibitory influence of the first unit on 
the output of the second unit. Each unit also has a 
threshold which is subtracted from the summed input. 
The threshold is implemented as weight from a unit 
that has a fixed value of 1 so that the same notation 
and learning algorithm can also be applied to the 
thresholds as well as the weights. The output of the ith 
unit is determined by first summing all of its inputs 

E i  = 1 WijP j  
j  

(1) 

where wij is the weight from the jth to the ith unit, and 
then applying a sigmoidal transformation 

H ~ d d e n  Units 

Input Uni ts  

Figure 2 Schematic drawing of the network architecture. Input 
units are shown on the bottom of the pyramid, with 7 groups of 29 
units in each group. Each hidden unit in the intermediate layer 
receives inputs from all of the input units on the bottom layer, and 
in turn sends its output to all 26 units in the output layer. An 
example of an input string of letters is shown below the inputs 
groups, and the correct output phoneme for the middle letter is 
shown above the output layer. For 80 hidden units, which were 
used for the corpus of continuous informal speech, there was a 
total of 309 units and 18,629 weights in the network, including a 
variable threshold for each unit. 

as shown in Fig. 1. 
The network used in NETtalk is hierarchically 

arranged into three layers of units: an input layer, an 
output layer and an intermediate or "hidden" layer, as 
illustrated in Fig. 2. Information flows through the 
network from bottom to top. First the letters units at 
the base are clamped, then the states of the hidden units 
are determined by Eqs. 1 & 2, and finally, the states of 
the phoneme units at the top are determined (30). 

Representations of Letters and Phonemes 
There are seven groups of units in the input layer, and 
one group of units in each of the other two layers. Each 
input group encodes one letter of the input text, so that 
strings of seven letters are presented to the input units 
at any one time. The desired output of the network 
is the correct phoneme, or contrastive speech sound, 
associated with the center, or fourth, letter of this seven 
letter "window". The other six letters (three on either 
side of the center letter) provide a partial context for 
this decision. The test is stepped through the window 
letter-by-letter. At each step, the network computes a 
phoneme, and after each word the weights are adjusted 
according to how closely the computed ~ronunciation 
matches the correct one. 

The letters and phonemes are represented in differ- 
ent ways. The letters are represented locally within 
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each group by 26 dedicated units, one for each letter of 
the alphabet, plus an additional 3 units to encode 
punctuation and word boundaries. The phonemes, in 
contrast, are represented in terms of 23 articulatory 
features, such as point of articulation, voicing, vowel 
height, and so on, as summarized in Table 1. Three 
additional units encode stress and syllable boundaries. 
This is a distributed representation since each output 
unit participates in the encoding of several phonemes 
(1 8). 

The hidden units neither receive direct input nor 
have direct output, but are used by the network to form 
internal representations that are appropriate for solv- 
ing the mapping problem of letters to phonemes. The 
goal of the learning algorithm is to adjust the weights 
between the units in the network in order to make the 
hidden units good feature detectors. 

Learning Algorithm 
Two texts were used to train the network: Phonetic 
transcriptions from informal, continuous speech of a 
child (19) and a 20,012 word corpus from a dictionary 
(20). A subset of 1000 words was chosen from this 
dictionary taken from the Brown corpus of the most 
common words in English (21). The corresponding 
letters and phonemes were aligned and a special sym- 
bol for continuation, "-", was inserted whenever a letter 
was silent or part of a graphemic letter combination, 
as in the conversion from "phone" to the phonemes 
If-on-/ (see Table 1). Two procedures were used to 
move the text through the window of 7 input groups. 
For the corpus of informal, continuous speech the text 
was moved through continuously with word boundary 
symbols between the words. Several words or word 
fragments could be within the window at the same 
time. For the dictionary, the word were placed in 
random order and were moved through the window 
individually. 

The weights were incrementally adjusted during the 
training according to the discrepancy between the 
desired and actual values of the output units. For each 
phoneme, this error was "back-propagated" from the 
output to the input layer using the learning algorithm 
introduced by Rumelhart, et al. (17). Each weight in the 
network is adjusted to minimize its contribution to the 
total mean square error between the desired and actual 
outputs. Briefly, the weights were updated according 
to: 

where wJ'" is the weight from the jth unit in layer n to 
the ith unit in layer n + 1, the parameter a smooths the 
gradient by over-relaxation (typically 0.9), E controls 

the rate of learning (typically 2.0). The error signal 6)") 
for layer n was calculated starting from the output 
layer N: 

and recursively back-propagating the differences to 
lower layers 

,$n) = C ~ ~ + l ) ~ ~ ~ ( ~ ) p l ( ~ ~ ( " ) ) ,  

j 

where P1(E) is the first derivative of P(E), pi* was the 
desired value of the ith unit in the output layer, and 

was the actual value obtained from the network. 
For most of the simulations the error signal was back- 
propagated only when the difference between the actual 
and desired values were greater than a margin of 0.1. 
The gradients in Eq. 4 were accumulated over several 
letters and Eq. 3 was applied only once for each word. 
The weights in the network were always initialized to 
small random values uniformly distributed between 
-0.3 and 0.3; this was necessary to differentiate the 
hidden units. 

Performance 

A simulator was written in the C programming lan- 
guage for configuring a network with arbitrary connec- 
tivity, training it on a corpus and collecting statistics 
on its performance. A network of 10,000 weights had 
a throughput during learning of about 2 letterslsec 
on a VAX 780 FPA. Two measures of performance 
were computed. The output was considered a "perfect 
match" if the value of each articulatory feature was 
within a margin of 0.1 of its correct value. This was a 
much stricter criterion than the "best guess", which 
was the phoneme making the smallest angle.with the 
output vector. The performance was also assayed by 
"playing" the output string of phonemes and stresses 
through DECtalk, bypassing the front end that con- 
verts letters to phonemes. 

Continuous Informal Speech 
This corpus was a difficult one because the same word 
was often pronounced several different ways; pho- 
nemes were commonly modsed or elided at word 
boundaries. The learning curve for 1024 words from 
the informal speech corpus is shown in Fig. 3. The per- 
centage of correct best' guesses for the phonemes rose 
rapidly at first and continued to rise at slower rate 
throughout the learning, reaching 95% after 50,000 
words. Perfect matches were rarer, but were at 55% and 
still rising at the termination of the simulation. Pri- 
mary and secondary stresses and syllable boundaries 
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1  able 1 Articulatory representation of phonemes and punctuations" 1 

Symbol Phoneme Articulatory features 

/a/ father Low, Tensed, Central2 

/b/ bet Voiced, Labial, Stop 
bought 
debt 
bake 

Unvoiced, Velar, Medium 
Voiced, Alveolar, Stop 
Medium, Tensed, Front2 

/f/ /In Unvoiced, Labial, Fricative 
guess 
head 
Pete 
Ken 
let 
met 
net 
boat 

Pet 
red 
sit 
test 
lute 
vest 
wet 
about 

Yet 
zoo 
bite 
chin 
this 
bet 
sing 
bit 
gin 
sexual 

bottle 
absym 
button 

boy 
quest 
bird 
shin 
thin 
book 
bout 
excess 
cute 
leisure 
bat 
Nazi 
examine 
one 
logic 
but 
Continuation 
Word Boundary 

Voiced, Velar, Stop 
Unvoiced, Glottal, Glide 
High, Tensed, Frontl 
Unvoiced, Velar, Stop 
Voiced, Dental, Liquid 
Voiced, Labial, Nasal 
Voiced, Alveolar, Nasal 
Medium, Tensed, Back2 
Unvoiced, Labial, Stop 
Voiced, Palatal, Liquid 
Unvoiced, Alveolar, Fricative 
Unvoiced, Alveolar, Stop 
High, Tensed, Back2 
Voiced, Labial, Fricative 
Voiced, Labial, Glide 
Medium, Central2 
Voiced, Palatal, Glide 
Voiced, Alveolar, Fricative 
Medium, Tensed, Front2 + Centrall 
Unvoiced, Palatal, Affricative 
Voiced, Dental, Fricative 
Medium, Frontl + Front2 
Voiced, Velar, Nasal 
High, Frontl 
Voiced, Velar, Nasal 
Unvoiced, Palatal, Fricative + Velar, Affricative (Compound: 

Ckl + IS]) 
Voiced, Alveolar, Liquid 
Voiced, Dental, Nasal 
Voiced, Palatal, Nasal 
Medium, Tensed, Centrall + Central2 
Voiced, Labial + Velar, Affricative, Stop 
Voiced, Velar, Liquid 
Unvoiced, Palatal, Fricative 
Unvoiced, Dental, Fricative 
High, Backl 
High + Medium, Tensed, Central2 + Backl 
Unvoiced, Affricative, Front2 + Centrall 
High, Tensed, Frontl + Front2 + Centrall 
Voiced, Palatal, Fricative 
Low, Front2 
Unvoiced, Labial + Dental, Affricative (Compound: [t] + [s]) 
Voiced, Palatal + Velar, Affricative (Compound: [g] + [z]) 
Voiced, Glide, Frontl + Low, Centrall (Compound: [w] + 1-1) 
High, Frontl + Front2 
Low, Centrall 
Silent, Elide 
Pause, Elide 

1.1 Period Pause, Full Stop 

a. Output representations for phonemes and punctuations. The symbols for phonemes in square brackets are a superset of ARPAbet (4) and are 
associated with the sound of the italicized part of the adjacent word. Compound phonemes were introduced when a single letter was 
associated with more than one primary phoneme. The continuation symbol was used when a letter was silent. Two or more of the following 
17 articulatory feature units were used to represent each phoneme: Position in mouth: Labial = Frontl, Dental = Front5 Alveolar = Centrall, 
Palatal = Central2, Velar = Backl, Glottal = BackZ; Phoneme Type: Stop, Nasal, Fricative, Affricative, Glide, Liquid, Voiced, Tensed; Vowel 
Frequency: High, Medium, Low. Four additional output units were used to represent each punctuation: Silent, Elide, Pause, Full Stop. 
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Figure 3 Learning curves for phonemes and stresses during 
training on the 1024 word corpus of continuous informal speech. 
The percent of correct best guesses are shown as functions of the 
number of training words. 

were learned very quickly for all words and achieved 
nearly perfect performance by 5,000 words, as shown 
in Fig. 3. 

Representative examples of output at the beginning 
and near the end of the training are shown in Fig. 4. 
The distinction between vowels and consonants was 
made early; however, the network substituted the same 
vowel for all vowels and the same consonant for all 
consonants, which resulted in a babbling sound. A 
second stage occured when word boundaries are recog- 
nized, and the output then resembled pseudowords. 
After just a few passes through the network many of 
the words were intelligible, and by 10 passes the text 
was understandable. 

Errors in the best guesses were far from random. For 
example, few errors in a well-trained network were 
confusions between vowels and consonants: most con- 
fusions were between phonemes that were very similar, 
such as the difference in voicing between the "th" 
sounds in "thesis" and "these". Some errors were 
due to inconsistencies in the original training corpus. 
Nevertheless, the intelligibility of the speech was quite 
good. 6 

A network trained on a 1024 word corpus of infor- 
mal speech was tested without training on a 439 word 
continuation from the same speaker. The performance 
was 78% best guesses and 35% perfect matches, which 
indicates that much of the learning was transferred to 
novel words. An excerpt from the new corpus is shown 
in Fig. 4d. 

Figure 4 Examples of raw output from the simulator during 
learning on a corpus of 1024 words of continuous informal speech: 
(a) after the first 200 words of training starting from random 
weights, (b) after one pass through the corpus, and (c) after 25 
passes through the corpus. (d) Output of the network during 
testing on a continuation of the corpus. The letters within the 
black stripe are the text (middle row), phonemes (bottom row) and 
stresses (top row) from the training corpus. The symbols for the 
phonemes are given in Table 1. The stresses are represented by 
a number (primary = 1, secondary = 0, tertiary = 2). and the 
syllable boundaries are indicated by a reversal in the direction of 
the arrows: "< )". The output of the network is shown above and 
below the black stripe. The phonemes making the smallest angle 
with the output vector are shown in rank order below the black 
stripe with the best guess at  the top. The stresses are similarly 
listed in rank order above the black stripe with the best guess at  
the bottom. 

A graphical summary of the weights between the 
letter units and some of the hidden units is shown in 
Fig. 5. The pattern of excitatory and inhibitory weights 
to a hidden unit can be considered its "receptive field", 
in analogy with the receptive fields of sensory neurons. 
Most hidden units responded to more than one pattern 
of letters. We examined performance of a highly-trained 
network to random perturbations of the weights. As 
shown in Fig. 6, random perturbations of the weights 
uniformly distributed on the interval [-0.5,0.5] had 
little effect on the performance of the network, and 
degradation was gradual with increasing damage. Since 
the distribution of the weights had a standard devia- 
tion of 1.2, the amount of information conveyed by 
each weight is only a few bits. Relearning was about 
ten times faster than the original learning starting from 
the same level of performance. Similar fault tolerance 
and fast recovery from damage has also been observed 
using the Boltzmann learning algorithm (15). 

Dictionary 
We used the 1000 most common English words to 
study how the performance of the network and learn- 



Figure 5 Hinton diagram showing weights from the layer of 
input units to 5 representative hidden units taken from a network 
with 80 hidden units that was trained on a corpus of continuous 
informal speech. Each gray rectangle represents one hidden unit 
and each square within a rectangle represents a weight. The area of 
the square is proportional to the magnitude of the weight and the 
sign of the weight is indicated by the color: white for positive, or 
excitatory weights, and black for negative, or inhibitory weights 
(28). The largest weights have magnitudes of about 4. Each row of 
squares within a gray rectangle represents the weights from one 
group of input units, with the leftmost input group on the top row 
and the rightmost input group on the bottom row. The isolated 
weight in the upper left comer of each array is the bias (negative 
threshold) of the unit, which was treated like a weight to a true 
unit. Out of 29 squares in each row, the first 26 represent the 
weights from the letters of the alphabet, from a to z, and the last 
three represent the punctuations, including word boundaries. 
Thus, the square in the lower left comer of a hidden unit is the 
weight it receives when the letter "a" is present in the rightmost 
input group. For most hidden units more than one combination 
of letters will cause it to produce a large output. These are called 
distributed representations. However, a few hidden units, such as 
the third from the top, had a more restricted pattern of weights 
that could be called a local representation. 

Amount o f  Damage 

95 I- Relearning After Damage 

Number of Words ( ~ 1 0 3 )  

Figure 6 Damage to the network and recovery from damage. a) 
Performance of a network as a function of the amount of damage 
to the weights. The network had been previously trained on 50 
passes though the corpus of continuous informal speech. The 
weights were then damaged by adding a random component to 
each weight uniformly distributed on the interval [-d,d], where d 
is the amount of damage plotted on the abscissa. The performance 
shown is the average of at  least two disrupted networks for each 
value of d. For d = 1.2,22 disrupted networks were tested to 
obtain a standard deviation of 6%. The average absolute value 
of the weights in the network was Iwl = 0.77 and the standard 
deviation was u = 1.2, as indicated by the arrows. The best guesses 
were more resistant to damage than the perfect matches. There 
was little degradation of the best guesses until d = 0.5, and the 
falloff with increasing damage was gentle. (b) Retraining of a 
damaged network compared with the original learning curve 
starting from the same level of performance. The network was 
damaged with d = 1.2 and was retrained using the same corpus 
and learning parameters that were used to train it. There is a rapid 
recovery phase during the first pass through the network followed 
by a slower healing process similar in time course to the later 
stages of the original training. These two phases can be accounted 
for by the shape of the error metric in weight space, which 
typically has deep ravines (15). 
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ing rate scale with the number of hidden units. The 
most common English words are also amongst the 
most irregular, so this was also a test of the capacity of 
the network to absorb exceptions. With no hidden 
units, the performance rose quickly and saturated at 
82% best guesses as shown in Fig. 7a. This represents 
the part of the mapping that can be accomplished by 
linearly separable partitioning of the input space (13). 
The pattern of errors was different from that observed 
in networks with a layer of hidden units in that many 
were stereotyped and inappropriate. Hidden units allow 
more contextual influence by recognizing higher-order 
features amongst combinations of input units (14). 

The rate of learning and final performance increased 
with the number of hidden units, as shown in Fig. 7a. 
The best performance achieved with 120 hidden units 
was 98% best guesses, better than the performance 
achieved with continuous informal speech, which was 
more difficult because of the variability in real-world 
speech. Examples of two letter-to-sound correspon- 
dences are shown in Fig. 7b. The network with 120 
hidden units was tested on the randomized dictionary 
of 20,012 words. Without learning, the average perfor- 
mance was 77% best guesses and 28% perfect matches. 
Following 5 training passes through the dictionary, the 
performance increased to 90% best guesses and 48% 
perfect matches. I 

Letters and punctuations were represented by single 
units in the input groups; this is a local representation 
and had the advantage that the receptive fields of the 
hidden units were more easily interpreted in terms of 
letters. Simulations were also performed with distri- 
buted representations, similar in spirit to the articula- 
tory representation used for the output units. For a 
particular distributed representation with 16 units per 
input group we found that the general level of perfor- 
mance was comparable to that with the local represen- 
tation, but there was a consistent difficulty with several 
correspondences between letters and phonemes. 

We used the learning algorithm to discover a good 
distributed input representation by introducing an 
additional group of 10 units between each input letter 
group and the group of hidden units. The resulting 
network had three layers of modifiable weights. The 
performance of this network with 160 hidden units 
in the layer after training on 5 passes through the 
20,012 word dictionary was 89% best guesses and 
49% perfect matches. The number of weights in this 
network was comparable to a network with a local in- 
put representation and 76 hidden units. None of the 
difficulties experienced with previous hand-crafted dis- 
tributed input representations occurred. As expected, 

Perfect Match 

/-- 

Number of Words ( ~ 1 0 ~ )  

b 

I I I I I I 

5 10 15 20 25 30 
Number of Words (xlo3) 

Figure 7 (a) Learning curves for training on a corpus of the 1000 
most common words in English using different numbers of hidden 
units, as indicated beside each curve. For the case with no hidden 
units, the input units were directly connected to the output units. 
Both the percent correct best guesses and perfect matches are 
shown. (b) Performance during learning of two representative 
phonological rules, the hard and soft pronunciation of the letter 
"c". Note that the soft "c" takes longer to learn, but eventually 
achieves perfect accuracy. The hard "c" occurs about twice as often 
as the soft "c" in the training corpus. Children show a similar 
difficulty with learning to read words with the soft "~"(29). 



670 
Chapter 40 

each group of 10 units developed a highly distributed 
representation. 

Computational Complexity 

The translation of letters to phonemes can be analyzed 
as a mapping problem. Consider a domain of 29 sym- 
bols for letters and punctuations taken in strings of 
length 7. We would like to construct a deterministic 
mapping from these strings to a range of 51 symbols 
representing phonemes (23). Only a subset of all possi- 
ble mappings actually occur in English speech and the 
problem is to find a compact description of this map- 
ping which takes advantage of the regularities and also 
captures the exceptions (24). 

For a restricted text this problem can be solved by 
specifyin; entries in a look-up table determined by 
letter strings in English words. For a text of 1000 words 
this would consist of about 5,000 entries since there are 
5 letters on average per word and there would be at 
most one entry in the table per letter. However, this 
look-up table generalizes poorly when applied to new 
words in an unrestricted text. One way to generalize is 
to look for partial matches; this could be implemented 
by compiling frequency tables of letter pairs, triples, 
etc. for all combinations of positions within the window. 
There are two practical problems with this method: 
First the size of these tables grows exponentially with 
the size of the window, with about 500,000 entries 
needed for a text of 1000 words and a window of 7 
letters. Second, some weighting scheme is required to 
combine evidence from different partial matches. 

In NETtalk, the weighting of input letters is per- 
formed by the weights between the letter units and the 
hidden units, and the weighting of the features is per- 
formed by the weights between the hidden units and 
the output units. The learning algorithm discovers 
those combinations of letters that are particularly effi- 
cient at implementing the correspondences between 
letters and phonemes (14). The mapping is distributed 
in that each significant combination of letters is en- 
coded by several hidden units, and each hidden unit 
recognizes more than one sequence of letters; as a 
consequence, the performance of the network is highly 
resistant to both localized and diffuse damage. Excep- 
tions to regularities are also recognized by their fea- 
tures so that a separate look-up table such as that 
used in DECtalk is unnecessary. We are currently ex- 
amining assemblies of units that appear to be related 
to particular letter-to-sound correspondence rules. 
Learning algorithms make it possible to design these 
efficient mappings without direct human intervention. 

Biological Implications 

The processing units used in the network share some 
properties with neurons, such as a high degree of 
connectivity, summation of excitatory and inhibitory 
influences through synaptic weights, and a nonlinear 
input-output function that resembles the firing rate of 
a neuron as a function of integrated synaptic inputs, 
but there are also many differences, such as the absence 
of explicit action potentials and an integration time 
constant. However, insights may be gained concerning 
the representation of information in large populations 
of neurons by examining the way that these simple 
network models solve problems like text-to-speech. 
Although the detailed implementations may be differ- 
ent, similar principles may apply to both neural net- 
works and massively-parallel network models (25). 

During the early stages of learning in NETtalk, the 
sounds produced by the network are uncannily similar 
to early speech sounds in children (26). However, 
our model of text-to-speech combines two different 
processes that occur at different stages of human devel- 
opment: learning to talk and learning to read. By the 
time that a human child learns to read, phonetic rep- 
resentations for words are already well developed. 
Nonetheless, the phonological mappings produced by . 
NET-talk are efficient encodings for a parallel network 
and may be comparable to those used by humans. 

NETtalk can be used to study the importance of 
particular phonological rules in the context of a partic- 
ular corpus by presenting the network with nonsense 
words that are constructed to critically test a proposed 
rule. The performance of the network can also be 
studied following damage of the network. The patterns 
of errors following simulated "lesions" in the network 
by either removing units or by disrupting the weights 
can be compared with reading errors observed in 
humans suffering from acquired dyslexia (27). 

.NETtalk is clearly limited in its ability to handle 
ambiguities that require syntactic and semantic levels 
of analysis. It is perhaps surprising that the network 
was capable of reaching a significant level of perfor- 
mance using a window of only seven letters. A human 
level of performance would require information from 
larger parts of sentences to control intonation, stress 
contours and prosody. It should be possible to incor- 
porate these variables into a structured network and 
apply the learning algorithm to them as well. 
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