
(1986)
Terrence J. Sejnowski and Charles R. Rosenberg

NETtalk: a parallel network that learns to read aloud
The Johns Hopkins University Electrical Engineering and Computer Science Technical Report

JHU/EECS-86/01, 32 pp.

Unrestricted English text can be converted to speech by
applying phonological rules and handling exceptions with a
look-up table. However, this approach is highly labor inten-
sive since each entry and rule must be hand-crafted. NETtalk
is an alternative approach that is based on an automated
learning procedure for a parallel network of deterministic
processing units. ~ f t e r ' training on a corpus of informal con-
tinuous speech, it achieves good performance and generalizes
to novel words. The distributed internal representations of
the phonological regularities discovered by the network are
damage resistant.

Introduction

English is amongst the most difficult languages to read
aloud. Most phonological rules for transforming let-
ters to speech sounds have exceptions that are often
context-sensitive (1). For example, the "a" in almost all
words ending in "ave", such as "brave" and "gave", is
a long vowel, but-not in "have", and there are some
words such as "survey" that can vary in pronunication
with their syntactic role. The problem of reconciling
rules and exceptions in converting text to speech shares
some characteristics with difficult problems in artificial
intelligence that have traditionally been approached
with rule-based knowledge representations (2), such as
natural language translation and abduction in expert
systems (3).

DECtalk (4) is a commercial product that can pro-
duce intelligible speech synthesis in a restricted domain.
DECtalk uses two methods for first converting text to
phonemes (5): A word is first looked up in a pronuncia-
tion dictionary of common words; if it is not found
there, then a set of phonological rules is applied.
Phonemes and stress assignments are then converted
into speech sounds using transition rules and digital
speech synthesis. For novel words that are not cor-
rectly pronounced, this approach requires explicit
intervention to update the dictionary and rules (6).

An alternative approach to knowledge representa-
tion is based on massively-parallel network models
(7,8). Knowledge in these models is distributed over
many processing units and the behavior of the network
in response to a particular input pattern is a collective

decision based on the exchange of information between
the processing units. These are called connectionist
models because they are "programmed" by specifying
the connectivity of the network and the strength or
weight of each connection. In some cases the connec-
tions can be determined using insights from the prob-
lem domain, particularly when the networks have a
regular pattern (9). It would be desireable to generate
networks automatically, and one method is to "com-
pile" a network from a description of a problem, such
as a parser for a grammar (10). Another automatic
method is incremental learning, which allows networks
to be created by repetitive training on examples.

Rumelhart and McClelland (1 1) have successfully
taught a one-layer network model to produce the past
tenses of English verbs using the perceptron learning
algorithm (12). The verb-learning network is rule-
following but not rule-based in the sense that no rules
are explicitly programmed into the network, but after
training, the network behaves as if it were following
rules. This is a consequence of the learning algorithm,
which takes advantage of regularities of past tense
endings to minimize the number of weights needed in
the network, as shown by the ability of the network
to generalize to novel verbs and pseudoverbs. How-
ever, a network with one layer of modifiable weights is
severely restricted in its ability to discover higher-order
features (13,14).

Until recently, learning in multilayered networks
was an unsolved problem and considered by some
impossible (13, p. 231). In a multilayered machine the
internal, or hidden, units can be used as feature detec-
tors which perform a mapping between input units and
output units, and the difficult problem is to discover
the proper features. The Boltzmann machine learning
algorithm is capable of finding features that allow a
network to generalize from examples (8,14,15), and
several other learning algorithms are now known for
multilayered networks which can also discover good
features (16,17).

In this paper we explore the applicability of network
learning algorithms with one to three layers of modifi-
able connections to the problem of converting text to

664
Chapter 40

Output Units

/ k /
CCOXO

Processing Unit

b

Total Input E

Figure 1 (a) Schematic model of a processing unit receiving
inputs from other processing units. (b) Transformation between
summed inputs and output of a processing unit, as given by Eq. 2.

speech. The model, which we call NETtalk, demon-
strates that a relatively small network can capture most
of the significant regularities in English pronunciation
as well as absorb many of the irregularities. NETtalk
can be trained on any dialect of any language and
the resulting network can be implemented directly in
hardware.

We will first describe the network architecture and
the learning algorithm that we used, and then present
the results obtained from simulations. Finally, we dis-
cuss the computational complexity of NETtalk and
some of its biological implications.

Network ~rchitecture

Processing Units
The network is composed of processing units that non-
linearly transform their summed, continuous-valued
inputs, as illustrated in Fig. 1. The connection strength,
or weight, linking one unit to another unit can be a
positive or negative real value, representing either an
excitatory or an inhibitory influence of the first unit on
the output of the second unit. Each unit also has a
threshold which is subtracted from the summed input.
The threshold is implemented as weight from a unit
that has a fixed value of 1 so that the same notation
and learning algorithm can also be applied to the
thresholds as well as the weights. The output of the ith
unit is determined by first summing all of its inputs

E i = 1 WijP j
j

(1)

where wij is the weight from the jth to the ith unit, and
then applying a sigmoidal transformation

H ~ d d e n Units

Input Uni ts

Figure 2 Schematic drawing of the network architecture. Input
units are shown on the bottom of the pyramid, with 7 groups of 29
units in each group. Each hidden unit in the intermediate layer
receives inputs from all of the input units on the bottom layer, and
in turn sends its output to all 26 units in the output layer. An
example of an input string of letters is shown below the inputs
groups, and the correct output phoneme for the middle letter is
shown above the output layer. For 80 hidden units, which were
used for the corpus of continuous informal speech, there was a
total of 309 units and 18,629 weights in the network, including a
variable threshold for each unit.

as shown in Fig. 1.
The network used in NETtalk is hierarchically

arranged into three layers of units: an input layer, an
output layer and an intermediate or "hidden" layer, as
illustrated in Fig. 2. Information flows through the
network from bottom to top. First the letters units at
the base are clamped, then the states of the hidden units
are determined by Eqs. 1 & 2, and finally, the states of
the phoneme units at the top are determined (30).

Representations of Letters and Phonemes
There are seven groups of units in the input layer, and
one group of units in each of the other two layers. Each
input group encodes one letter of the input text, so that
strings of seven letters are presented to the input units
at any one time. The desired output of the network
is the correct phoneme, or contrastive speech sound,
associated with the center, or fourth, letter of this seven
letter "window". The other six letters (three on either
side of the center letter) provide a partial context for
this decision. The test is stepped through the window
letter-by-letter. At each step, the network computes a
phoneme, and after each word the weights are adjusted
according to how closely the computed ~ronunciation
matches the correct one.

The letters and phonemes are represented in differ-
ent ways. The letters are represented locally within

665
Sejnowski and Rosenberg 1986

each group by 26 dedicated units, one for each letter of
the alphabet, plus an additional 3 units to encode
punctuation and word boundaries. The phonemes, in
contrast, are represented in terms of 23 articulatory
features, such as point of articulation, voicing, vowel
height, and so on, as summarized in Table 1. Three
additional units encode stress and syllable boundaries.
This is a distributed representation since each output
unit participates in the encoding of several phonemes
(1 8).

The hidden units neither receive direct input nor
have direct output, but are used by the network to form
internal representations that are appropriate for solv-
ing the mapping problem of letters to phonemes. The
goal of the learning algorithm is to adjust the weights
between the units in the network in order to make the
hidden units good feature detectors.

Learning Algorithm
Two texts were used to train the network: Phonetic
transcriptions from informal, continuous speech of a
child (19) and a 20,012 word corpus from a dictionary
(20). A subset of 1000 words was chosen from this
dictionary taken from the Brown corpus of the most
common words in English (21). The corresponding
letters and phonemes were aligned and a special sym-
bol for continuation, "-", was inserted whenever a letter
was silent or part of a graphemic letter combination,
as in the conversion from "phone" to the phonemes
If-on-/ (see Table 1). Two procedures were used to
move the text through the window of 7 input groups.
For the corpus of informal, continuous speech the text
was moved through continuously with word boundary
symbols between the words. Several words or word
fragments could be within the window at the same
time. For the dictionary, the word were placed in
random order and were moved through the window
individually.

The weights were incrementally adjusted during the
training according to the discrepancy between the
desired and actual values of the output units. For each
phoneme, this error was "back-propagated" from the
output to the input layer using the learning algorithm
introduced by Rumelhart, et al. (17). Each weight in the
network is adjusted to minimize its contribution to the
total mean square error between the desired and actual
outputs. Briefly, the weights were updated according
to:

where wJ'" is the weight from the jth unit in layer n to
the ith unit in layer n + 1, the parameter a smooths the
gradient by over-relaxation (typically 0.9), E controls

the rate of learning (typically 2.0). The error signal 6)")
for layer n was calculated starting from the output
layer N:

and recursively back-propagating the differences to
lower layers

,$n) = C ~ ~ + l) ~ ~ ~ (~) p l (~ ~ (")) ,

j

where P1(E) is the first derivative of P(E), pi* was the
desired value of the ith unit in the output layer, and

was the actual value obtained from the network.
For most of the simulations the error signal was back-
propagated only when the difference between the actual
and desired values were greater than a margin of 0.1.
The gradients in Eq. 4 were accumulated over several
letters and Eq. 3 was applied only once for each word.
The weights in the network were always initialized to
small random values uniformly distributed between
-0.3 and 0.3; this was necessary to differentiate the
hidden units.

Performance

A simulator was written in the C programming lan-
guage for configuring a network with arbitrary connec-
tivity, training it on a corpus and collecting statistics
on its performance. A network of 10,000 weights had
a throughput during learning of about 2 letterslsec
on a VAX 780 FPA. Two measures of performance
were computed. The output was considered a "perfect
match" if the value of each articulatory feature was
within a margin of 0.1 of its correct value. This was a
much stricter criterion than the "best guess", which
was the phoneme making the smallest angle.with the
output vector. The performance was also assayed by
"playing" the output string of phonemes and stresses
through DECtalk, bypassing the front end that con-
verts letters to phonemes.

Continuous Informal Speech
This corpus was a difficult one because the same word
was often pronounced several different ways; pho-
nemes were commonly modsed or elided at word
boundaries. The learning curve for 1024 words from
the informal speech corpus is shown in Fig. 3. The per-
centage of correct best' guesses for the phonemes rose
rapidly at first and continued to rise at slower rate
throughout the learning, reaching 95% after 50,000
words. Perfect matches were rarer, but were at 55% and
still rising at the termination of the simulation. Pri-
mary and secondary stresses and syllable boundaries

I
1 able 1 Articulatory representation of phonemes and punctuations" 1

Symbol Phoneme Articulatory features

/a/ father Low, Tensed, Central2

/b/ bet Voiced, Labial, Stop
bought
debt
bake

Unvoiced, Velar, Medium
Voiced, Alveolar, Stop
Medium, Tensed, Front2

/f/ /In Unvoiced, Labial, Fricative
guess
head
Pete
Ken
let
met
net
boat

Pet
red
sit
test
lute
vest
wet
about

Yet
zoo
bite
chin
this
bet
sing
bit
gin
sexual

bottle
absym
button

boy
quest
bird
shin
thin
book
bout
excess
cute
leisure
bat
Nazi
examine
one
logic
but
Continuation
Word Boundary

Voiced, Velar, Stop
Unvoiced, Glottal, Glide
High, Tensed, Frontl
Unvoiced, Velar, Stop
Voiced, Dental, Liquid
Voiced, Labial, Nasal
Voiced, Alveolar, Nasal
Medium, Tensed, Back2
Unvoiced, Labial, Stop
Voiced, Palatal, Liquid
Unvoiced, Alveolar, Fricative
Unvoiced, Alveolar, Stop
High, Tensed, Back2
Voiced, Labial, Fricative
Voiced, Labial, Glide
Medium, Central2
Voiced, Palatal, Glide
Voiced, Alveolar, Fricative
Medium, Tensed, Front2 + Centrall
Unvoiced, Palatal, Affricative
Voiced, Dental, Fricative
Medium, Frontl + Front2
Voiced, Velar, Nasal
High, Frontl
Voiced, Velar, Nasal
Unvoiced, Palatal, Fricative + Velar, Affricative (Compound:

Ckl + IS])
Voiced, Alveolar, Liquid
Voiced, Dental, Nasal
Voiced, Palatal, Nasal
Medium, Tensed, Centrall + Central2
Voiced, Labial + Velar, Affricative, Stop
Voiced, Velar, Liquid
Unvoiced, Palatal, Fricative
Unvoiced, Dental, Fricative
High, Backl
High + Medium, Tensed, Central2 + Backl
Unvoiced, Affricative, Front2 + Centrall
High, Tensed, Frontl + Front2 + Centrall
Voiced, Palatal, Fricative
Low, Front2
Unvoiced, Labial + Dental, Affricative (Compound: [t] + [s])
Voiced, Palatal + Velar, Affricative (Compound: [g] + [z])
Voiced, Glide, Frontl + Low, Centrall (Compound: [w] + 1-1)
High, Frontl + Front2
Low, Centrall
Silent, Elide
Pause, Elide

1.1 Period Pause, Full Stop

a. Output representations for phonemes and punctuations. The symbols for phonemes in square brackets are a superset of ARPAbet (4) and are
associated with the sound of the italicized part of the adjacent word. Compound phonemes were introduced when a single letter was
associated with more than one primary phoneme. The continuation symbol was used when a letter was silent. Two or more of the following
17 articulatory feature units were used to represent each phoneme: Position in mouth: Labial = Frontl, Dental = Front5 Alveolar = Centrall,
Palatal = Central2, Velar = Backl, Glottal = BackZ; Phoneme Type: Stop, Nasal, Fricative, Affricative, Glide, Liquid, Voiced, Tensed; Vowel
Frequency: High, Medium, Low. Four additional output units were used to represent each punctuation: Silent, Elide, Pause, Full Stop.

667
Seinowski and Rosenberg 1986

Figure 3 Learning curves for phonemes and stresses during
training on the 1024 word corpus of continuous informal speech.
The percent of correct best guesses are shown as functions of the
number of training words.

were learned very quickly for all words and achieved
nearly perfect performance by 5,000 words, as shown
in Fig. 3.

Representative examples of output at the beginning
and near the end of the training are shown in Fig. 4.
The distinction between vowels and consonants was
made early; however, the network substituted the same
vowel for all vowels and the same consonant for all
consonants, which resulted in a babbling sound. A
second stage occured when word boundaries are recog-
nized, and the output then resembled pseudowords.
After just a few passes through the network many of
the words were intelligible, and by 10 passes the text
was understandable.

Errors in the best guesses were far from random. For
example, few errors in a well-trained network were
confusions between vowels and consonants: most con-
fusions were between phonemes that were very similar,
such as the difference in voicing between the "th"
sounds in "thesis" and "these". Some errors were
due to inconsistencies in the original training corpus.
Nevertheless, the intelligibility of the speech was quite
good. 6

A network trained on a 1024 word corpus of infor-
mal speech was tested without training on a 439 word
continuation from the same speaker. The performance
was 78% best guesses and 35% perfect matches, which
indicates that much of the learning was transferred to
novel words. An excerpt from the new corpus is shown
in Fig. 4d.

Figure 4 Examples of raw output from the simulator during
learning on a corpus of 1024 words of continuous informal speech:
(a) after the first 200 words of training starting from random
weights, (b) after one pass through the corpus, and (c) after 25
passes through the corpus. (d) Output of the network during
testing on a continuation of the corpus. The letters within the
black stripe are the text (middle row), phonemes (bottom row) and
stresses (top row) from the training corpus. The symbols for the
phonemes are given in Table 1. The stresses are represented by
a number (primary = 1, secondary = 0, tertiary = 2). and the
syllable boundaries are indicated by a reversal in the direction of
the arrows: "<)". The output of the network is shown above and
below the black stripe. The phonemes making the smallest angle
with the output vector are shown in rank order below the black
stripe with the best guess at the top. The stresses are similarly
listed in rank order above the black stripe with the best guess at
the bottom.

A graphical summary of the weights between the
letter units and some of the hidden units is shown in
Fig. 5. The pattern of excitatory and inhibitory weights
to a hidden unit can be considered its "receptive field",
in analogy with the receptive fields of sensory neurons.
Most hidden units responded to more than one pattern
of letters. We examined performance of a highly-trained
network to random perturbations of the weights. As
shown in Fig. 6, random perturbations of the weights
uniformly distributed on the interval [-0.5,0.5] had
little effect on the performance of the network, and
degradation was gradual with increasing damage. Since
the distribution of the weights had a standard devia-
tion of 1.2, the amount of information conveyed by
each weight is only a few bits. Relearning was about
ten times faster than the original learning starting from
the same level of performance. Similar fault tolerance
and fast recovery from damage has also been observed
using the Boltzmann learning algorithm (15).

Dictionary
We used the 1000 most common English words to
study how the performance of the network and learn-

Figure 5 Hinton diagram showing weights from the layer of
input units to 5 representative hidden units taken from a network
with 80 hidden units that was trained on a corpus of continuous
informal speech. Each gray rectangle represents one hidden unit
and each square within a rectangle represents a weight. The area of
the square is proportional to the magnitude of the weight and the
sign of the weight is indicated by the color: white for positive, or
excitatory weights, and black for negative, or inhibitory weights
(28). The largest weights have magnitudes of about 4. Each row of
squares within a gray rectangle represents the weights from one
group of input units, with the leftmost input group on the top row
and the rightmost input group on the bottom row. The isolated
weight in the upper left comer of each array is the bias (negative
threshold) of the unit, which was treated like a weight to a true
unit. Out of 29 squares in each row, the first 26 represent the
weights from the letters of the alphabet, from a to z, and the last
three represent the punctuations, including word boundaries.
Thus, the square in the lower left comer of a hidden unit is the
weight it receives when the letter "a" is present in the rightmost
input group. For most hidden units more than one combination
of letters will cause it to produce a large output. These are called
distributed representations. However, a few hidden units, such as
the third from the top, had a more restricted pattern of weights
that could be called a local representation.

Amount o f Damage

95 I- Relearning After Damage

Number of Words (~ 1 0 3)

Figure 6 Damage to the network and recovery from damage. a)
Performance of a network as a function of the amount of damage
to the weights. The network had been previously trained on 50
passes though the corpus of continuous informal speech. The
weights were then damaged by adding a random component to
each weight uniformly distributed on the interval [-d,d], where d
is the amount of damage plotted on the abscissa. The performance
shown is the average of at least two disrupted networks for each
value of d. For d = 1.2,22 disrupted networks were tested to
obtain a standard deviation of 6%. The average absolute value
of the weights in the network was Iwl = 0.77 and the standard
deviation was u = 1.2, as indicated by the arrows. The best guesses
were more resistant to damage than the perfect matches. There
was little degradation of the best guesses until d = 0.5, and the
falloff with increasing damage was gentle. (b) Retraining of a
damaged network compared with the original learning curve
starting from the same level of performance. The network was
damaged with d = 1.2 and was retrained using the same corpus
and learning parameters that were used to train it. There is a rapid
recovery phase during the first pass through the network followed
by a slower healing process similar in time course to the later
stages of the original training. These two phases can be accounted
for by the shape of the error metric in weight space, which
typically has deep ravines (15).

669
Sejnowski and Rosenberg 1986

ing rate scale with the number of hidden units. The
most common English words are also amongst the
most irregular, so this was also a test of the capacity of
the network to absorb exceptions. With no hidden
units, the performance rose quickly and saturated at
82% best guesses as shown in Fig. 7a. This represents
the part of the mapping that can be accomplished by
linearly separable partitioning of the input space (13).
The pattern of errors was different from that observed
in networks with a layer of hidden units in that many
were stereotyped and inappropriate. Hidden units allow
more contextual influence by recognizing higher-order
features amongst combinations of input units (14).

The rate of learning and final performance increased
with the number of hidden units, as shown in Fig. 7a.
The best performance achieved with 120 hidden units
was 98% best guesses, better than the performance
achieved with continuous informal speech, which was
more difficult because of the variability in real-world
speech. Examples of two letter-to-sound correspon-
dences are shown in Fig. 7b. The network with 120
hidden units was tested on the randomized dictionary
of 20,012 words. Without learning, the average perfor-
mance was 77% best guesses and 28% perfect matches.
Following 5 training passes through the dictionary, the
performance increased to 90% best guesses and 48%
perfect matches. I

Letters and punctuations were represented by single
units in the input groups; this is a local representation
and had the advantage that the receptive fields of the
hidden units were more easily interpreted in terms of
letters. Simulations were also performed with distri-
buted representations, similar in spirit to the articula-
tory representation used for the output units. For a
particular distributed representation with 16 units per
input group we found that the general level of perfor-
mance was comparable to that with the local represen-
tation, but there was a consistent difficulty with several
correspondences between letters and phonemes.

We used the learning algorithm to discover a good
distributed input representation by introducing an
additional group of 10 units between each input letter
group and the group of hidden units. The resulting
network had three layers of modifiable weights. The
performance of this network with 160 hidden units
in the layer after training on 5 passes through the
20,012 word dictionary was 89% best guesses and
49% perfect matches. The number of weights in this
network was comparable to a network with a local in-
put representation and 76 hidden units. None of the
difficulties experienced with previous hand-crafted dis-
tributed input representations occurred. As expected,

Perfect Match

/--

Number of Words (~ 1 0 ~)

b

I I I I I I

5 10 15 20 25 30
Number of Words (xlo3)

Figure 7 (a) Learning curves for training on a corpus of the 1000
most common words in English using different numbers of hidden
units, as indicated beside each curve. For the case with no hidden
units, the input units were directly connected to the output units.
Both the percent correct best guesses and perfect matches are
shown. (b) Performance during learning of two representative
phonological rules, the hard and soft pronunciation of the letter
"c". Note that the soft "c" takes longer to learn, but eventually
achieves perfect accuracy. The hard "c" occurs about twice as often
as the soft "c" in the training corpus. Children show a similar
difficulty with learning to read words with the soft "~"(29).

670
Chapter 40

each group of 10 units developed a highly distributed
representation.

Computational Complexity

The translation of letters to phonemes can be analyzed
as a mapping problem. Consider a domain of 29 sym-
bols for letters and punctuations taken in strings of
length 7. We would like to construct a deterministic
mapping from these strings to a range of 51 symbols
representing phonemes (23). Only a subset of all possi-
ble mappings actually occur in English speech and the
problem is to find a compact description of this map-
ping which takes advantage of the regularities and also
captures the exceptions (24).

For a restricted text this problem can be solved by
specifyin; entries in a look-up table determined by
letter strings in English words. For a text of 1000 words
this would consist of about 5,000 entries since there are
5 letters on average per word and there would be at
most one entry in the table per letter. However, this
look-up table generalizes poorly when applied to new
words in an unrestricted text. One way to generalize is
to look for partial matches; this could be implemented
by compiling frequency tables of letter pairs, triples,
etc. for all combinations of positions within the window.
There are two practical problems with this method:
First the size of these tables grows exponentially with
the size of the window, with about 500,000 entries
needed for a text of 1000 words and a window of 7
letters. Second, some weighting scheme is required to
combine evidence from different partial matches.

In NETtalk, the weighting of input letters is per-
formed by the weights between the letter units and the
hidden units, and the weighting of the features is per-
formed by the weights between the hidden units and
the output units. The learning algorithm discovers
those combinations of letters that are particularly effi-
cient at implementing the correspondences between
letters and phonemes (14). The mapping is distributed
in that each significant combination of letters is en-
coded by several hidden units, and each hidden unit
recognizes more than one sequence of letters; as a
consequence, the performance of the network is highly
resistant to both localized and diffuse damage. Excep-
tions to regularities are also recognized by their fea-
tures so that a separate look-up table such as that
used in DECtalk is unnecessary. We are currently ex-
amining assemblies of units that appear to be related
to particular letter-to-sound correspondence rules.
Learning algorithms make it possible to design these
efficient mappings without direct human intervention.

Biological Implications

The processing units used in the network share some
properties with neurons, such as a high degree of
connectivity, summation of excitatory and inhibitory
influences through synaptic weights, and a nonlinear
input-output function that resembles the firing rate of
a neuron as a function of integrated synaptic inputs,
but there are also many differences, such as the absence
of explicit action potentials and an integration time
constant. However, insights may be gained concerning
the representation of information in large populations
of neurons by examining the way that these simple
network models solve problems like text-to-speech.
Although the detailed implementations may be differ-
ent, similar principles may apply to both neural net-
works and massively-parallel network models (25).

During the early stages of learning in NETtalk, the
sounds produced by the network are uncannily similar
to early speech sounds in children (26). However,
our model of text-to-speech combines two different
processes that occur at different stages of human devel-
opment: learning to talk and learning to read. By the
time that a human child learns to read, phonetic rep-
resentations for words are already well developed.
Nonetheless, the phonological mappings produced by .
NET-talk are efficient encodings for a parallel network
and may be comparable to those used by humans.

NETtalk can be used to study the importance of
particular phonological rules in the context of a partic-
ular corpus by presenting the network with nonsense
words that are constructed to critically test a proposed
rule. The performance of the network can also be
studied following damage of the network. The patterns
of errors following simulated "lesions" in the network
by either removing units or by disrupting the weights
can be compared with reading errors observed in
humans suffering from acquired dyslexia (27).

.NETtalk is clearly limited in its ability to handle
ambiguities that require syntactic and semantic levels
of analysis. It is perhaps surprising that the network
was capable of reaching a significant level of perfor-
mance using a window of only seven letters. A human
level of performance would require information from
larger parts of sentences to control intonation, stress
contours and prosody. It should be possible to incor-
porate these variables into a structured network and
apply the learning algorithm to them as well.

References

1. N. Chomsky and M. Halle, M., The Sound Pattern of English,
(Harper & Row, New York, 1968); R. L. Venezky, The Structure of
English Orthography, (Mouton, The Hague, 1970); L. Henderson,

67 1
Sejnowski and Rosenberg 1986

Orthography and World Recognition in Reading, (Academic Press,
New York, 1982).

2. For a discussion of exceptions in knowledge representations based
on inheritance hierarchieqsee D. W. Etherington and R. Reiter, [Int.
Joint Conf. on Artificial Intelligence, (William Kauffman, Inc., Los
Altos, California, 1983), pp. 104-1081 and D. S. Touretzky, D. S.
[Proc. National Conf. Arty. Intelligence, (William Kauffman, Inc.,
Los Altos, California, 1984), pp. 322-3253. An alternative network
formulation of this problem based on evidence theory is given by
L. Shastri, and J. A. Feldman, [Proc. 9th International Joint Conf. on
Artificial Intelligence, (William Kauffman, Inc., Los Altos, Califor-
nia, 1985)l.

3. W. Haas, Phonographic 7kanslation,(Manchester University Press:
Manchester, 1970). For an account of abduction in plausible infer-
ence, see Ch: 8 in E. Charniak and D. McDermott, Artificial Intel-
ligence, (Addison Wesley, Reading, MA, 1985).

4. Digital Equipment Corporation, DTC-01-AA For a study of
speech synthesis intelligibility, see D. B. Pisoni, H. C. Nusbaum,
B. G. Greene, Proc. IEEE 73,1665 (1985).

5. J. Allen, Proc. IEEE 64, 433 (1976); D. Klatt, D. J. Acoust. Soc.
Am. 67,971 (1980).

6. S. R. Hertz, J. Kadin, K. J. Karplus, Proc. IEEE 73, 1589, (1985).

7. D. J. Amit, H. Gutfreund, H. Sompolinsky, Phys. Rev. A 32, 1007
(1985); J. A. Anderson, IEEE Trans. Systems, Man, Cybernetics 13,
799 (1983); M. A. Arbib, Annals Biomed. Eng. 3, 238 (1975); D. H.
Ballard, G. E. Hinton, T. J. Sejnowski Nature 306,21 (1983); A. G.
Barto, R. S. Sutton and C. W. Anderson. IEEE 7kans. Systems, Man,
Cybernetics 13, 835 (1983); M. A. Cohen and S. Grossberg, IEEE
Trans. Systems, Man, Cybernet. 13,875 (1983); S. E. Fahlman, G. E.
Hinton, T. J. Sejnowski, in Proceedings of the National Conference
on Artificial Intelligence, (William Kauffman, Inc., Los Altos, Pro-
ceedings of the National Conference on Artificial Intelligence, 1983),
pp. 109-1 13; G. E. Hinton and J. A. Anderson (Eds), Parallel Models
of Associative Memory, (Erlbaum Associates, Hillsdale, NJ, 1981);
J. A. Feldman, D. H. Ballard, Cognitive Science 6,205 (1982);T. Hogg
and B. A. Huberman, Proc. National Acad. Sci. USA 81,6871 (1984);
J. J. Hopfield, Proc. National Acad. Sci. USA 79, 2554 (1982);
C. Koch, J. Marroquin and A. Yuille, Proc. National Acad. Sci. USA
(ill press); T. Kohonen, Self-organization and Associative Memory,
(Springer-Verlag, New York, 1984); J. A. McClelland and D. E.
Rumelhart, Psych. Rev. 88,375 (1981); P. Peretto, Biological Cyber-
netics 50,51(1984); P. Smolensky in Proc. of the National Conference
on Artificial Intelligence, (William Kauffman, Inc., Los Altos, Cali-
fornia, 1983), pp. 378-382; G. Tolouse, S. Dehaene and J.-P.
Changeux, Proc. National Acad. Sci. (in press); C. von der Malsburg
and E. Bienenstock, In: Disordered Systems and Biological Organiza-
tion, F. Fogelman, F. Weisbuch and E. Bienenstock, Eds. (Springer-
Verlag, Berlin, 1986); D. K. Waltz and J. B. Pollack, Cog. Sci. 9,51
(1985); S. Wolfram, Physica D in press (1986).

8. G. E. Hiiton, T. J. Sejnowski, Proceedings of the IEEE Computer
Society Conference on Computer Vision & Pattern Recognition,
Washington, D.C., pp. 448-453 (1983); D. H. Ackley, G. E. Hinton,
T. J. Sejnowski, Cognitive Science 9,147 (1985).

9. For example, D. Marr and T. Poggio [Science 194, 283 (1976)l
designed a network that could compute depth from random-dot
stereograms; T. J. Sejnowski and G. E. Hinton, [in Vision, Brain and
Cooperative Computation, M. A. Arbib and A. R. Hanson (Eds.)(MIT
Press, Cambridge, MA, 1986)l designed a network to separate figure
from ground in images; J. J. Hopfield & D. Tank, [Biolog. Cyber-
netics 52, 1 (1985)l designed a network that finds moderately good
tours for the traveling salesman problem quickly: Their network
model is a symmetric version of the continuous nonlinear model
analyzed by T. J. Sejnowski in Parallel Models of Associative
Memory, G. E. Hinton and J. A. Anderson (Eds.) (Erlbaum Asso-
ciates, Hillsdale, NJ, 1981), pp. 189-212

10. B. Selman, and Ci. Hirst, Proc. 7th Annual Conf. of the Cognitive
Science Soc. (1985); M. Fanty, University of Rochester Computer
Science Technical Report TR-174 (1985); see also A. S. Lapedes and
R. M. Farber, Physica D, (in press).

11. D. E. Rumelhart and J. L. McClelland, On Learning the Past
Tenses of English Verbs, in: D. E. Rumelhart and J. L. McClelland,
(Eds.) Parallel Distributed Processing: Explorations in the Micro-
structure of Cognition. (MIT Press, Cambridge, 1986)

12. The perceptron, which was introduced by F. Rosenblatt [Prin-
ciples of Neurodynamics, (Spartan Books, New York, 1959)], uses
binary threshold units that are deterministic, but Rumelhart and
McClelland use a probabilistic update rule that turns their network
into a one-layer Boltzmann machine (8). It can be shown that the
perceptron learning algorithm in this case is identical to the Boltz-
mann learning algorithm where co-occurrence statistics are only
collected for one iteration.

13. Perceptrons can only learn first-order predicates. [M. Minsky &
S. Papert, Perceptrons, (MIT Press, Cambridge, 1969)l. McClelland
and Rumelhart used a third-order coding scheme to pre-process the
inputs and post-process the outputs, which made it possible to learn
the mapping with only one layer of modifiable weights.

14. T. J. Sejnowski, P. K. Kienker, and G. E. Hinton, Physica D, (in
press).

15. G. E. Hinton and T. J. Sejnowski, Learning and Relearning in
Boltzmann Machines in: D. E. Rumelhart and J. L. McClelland,
(Eds.) Parallel Distributed Processing: Explorations in the Micro-
structure of Cognition. (MIT Press, Cambridge, 1986)

16. A. G. Barto and C. W. Andersen, Proc. 7th Annual Conf. Cognitive
Science Sc. (1985); D. B. Parker, MIT Center for Computational
Research in Economics and Management Science, TR-47 (1985); Y.
M u n , In: Disordered Systems and Biological Organization, F. Fogel-
man, F. Weisbuch and E. Bienenstock, Eds. (Springer-Verlag, Berlin,
1986);

17. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
Internal Representations by Error Propagation, in: D. E. Rumelhart
and J. L. McClelland, (Eds.) Parallel Distributed Processing: Explora-
tions in the Microstructure of Cognition. (MIT Press, Cambridge,
1986).

18. G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, Distributed
Representations, in: D. E. Rumelhart and J. L. McClelland, (Eds.)
Parallel Distributed Processing: Explorations in the Microst~ucture
of Cognition. (MIT Press, Cambridge, 1986).

19. E. C. Carterette, and M. G. Jones, Informal Speech. (University
of California Press, Los Angeles, 1974).

20. Merriam Webster's Pocket Dictionary, 1974.

21. H. Kuchera and W. N. Francis, Computational Analysis of
Modern-Day American English, (Brown University Press, Provi-
dence, RI, 1967).

22. This supervised learning algorithm only uses positive examples
and requires that the teacher correct every error for every output
unit. Although children are corrected while they are learning to read,
some learning also occurs through non-supervised observation of
correct reading. Non-supervised learning algorithms would be worth
exploring in the context of this problem [S. Grossberg, Biolog.
Cybernetics 23, 121 (1976); E. L. Bienenstock, L. N. Cooper, and
P. W. Munro, J. Neuroscience 2, 32 (1982); D. E. Rumelhart and
D. Zipser, Cog. Sci. 9,75 (1985)l.

23. A. N. Kolmogorov [Dokl. A M . Nauk SSSR 114, 953; AMS
7kanslation 2.55 (19531 has studied the class of functions that can
be computed with a layered network of nonlinear processing units,
and these results have been extended by G. Palm [Biol. Cybernetics
31,119 (1978)l. S. Wolfram [Nature 311,419 (1984)l has studied the

672
Chapter 40

computational complexity of cellular automata, a related architec-
ture with discrete states. The complexity analysis of what can be
learned as opposed to what can be computed has only recently been
addressed. L. Valiant [Communications of the ACM, 27,1134 (1984);
Proc. 9th International Joint Conf. on Artifical Intelligence, (William
Kaufhan, Inc.. Los Altos, California, 1985) pp. 560-5661 has ana-
lyzed the learning of disjunctions of conjunctons and found a sub-
class that can be learned in polynomial time. See also E. M. Gold,
Infirm & Control 16,447 (1 967).

24. A Wijk [in: Alphabets for English, W. Haas (Ed.), (Manchester
University Press, Manchester, England, 1969)l has estimated that
there are 102 graphemes or basic letter groupings in English, and
P. R. Hanna, J. S. Hanna R. E. Hodges, R. E. and E. H. Rudorf,
[in: Phoneme-Grapheme Correspondences as Cues to Spelling Im-
provement, (US Department of Health, Education and Welfare,
Washington, D.C., 1966)l used 170 graphemic patterns in designing
phoneme-grapheme correspondence rules for spelling. However,
additional rules are also needed to specify the segmentation of
unrestricted English text, which is an unsolved problem. Henderson
(1, p. 82) states that ". . . in the absence of morphological constraints
it seems clear that no segmenting procedure can be formulated so as
to result in a correct translation of all English words."

, ,
25. T. J. Sejnowski, Open Questions About Computation in Cerebral
Cortex, In: D. E. Rumelhart, and J. L. McClelland, (Eds.) Parallel
Distributed Processing: Explorations in the Microstructure of Cogni-
tion. (MIT Press, Cambridge, 1986); D. H. Ballard, Behavioral and
Brain Sciences(in press); D. Tank and J. J. Hopfield, Science (in press).

26. Rumelhart and McClelland (1 1) have observed stages during the
network learning of ~ a s t tenses of Endish verbs that resemble the - . -
learning of past tenses by children. These developmental patterns
may be a general property of incremental learning in networks with
distributed representations.

27. T. Shallice, E. K. Warrington, and R. McCarthy, Quarterly
Journal of Experimental Psychology, 35A, 11 1 (1983); A. Caramazza,
G. Miceli, M. C. Silveri, and A. Laudanna, Cognitive Neuropsychol.
2,81 (1985).

28. This visual representation of the weights is much more efficient
than a traditional wiring diagram. For a more extensive description
of this representation of a network, see (8,14).

29. R. L. Venezky and D. Johnson, J. Educ. Psychol. 64,109 (1973).

30. Note that the output of the network only depends on letters and
not on neighboring phonemes. As a consequence, the network can-
not take advantage of phonotactic regularities.

31. We are grateful to Drs. Alfonso Caramazza, Stephen Hanson,
James McClelland, Geoffrey Hinton, George Miller, David Rumel-
hart, Timothy Shallice, and Stephen Wolfram for useful insights and
helpful discussions on language and learning. Bell Communications
Research at Morristown, N.J. provided computational support. We
also wish to thank Drs. Peter Brown, Edward Carterette, Howard
Nusbaum and Alexander Weibel for their help in obtaining corpora.
C.R.R. was supported by a grant to Dr. Michael Gazzaniga at the
Division of Cognitive Neuroscience at the Cornell Medical Center,
and T.J.S. was supported by grants from the National Science
Foundation, System Development Foundation, Sloan Foundation,
General Electric Corporation, Exxon Education Foundation, Allied
Corporation Foundation, Westinghouse, and Smith, Kline & French
Laboratories.

