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Abstract--A neural network model for visual pattern recognition, called the "neocognitron, "' was previously proposed 
by the author In this paper, we discuss the mechanism of the model in detail. In order to demonstrate the ability of 
the neocognitron, we also discuss a pattern-recognition system which works with the mechanism of  the neocognitron. 
The system has been implemented on a minicomputer and has been trained to recognize handwritten numerals. 

The neocognitron is a hierarchical network consisting of many layers of cells, and has variable connections 
between the cells in adjoining layers. It can acquire the ability to recognize patterns by learning, and can be trained 
to recognize any set of patterns. After finishing the process of learning, pattern recognition is performed on the basis 
of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in 
the position of  the input patterns. 

In the hierarchical network of  the neocognitron, local features of the input pattern are extracted by the cells of  a 
lower stage, and they are gradually integrated into more global features. Finally, each cell of  the highest stage 
integrates all the information of  the input pattern, and responds only to one specific pattern. Thus, the response of  
the cells of  the highest stage shows the final result of  the pattern-recognition of the network. During this process of  
extracting and integrating features, errors in the relative position of local features are gradually tolerated. The 
operation of tolerating positional error a little at a time at each stage, rather than all in one step, plays an important 
role in endowing the network with an ability to recognize even distorted patterns. 

1. INTRODUCTION 

Visual pattern recognition, such as reading characters 
or distinguishing shapes, can easily be done by human 
beings, but it is very difficult to design a machine which 
can do it as well as human beings do. We believe that 
the best strategy is to learn from the brain itself. We 
are studying the mechanism of visual information-pro- 
cessing in the brain, and trying to use it as a design 
principle for new information processors. More spe- 
cifically, we are studying how to synthesize a neural 
network model which has the same ability as the human 
brain. As a result of this approach, a pattern-recognition 
system called the "neocognitron" has been developed 
(Fukushima, 1980; Fukushima & Miyake, 1982). 

In the visual area of the cerebrum, neurons are found 
to respond selectively to local features of a visual pat- 
tern, such as lines and edges in particular orientations 
(Hubel & Wiesel, 1962). In the area higher than the 
visual cortex, it has been found that cells exist which 
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respond selectively to certain figures like circles, tri- 
angles, squares, or even to a human face (Bruce, De- 
simone, & Gross, 1981; Sato, Kawamura, & Iwai, 
1980). Accordingly, the visual system seems to have a 
hierarchical structure, in which simple features are first 
extracted from a stimulus pattern, and then integrated 
into more complicated ones. In this hierarchy, a cell in 
a higher stage generally receives signals from a wider 
area of the retina, and is more insensitive to the position 
of the stimulus. 

Such neural networks in the brain are not always 
complete at birth. They gradually develop, adapting 
flexibly to circumstances after birth. Sophisticated brain 
functions, such as learning, memory, and pattern-rec- 
ognition, are believed to be acquired through the growth 
of the neural network, in which neurons extend 
branches and make connections with many other neu- 
rons. 

This kind of physiological evidence suggested a net- 
work structure for the neocognitron. The neocognitron 
is a hierarchical multilayered network consisting of 
neuron-like cells. The network has variable connections 
between cells, and can acquire the ability to recognize 
patterns by learning. It can be trained to recognize any 
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set of patterns. After finishing the process of learning, 
the response of the cells of the highest stage of the net- 
work shows the final result of the pattern-recognition: 
only one cell, corresponding to the category of the input 
pattern, responds. Pattern recognition of the network 
is performed on the basis of similarity in shape between 
patterns, and is not affected by deformation, nor by 
changes in size, nor by shifts in the position of the input 
patterns. 

In this paper, we discuss the mechanism of the model 
in detail. In order to demonstrate the ability of the neo- 
cognitron, we also discuss a pattern-recognition system 
which has been designed using the principle of the neo- 
cognitron. The system has been implemented on a 
minicomputer and has been trained to recognize hand- 
written numerals. 

2. THE S T R U C T U R E  A N D  BEHAVIOR OF 
T H E  N E T W O R K  

The neocognitron is a multilayered network con- 
sisting of a cascade of many layers of neuron-like cells. 
The cells are of the analog type; that is, their inputs 
and outputs take non-negative analog values, corre- 
sponding to the instantaneous firing-frequencies of 
biological neurons. Figure 1 shows a typical example 
of the cells employed in the network. 

The hierarchical structure of the network is illus- 
trated in Figure 2. There are forward connections be- 
tween cells in adjoining layers. The initial stage of the 
network is the input layer, called U0, and consists of a 
two-dimensional array of receptor cells uo. Each of the 
succeeding stages has a layer of"S-cells" followed by a 
layer of "'C-cells." Thus, in the whole network, layers 
of S-celts and C-cells are arranged alternately. Notation 
U~ and Uci are used to denote the layers of S-cells and 
C-cells of the/th stage, respectively, incidentally, each 
Us-layer contains subsidiary inhibitory cells, called V- 
cells, but they are not drawn in Figure 2. 

S-celts are feature-extracting cells. Connections 
converging to feature-extracting S-cells are variable and 
are reinforced during a learning (or training) process. 
After finishing the learning, which will be discussed 
later, S-cells, with the aid of the subsidiary V-cells, can 
extract features from the input pattern. In other words, 
an S-cell is activated only when a particular feature is 
presented at a certain position in the input layer. The 
features which the S-cells extract are determined during 
the learning process. Generally speaking, in the lower 
stages, local features, such as a line at a particular ori- 
entation, are extracted. In higher stages, more global 
features, such as a part of a training pattern, are ex- 
tracted. 

The C-cells are inserted in the network to allow for 
positional errors in the features of the stimulus. Con- 
nections from S-cells to C-cells are fixed and invariable. 
Each C-cell receives signals from a group of S-cells 
which extract the same feature, but from slightly dif- 
ferent positions. The C-cell is activated if at least one 
of these S-cells is active. Even if the stimulus feature is 
shifted in position and another S-cell is activated instead 
of the first one, the same C-cell keeps responding. 
Hence, the C-cell's response is tess sensitive to shifts in 
position of the input pattern. 

This network structure is illustrated in Figure 2 in 
more detail. S-cells or C-cells in a layer are divided into 
subgroups according to the kinds of feature to which 
they respond. Since the cells in each subgroup are ar- 
ranged in a two-dimensional array, we call the subgroup 
a "cell-plane." In Figure 2, each quadrangle drawn with 
heavy lines represents a cell.plane, and each vertically 
elongated quadrangle drawn with thin lines, in which 
cell-planes are enclosed, represents a layer of S-cells or 
C-cells~ As schematically illustrated in Figure 3, all the 
cells in a cell-plane receive input connections of the 
same spatial distribution, and only the positions of  the 
preceding cells are shifted in parallel from cell to cell. 
Although cells usually exist in numbers, only one cell 
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FIGURE 2. Hierarchical network structure of the neocognitron. The numerals at the bottom of the figure show the total numbers of 
S- and C-cells in individual layers of the network which are used for the handwritten numeral recognition system discussed in 
Section 4. 

is drawn in each cell-plane in Figure 2. Incidentally, 
each ellipse in the figure represents the area from which 
a cell receives input connections. 

The density of cells in each layer is designed to de- 
crease with the order of the stage, because the cells in 
higher stages usually receive signals from larger areas 
of the input layer and the neighboring cells come to 
receive similar signals. Hence, in the highest stage, only 
one C-cell exists in each cell-plane. 

Thus, in the whole network, in which layers of S- 
cells and C-cells are arranged alternately, the process 
of feature-extraction by S-cells and toleration of posi- 
tional shift by C-cells are repeated. During this process, 
local features extracted in a lower stage are gradually 
integrated into more global features. Figure 4 illustrates 
this situation schematically. Finally, each C-cell of the 
highest stage integrates all the information of the input 
pattern, and responds only to one specific pattern. In 
other words, in the highest stage, only one C-cell, cor- 

responding to the category of the input pattern, is ac- 
tivated. Other cells respond to patterns of other cate- 
gories. Thus, the C-cells of the highest stage may be 
called "gnostic cells," and their response shows the final 
result of the pattern-recognition of the network. 

The operation of tolerating positional error a little 
at a time at each stage, rather than all in one step, plays 
an important role in endowing the network with an 
ability to recognize even distorted patterns. Since errors 
in the relative position of local features are tolerated 
in the process of extracting and integrating features, 
the same C-cell responds in the highest layer, even if 
the input pattern is deformed or changed in size or 
shifted in position. In other words, the neocognitron 
recognizes the "shape" of the pattern independent of 
its size and position. 

3. SELF-ORGANIZATION OF 
T H E  NETWORK 

The connections converging to S-cells are variable, 
and are reinforced gradually in accordance with stim- 
uli given to the network during the process of learn- 
ing. Both processes, "learning-without-a-teacher" and 
"learning-with.a-teacher" can be used to train the neo- 
cognitron to recognize patterns. 

FIGURE 3. Illustration showing the spatial arrangement of the 
connections converging to single cells of a cell-plane. 

3.1 Learning without a Teacher 

We will first discuss the case of learning-without-a- 
teacher (Fukushima, 1980; Fukushima & Miyake, 
1982). The repeated presentation of a set of training 
patterns is sufficient for the self-organization of the net- 
work, and it is not necessary to give any information 
about the categories in which these patterns should be 
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classified, The neocognitron by itself acquires the ability 
to classify and recognize these patterns correctly on the 
basis of similarity in shape. 

3.1.1 Reinforcement of Maximum-Output Cells. Self- 
organization of the neocognitron is performed with two 
principles. The first has been introduced for the self- 
organization of the "cognitron" (Fukushima, 1975, 
1981) proposed earlier by the author. Specifically, the 
first principle is as follows: 

The variable connection between two cells is rein- 
forced if and only if the following two conditions are 
simultaneously satisfied: 
i. The cell receiving the connection is responding the 

strongest among the cells in its vicinity. 
2. The cell sending out the connection is also respond- 

ing. 
This principle can also be expressed as follows: 

Among the cells situated in a certain small area, 
only the one which is responding the strongest has its 
input connections reinforced. The amount of rein- 
forcement o f  each input connection to this maximum- 
output cell is proportional to the intensity of the re- 
sponse of the cell from which the relevant connection 
is leading. 

In the neocognitron, this principle is applied to the 
variable input connections c o r i n g  to feature-ex- 
tracting S-cells. It should be  notedthat both excitatory 
and inhibitory connections are reinforced ~ this 
principle. 

Figure 5 illustrates the connections conversing to an 
S-cell. The S-celt receives variable excitatory connec- 
tions leading from a group of C-ceils of  the preceding 
layer. It also receives a variable inhibitory connection 
leading from a subsidiary inhibitory cell, which is called 
a V-cell. The V-cell receives fixed excitatory connections 
from the same group of C-cells as this S-ce;ll does, and 
is always responding with the average intensity of the 
output of  the C-celts, 

As the result of this networkstxucture and the learn- 
ing principle, the vari~.e ~ conn~aions to the 

through the excitatory c x ) n ~ t m ,  the S-cell receives 
signals indicating _the cxistcnoe of the relevant feature 
to be extracted. If an irrelevant feature is presented, 
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FIGURE 5. Connections converging to a feature-extracting S- 
cell. 

however, the inhibitory signal from the V-cell becomes 
stronger than the direct excitatory signals from C-cells, 
and the response of the S-cell is suppressed. Thus, the 
S-cell is activated only when the relevant feature is pre- 
sented. Incidentally, the V-cell can be said to be watch- 
ing for the existence of irrelevant features. Thus, in- 
hibitory V-cells play an important role in endowing the 
feature-extracting S-cells with the ability to differentiate 
irrelevant features, and in increasing the selectivity of 
feature extraction. 

According to this principle, among the S-cells in a 
certain small area, only one cell which happens to yield 
the maximum output is selected to have its input con- 
nections reinforced. Because of the "winner-takes-all" 
nature of this principle, the duplicated formation of 
cells which extract the same feature does not occur, 
and the formation of a redundant network can be pre- 
vented. This situation resembles, so to speak, "elite 
education": Only the one cell which gives the best re- 
sponse to a training stimulus is selected, and only that 
cell is reinforced so as to respond more appropriately 
to the stimulus. 

Once a cell is selected and reinforced to respond to 
a feature, the cell usually loses its responsiveness to 
other features. When a different feature is presented, 
usually a different cell yields the maximum output and 
has its input connections reinforced. Thus, "division 
of labor" among the cells goes on automatically. 

With this principle, the network also develops a self- 
repairing function. If a cell which has been strongly 
responding to a stimulus is damaged and ceases to re- 
spond, another cell, which happens to respond more 
strongly than other ceils, starts to grow and substitute 
for the damaged cell. Incidentally, the growth of a sec- 
ond cell has been prevented until then, because of the 
larger response of the first cell. 

3.1.2 Development of lterative Connections. The second 
principle introduced for the self-organization of the 

neocognitron is that the maximum-output cell not only 
grows, but also controls the growth of neighboring cells. 
In other words, the maximum-output cell works, so to 
speak, like a seed in crystal growth, and neighboring 
cells have their input connections reinforced in the same 
way as the "seed cell." The process of selecting seed 
cells will be discussed below in more detail. 

Here, we define a term "hypercolumn": a hyper- 
column is defined here as a group of S-cells in a layer 
whose receptive fields are situated at approximately the 
same position. In other words, each hypercolumn con- 
tains all kinds of feature extracting cells in it, and these 
cells extract features from approximately the same place 
in the input layer. Incidentally, if we rearrange the cell- 
planes of a layer and stack them in a manner shown in 
Figure 6, the cells of a hypercolumn constitute a co- 
lumnar structure. Each hypercolumn contains cells 
from all the cell-planes. 

Now, let a training pattern be presented to the net- 
work. From each hypercolumn, the S-cell which hap- 
pens to respond the strongest is chosen as a candidate 
for seed cells. When two candidates or more appear in 
one and the same cell-plane, only the one whose re- 
sponse is the largest is selected as the seed cell of that 
cell-plane. When only one candidate appears in a cell- 
plane, the candidate automatically becomes the seed 
cell of that cell-plane. If no candidate appears in a cell- 
plane, no seed cell is selected from that cell-plane this 
time. 

Thus, at most one seed cell is selected from each 
cell-plane of S-cells at a time. Usually, a different cell 
becomes a seed cell when a different training pattern 
is given. 

When a seed cell is selected from a cell-plane, all 
the other S-cells in the cell-plane grow so as to have 
input connections of the same spatial distribution as 
the seed cell. As the result, all the S-cells in a cell-plane 
grow to receive input connections of the identical spatial 
distribution where only the positions of the preceding 

~ l a y e r  

hypercolumn 

FIGURE 6. Relation between cell-planes and hypercolumns 
within a layer. 
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C-cells are shifted in parallel from cell to cell, as illus- 
trated in Figure 3. In other words, connections develop 
iteratively in a cell-plane. Hence, all the S-cells in the 
cell-plane come to respond selectively to a particular 
feature, and differences between these cells arise only 
from difference in position of the feature to be extracted. 

If the strength of all the variable connections is zero 
at the initial state before learning, self-organization of 
the network cannot start, because no cell can respond 
to the training pattern and maximum-output cells (or 
seed ceils) cannot be selected. Hence, it is made that 
all the variable excitatory connections unconditionally 
get a very small value only when self-organization is 
going to start. In other words, each S-cell temporarily 
has very weak and diffused excitatory input connections 
only at the initial period of the self-organization. Once 
a reinforcement of the input connections begins, these 
weak and diffused initial connections are made to dis- 
appear. Incidentally, this situation coincides with the 
anatomical observation that, in the developing nervous 
system, synaptic connections between neurons are 
overproduced initially and the redundant axons are 
gradually eliminated afterwards. 

If the period of generation of these temporary weak 
diffused connections is delayed a little for the cells of 
higher stages, self-organization of the network can be 
performed efficiently. Specifically, it is desirable to delay 
it until the growth of the ceils of the preceding stage 
has been settled. 

Uo UsI UGI Us2 Uc2 Us,.1 Uc3 Us4 UG4 
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each layer. 

3.2 Learning with a Teacher 

As has been discussed above, in the case of learning- 
without.a.teacher, maximum-output ceils are selected 
automatically as "seed cells." In the case of learning- 
with-a-teacher, however. "teacher" points out which 
cells should be the seed cells for each training pattern. 
The other process of learning is identical to that of the 
learning-without-a-teacher. It is. of course, not neces- 
sary to perform such a complicated procedure as cal- 
culating and adjusting the strength of all the connections 
one by one, but it is enough to point out which patterns 
or features should be extracted by which cells. 

Learning-with-a-teacher is useful when we want to 
train a system to recognize, for instance, hand-written 
characters which should be classified not only on the 
basis of similarity in shape but also on the basis of 
certain conventions. For example, the geometrical sim- 
ilarity between "O"  and "¢Y" is about the same as that 
between "O" and "O,"  but "O"  and "~ '"  must be rec- 
ognized as the same character, while "O" and "Q" must 
be classified into different categories_ It is impossible 
to train the system to recognize these characters by 
learning-without-a-teacher only, by which characters 
are classified only on the basis of geometrical similarity. 

4. HANDWRITTEN NUMERAL 
RECOGNITION 

In order to demonstrate the ability of the neocog- 
nitron, we have designed a system which recognizes 
hand-written numerals from "0" to "9." This system. 
a modification from an old system (Fukushima, Mi- 
yake, & Ito, 1983), has been implemented on a mini- 
computer (micro VAX-II) with an army processor (FPS- 
5105). The same system has also been implemented 
on a microcomputer (NEC PC-9801)which has a 16- 
bit main processor 8086 (with 384 kBytes memory) 
and a co-processor 8087 (Fukushima, Miyake, lto. & 
Kouno, I987). 

The system has been trained by learning-with-a- 
teacher. Incidentally, experiments for learning-without- 
a-teacher have been reported elsewhere (Fukushima, 
1980; Fukushima & Miyake, 1982). 

4.1 Detailed Structure of the Network 

The network has four stages of layers of S- and C- 
cells The number of S- or C-cells ineach  layer is in- 
dicated in Figure 2. Layer Uc4 at the h ~  stage has 
ten cell-planes, each of which has only one C-cell. These 
ten C-celts correspond to ten numeral l~tterns from 
"'0" to "9." 

Figure 7 shows how the cells of d'fl!~ent ceil-planes 
are spatially interconnected. This figure, in which only 
one cell-plane is drawn for each layer, illustrates a one- 
dimensional cross-section of the connections between 
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S- and C-cells. From this figure, we can read, for ex- 
ample, an S-cell of layer Us3 has 5 × 5 (excitatory) 
variable input connections from each cell-plane of layer 
Uc2. Since layer Uc2 has 19 cell-planes, the maximum 
possible number of the variable input connections to 
each S-cell of layer US3 is 5 × 5 × 19. It is important 
to note, however, that all of these 5 × 5 × 19 variable 
connections are not necessarily reinforced by learning. 
On the contrary, most of them usually remain at the 
initial state of strength of zero even after finishing 
learning. Since the variable connections of strength of 
zero need not be actually wired in the network, the 
effective number of connections are far less than the 
value directly read from this figure. 

The output of each cell in the network is mathe- 
matically described below. In the following equations, 
notation Ust(n, k), for example, is used to denote the 
output of an S-cell in the/ th  stage, where n is a two- 
dimensional set of coordinates indicating the position 
of the cell's receptive-field center in the input layer U0, 
and k is a serial number of the cell-plane. For S-cells, 
k is in the range of I < k < Kst, and for C-cells it is in 
the range of 1 < k 5 Kct. 

The output of an S-cell is given by 

KC/-  I 

o'l+ Z Z al(v,K,k)'Uct-~(n+v,K) 
Usl(n, k) = rt" ~o[ ~=1 ~A, 

r l  
ol + 77~r[ bt(k)" Uv,(n) 

where 

-1 ]  

(l) 

{~ if x > 0  
¢[x]= if x < 0 .  (2) 

In the case o f / =  1 in (1), Uct-l(n, K) stands for uo(n) 
or the output of a receptor cell of the input layer, and 
we have Kct-~ = 1. Parameter at is a positive constant 
determining the level at which saturation starts in the 
input-to-output characteristic of the S-cell. 

at(v, K, k) (>0) is the strength of the variable excit- 
atory connection coming from C-cell Uct-l(n + v, K) in 
the preceding layer, and At denotes the summation range 
of v, that is, the size of the spatial spread of the input 
connections to one S-cell. bl(k) (>0) is the strength of 
the variable inhibitory connection coming from sub- 
sidiary V-cell Uvt(n). As discussed before in connection 
with Figure 3, all the S-cells in a cell-plane have an 
identical set of input connections. Hence, at(v, K, k) 
and btk) do not contain argument n representing the 
position of the receptive field of the cell Ust(n, k). 

As can be seen from (1), the inhibitory input to this 
cell acts in a shunting manner, The positive constant 
r~ determines the efficiency of the inhibitory input to 
this cell. 

The subsidiary V-cell which sends an inhibitory sig- 
nal to this S-cell yields an output equal to the weighted 

root-mean-square of the signals from the preceding C- 
cells, that is, 

/Kct- 
= ,\/.=,x x {uc, ,(. + < 2  

rE .4 ,  

where cl(v) represents the strength of the fixed excitatory 
connections, and is a monotonically decreasing function 
of Iv[, which satisfies 

KCI- t 

X X c,(~)= 1. (4) 
~=1 vU-,4 t 

The role of the root-mean-square cells in feature ex- 
traction is discussed elsewhere (Fukushima, 1981; Fu- 
kushima & Miyake, 1982). 

The variable connections al(v, K, k) and bl(k) are 
reinforced depending on the intensity of the input to 
the "seed cell," which is pointed out by the "teacher." 
Let Usl(& k) be selected as a seed cell at a certain time. 
The variable connections at(v, K, k) and bl(k) to this 
seed cell, and consequently to all the S-cells in the same 
cell-plane as the seed cell, are reinforced by the follow- 
ing amount: 

aa~(,, K, k) = ql" cl(v). Uct-,(~ + v, ~), (5) 

a&(k) = qt" Uvl(~), (6) 

where qt is a positive constant determining the speed 
of reinforcement. In the case of learning-with-a-teacher, 
a sufficiently large value is given to qt so that the rein- 
forcement of the input connections to each seed cell 
can be completed in a few steps of training-pattern pre- 
sentation. 

The output of a C-cell, which is inserted in the net- 
work to allow for positional errors, is given by 

FIGURE 8. Training patterns used to train the 12 cell-planes of 
layer Us~. Each hooked line shows that the outputs of the cor- 
responding S-cell-planes are joined together and converge to 
a single C-cell-plane at Ucl. Only the central 3 × 3 area of each 
training pattern is shown, because the outside of this area is 
not effective for the training of layer Usl. 
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uc,(., k) = ¢/[ Z jl(K, k) ~. d,(v)" u~(. + ", K)], 
x-I uC=/)# 
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where ¢/[ ] is a function specifying the characteristic 
of saturation of the C-cell, and is defined by 

~[x] (8) 
~[x] = I + ~ [ x ]  

In this network, which is to be ,trained by learning- 
with-a-teacher, output of sevond- nttmbers of S~ell- 
planes sometimes conve~l~ ' 
plane. This condition of ce.7t~..~; ~x. k) 
discussed laWr, is represea~  )~JK,, .). . . . . .  

Parameter dr(u) denotes the ~ o) nxco ex~. t- 
a tory connections, and is a monotonically decreasing 
funct ion of  lv[. Hence ,  ifjl(K, k) > 0 and  if at least one 



Neocognitron 12 7 

1,, ,'~ iI l I 

lnl ] 

i ! 
i ! rl-'l :;' , )~"'1 ., ) 

×:' 
• o . 

I,.-', II,.-., I 

" " I" "1 

ii "1 

I ° oll 

I IS I II i I 

4 z4 

I II I I 

7_.i °° o, 

• . . °  

~__) 

Ii 61 
I" 

71 

] 

FIGURE 10. Training patterns used to train the 35 cell-planes of layer Us~. Receptive field centers of the seed-cells are marked by 
crosses in the figure. 

S-cell is activated in the area Dt of  the Kth cell-plane, 
to which these connect ions spread, this C-cell is also 
activated. 

Now we will discuss jl(K, k) in more  detail. In the 
case of  character  recognition, even characters o f  differ- 
ent styles of  writing have to be correctly recognized. In 
other words, input  characters have to be classified not 
only on the basis of  geometrical  similari ty but  also on 
the basis o f  cus toms by which some par t icular  kinds of  
large deformat ion  are admit ted.  Somet imes  when such 
deformat ion is too large, a single S-cell-plane is not 
enough to extract  deformed versions of  a feature. In 
such a case, another  S-cell-plane is used to extract a 
deformed version of  the feature, and the output  f rom 
these S-cell-planes are made  to converge to a single C- 
cell-plane. It is jr(K, k) in (7) that  represents this jo ining 

process I. Depending on whether  or not the kth C-cell- 
plane receives signals f rom the Kth S-cell-plane, Jt(~, k) 
takes a positive value or zero, respectively. Hence, for 
each ~, Jl(~, k) is usually zero except for one part icular  
value of  k. 

4.2 Training the Network 

In order to train the network, " teacher"  presents a 
set o f  training patterns and points out which cells should 

For a network which is to be trained by learning-without-a-teacher 
(Fukushima. 1980; Fukushima & Miyake, 1982) joining of the output 
of different cell-planes are not made. Hence, Ust and Uct has the same 
number of cell-planes (or Kst = Kct), and 

{~ for ~ = k  
jr(K, k )  = for K # k. 
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be the seed cells for each training pattern. The other 
process of learning goes on automatically. 

Training has been performed step by step from lower 
stages to higher stages. In other words, training of  a 
higher stage is performed after eomoletely finishingthe 
training of the preceding stages. 

In the following example, the network is trained to  
recognize handwritten numerals from "0"  to "9." 

4.2.1 Training of Layer Us1. Layer Us1 is trained to 
extract line components of different orientations~ Figure 
8 shows the 12 training patterns used to train the 12 
cell-planes of  layer UsL. Each of  the training patterns 
is presented to the network only once. The cell at the 
center of the cell-plane to be trained is always appointed 
as the seed cell. As can be seen from Figure 7. each celt 
of this layer has a receptive field of  3 X 3 in size. Hence, 
only central 3 × 3 area of each training pattern is ef- 
fective for training, and only this central area is shown 
in Figure 8. 

Since the size of receptive fields of S-cells is as small 
as 3 x 3, it is difficult to extract all parts of a line by 
only one cell-plane when the line has an inclination of 
1:2. Hence. two cell-planes are used to extract such a 
slanted line component, and the output from these two 
S-cell-planes are joined together and made to converge 
to a single C-cell-plane. Each hooked line drawn to the 
left of the training patterns in Figure 8 shows how the 
outputs of the corresponding S-cell-planes are joined 
together. 

4.2.2 Training oj'Layer Us2. Figure 9 shows the gaining 
patterns used to train the 38 cell-planes of layer Us2. 
Only the central 9 × 9 areas of the training patterns 
are shown here, because S-cells of this layer have re- 
ceptive-fields of 9 x 9 in size. Again, the cell at the 
center of the cell-plane to be trained is appointed as 
the seed cell. 

Sometimes, a single cell-plane is trained with more 
than one training pattern. This is effective to increase 
S-cell's ability to extract deformed features. A group 
of patterns arranged in a horizontal line in Figure 9 
represents such a set of training patterns. 

Similarly, as for layer Us~, output of several S-cell- 
planes are joined together as indicated by hooked lines 
in Figure 9. 

As can be seen from Figure 9, each training pattern 
consists of a part of a numeral pattern which is supposed 

u ~ , , ~ ~  ~ j  ~agamlanon 
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FIGURE 13. An example of the response of the C-cells in the network trained to recognize handwritten numerals. 

to appear during the process of pattern-recognition. In 
other words, typical examples of deformed patterns are 
presented to the network as training patterns. 

Generally speaking, good selection of training pat- 
terns is the most important for layer Us2 among all 
layers. If the training patterns for layer Us2 are properly 
selected, the network usually acquires a considerably 
high ability of pattern recognition, even though the se- 
lection of the training patterns for other layers is not 
so complete. 

4.2.3 Training of Layer Us3. Figure 10 shows the 
training patterns used to train the 35 cell-planes of layer 
Us3. Since the receptive fields of S-cells of this layer are 
larger in size than the input layer U0, the cell at the 
center of a cell-plane cannot always be appointed as 
the seed cell. Then, the position of the seed cell (that 
is, the receptive-field center of the seed-cell) is marked 
by a cross in each training pattern in Figure 10. 

4.2.4 Training of Layer Us4. Figure l l shows the 
training patterns used to train the l 1 cell-planes of layer 
Us4. Similarly as Us, and Us2, the cell at the center of 
each cell-plane is appointed as the seed cell. 

Since it is difficult to recognize "4" and " z "  with a 
single cell-plane only, two cell-planes are used. For other 
numerals, however, one cell-plane is enough to recog- 
nize even deformed versions of the pattern written in 
different styles. For instance, both "9" and "9"  are 
correctly recognized by one and the same cell-plane. 
This is because most of the distortions in shape of the 
input pattern have already been absorbed during the 
process in the previous stages. 

4.3 Response of the Network 

Now the response of the network which has finished 
learning is tested. In this experiment, the input pattern 

is drawn on a magnetic tablet, as shown in Figure 12. 
Although a tablet is used to input hand-written nu- 
merals, the system does not use any temporal infor- 
mation about the order of the strokes of the character. 
The character which has already been drawn is used 
as the input pattern for the network. With the progress 
of calculation in the computer, the response of the layers 
of C-cells is displayed successively on a graphic ter- 
minal. Figure 13 shows an example of this display. To 
the input layer U0, a numeral "2" is presented. In the 
highest layer U~4, shown at the extreme right, only cell 
"2" is activated. This means that the neocognitron rec- 
ognizes the input pattern correctly. 

Figure 14 shows some example of deformed input 
patterns which the neocognitron has recognized cor- 
rectly. It is a matter of course that the neocognitron 
recognizes these patterns correctly even though they 
are shifted in position. When an input pattern is pre- 
sented in a different position, the response of cells in 
intermediate layers, especially those near the input layer, 
varies with the shift. However, the higher the layer is, 
the smaller is the variation in response. The cells of the 
highest layer are not affected at all by a shift in position 
of the input pattern. 

It has also been shown that even where the input 
pattern has been increased or diminished in size, or is 
skewed in shape, the response of the ceils of the highest 
layer is not affected. Sometimes, when the input pattern 
has been distorted too much, the response of the cells 
in the highest layer is weak, but still a response is elicited 
from the correct cell. Even though the input pattern 
has some parts missing or is contaminated by noise, 
the neocognitron recognizes it correctly. 

5. DISCUSSION 

As has been shown here, the neocognitron has many 
remarkable properties which most modern computers 
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and pattern-recognizers do not  possess. Since the neo- 
cogni t ron can learn, it can be trained to recognize no t  
only Arabic numerals,  but  also other sets o f  patterns, 
like letters of  the alphabet, geometrical shapes, or others. 
Hence, it is possible to design a neocogni t ron as a uni- 
versal pattern-recognizer,  which can be used, after 
training, for an individual purpose.  

If  the n u m b e r  o f  categories o f  the patterns to be 
recognized is increased, the number  o f  cell-planes in 
each layer o f  the network also has to be increased. The  
number  of  cell-planes, however, need not be increased 

in propor t ion to the number  o f  categories o f  the pat- 
terns. It is enough to increase it m less than  linear pro- 
portion, because local features to be extracted at lower 
stages are usually contained in c o m m o n  in patterns o f  
different categories. 

If  we want to construct a system which can recogmze 
more  complex patterns like Chinese characters, it is 
r ecommended  to increase the number  o f  shages (or lay- 
ers) in the network depending on the complexity o f  the 
patterns to be recognized. 

The principles o f  the neocognitron are not restricted 
to the processing of  visual information only, but  can 
also be applied to other sensory information.  For ex- 
ample, it would be possible to construct  a speech-rec- 
ognition system with a little modification. 

Although the neocognitron has forward (i.e., afferent 
or bot tom-up)  connect ions  only, the informat ion-pro-  
cessing ability of  the network can be greatly increased 
if backward (i.e., ef[erent or top-down) connect ions are 
added. The model of  selective attention recently pro- 
posed by the author  (Fukushima,  1986) is an example 
of  such an  advanced system. We are continuing the 
research, and we hope to develop an artificial brain 
closer to the h u m a n  brain. 
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