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Finding Structure in Time 

JEFFREY L. ELMAN 
University of Calcfornia, San Riego 

Time underlies many interesting human behaviors. Thus, the question of how to 
represent time in connectionist models is very important. One approach is to rep- 
resent time implicitly by its effects on processing rather than explicitly (as in a 
spatial representation). The current report develops a proposal along these lines 
first described by Jordan (1986) which involves the use of recurrent links in order 
to provide networks with a dynamic memory. In this approach, hidden unit pat- 
terns are fed back to themselves: the internal representations which develop 
thus reflect task demands in the context of prior internal states. A set of simula- 
tions is reported which range from relatively simple problems (temporal version 
of XOR) to discovering syntactic/semantic features for words. The networks are 
able to learn interesting internal representations which incorporate task demands 
with memory demands: indeed, in this approach the notion of memory is inextri- 
cably bound up with task processing. These representations reveal a rich struc- 
ture, which allows them to be highly context-dependent, while also expressing 
generalizations across classes of items. These representations suggest a method 
for representing lexical categories and the type/token distinction. 

INTRODUCTION 

Time is clearly important in cognition. It is inextricably bound up with 
many behaviors (such as language) which express themselves as temporal 
sequences. Indeed, it is difficult to know how one might deal with such basic 
problems as goal-directed behavior, planning, or causation without some 
way of representing time. 

The question of how to represent time might seem to arise as a special 
problem unique to parallel-processing models, if only because the parallel 
nature of computation appears to be at odds with the serial nature of tem- 
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poral events. However, even within traditional (serial) frameworks, the repre- 
sentation of serial order and the interaction of a serial input or output with 
higher levels of representation presents challenges. For example, in models 
of motor activity, an important issue is whether the action plan is a literal 
specification of the output sequence, or whether the plan represents serial 
order in a more abstract manner (e.g., Fowler, 1977,1980; Jordan & Rosen- 
baum, 1988; Kelso, Saltzman, & Tuller, 1986; Lashley, 1951; MacNeilage, 
1970; Saltzman & Kelso, 1987). Linguistic theoreticians have perhaps tended 
to be less concerned with the representation and processing of the temporal 
aspects to utterances (assuming, for instance, that all the information in an 
utterance is somehow made available simultaneously in a syntactic tree); but 
the research in natural language parsing suggests that the problem is not 
trivially solved (e.g., Frazier & Fodor, 1978; Marcus, 1980). Thus, what is 
one of the most elementary facts about much of human activity-that it has 
temporal extend-is sometimes ignored and is often problematic. 

In parallel distributed processing models, the processing of sequential 
inputs has been accomplished in several ways. The most common solution is 
to attempt to “paralielize time” by giving it a spatial representation. How- 
ever, there are problems with this approach, and it is ultimately not a good 
solution. A better approach would be to represent time implicitly rather 
than explicitly. That is, we represent time by the effect it has on processing 
and not as an additional dimension of the input. 

This article describes the results of pursuing this approach, with particu- 
lar emphasis on problems that are relevant to natural language processing. 
The approach taken is rather simple, but the results are sometimes complex 
and unexpected. Indeed, it seems that the solution to the problem of time 
may interact with other problems for connectionist architectures, including 
the problem of symbolic representation and how connectionist representa- 
tions encode structure. The current approach supports the notion outlined 
by Van Gelder (in press) (see also, Elman, 1989; Smolensky, 1987, 1988), 
that connectionist representations may have a functional compositionality 
without being syntactically compositional. 

The first section briefly describes some of the problems that arise when 
time is represented externally as a spatial dimension. The second section 
describes the approach used in this work. The major portion of this article 
presents the results of applying this new architecture to a diverse set of prob- 
lems. These problems range in complexity from a temporal version of the 
Exclusive-OR function to the discovery of syntactic/semantic categories in 
natural language data. 

THE PROBLEM WITH TIME 

One obvious way of dealing with patterns that have a temporal extent is to 
represent time explicitly by associating the serial order of the pattern with 
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the dimensionality of the pattern vector. The first temporal event is repre- 
sented by the first element in the pattern vector, the second temporal event 
is represented by the second position in the pattern vector, and so on. The 
entire pattern vector is processed in parallel by the model. This approach 
has been used in a variety of models (e.g., Cottrell, Munro, & Zipser, 1987; 
Elman & Zipser, 1988; Hanson & Kegl, 1987). 

There are several drawbacks to this approach, which basically uses a 
spatial metaphor for time. First, it requires that there be some interface with 
the world, which buffers the input, so that it can be presented all at once. It 
is not clear that biological systems make use of such shift registers. There 
are also logical problems: How should a system know when a buffer’s con- 
tents should be examined? 

Second, the shift register imposes a rigid limit on the duration of patterns 
(since the input layer must provide for the longest possible pattern), and 
furthermore, suggests that all input vectors be the same length. These prob- 
lems are particularly troublesome in domains such as language, where one 
would like comparable representations for patterns that are of variable 
length. This is as true of the basic units of speech (phonetic segments) as it is 
of sentences. 

Finally, and most seriously, such an approach does not easily distinguish 
relative temporal position from absolute temporal position. For example, 
consider the following two vectors. 

[ 0 1 1 1 0 0 0 0 0 1  
[ 0 0 0 1 1 1 0 0 0 1  

These two vectors appear to be instances of the same basic pattern, but dis- 
placed in space (or time, if these are given a temporal interpretation). How- 
ever, as the geometric interpretation of these vectors makes clear, the two 
patterns are in fact quite dissimilar and spatially distant.’ PDP models can, 
of course, be trained to treat these two patterns as similar. But the similarity 
is a consequence of an external teacher and not of the similarity structure of 
the patterns themselves, and the desired similarity does not generalize to 
novel patterns. This shortcoming is serious if one is interested in patterns in 
which the relative temporal structure is preserved in the face of absolute 
temporal displacements. 

What one would like is a representation of time that is richer and does 
not have these problems. In what follows here, a simple architecture is 
described, which has a number of desirable temporal properties, and has 
yielded interesting results. 

-- 

I The reader may more easily be convinced of this by comparing the locations of the vectors 
11 0 01, [O 1 01, and 10 0 11 in 3-space. Although these patterns might be considered “temporally 
displaced” versions of the same basic pattern, the vectors are very different. 
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NETWORKS WITH MEMORY 

The spatial representation of time described above treats time as an explicit 
part of the input. There is another, very different possibility: Allow time to 
be represented by the effect it has on processing. This means giving the pro- 
cessing system dynamic properties that are responsive to temporal sequences. 
In short, the network must be given memory. 

There are many ways in which this can be accomplished, and a number 
of interesting proposals have appeared in the literature (e.g., Jordan, 1986; 
Pineda, 1988; Stornetta, Hogg, & Huberman, 1987; Tank & Hopfield, 1987; 
Waibel, Hanazawa, Hinton, Shikano, & Lang, 1987; Watrous & Shastri, 
1987; Williams & Zipser, 1988). One of the most promising was suggested 
by Jordan (1986). Jordan described a network (shown in Figure 1) contain- 
ing recurrent connections that were used to associate a static pattern (a 
“Plan”) with a serially ordered output pattern (a sequence of “Actions”). 
The recurrent connections allow the network’s hidden units to see its own 
previous output, so that the subsequent behavior can be shaped by previous 
responses. These recurrent connections are what give the network memory. 

This approach can be modified in the following way. Suppose a network 
(shown in Figure 2) is augmented at the input level by additional units; call 
these Context Units. These units are also “hidden” in the sense that they 
interact exclusively with other nodes internal to the network, and not the 
outside world. 

Imagine that there is a sequential input to be processed, and some clock 
which regulates presentation of the input to the network. Processing would 
then consist of the following sequence of events. At time t, the input units 
receive the first input in the sequence. Each unit might be a single scalar 
value or a vector, depending upon the nature of the problem. The context 
units are initially set to 0.5.* Both the input units and context units activate 
the hidden units; the hidden units then feed forward to activate the output 
units. The hidden units also feed back to activate the context units. This 
constitutes the forward activation. Depending upon- the task, there may or 
may not be a learning phase in this time cycle. If so, the output is compared 
with a teacher input, and back propagation of error (Rumelhart, Hinton, & 
Williams, 1986) is used to adjust connection strengths incrementally. Recur- 
rent connections are fixed at 1.0 and are not subject to ad j~s tment .~  At the 
next time step, t +  1, the above sequence is repeated. This time the context 

The activation function used here bounds values between 0.0 and 1.0. 
’ A little more detail is in order about the connections between the context units and hidden 

units. In the networks used here, there were one-for-one connections between each hidden unit 
and each context unit. This implies that there are an equal number of context and hidden units. 
The upward connections between the context units and the hidden units were fully distributed, 
such that each context unit activates all the hidden units. 
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Figure 1. Architecture used by Jordan (1986). Connections from output to state units are 
one-for-one, with a fixed weight of 1 .O Not all connections are shown. 

units contain values which are exactly the hidden unit values at time 1. These 
context units thus provide the network with memory. 

Internal Representation of Time. In feed forward networks employing 
hidden units and a learning algorithm, the hidden units develop internal 
representations for the input patterns that recode those patterns in a way 
which enables the network to produce the correct output for a given input. 
In the present architecture, the context units remember the previous internal 
state. Thus, the hidden units have the task of mapping both an external 
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OUTPUT UNITS 

, 
I , 

CONTEXT urws INPUT UNITS 

Figure 2. A simple recurrent network in which activations are copied from hidden layer to 
context layer on a one-for-one basis, with fixed weight of 1 .O. Dotted lines represent train- 
able connections. 

input, and also the previous internal state of some desired output. Because 
the patterns on the hidden units are saved as context, the hidden units must 
accomplish this mapping and at the same time develop representations which 
are useful encodings of the temporal properties of the sequential input. 
Thus, the internal representations that develop are sensitive to temporal 
context; the effect of time is implicit in these internal states. Note, however, 
that these representations of temporal context need not be literal. They rep- 
resent a memory which is highly task- and stimulus-dependent. 
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Consider now the results of applying this architecture to a number of 
problems that involve processing of inputs which are naturally presented in 
sequence. 

EXCLUSIVE-OR 

The Exclusive-Or (XOR) function has been of interest because it cannot be 
learned by a simple two-layer network. Instead, it requires at least three 
layers. The XOR is usually presented as a problem involving 2-bit input 
vectors (00, 11, 01, 10) yielding 1-bit output vectors (0, 0, 1, 1, respectively). 

This problem can be translated into a temporal domain in several ways. 
One version involves constructing a sequence of 1 -bit inputs by presenting 
the 2-bit inputs one bit at a time (Le., in 2 time steps), followed by the 1-bit 
output; then continuing with another input/output pair chosen at random. 
A sample input might be: 

1 0  1 0 0 0 0 1  1 1  1 0  1 0 1 .  . .  
Here, the first and second bits are XOR-ed to produce the third; the fourth 
and fifth are XOR-ed to give the sixth; and so on. The inputs are concatenated 
and presented as an unbroken sequence. 

In the current version of the XOR problem, the input consisted of a 
sequence of 3,000 bits constructed in this manner. This input stream was 
presented to the network shown in Figure 2 (with 1 input unit, 2 hidden units, 
1 output unit, and 2 context units), one bit at a time. The task of the network 
was, at each point in time, to predict the next bit in the sequence. That is, 
given the input sequence shown, where one bit at a time is presented, the 
correct output at corresponding points in time is shown below. 

input: 
output: 

Recall that the actual input to the hidden layer consists of the input shown 
above, as well as a copy of the hidden unit activations from the previous 
cycle. The prediction is thus based not just on input from the world, but 
also on the network’s previous state (which is continuously passed back to 
itself on each cycle). 

Notice that, given the temporal structure of this sequence, it is only some- 
times possible to predict the next item correctly. When the network has 
received the first bit-1 in the example above-there is a 50% chance that 
the next bit will be a 1 (or a 0). When the network receives the second bit (0), 
however, it should then be possible to predict that the third will be the XOR, 
1. When the fourth bit is presented, the fifth is not predictable. But from 
the fifth bit, the sixth can be predicted, and so on. 

1 0  1 0  0 0 0 1 1  1 1  0 1.0 1. .. 
0 1 0  0 0  0 1 1  1 1  0 1 0  1 ?... - 
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Figure 3. Graph of root mean squared error over 12 consecutive inputs in sequential XOR 
task. Data points are averaged over 1200 trials. 

In fact, after 600 passes through a 3,000-bit sequence constructed in this 
way, the network's ability to predict the sequential input closely follows the 
above schedule. This can be seen by looking at the sum squared error in the 
output prediction at successive points in the input. The error signal provides 
a useful guide as to when the network recognized a temporal sequence, 
because at such moments its outputs exhibit low error. Figure 3 contains a 
plot of the sum squared error over 12 time steps (averaged over 1,200 cycles). 
The error drops at those points in the sequence where a correct prediction is 
possible; at other points; the error is high. This is an indication that the net- 
work has learned something about the temporal structure of the input, and 
is able to use previous context and current input to make predictions about 
future input. The network, in fact, attempts to use the XOR rule at'all points 
in time; this fact is obscured by the averaging of error, which is done for 
Figure 3. If one looks at the output activations, it is apparent from the nature 
of the errors that the network predicts successive inputs to be the XOR of 
the previous two. This is guaranteed to be successful every third bit, and will 
sometimes, fortuitously, also result in correct predictions at other times. 

It is interesting that the solution to the temporal version of XOR is some- 
what different than the static version of the same problem. In a network 
with two hidden units, one unit is highly activated when the input sequence 
is a series of identical elements (all 1s or Os), whereas the other unit is highly 
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activated when the input elements alternate. Another way of viewing this is 
that the network develops units which are sensitive to high- and low-fre- 
quency inputs. This is a different solution than is found with feed-forward 
networks and simultaneously presented inputs. This suggests that problems 
may change their nature when cast in a temporal form. It is not clear that 
the solution will be easier or. more difficult in this form, but it is an impor- 
tant lesson to realize that the solution may be different. 

In this simulation, the prediction task has been used in a way that is 
somewhat analogous to auto-association. Auto-association is a useful tech- 
nique for discovering the intrinsic structure possessed by a set of patterns. 
This occurs because the network must transform the patterns into more 
compact representations; it generally does so by exploiting redundancies in 
the patterns. Finding these redundancies can be of interest because of what 
they reveal about the similarity structure of the data set (cf. Cottrell et al. 
1987; Elman & Zipser, 1988). 

In this simulation, the goal is to find the temporal structure of the XOR 
sequence. Simple auto-association would not work, since the task of simply 
reproducing the input at all points in time is trivially solvable and does not 
require sensitivity to sequential patterns. The prediction task is useful because 
its solution requires that the network be sensitive to temporal structure. 

STRUCTURE IN LETTER SEQUENCES 

One question which might be asked is whether the memory capacity of the 
network architecture employed here is sufficient to detect more complex 
sequential patterns than the XOR. The XOR pattern is simple in several 
respects. It involves single-bit inputs, requires a memory which extends only 
one bit back in time, and has only four different input patterns. More chal- 
lenging inputs would require multi-bit inputs of greater temporal extent, 
and a larger inventory of possible sequences. Variability in the duration of a 
pattern might also complicate the problem. 

An input sequence was devised which was intended to provide just these 
sorts of complications. The sequence was composed of six different 6-bit 
binary vectors. Although the vectors were not derived from real speech, one 
might think of them as representing speech sounds, with the six dimensions 
of the vector corresponding to articulatory features. Table 1 shows the vector 
for each of the six letters. 

The sequence was formed in two steps. First, the three consonants (b, d, 
g) were combined in random order to :btain a 1,000-letter sequence. Then, 
each consonant was replaced using the rules 

b- ba 
d- dii 
g- guuu 



188 ELMAN 

TABLE 1 
Vector Definitions of Alphabet 

Consonant Vowel Interrupted High Back Voiced 

b [ 1  0 1 0 0 1 1  
d 1 1  0 1 1 0 1 1  
g [ 1  0 1 0 1 1 1  
a [ O  1 0 0 1 1 1  
I [ O  1 0 1 0 1 1  
u [ O  1 0 1 1 1 1  

Thus, an initial sequence of the form dbgbddg . . . gave rise to the final se- 
quence diibaguuubadiidiiguuu. . . (each letter being represented by one of 
the above 6-bit vectors). The sequence was semi-random; consonants occurred 
randomly, but following a given consonant, the identity and number of 
following vowels was regular. 

The basic network used in the XOR simulation was expanded to provide 
for the 6-bit input vectors; there were 6 input units, 20 hidden units, 6 out- 
put units, and 20 context units. 

The training regimen involved presenting each 6-bit input vector, one at  a 
time, in sequence. The task for the network was to predict the next input. 
(The sequence wrapped around, that the first pattern was presented after 
the last.) The network was trained on 200 passes through the sequence. It 
was then tested on another sequence that obeyed the same regularities, but 
created from a different initial randomizaiton. 

The error signal for part of this testing phase is shown in Figure 4. Target 
outputs are shown in parenthesis, and the graph plots the corresponding 
error for each prediction. It is obvious that the error oscillates markedly; at 
some points in time, the prediction is correct (and error is low), while at 
other points in time, the ability to predict correctly is quite poor. More pre- 
cisely, error tends to be high when predicting consonants, and low when 
predicting vowels. 

Given the nature of the sequence, this behavior is sensible. The conso- 
nants were ordered randomly, but the vowels were not. Once the network 
has received a consonant as input, it can predict the identity of the following 
vowel. Indeed, it can do more; it knows how many tokens of the vowel to 
expect. At the end of the vowel sequence it has no way to predict the next 
consonant; at these points in time, the error is high. 

This global error pattern does not tell the whole story, however. Remem- 
ber that the input patterns (which are also the patterns the network is trying 
to predict) are bit vectors. The error shown in Figure 4 is the sum squared 
error over all 6 bits. Examine the error on a bit-by-bit basis; a graph of the 
error for bits [l] and [4] (over 20 time steps) is shown in Figure 5 .  There is a 
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Figure 4. Graph of root mean squared error in letter prediction task. Labels indicate the 
correct output prediction at each point in time. Error is  computed over the entire output 
vector. 

striking difference in the error patterns. Error on predicting the first bit is 
consistently lower than error for the fourth bit, and at all points in time. . 
Why should this be so? 

The first bit corresponds to the features Consonant; the fourth bit cor- 
responds to the feature High. It happens that while all consonants have the 
same value for the feature Consonant, they differ for High. The network 
has learned which vowels follow which consonants; this is why error on 
vowels is low. It has also learned how many vowels follow each consonant. 
An interesting corollary is that the network also knows how soon to expect 
the next consonant. The network cannot know which consonant, but it can 
predict correctly that a consonant follows. This is why the bit patterns for 
Consonant show low error, and the bit patterns for High show high error. 
(It is this behavior which requires the use of context units; a simple feed- 
forward network could learn the transitional probabilities from one input to 
the next, but could not learn patterns that span more than two inputs.) 



Figure 5 (a). Graph of root mean squared error in letter prediction task. Error 
on bit 1 ,  representing the feature CONSONANTAL. 

is computed 

Flgure 5 (b). Graph of root mean squared error in letter prediction task. Error is computed 
on bit 4,  representing the feature HIGH. 

190 



FINDING STRUCTURE IN TIME 191 

This simulation demonstrates an interesting point. This input sequence 
was in some ways more complex than the XOR input. The serial patterns 
are longer in duration; they are of variable length so that a prediction de- 
pends upon a variable mount of temporal context; and each input consists 
of a 6-bit rather than a 1-bit vector. One might have reasonably thought 
that the more extended sequential dependencies of these patterns would 
exceed the temporal processing capacity of the network. But almost the 
opposite is true. The fact that there are subregularities (at the level of indi- 
vidual bit patterns) enables the network to make partial predictions, even in 
cases where the complete prediction is not possible. All of this is dependent 
upon the fact that the input is structured, of course. The lesson seems to be 
that more extended sequential dependencies may not necessarily be more 
difficult to learn. If the dependencies are structured, that structure may 
make learning easier and not harder. 

DISCOVERING THE NOTION “WORD” 

It is taken for granted that learning a language involves (among many other 
things) learning the sounds of that language, as well as the morphemes and 
words. Many theories of acquisition depend crucially upon such primitive 
types as word, or morpheme, or more abstract categories as noun, verb, or 
phrase (e.g., Berwick & Weinberg, 1984; Pinker, 1984). Rarely is it asked 
how a language learner knows when to begin or why these entities exist. 
These notions are often assumed to be innate. 

Yet, in fact, there is considerable debate among linguists and psycholin- 
guists about what representations are used in language. Although it is com- 
monplace to speak of basic units such as “phoneme,” “morpheme,” and 
“word,” these constructs have no clear and uncontroversial definition. 
Moreover, the commitment to such distinct levels of representation leaves a 
troubling residue of entities that appear to lie between the levels. For in- 
stance, in many languages, there are sound/meaning correspondences which 
lie between the phoneme and the morpheme (i.e., sound symbolism). Even 
the concept “word” is not as straightforward as one might think (cf. Green- 
berg, 1963; Lehman, 1962). In English, for instance, there is no consistently 
definable distinction among words (e.g., “apple”), compounds (“apple 
pie”) and phrases (“Library of Congress” or “man in the street”). Further- 
more, languages differ dramatically in what they treat as words. In polysyn- 
thetic languages (e.g., Eskimo), what would be called words more nearly 
resemble what the English speaker would call phrases or entire sentences. 

Thus, the most fundamental concepts of linguistic analysis have a fluidity, 
which at the very least, suggests an important role for learning; and the 
exact form of the those concepts remains an open and important question. 

In PDP networks, representational form and representational content 
often can be learned simultaneously. Moreover, the representations which 

1. 
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result have many of the flexible and graded characteristics noted above. 
Therefore, one can ask whether the notion “word” (or something which 
maps on to this concept) could emerge as a consequence of learning the 
sequential structure of letter sequences that form words and sentences (but 
in which word boundaries are not marked). 

Imagine then, another version of the previous task, in which the latter 
sequences form real words, and the words form sentences. The input will 
consist of the individual letters (imagine these as analogous to speech sounds, 
while recognizing that the orthographic input is vastly simpler than acoustic 
input would be). The letters will be presented in sequence, one at a time, 
with no breaks between the letters in a word, and no breaks between the 
words of different sentences. 

Such a sequence was created using a sentence-generating program and a 
lexicon of 15 words.4 The program generated 200 sentences of varying length, 
from four to nine words. The sentences were concatenated, forming a stream 
of 1,270 words. Next, the words were broken into their letter parts, yielding 
4,963 letters. Finally, each letter in each word was converted into a 5-bit 
random vector. 

The result was a stream of 4,963 separate 5-bit vectors, one for each 
letter. These vectors were the input and were presented one at a time. The 
task at each point in time was to predict the next letter. A fragment of the 
input and desired output is shown in Table 2. 

A network with 5 input units, 20 hidden units, 5 output units, and 20 
context units was trained on 10 complete presentations of the sequence. The 
error was relatively high at this point; the sequence was sufficiently random 
that it would be difficult to obtain very low error without memorizing the 
entire sequence (which would have required far more than 10 presentations). 

Nonetheless, a graph of error over time reveals an interesting pattern. A 
portion of the error is plotted in Figure 6; each data point is marked with 
the letter that should be predicted at that point in time. Notice that at the 
onset of each new word, the error is high. As more of the word is received 
the error declines, since the sequence is increasingly predictable. 

The error provides a good clue as to what the recurring sequences in the 
input are, and these correlate highly with words. The information is not 
categorical, however. The error reflects statistics of co-occurrence, and 
these are graded. Thus, while it is possible to determine, more or less, what 
sequences constitute words (those sequences bounded by high error), the 
criteria for boundaries are relative. This leads to ambiguities, as in the case 
of the y in they (see Figure 6); it could also lead to the misidentification of 

‘ The program used was a simplified version of the program described in greater detail in 
the next simulation. 
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TABLE 2 
Fragment of Training Sequence for letters-in-Words Simulation 

Input output 

01101 (m) oooo1 (0) 

00001 (0 )  01110 (n )  
01110 ( n )  11001 ( Y )  
11001 ( Y )  11001 ( Y )  
11001 (Y) 00101 (e) 
00101 (e) oooo1 (0 )  

00001 ( 0 )  10010 ( r )  
10010 (r)  10011 ( 5 )  

10011 (s) oooO1 (a)  
oooO1 (a)  00111 ( 9 )  
00111  ( 9 )  01111 (0 )  

01111 ( 0 )  oooo1 (0 )  

00001 (a)  oOo10 ( b )  
O0010 (b) 01111 (0) 

01111 ( 0 )  11001 (Y) 
11001 ( Y )  oooO1 ( a )  

01110 (n) oooo1 (0) 
01110 ( n )  00100 (d) 
00100 (d) 00111 ( 9 )  

01001 (i) 00111 ( 9 )  
01001 (i) 10010 ( r )  
10010 (r) 01100 ( f )  
01100 ( I )  01100 ( i )  
11001 ( i )  

common sequences that incorporate more than one word, but which co-occur 
frequently enough to be treated as a quasi-unit. This is the sort of behavior 
observed in children, who at early stages of language acquisition may treat 
idioms and other formulaic phrases as fixed lexical items (MacWhinney, 
1978). 

This simulation should -not be taken as a model of word acquisition. 
While listeners are clearly able to make predictions based upon partial input 
(Grosjean, 1980; Marslen-Wilson & Tyler, 1980; Salasoo & Pisoni, 1985), 
prediction is not the major goal of the language learner. Furthermore, the 
co-occurrence of sounds is only part of what identifies a word as such. The 
environment in which those sounds are uttered, and the linguistic context, 
are equally critical in establishing the coherence of the sound sequence and 
associating it with meaning. This simulation focuses only on a limited part 
of the information available to the language learner. The simulation makes 
the simple point that there is information in the signal that could serve as a 
cue to the boundaries of linguistic units which must be learned, and it demon- 
strates the ability of simple recurrent nerworks to extract this information. 
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Figure 6. Graph of root mean squared error in letter-in-word precition task. 

DISCOVERING LEXICAL CLASSES FROM WORD ORDER 

Consider now another problem which arises in the context of word sequences. 
The order of words in sentences reflects a number of constraints. In lan- 
guages such as English (so-called “fixed word-order” languages), the order 
is tightly constrained. In many other languages (the “free word-order” lan- 
guages), there are more options as to word order (but even here the order is 
not free in the sense of random). Syntactic structure, selective restrictions, 
subcategorization, and discourse considerations are among the many factors 
which join together to fix the order in which words occur. Thus, the sequen- 
tial order of words in sentences is neither simple, nor is it determined by a 
single cause. In addition, it has been argued that generalizations about word 
order cannot be accounted for solely in terms of linear order (Chomsky, 
1957, 1965). Rather, there is an abstract structure which underlies the sur- 
face strings and it is this structure which provides a more insightful basis for 
understanding the constraints on word order. 
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While it is undoubtedly true that the surface order of words does not pro- 
vide the most insightful basis for generalizations about word order, it is also 
true that from the point of view of the listener, the surface order is the only 
visible (or audible) part. Whatever the abstract underlying structure be, it is 
cued by the surface forms, and therefore, that structure is implicit in them. 

In the previous simulation, it was demonstrated that a network was able 
to learn the temporal structure of letter sequences. The order of letters in 
that simulation, however, can be given with a small set of relatively simple 
r ~ l e s . ~  The rules for determining word order in English, on the other hand, 
will be complex and numerous. Traditional accounts of word order generally 
invoke symbolic processing systems to express abstract structural relation- 
ships. One might, therefore, easily believe that there is a qualitative differ- 
ence in the nature of the computation needed for the last simulation, which 
is required to predict the word order of English sentences. Knowledge of 
word order might require symbolic representations that are beyond the 
capacity of (apparently) nonsymbolic PDP systems. Furthermore, while it is 
true, as pointed out above, that the surface strings may be cues to abstract 
structure, considerable innate knowledge may be required in order to recon- 
struct the abstract structure from the surface strings. It is, therefore, an 
interesting question to ask whether a network can learn any aspects of that 
underlying abstract structure. 

Simple Sentences 
As a first step, a somewhat modest experiment was undertaken. A sentence 
generator program was used to construct a set of short (two- and three- 
word) utterances. Thirteen classes of nouns and verbs were chosen; these 
are listed in Table 3. Examples of each category are given; it will be noticed 
that instances of some categories (e.g., VERB-DESTROY) may be included 
in others (e.g., VERB-TRAN). There were 29 different lexical items. 

The generator program used these categories and the 15 sentence templates 
given in Table 4 to create 10,OOO random two- and three-word sentence 
frames. Each sentence frame was then filled in by randomly selecting one of 
the possible words appropriate to each category. Each word was replaced by 
a randomly assigned 31-bit vector in which each word was represented by a 
different bit. Whenever the word was present, that bit was flipped on. Two 
extra bits were reserved for later simulations. This encoding scheme guaran- 
teed that each vector was orthogonal to every other vector and reflected 
nothing about the form class or meaning of the words. Finally, the 27,534 
word vectors in the 10,OOO sentences were concatenated, so that an input 
stream of 27,534 31-bit vectors was created. Each word vector was distinct, 

In the worst case, each word constitutes a rule. Hopefully, networks will learn that recur- 
ring orthographic regularities provide additional and more general constraints (cf. Sejnowski & 
Rosenberg, 1987). 
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TABLE 3 
Categories of Lexical Items Used in Sentence Simulation 

Category 

NOUN-HUM 
NOUN-ANIM 
NOUN-INANIM 
NOUN-AGRESS 
NOUN-FRAG 
NOUN-FOOD 
VERB-INTRAN 
VERB-TRAN 
VERB-AGPAT 
VERB-PERCEPT 
VERB-DESTROY 
VERB-EAT 

Examples 

man, woman 
cat, mouse 
book, rock 
dragon, monster 
glass, plate 
cookie, break 
think, sleep 
see, chase 
move, break 
smell, see 
break, smash 
eat 

TABLE 4 
Templates for Sentence Generator 

WORD 1 WORD 2 WORD 3 

NOUN-HUM VERB-EAT NOUN-FOOD 
NOUN-HUM VERB-PERCEPT NOUN-INANIM 
NOUN-HUM VERB-DESTROY NOUN-FRAG 
NOUN-HUM VERB-INTRAN 
NOUN-HUM VERB-TRAN NOUN-HUM 
NOUN-HUM VERB-AGPAT NOUN-INANIM 
NOUN-HUM VERB-AGPAT 
NOUN-ANIM VERB-EAT NOUN-FOOD 
NOUN-ANIM VERB-TRAN NOUN-ANIM 
NOUN-ANIM VERB-AGPAT NOUN-INANIM 
NOUN-ANIM VERB-AGPAT 
NOUN-INANIM VERB-AGPAT 
NOUN-AGRESS VERB-DESTROY NOUN-FRAG 
NOUN-AGRESS VERB-EAT NOUN-HUM 
NOUN-AGRESS VERB-EAT NOUN-ANIM 
NOUN-AGRESS VERB-EAT NOUN-FOOD 

but there were no breaks between successive sentences. A fragment of the 
input stream is shown in Column 1 of Table 5, with the English gloss for 
each vector in parentheses. The desired output is given in Column 2. 

For this simulation a network similar to that in the first simulation was 
used, except that the input layer and output layers contained 31 nodes each, 
and the hidden and context layers contained 150 nodes each. 

The task given to the network was to learn to predict the order of succes- 
sive words. The training strategy was as follows. The sequence of 27,354 
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TABLE 5 
Fragment of Training Sequences for Sentence Simulation 

Input output 

0000000000000000000010  (woman) 
00000000000000000000lW (smash) 
000000000000000000001- (plate) 
O O O O O I P  (cat) 
-1OOOOOOOOOOO (move) 
-1- (man) 
0001- (break) 
W l P  (car) 
01- (boy) 
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move) 
-1- @id) 
-1- (eat) 
001- (bread) 
-1- (dog) 
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move) 
-1- (mouse) 
-1- (mouse) 
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move) 
1OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO (book) -1-0 (lion) 

31-bit vectors formed an input sequence. Each word in the sequence was 
input, one at a time, in order. The task on each input cycle was to predict 
the 31-bit vector corresponding to the next word in the sequence. At the end 
of the 27,534 word sequence, the process began again, without a break, 
starting with the first word. The training continued in this manner until the 
network had experienced six complete passes through the sequence. 

Measuring the performance of the network in this simulation is not 
straightforward. RMS error after training dropped to 0.88. When output 
vectors are as sparse as those used in this simulation (only 1 out of 31 bits 
turned on), the network quickly learns to turn off all the output units, which 
drops error from the initial random value of - 15.5 to 1.0. In this light, a 
final error of 0.88 does not seem impressive. 

Recall that the prediction task is nondeterministic. Successors cannot be 
predicted with absolute certainty; there is a built-in error which is inevitable. 
Nevertheless, although the prediction cannot be error-free, it is also true 
that word order is not random. For any given sequence of words there are a 
limited number of possible successors. Under these circumstances, the net- 
work should learn the expected frequency of occurrence of each of the possi- 
ble successor words; it should then activate the output nodes proportional 
to these expected frequencies. 

This suggests that rather than testing network performance with the RMS 
error calculated on the actual successors, the output should be compared 
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with the expected frequencies of occurrence of possible successors. These 
expected latter values can be determined empirically from the training corpus. 
Every word in a sentence is compared against all other sentences that are, up 
to that point, identical. These constitute the comparison set. The probability 
of occurrence for all possible successors is then determined from this set. 
This yields a vector for each word in the training set. The vector is of the 
same dimensionality as the output vector, but rather than representing a dis- 
tinct word (by turning on a single bit), it represents the likelihood of each 
possible word occurring next (where each bit position is a fractional number 
equal to the probability). For testing purposes, this likelihood vector can be 
used in place of the actual teacher and a RMS error computed based on the 
comparison with the network output. (Note that it is appropriate to use 
these likelihood vectors only for the testing phase. Training must be done 
on actual successors, because the point is to force the network to learn the 
probabilities.) 

When performance is evaluated in this manner, RMS error on the train- 
ing set is 0.053 (SD=0.100). One remaining minor problem with this error 
measure is that although the elements in the likelihood vectors must sum to 
1 .O (since they represent probabilities), the activations of the network need 
not sum to 1 .O. It is conceivable that the network output learns the relative 
frequency of occurrence of successor words more readily than it approxi- 
mates exact probabilities. In this case the shape of the two vectors might be 
similar, but their length different. An alternative measure which normalizes 
for length differences and captures the degree to which the shape of the 
vectors is similar is the cosine of the angle between them. Two vectors might 
be parallel (cosine of 1.0) but still yield an RMS error, and in this case it 
might be felt that the network has extracted the crucial information. The 
mean cosine of the angle between network output on training items and 
likelihood vectors is 0.916 (SD =0.123). By either measure, RMS or cosine, 
the network seems to have learned to approximate the likelihood ratios of 
potential successors. 

How has this been accomplished? The input representations give no in- 
formation (such as form class) that could be used for prediction. The word 
vectors are orthogonal to each other. Whatever generalizations are true of 
classes of words must be learned from the co-occurrence statistics, and the 
composition of those classes must itself be learned. 

If indeed the network has extracted such generalizations, as opposed 
simply to memorizing the sequence, one might expect to see these patterns 
emerge in the internal representations which the network develops in the 
course of learning the task. These internal representations are captured by 
the pattern of hidden unit activations which are evoked in response to each 
word and its context. (Recall that hidden units are activated by both input 
units and context units. There are no representations of words in isolation.) 
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The nature of these internal representations was studied in the following 
way. After the learning phase of six complete passes through the corpus, the 
connection strengths in the network were frozen. The input stream was 
passed through the network one final time, with no learning taking place. 
During this testing, the network produced predictions of future inputs on 
the output layer. These were ignored. Instead, the hidden unit activations 
for each word +context input were saved, resulting in 27,354 150-bit vectors. 
Each word occurs many times, in different contexts. As a first approxima- 
tion of a word’s prototypical or composite representation, all hidden unit 
activation patterns produced by a given word (in all its contexts) were aver- 
aged to yield a single 150-bit vector for each of the 29 unique words in the 
input stream.6 (In the next section it will be shown how it is possible to study 
the internal representations of words in context.) These internal representa- 
tions were then subject to a hierarchical clustering analysis. Figure 7 shows 
the resulting tree; this tree reflects the similarity structure of the internal 
representations these lexical items. Lexical items which have similar proper- 
ties are grouped together lower in the tree, and clusters of similar words 
which resemble other clusters are connected higher in the tree. 

The network has discovered that there are several major categories of 
words. One large category corresponds to verbs; another category corre- 
sponds to nouns. The verb category is broken down into groups that require 
a direct object, or are intransitive, or where a direct object is optional. The 
noun category is broken into two major groups: inanimates, and animates. 
Animates are divided into human and nonhuman; the nonhuman are divided 
into large animals and small animals. Inanimates are broken into breakable, 
edibles, and nouns which appeared as subjects of agentless active verbs. 

The network has developed internal representations for the input vectors 
which reflect facts about the possible sequential ordering of the inputs. The 
network is not able to predict the precise order of words, but it recognizes 
that (in this corpus) there is a class of inputs (namely, verbs) that typically 
follow other inputs (namely, nouns). This knowledge of class behavior is 
quite detailed; from the fact that there is a class of items which always pre- 
cedes “chase,” “break,” “smash,” it infers that the large animals form 
a class. 

Tony Plate (personal communication) has pointed out that this technique is dangerous, 
inasmuch as it may introduce a statistical artifact. The hidden unit activation patterns are 
highly dependent upon preceding inputs. Because the preceding inputs are not uniformly dis- 
tributed (they follow precisely the co-occurrence conditions which are appropriate for the 
different categories), this means that the mean hidden unit pattern across all contexts of a 
specific item will closely resemble the mean hidden unit pattern for other items in the same 
category. This could occur even without learning, and is a consequence of the averaging of 
vectors which occurs prior to cluster analysis. Thus the results of the averaging technique 
should be verified by clustering individual tokens; tokens should always be closer to other 
members of the same type than to tokens of other types. 
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Figure 7. Hierarchical cluster diagram of hidden unit activation vectors in simple sentence 
prediction task. Labels indicate the inputs which produced the hidden unit vectors; inputs 
were presented in context, and the hidden unit vectors averaged across multiple contexts. 

Several points should be emphasized. First, the category structure appears 
to be hierarchical. Thus, “dragons” are large animals, but also members of 
the class of [-human, +animate] nouns. The hierarchical interpretation is 
achieved through the way in which the spatial relations (of the representa- 
tions) are organized. Representations that are near one another in the repre- 
sentational space form classes, while higher level categories correspond to 
larger and more general regions of this space. 

Second, it is also true that the hierarchy is “soft” and implicit. While 
some categories may be qualitatively distinct (Le., very far from each other 
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in space), there may also be other categories that share properties and have 
less distinct boundaries. Category membership in some cases may be marginal 
of unambiguous. 

Finally, the content of the categories is not known to the network. The 
network has no information available which would “ground” the structural 
information in the real world. In this respect, the network has much less 
information to work with than is available to real language learners.’ In a 
more realistic model of acquisition, one might imagine that the utterance 
provides one source of information about the nature of lexical categories; 
the world itself provides another source. One might model this by embedding 
the “linguistic” task in an environment; the network would have the dual 
task of extracting structural information contained in the utterance, and 
structural information about the environment. Lexical meaning would grow 
out of the associations of these two types of input. 

In this simulation, an important component of meaning is context. The 
representation of a word is closely tied up with the sequence in which it is 
embedded. Indeed, it is incorrect to speak of the hidden unit patterns as 
word representations in the conventional sense, since these patterns also 
reflect the prior context. This view of word meaning, that is, its dependence 
upon context, can be demonstrated in the following way. 

Freeze the connections in the network that has just been trained, so that 
no further learning occurs. Imagine a novel word, zog, which the network 
has never seen before, and assign to this word a bit pattern which is differ- 
ent from those it was trained on. This word will be used in place of the word 
man; everywhere that man could occur, zog will occur instead. A new se- 
quence of 10,OOO sentences is created, and presented once to the trained net- 
work. The hidden unit activations are saved, and subjected to a hierarchical 
clustering analysis of the same sort used with the training data. 

The resulting tree is shown in Figure 8. The internal representation for 
the word zog bears the same relationship to the other words as did the word 
man in the original training set. This new word has been assigned an internal 
representation that is consistent with what the network has already learned 
(no learning occurs in this simulation) and the new word’s behavior. Another 
way of looking at this is in certain contexts, the network expects man, or 
something very much like it. In just such a way, one can imagine real lan- 
guage learners making use of the cues provided by word order to make intel- 
ligent guesses about the meaning of novel words. 

Although this simulation was not designed to provide a model of context 
effects in word recognition, its behavior is consistent with findings that have 
been described in the experimental literature. A number of investigators 

’ Jay McClelland has suggested a humorous-but entirely accurate-metaphor for this 
task: It is like trying to learn a language by listening to the radio. 
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Figure 8. Hierarchical clustering diagram of hidden unit activation vectors in simple sen- 
tence prediction task, with the addition of the novel input ZOG. 

have studied the effects of sentential context on word recognition. Although 
some researchers have claimed that lexical access is insensitive to context 
(Swinney, 1979), there are other results which suggest that when context is 
sufficiently strong, it does indeed selectively facilitate access to related words 
(Tabossi, Colombo, & Job, 1987). Furthermore, individual items are typi- 
cally not very predictable but classes of words are (Schwanenflugel8c Shoben, 
1985; Tabossi, 1988). This is precisely the pattern found here, in which the 
error in predicting the actual next word in a given context remains high, but 



FINDING STRUCTURE IN TIME 203 

the network is able to predict the approximate likelihood of occurrence of 
classes of words. 

TYPES, TOKENS, AND STRUCTURED REPRESENTATIONS 

There has been considerable discussion about the ways in which PDP net- 
works differ from traditional computational models. One apparent differ- 
ence is that traditional models involve symbolic representations, whereas 
PDP nets seem, to many people, to be non- or perhaps subsymbolic (Fodor 
& Pylyshyn, 1988; Smolensky, 1987, 1988). This is a difficult and complex 
issue, in part because the definition of symbol is problematic. Symbols do 
many things, and it might be more useful to  contrast PDP versus traditional 
models with regard to the various functions that symbols can serve. 

Both traditional and PDP networks involve representations which are 
symbolic in the specific sense that the representations refer to other things. 
In traditional systems, the symbols have names such as A, or x, or P.  In 
PDP nets, the internal representations are generally activation patterns 
across a set of hidden units. Although both kinds of representations do the 
task of referring, there are important differences. Classical symbols typi- 
cally refer to classes or categories, but in PDP nets the representations may 
be highly context-dependent. This does not mean that the representations 
do not capture information about category or class (this should be clear 
from the previous simulation); it does mean that there is also room in the 
representation scheme to pick out individuals. 

This property of PDP representations might seem to be a serious draw- 
back to some. In the extreme, it suggests that there could be separate repre- 
sentations for the entity John in every different context in which that entity 
can occur, leading to an infinite number of Johni. But rather than being a 
drawback, I suggest this aspect of PDP networks significantly extends their 
representational power. The use of distributed representations, together 
with the use of context in representing words (which is a consequence of 
simple recurrent networks) provides one solution to a thorny problem-the 
question of how to represent typehoken differences-and sheds insight on 
the ways in which distributed representations can represent structure. 

In order to justify this claim, let me begin by commenting on the repre- 
sentational richness provided by the distributed representations developed 
across the hidden units. In localist schemes, each node stands for a separate 
concept. Acquiring new concepts usually requires adding new nodes. In 
contrast, the hidden unit patterns in the simulations reported here have 
tended to develop distributed representations. In this scheme, concepts are 
expressed as activation patterns over a fixed number of nodes. A given node 
participates in representing multiple concepts. It is the activation pattern in 
its entirety that is meaningful. The activation of an individual node may be 
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uninterpretable in isolation (i.e., it may not even refer to a feature or micro- 
feature). 

Distributed representations have a number fo advantages over localist 
representations (although the latter are not without their own benefits).* If 
the units are analog (Le., capable of assuming activation states in a continu- 
ous range between some minimum and maximum values), then, in principle, 
there is no limit to the number of concepts which can be represented with a 
finite set of units. In the simulations here, the hidden unit patterns do double 
duty. They are required not only to represent inputs, but to develop repre- 
sentations which will serve as useful encodings of temporal context that can 
be used when processing subsequent inputs. Thus, in theory, analog hidden 
units would also be capable of providing infinite memory. 

Of course, there are many reasons why in practice the memory is bounded, 
and why the number of concepts that can be stored is finite. There is limited 
numeric precision in the machines on which these simulations are run; the 
activation function is repetitively applied to the memory and results in expo- 
nential decay; and the training regimen may not be optimal for exploiting 
the full capacity of the networks. For instance, many of the simulations 
reported here involve the prediction task. This task incorporates feedback 
on every training cycle. In other pilot work, it was found that there was 
poorer performance in tasks in which there was a delay in injecting error into 
the network. Still, just what the representational capacity is of these simple 
recurrent networks remains an open question (but, see Servan-Schreiber, 
Cleeremans, & McClelland, 1988). 

Having made these preliminary observations, the question of the context- 
sensitivity of the representations developed in the simulations reported here 
will be addressed. Consider the sentence-processing simulation. It was found 
that after learning to predict words in sentence sequences, the network de- 
veloped representations that reflected aspects of the words’ meaning as well 
as their grammatical category. This was apparent in the similarity structure 
of the internal representation of each word; this structure was presented 
graphically as a tree in Figure 7. 

In what sense are the representations, which have been clustered in Figure 
7, context sensitive? In fact, they are not; recall that these representations 
are composites of the hidden unit activation patterns in response to each 
word averaged across many different contexts. So the hidden unit activation 
pattern used to represent boy, for instance, was really the mean vector of 
activation patterns in response to boy as it occurs in many different contexts. 

The reason for using the mean vector in the previous analysis was in large 
part practical. It is difficult to do a hierarchical clustering of 27,454 patterns, 
and even more difficult to display the resulting tree graphically. However, 

These advantages are discussed at length in Hinton, McClelland, and Rumelhart (1986). 
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one might want to know whether the patterns displayed in the tree in Figure 
7 are in any way artifactual. Thus, a second analysis was carried out, in 
which all 27,454 patterns were clustered. The tree cannot be displayed here, 
but the numerical results indicate that the tree would be identical to the tree 
shown in Figure 7; except that instead of ending with the terminals that 
stand for the different lexical items, the branches would continue with fur- 
ther arborization containing the specific instances of each lexical item in its 
context. No instance of any lexical item appears inappropriately in a branch 
belonging to another. 

It would be correct to think of the tree in Figure 7 as showing that the net- 
work has discovered that there are 29 types (among the sequence of 27,454 
inputs). These types are the different lexical items shown in that figure. A 
finer grained analysis reveals that the network also distinguishes between 
the specific occurrences of each lexical item, that is, the tokens. The internal 
representations of the various tokens of a lexical type are very similar. 
Hence, they are all gathered under a single branch in the tree. However, the 
internal representations also make subtle distinctions between (for example), 
boy in one context and boy in another. Indeed, as similar as the representa- 
tions of the various tokens are, no two tokens of a type are exactly identical. 

Even more interesting is that there is a substructure of the representations 
of the various types of a token. This can be seen by looking at Figure 9, 
which shows the subtrees corresponding to the tokens of boy and girl. (Think 
of these as expansions of the terminal leaves for boy and girl in Figure 8.) 
The individual tokens are distinguished by labels which indicate their origi- 
nal context. 

One thing that is apparent is that subtrees of both types (boy and girl) are 
similar to one another. On closer scrutiny, it is seen that there is some orga- 
nization here; (with some exceptions) tokens of boy that occur in sentence- 
initial position are clustered together, and tokens of boy in sentence-final 
position are clustered together. Furthermore, this same pattern occurs among 
the patterns representing girl. Sentence-final words are clustered together 
on the basis of similarities in the preceding words. The basis for clustering 
of sentence-initial inputs is simply that they are all preceded by what is effec- 
tively noise (prior sentences). This is because there are no useful expectations 
about the sentence-initial noun (other than that it will be a noun) based 
upon the prior sentences. On the other hand, one can imagine that if there 
were some discourse structure relating sentences to each other, then there 
might be useful information from one sentence which would affect the rep- 
resentation of sentence-initial words. For example, such information might 
disambiguate (i.e. , give referential content to) sentence-initial pronouns. 

Once again, it is useful to try to understand these results in geometric 
terms. The hidden unit activation patterns pick out points in a high (but 
fixed) dimensional space. This is the space available to the network for its 



Figure 9. Hierarchical cluster diagram of hidden unit activation vectors in response to some 
occurrences of the inputs BOY and GIRL. Upper-case labels indicate the actual input; lower- 
case labels indicate the context for each input. 
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internal representations. The network structures that space in such a way 
that important relations between entities is translated into spatial relation- 
ships. Entities which are nouns are located in one region of space and verbs 
in another. In a similar manner, different types (here, lexical items) are dis- 
tinguished from one another by occupying different regions of space; but 
also, tokens of a same type are differentiated. The differentiation is nonran- 
dom, and the way in which tokens of one type are elaborated is similar to 
elaboration of another type. That is, John1 bears the same spatial relation- 
tionship to John2 as Mary1 bears to Maryz. 

This use of context is appealing, because it provides the basis both for 
establishing generalizations about classes of items and also allows for the 
tagging of individual items by their context. The result is that types can be 
identified at the same time as tokens. In symbolic systems, typeltoken dis- 
tinctions are often made by indexing or binding operations; the networks 
here provide an alternative account of how such distinctions can be made 
without indexing or binding. 

CONCLUSIONS 

There are many human behaviors which unfold over time. It would be folly 
to try to understand those behaviors without taking into account their tem- 
poral nature. The current set of simulations explores the consequences of 
attempting to develop representations of time that are distributed, task-de- 
pendent, and in which time is represented implicitly in the network dynamics. 

The approach described here employs a simple architecture, but is sur- 
prisingly powerful. There are several points worth highlighting. 

Some problems change their nature when expressed as temporal events. 
In the first simulation, a sequential version of the XOR was learned. 
The solution to this problem involved detection of state changes, and 
the development of frequency-sensitive hidden units. Casting the XOR 
problem in temporal terms led to a different solution than is typically 
obtained in feed-forward (simultaneous input) networks. 
The time-varying error signal can be used as a clue to temporal struc- 
ture. Temporal sequences are not always uniformly structured, nor uni- 
formly predictable. Even when the network has successfully learned 
about the structure of a temporal sequence, the error may vary. The 
error signal is a good metric of where structure exists; it thus provides a 
potentially very useful form of feedback to the system. 
Increasing the sequential dependencies in a task does not necessarily 
result in worse performance. In the second simulation, the task was 
complicated by increasing the dimensionality of the input vector, by 
extending the duration of the sequence, and by making the duration of 
the sequence variable. Performance remained good, because these com- 
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plications were accompanied by redundancy, which provided additional 
cues for the task. The network was also able to discover which parts of 
the complex input were predictable, making it possible to maximize per- 
formance in the face of partial unpredictability. 
The representation of time-and memory-is high& task-dependent. 
The networks here depend upon internal representations which have 
available, as part of their input, their own previous state. In this way 
the internal representations intermix the demands of the task with the 
demands imposed by carrying out that task over time. There is no sepa- 
rate “representation of time.” There is simply the representation of input 
patterns in the context of a given output function; it just happens that 
those input patterns are sequential. That representation, and thus the 
representation of time, varies from task to task. This presents a some- 
what novel view of memory. In this account, memory is neither passive 
nor a separate subsystem. One cannot properly speak of a memory for 
sequences; that memory is inextricably bound up with the rest of the 
processing mechanism. 
The representations need not be “flat, ”atomistic, or unstructured. The 
sentence task demonstrated that sequential inputs may give rise to inter- 
nal representations which are hierarchical in nature. The hierarchy is 
implicit in the similarity structure of the hidden unit activations and 
does not require an a priori architectural commitment to the depth or 
form of the hierarchy. Importantly, distributed representations make 
available a space which can be richly structured. Categorical relation- 
ships as well as typekoken distinctions are readily apparent. Every item 
may have its own representation, but because the representations are 
structured, relations between representations are preserved. 

* 

The results described here are preliminary in nature. They are highly sug- 
gestive, and often raise more questions than they answer. These networks 
are properly thought of as dynamical systems, and one would like to know 
more about their properties as such. For instance, the analyses reported 
here made frequent use of hierarchical clustering techniques in order to 
examine the similarity structure of the internal representations. These repre- 
sentations are snapshots of the internal states during the course of process- 
ing a sequential input. Hierarchical clustering of these snapshots gives useful 
information about the ways in which the internal states of the network at 
different points in time are similar or dissimilar. But the temporal relation- 
ship between states is lost. One would like to know what the trajectories 
between states (Le., the vector field) look like. What sort of attractors develop 
in these systems? It is a problem, of course, that the networks studied here 
are high-dimensional systems, and consequently difficult to study using 
traditional techniques. One promising approach, which is currently being 
studied, is to carry out a principal components analysis of the hidden unit 
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activation pattern time series, and then to construct phase state portraits of 
the most significant principal components (Elman, 1989). 

Another question of interest is what is the memory capacity of such net- 
works. The results reported here suggest that these networks have consider- 
able representational power; but more systematic analysis using better defined 
tasks is clearly desirable. Experiments are currently underway using sequences 
generated by finite state automata of various types; these devices are rela- 
tively well understood, and their memory requirements may be precisely 
controlled (Servan-Schreiber et al., 1988). 

One of the things which feedforward PDP models have shown is that 
simple networks are capable of discovering useful and interesting internal 
representations of many static tasks. Or put the other way around: Rich 
representations are implicit in many tasks. However, many of the most in- 
teresting human behaviors have a serial component. What is exciting about 
the present results is that they suggest that the inductive power of the PDP 
approach can be used to discover structure and representations in tasks 
which unfold over time. 
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