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Neocognitron: A Neural Network Model for 
a Mechanism of Visual Pattern Recognition 

K U N I H I K O F U K U S H I M A , SEI MIYAKE, AND T A K A Y U K I I T O 

Abstract—A neural network model, called a "neocognitron," for a 
mechanism of visual pattern recognition was proposed earlier, and the 
result of computer simulation for a small-scale network was shown. A 
neocognitron with a larger-scale network is now simulated on a digital 
computer and is shown to have a great capability for visual pattern 
recognition: The neocognitron's ability to recognize handwritten Arabic 
numerals, even with considerable deformations in shape, is demonstrated. 
The neocognitron is a multilayered network consisting of a cascaded 
connection of many layers of cells. The information of the stimulus pattern 
given to the input layer is processed step by step in each stage of the 
multilayered network. A cell in a deeper layer generally has a tendency to 
respond selectively to a more complicated feature of the stimulus patterns 
and, at the same time, has a larger receptive field and is less sensitive to 
shifts in position of the stimulus patterns. Thus each cell of the deepest 
layer of the network responds selectively to a specific stimulus pattern and 
is not affected by the distortion in shape or the shift in position of the 
pattern. The synapses between the cells in the network are modifiable, and 
the neocognitron has a function of learning. A learning-with-a-teacher 
process is used to reinforce these modifiable synapses in the new model, 
instead of the learning-without-a-teacher process which was applied to the 
previous small-scale model. 

I. INTRODUCTION 

THE N E U R A L mechanism of visual pattern recogni­
tion in the brain is little known, and revealing it by 

conventional physiological experiments alone seems to be 
almost impossible. So, we take a slightly different approach 
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to this problem. If we could make a neural network model 
which has the same capability for pattern recognition as a 
human being, it would give us a powerful clue to the 
understanding of the neural mechanism in the brain. In 
this paper, we discuss how to synthesize a neural network 
model in order to endow it with pattern recognition capa­
bility like that of a human being. 

Several models were proposed with this intention [l]-[6]. 
In synthesizing such models, one of the most difficult 
problems is to design the networks so as to show position-
and deformation-invariant responses. Some of these con­
ventional models fail to recognize patterns which are shifted 
in position or deformed in shape. Although the four-layer 
perceptron [2] shows a kind of position-invariant re­
sponses, it works correctly only when the distance of shift 
is equal to one of the several specific values which are 
determined during the training of the network. 

A few years ago, the authors [7], [8] proposed a multi-
layered neural network model, called a "neocognitron," 
which is capable of recognizing stimulus patterns correctly 
without being affected by any shift in position or even by 
considerable distortion in shape of the patterns. The result 
of computer simulation of a neocognitron with a small-
scale network was reported there. 

In this present paper, a neocognitron with a larger-scale 
network is simulated on a minicomputer PDP-11/34 and is 
shown to have a great capability for visual pattern recogni­
tion. The new model consists of nine layers of cells, while 
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Fig. 1. Comparison between hierarchical model by Hubel and Wiesel and structure of neural network of neocognitron. 

the previous model consisted of seven layers. We demon­
strate that the new model can be trained to recognize 
handwritten Arabic numerals even with considerable defor­
mations in shape. 

We use a learning-with-a-teacher process for the rein­
forcement of the modifiable synapses in the new large-scale 
model, instead of the learning-without-a-teacher process 
applied to the previous model. In this paper, we focus on 
the mechanism for pattern recognition rather than that for 
self-organization. 

II. S T R U C T U R E OF T H E N E T W O R K 

The neocognition is a multilayered network with a 
hierarchical structure similar to the hierarchical model for 
the visual system proposed by Hubel and Wiesel [9], [10]. 
As shown in Fig. 1, the neocognitron is composed of a 
cascaded connection of a number of modular structures 
preceded by an input layer U0 consisting of photoreceptor 
array. Each of the modular structures is composed of two 
layers of cells, namely, a layer Us consisting of S cells, and 
a layer Uc consisting of C cells. The layers Us and Uc in the 
/ th module are denoted by Usl and Uch respectively. An S 
cell has a response characteristic similar to a simple cell or 
a lower order hypercomplex cell according to the classifi­
cation by Hubel and Wiesel, while a C cell resembles a 
complex cell or a higher order hypercomplex cells. In this 
network, a cell in a higher stage generally has a tendency to 
respond selectively to a more complicated feature of the 
stimulus pattern and, at the same time, has a larger recep­
tive field and is more insensitive to the shift in position of 
the stimulus pattern. 

Each S cell has modifiable input synapses which are 
reinforced with learning and acquires an ability to extract a 
specific stimulus feature. That is, an S cell comes to 
respond only to a specific stimulus feature and not to 
respond to other features. 

Each C cell has afferent synapses leading from a group 
of S cells which have receptive fields of similar characteris­
tics at approximately the same position on the input layer. 
This means that all of the presynaptic S cells are to extract 
almost the same stimulus feature but from slightly different 
positions on the input layer. The efficiencies of the syn­
apses are determined in such a way that the C cell will be 
activated whenever at least one of its presynaptic 5 cells is 
active. Hence, even if a stimulus pattern which has elicited 
a large response from the C cell is shifted a little in 
position, the C cell will keep responding as before, because 
another presynaptic S cell will become active instead of the 
first one. In other words, a C cell responds to the same 

stimulus feature as its presynaptic S cells do but is less 
sensitive to the shift in position of the stimulus feature. 

S cells or C cells in any single layer are sorted into 
subgroups according to the optimum stimulus features of 
their receptive fields. Since the cells in each subgroup are 
set in a two-dimensional array, we call the subgroup as a 
"cell plane." We will also use the terminology S plane and 
C plane to represent the cell planes consisting of S cells 
and C cells, respectively. All the cells in a single cell plane 
have input synapses of the same spatial distribution, and 
only the positions of the presynaptic cells are shifted in 
parallel depending on the position of the postsynaptic cells. 
Even in the process of learning, in which the efficiencies of 
the synapses are modified, the modification is performed 
always under this restriction. 

Fig. 2 is a schematic diagram illustrating the synaptic 
connections between layers. Each tetragon drawn with 
heavy lines represents an S plane or a C plane, and each 
vertical tetragon drawn with thin lines, in which S planes 
or C planes are enclosed, represents an S layer or a C layer. 

In Fig. 2, for the sake of simplicity, only one cell is 
shown in each cell plane. Each of these cells receives input 
synapses from the cells within the area enclosed by the 
ellipse in its preceding layer. All the other cells in the same 
cell plane have input synapses of the same spatial distribu­
tion, and only the positions of the presynaptic cells are 
shifted in parallel from cell to cell. Hence all the cells in a 
single cell plane have receptive fields of the same function 
but at different positions. 

Since the cells in the network are interconnected in a 
cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that layer. 
The density of the cells in each cell plane is so determined 
as to decrease in accordance with the increase of the size of 
the receptive fields. The number of cells in each layer is 
shown at the bot tom of Fig. 2. In the deepest module, the 
receptive field of each C cell becomes so large as to cover 
the whole input layer, and each C plane is so determined as 
to have only one C cell. Fig. 3 illustrates concretely how 
the cells of each cell plane are interconnected to the cells of 
other cell planes. 

S cells and C cells are excitatory cells. Although it is not 
shown in Figs. 2 and 3, we have inhibitory Vc cells in C 
layers. 

Here, we will describe the outputs of these cells with 
numerical expressions. All the cells employed in the 
neocognitron are of analog type; that is, the input and 
output signals of the cells take nonnegative analog values 
proportional to the instantaneous firing frequencies of 
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Fig. 2. Schematic diagram illustrating synaptic connections between layers in neocognitron. 
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Fig. 3. One-dimensional view of interconnections between cells of dif­
ferent cell planes. Only one cell plane is drawn in each layer. 

actual biological neurons. The output of a photoreceptor is 
denoted by u0(n) where η represents the two-dimensional 
coordinates indicating the location of the cell. We will use 
notations USI(k, n) to represent the output of an S cell in 
the kih S plane in the / th module, and ua(k, n) to 
represent the output of a C cell in the kih C plane in that 
module, where #i is the two-dimensional coordinates repre­
senting the position of these cells' receptive fields on the 
input layer. 

As shown in Fig. 4, S cells have inhibitory inputs with 
shunting mechanism. Incidentally, S cells have the same 
characteristics as the excitatory cells employed in the con­
ventional cognitron [5], [6]. The output of an S cell of the 
kth S plane in the / th module is given by 

7 
i l l . . Τ 
1 · Λ 1 4 »o CL 

e = 2 a(v)u(v) 

h = b ν y U l = 
χ x * 0 
0 x<0 

Fig. 4. Input-to-output characteristics of S cell: typical example of cells 
employed in neocognitron. 

argument representing the position η of the receptive field 
of cell usl(k, Λ ) . 

Parameter η in (1) controls the intensity of the inhibi­
tion. The larger the value of η is, the more selective 
becomes the cell's response to its specific feature. Their 
values are rx = 1.7, r2 = 4.0, r3 = 1.5, and r4 = 1.0. (A 
detailed discussion on the response of S cells will be given 
in Section III-B.) 

The inhibitory cell vcl_l(n), which is sending an inhibi­
tory signal to cell Usl(k, n), receives afferent synapses 
from the same group of cells as us/(k, n) does and yields 
an output proportional to the weighted root mean square 
of its inputs: 

1 + Σ^Σ^α^κ, ν , k) - UCI^(K9 n + v) 
- 1 

1 + 
1 + r, 

k = 1 , 2 , · · · , A : si ( i ) 

The efficiencies of the unmodifiable synapses c^^v) are 
determined so as to decrease monotonically with respect to 
|v| and to satisfy 

where φ[χ] = m a x ( x , 0 ) . In the case of 1=1 in (1), 
w c / _ 1 ( /c , n) stands for u0(n), and we have Kcl_1 = 1. 

Here, v, k) and bt(k) represent the efficiencies of 
the excitatory and inhibitory modifiable synapses, respec­
tively. As described before, all the S cells in the same S 
plane are assumed to have an identical set of afferent 
synapses. Hence α^κ, ν, k) and b^k) do not contain any The size of the connection area At of these cells is set to be 

Κ CI-l » = i. (3) 
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small in the first module and to increase with the depth / as 
illustrated in Fig. 3. 

The output of a C cell of the kih C plane in the / th 
module is given by 

Σ . / / (*»*) Σ dt{v, k)'USI(K,n + ν ) , 

•k = l92,'~,Kcl9 (4) 

where 

ψ [ χ ] = 
x/(al + x ) , 

0, (x < 0 ) . 

The parameter at is a positive constant which determines 
the degree of saturation of the output. Their values are 
ax = <x2 = a 3 = 0.25, and a 4 = 1.0. 

In (4), dt(y, k) represents the efficiencies of the excita­
tory synapses leading from S cells, and J)(K9 k) takes value 
one or zero depending on whether synaptic connections 
really exist from the Kih S plane to the kth C plane. The 
value of dt(v9 k) is determined so as to decrease monotoni­
cally with respect to \v\ and is independent of k except for 
/ = 1. The size of the connection area D, is set to be small 
in the first module and to increase with depth / as il­
lustrated in Fig. 3. 

The process of pattern recognition in this multilayered 
network can be briefly summarized as follows. The stimu­
lus pattern is first observed within a narrow range by each 
of the S cells in the first module, and several features of the 
stimulus pattern are extracted. In the next module, these 
features are combined by observation over a little larger 
range, and higher order features are extracted. Operations 
of this kind are repeatedly applied through a cascaded 
connection of a number of modules. In each stage of these 
operations, a small amount of positional error is tolerated. 
The operation by which positional errors are tolerated little 
by little, not at a single stage, playes an important role in 
endowing the network with an ability to recognize even 
distorted patterns. 

III. S Y N A P T I C CONNECTIONS B E T W E E N C E L L S 

The synaptic connections in the new model of the 
neocognitron are reinforced by means of a supervised 
learning, that is, a learning-with-a-teacher process. During 
the training process, the network is presented with a set of 
training patterns to the input layer, together with the 
instructions which cells in the network should come to 
respond to each of the training patterns. This algorithm is 
different from that used in the previous model [7], [8]. In 
the new model, the algorithm for the reinforcement of 
synapses is determined from a standpoint of an engineer­
ing application to a design of a pattern recognizer rather 
than from that of pure biological modeling. That is, the 
algorithm is determined with the criterion of obtaining a 
better performance in handwritten character recognition. 

A. Reinforcement of the Input Synapses of S Cells 

The reinforcement of the synaptic connections are per­
formed in sequence from the distal to the deeper layers. 
That is, the reinforcement of the input synapses of the / th 
layer is performed after completion of the reinforcement of 
up to the (/ - l ) th layer. 

A number of cell planes are in an S layer. These cell 
planes are reinforced one at a time. In order to reinforce a 
cell plane, the " teacher" presents a training pattern to the 
input layer, and at the same time chooses one S cell which 
should work as the "representative" from that cell plane. 
The representative cell works like a seed in the crystal 
growth. The input synapses to the representative cell are 
reinforced depending on the stimuli given to these syn­
apses. That is, only the synapses through which nonzero 
signals are coming are reinforced. As the result, the repre­
sentative cell acquires a selective responsiveness to the 
training pattern which is now presented to the input layer. 
All the other cells in that cell plane have their input 
synapses reinforced in the identical manner as their repre­
sentative. 

This algorithm can be expressed as follows. Let cell 
Ms/(£> * ) be the representative. The modifiable synapses 
α , Ο , ν, k) and />,(&), which are afferent to the S cells of 
this S plane, are reinforced by the amount shown below: 

Δ<ζ,(κ, ν , k) = q r c,_x{v) · U^^K, ٤ + ν ) , (5) 

Δ * / ( £ ) = 9 / · ι ;< ; / - ι (* ) , (6) 

where ql is a positive constant which determines the amount 
of reinforcement. The initial values of these modifiable 
synapses are all zero. 

We can choose any cell of a cell plane as the representa­
tive, and the choice of the representative does not have so 
much effect on the result of training, provided that the 
training pattern is presented at a proper position in the 
respective field of the representative. Hence, in the com­
puter simulation discussed later, we always choose the cell 
situated at the center of each cell plane as the representa­
tive. 

In the computer simulation, the number of training 
patterns given to each cell plane is from one to four, 
depending on the required allowance to the deformation of 
the stimulus features. (See the following section for more 
discussions.) 

B. Analysis of the Response of an S Cell 

In this section, we discuss how each S cell is trained to 
respond selectively to differences in stimulus patterns. Since 
the structure between two adjoining modules is similar in 
all parts of the network, we observe the response of an 
arbitrary S cell Usl(k9 n) of layer Usl as a typical example. 
Fig. 5 shows the synaptic connections converging to such a 
cell. For the sake of simplicity, we will omit the suffixes 5 , 
1=1 and the arguments ky η and represent the response of 
this cell simply by «. Similarly, we will use the notation υ 
for the output of the inhibitory cell vco(n)9 which sends an 
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Fig. 5. Synaptic connections converging to S cell. 

inhibitory signal to cell u. For the other variables, the 
arguments k and η and suffixes 5 , C, /, and / — 1 will also 
be omitted. 

Let p{v) be the response of the cells of layer U0 situated 
in the connection area of cell w, so that 

p(v) = u0(n + v). (7) 

In other words, p(v) is the stimulus pattern (or feature) 
presented to the receptive field of cell u. 

With this notation, (1) and (2) can be written 

u = r · φ 
1 + Σ , α ( ν ) ·/>(") 

1 
1 + •b-v 

(8) 

1 + r 

When cell u is chosen as the representative, the amounts of 
reinforcement of the modifiable synapses are derived from 
(5) and (6), that is, 

Ha(v) = q · c(v) -p(v), 

= q - v. 

Let s be defined by 

Σνα(ν)'Ρ(ν) 

(9) 

(10) 

(11) 

s = b · υ 

Then (8) reduces approximately to 

r + l 
u — r · φ f±i.,-,). 

(12) 

(13) 

provided that a (v) and 6 are sufficiently large. 
Let a stimulus pattern p(v) = P (v ) be presented, and let 

cell u be chosen as the representative. Then, from (5) and 
(6), we obtain 

a(v) = q · c(v) · i>(v), (14) 

(15) b = q^vc{v)'P2{v). 

Substituting (9), (14), and (15) into (12), we obtain 

Σ ν φ ) · Ρ ( ν ) ·ρ(ν) 

Κ^)'Ρ2(ν)^ΣΑν)'Ρ2(ν) ' 
s = (16) 

If we regard p(v) and P(v) as vectors, (16) can be 
interpreted as the (weighted) inner product of the two 
vectors normalized by the norms of both vectors. In other 
words, s gives the cosine of the angle between the two 
vectorsp(v) and P(v) in the multidimensional vector space. 
Therefore, we have s = 1 only when p(v) = P(v), and we 
have s < 1 for all patterns such as p(v) Φ P(v). This 

means that s becomes maximum for the training pattern 
and becomes smaller for any other patterns. 

If parameter q is large enough, (13) holds. When an 
arbitrary pattern p(v) is presented, and if it satisfies s > 
r/(r + 1), we have u > 0 by (13). Conversely, for a pattern 
which makes s ^ r/(r + 1), cell u does not respond. We 
can interpret by saying that cell u judges the similarity 
between patterns p(v) and P(v) using the criterion defined 
by (16) and that it responds only to patterns judged to be 
similar to P(v). Incidentally, if p(v) = P(v) , we have s = 1 
and consequently u = 1. 

Since the value r/(r + 1) tends to one with increase of r, 
a larger value of r makes the cell's response more selective 
to one specific pattern or feature. In other words, a large 
value of r endows the cell with a high ability to dis­
criminate patterns of different classes. However, a higher 
selectivity of the cell's response is not always desirable, 
because it decreases the ability to tolerate the deformation 
of patterns. Hence the value of r should be determined at a 
point of compromise between these two contradictory con­
ditions. 

In the above analysis, we supposed that cell u is trained 
only for one particular pattern P(v). When cell u has been 
trained to two patterns, say, to Px(v) and P2(v), P(v) in 
the above discussions should be replaced with { / \ (v) + 
P2(v)}. Hence cell u acquires a tendency to respond equally 
to both ^ ( v ) and P2(v). This, however, depends on the 
value of r, and also on the similarity between Ρχ(ν) and 
P2(v). If the difference between Px(v) and P2(v) is too 
large, or if the value of r is too large, cell u comes to 
respond neither to Px(v) nor / ^ ( v ) . 

The above discussion is not restricted to S cells of layer 
Usl. Each S cell in succeeding modules shows a similar 
type of response, if we regard the response of the C cells in 
its connection area in the preceding layer as its input 
pattern. 

C. Layers USI and UCI 

Layer Usl has 12 cell planes, and each cell plane con­
tains the same number of cells as layer l/ 0 , that is, 19 X 19 
(see Figs. 2 and 3). These S cells have their input synapses 
reinforced so as to acquire the ability to detect line compo­
nents of various orientations. 

The training patterns which are used for training the 12 
cell planes are displayed in column ax in Fig. 6. This figure 
shows, for example, that the cells of the first cell plane are 
trained to detect a horizontal line component. We can also 
interpret this by saying that the patterns in column ax show 
the structure of the receptive fields of the cells of layer Usl. 

Since the spread of the excitatory input synapses 
αχ(κ, ν, k) of each S cell (i.e., the connection area Ax in (1) 
and (2)) is as small as 3 X 3, cases exist where two differ­
ent cell planes should be prepared for detecting a line of a 
particular orientation. For example, in Fig. 6, the second 
and third cell planes of layer Usl have the receptive fields 
of the same preferred orientation but of different struc­
tures. Hence the outputs from such pairs of cell planes are 
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Fig. 6. Example of response of cells of layers £/0, USL9 and i / c l , and 
synaptic connections between them. 

joined together at the input stage of layer UC1 as shown in 
Fig. 6. The parameter J\(K, k) in (4) takes value one or 
zero, depending on this joining condition. For instance, 
JI(K,2) = 1 for κ = 2 and 3, and J\(K,2) = 0 for other κ. 
Because of this joining process, layer UCL contains only 
eight cell planes. 

Parameter rx in (1), which determines the selectivity of 
an S cell, is set at value of 1.7. Since the stimulus feature 
which is used for training an S cell contains three active 
elements, the S cell with rx = 1.7 yields nonzero output for 
a stimulus feature contaminated with up to two additive 
elements of noise, or one additive and one subtractive 
elements. However, it does not respond to a stimulus 
feature with two subtractive elements of noise or more. 
(These results can be obtained from the analysis in Section 
III-B as well as from the computer simulation.) 

The spatial distribution of the input synapses dx(v, k) of 
a C cell (i.e., the connection area Dx in (4)) is 5 X 5 in size, 
but all of these 5 x 5 synapses are not effective. As shown 
in Fig. 6, the effective part of the distribution is elongated 
to the direction perpendicular to its preferred orientation 
and is compressed in the direction of its preferred orienta­
tion. 

Since each C cell receives excitatory signals from a 
number of S cells, it usually responds similarly as its 
neighboring C cells. Hence it is possible to reduce the 
number of C cells in each cell plane compared to that of S 
cells. The density of cells in each cell plane of layer UCL are 
thinned out by two to one compared to that of layer USL 

both in horizontal and vertical directions. Thus as shown 
in Fig. 3, the number of cells in each cell plane is reduced 
to 11 X 11 in layer UCV 

D. Layers US2 and UC2 

Layer US2 has 38 cell planes, and each cell plane con­
tains 11 X 11 S cells. Layer UC2 has only 22 cell planes, 
because the outputs from some of the cell planes of layer 
US2 are joined together at the input stage of layer UC2. 
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Fig. 7. Training patterns used to train 38 cell planes of layer US2. Way 
of joining at input stage of layer UC2 is also shown to right of each 
group of training patterns. 

Each cell plane of layer UC2 contains 7 X 7 C cells because 
of the two to one thinning-out of the cell density as was 
shown in Fig. 3. 

Each S cell of layer US2 has modifiable excitatory input 
synapses of 3 X 3 spatial distribution. Since the preceding 
layer UCL has eight cell planes, the total number of the 
excitatory input synapses to each S cell is 3 X 3 X 8. All of 
these synapses are not reinforced by learning, but most of 
them usually stay at the initial value of zero. The input 
synapses to each C cell of layer UC2 have spatial distribu­
tion of 5 X 5. 

Figure 7 shows the training patterns used for training the 
38 cell planes of layer US2. Four training patterns, in which 
the same stimulus feature is shifted in parallel to each other 
by one element in both horizontal and vertical directions, 
are used to train each cell plane. The reason why the use of 
four patterns are necessary is discussed below. 

Because the cells of this layer are thinned out by two to 
one compared to those of layer U0 in both horizontal and 
vertical directions, each S cell should take charge of ex­
tracting a specific stimulus feature from four different 
positions on layer U0. In this network, the two to one 
thinning-out of the cells is already made at the stage of 
layer UCV from which the relevant S cells receive synaptic 
connections. The effect of this thinning-out is not so small, 
and a somewhat different spatial response might appear in 
the preceding layer UCL when the stimulus pattern is shifted 
in position by one element. Hence each cell-plane of layer 
US2 should be trained with four different patterns before­
hand so as to come to respond equally to them. 

In this experiment, we intend to train the neocognitron 
so as to recognize handwritten Arabic numerals. When 
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patterns are written by hand, the stimulus features in the 
patterns usually suffer from considerable deformations de­
pending on the writers. However, the way of deformation 
is not at random but usually has some tendency. Some of 
such deformed features are detected separately in a number 
of cell planes of layer US2 and are combined together at the 
input stage of layer Ucl. In Fig. 7, the lines drawn to the 
right of the 36 groups of training patterns indicate how this 
joining is made. 

E. Layers US3 and UC3 

Layer US3 has 32 cell planes, and UC3 has 30 cell planes. 
The number of cells in each cell plane is 7 X 7 for both 
layers US3 and UC3. Thinning-out is not performed between 
these layers. Each S cell has 3 X 3 X 22 modifiable excita­
tory input synapses, and the input synapses of each C cell 
have spatial distribution of 3 X 3. 

Fig. 8 shows the training patterns used for training the 
32 cell planes of layer US3 and also shows how the outputs 
from these cell planes are joined together at the input stage 
of layer UC3. Most of these training patterns consist of 
some parts of the standard numeral patterns which are to 
be taught to this network. 

As is seen in Fig. 8, only two or three different patterns 
are used to train each cell plane of layer US3. They are 
deformed in shape or varied in size to each other. In the 
case of this layer, it is not necessary to present all of the 
deformed patterns which should be detected by the cell 
plane. Presentation of only a few number of typical pat­
terns is enough for the training of each cell plane, because 
a considerable amount of deformation has already been 
absorbed before this stage. 

Ε Layers US4 and UC4 

Layer US4 has 16 cell planes, and each cell plane has 
3 X 3 5 cells. Each of these S cells has 5 X 5 X 30 modifi­
able input synapses. Although the number of cells in each 
cell plane is reduced in layer US4 from that in the preceding 
layer UC3, no thinning out is made between these layers. 
Only the cells near the periphery of the cell planes of layer 
US4 are omitted, because they are of little use for the 
recognition of the whole input pattern (see Fig. 3). 

The 16 cell planes of layer US4 are trained with the 16 
sets of patterns as shown in Fig. 9 and are joined together 
into ten cell planes at layer UC4. Each cell plane of layer 
UC4 has only one cell which has input synapses of 3 X 3 
spatial distribution. 

The ten cells of layer UC4 have one-to-one correspon­
dence with ten Arabic numerals. In Figs. 10-12, which will 
be discussed later, they are arranged vertically from zero to 
nine in order at the rightmost column. Among these cells, a 
mechanism of lateral inhibition exists, although it is omitted 
in (4). 

For some of the numerals, more than one quite different 
styles of writing are accustomed to be used. For each of 
these numerals, two S planes are prepared and are trained 
independently with two typical patterns of different styles 
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Fig. 8. Training patterns used to train 32 cell planes of layer Us3 and 
way of joining at input stage of layer UC3. 
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Fig. 9. Training patterns used to train 16 cell planes of layer Us4 and 
way of joining at input stage of layer UC4. 

as shown in Fig. 9, and their outputs are joined together at 
the input stage of layer UC4. 

IV. RESPONSE OF T H E N E T W O R K 

The neocognitron, which has been trained with the pro­
cedure discussed in the previous chapter, is tested with 
various input patterns. Fig. 10 shows the response of the 
cells in the network to one of the patterns used for training 
the network. It is seen that only cell 2 of layer UC4 yields 
an output. This means that the neocognitron recognizes the 
input pattern correctly. Even if the input pattern is de­
formed from the training pattern as much as shown in Fig. 
11, the neocognitron recognizes it correctly. 

In the case of Fig. 12, two of the cells of layer UC4 

respond; that is, a large output is obtained from cell 5 and 
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Fig. 10. Response of cells in network to one of training patterns "2.' Fig. 12. Response of cells in network to deformed pattern, which elicits 
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a small output from cell 6. This means that the neocognitron 
correctly judges that the input pattern is 5, but also admits 
that the input pattern slightly resembles 6. 

Fig. 13 shows some examples of the stimulus patterns 
which the neocognitron correctly recognizes. On the other 
hand, Fig. 14 shows some examples of the patterns which 
cannot be correctly recognized. Some of these patterns 
elicit no response from any of the cells of layer i / C 4 , and 
the others elicit responses from wrong cells of layer UC4. 

V. DISCUSSION 

We have demonstrated that the neocognitron recognizes 
handwritten numerals of various styles of penmanship 
correctly, even if they are considerably distorted in shape. 
Although the result is shown for the recognition of Arabic 
numerals, the neocognitron can be trained to recognize 
other set of patterns such as alphabet, geometrical shapes, 
or others. 

The number of cell planes of each layer should be 
changed adaptively, depending on the set of patterns which 
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Fig. 13. Some examples of deformed numerals which neocognitron re­
cognizes correctly. 

the neocognitron should learn to recognize. The program 
for the computer simulation is made in such a way that the 
number of cell planes can be chosen freely and can readily 
be increased when necessary. 

Although each S cell has a large number of modifiable 
input synapses, all of them are not generally reinforced by 
learning. On the contrary, most of them remain at the 
initial state in which their efficiencies are zero. Further­
more, the modifiable synapses tend to be reinforced in 
clusters. In the computer program, we made full use of 
these characteristics of the synapses and reduced the re-

Authorized licensed use limited to: ULAKBIM UASL  ISTANBUL TEKNIK UNIV. Downloaded on December 10,2020 at 19:45:43 UTC from IEEE Xplore.  Restrictions apply. 



834 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-13, NO. 5, SEPTEMBER/OCTOBER 1983 

• 
ι 

A C K N O W L E D G M E N T 

The authors are very grateful to Mr. Toshinori Hirano 
for his assistance in making the computer program. 

Γ · 1 J 
i| .1 

L7 

Fig. 14. Some examples of distorted patterns which are not correctly 
recognized. 

quired memory capacity and increased the computation 
speed by eliminating unnecessary calculations. 

In the simulated model, we made two to one thinning-out 
in several parts of the network in order to increase the 
computation speed. The thinning-out between layers US1 

and Ucl, however, was too coarse compared to the 5 X 5 
spread of the input synapses of the cells of layer Ucl. As a 
result, we felt a little difficulty in training the network, and 
we had to use four different training patterns for each cell 
plane of layer US2. If we do not make the thinning-out at 
this stage, we can possibly improve the capability of the 
network further. 
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Abstract—It is shown how a system consisting of two neuronlike 
adaptive elements can solve a difficult leaning control problem. The task is 
to balance a pole that is hinged to a movable cart by applying forces to the 
cart's base. It is assumed that the equations of motion of the cart-pole 
system are not known and that the only feedback evaluating performance is 
a failure signal that occurs when the pole falls past a certain angle from the 
vertical, or the cart reaches an end of a track. This evaluative feedback is 
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of much lower quality than is required by standard adaptive control 
techniques. It is argued that the learning problems faced by adaptive 
elements that are components of adaptive networks are at least as difficult 
as this version of the pole-balancing problem. The learning system consists 
of a single associative search element (ASE) and a single adaptive critic 
element (ACE). In the course of learning to balance the pole, the ASE 
constructs associations between input and output by searching under the 
influence of reinforcement feedback, and the ACE constructs a more 
informative evaluation function than reinforcement feedback alone can 
provide. The differences between this approach and other attempts to solve 
problems using neuronlike elements are discussed, as is the relation of this 
work to classical and instrumental conditioning in animal learning studies 
and its possible implications for research in the neurosciences. 
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