
COGNITIVE SCIENCE 14, 179-21 1 (1 990)

Finding Structure in Time

JEFFREY L. ELMAN
University of Calcfornia, San Riego

Time underlies many interesting human behaviors. Thus, the question of how to
represent time in connectionist models is very important. One approach is to rep-
resent time implicitly by its effects on processing rather than explicitly (as in a
spatial representation). The current report develops a proposal along these lines
first described by Jordan (1986) which involves the use of recurrent links in order
to provide networks with a dynamic memory. In this approach, hidden unit pat-
terns are fed back to themselves: the internal representations which develop
thus reflect task demands in the context of prior internal states. A set of simula-
tions is reported which range from relatively simple problems (temporal version
of XOR) to discovering syntactic/semantic features for words. The networks are
able to learn interesting internal representations which incorporate task demands
with memory demands: indeed, in this approach the notion of memory is inextri-
cably bound up with task processing. These representations reveal a rich struc-
ture, which allows them to be highly context-dependent, while also expressing
generalizations across classes of items. These representations suggest a method
for representing lexical categories and the type/token distinction.

INTRODUCTION

Time is clearly important in cognition. It is inextricably bound up with
many behaviors (such as language) which express themselves as temporal
sequences. Indeed, it is difficult to know how one might deal with such basic
problems as goal-directed behavior, planning, or causation without some
way of representing time.

The question of how to represent time might seem to arise as a special
problem unique to parallel-processing models, if only because the parallel
nature of computation appears to be at odds with the serial nature of tem-

I would like to thank Jay McClelland, Mike Jordan, Mary Hare, Dave Rumelhart, Mike
Mozer, Steve Poteet, David Zipser, and Mark Dolson for many stimulating discussions. I thank
McClelland, Jordan, and two anonymous reviewers for helpful critical comments on an earlier
draft of this article.

This work was supported by contract NOW1 14-85-K-0076 from the Office of Naval Re-
search and contract DUB-07-87-C-H027 from Army Avionics, Ft. Monmouth.

Correspondence and requests for reprints should be sent to Jeffrey L. Elman, Center for
Research in Language, C-008, University of California, La Jolla, CA 92093.

179

180 ELMAN

poral events. However, even within traditional (serial) frameworks, the repre-
sentation of serial order and the interaction of a serial input or output with
higher levels of representation presents challenges. For example, in models
of motor activity, an important issue is whether the action plan is a literal
specification of the output sequence, or whether the plan represents serial
order in a more abstract manner (e.g., Fowler, 1977,1980; Jordan & Rosen-
baum, 1988; Kelso, Saltzman, & Tuller, 1986; Lashley, 1951; MacNeilage,
1970; Saltzman & Kelso, 1987). Linguistic theoreticians have perhaps tended
to be less concerned with the representation and processing of the temporal
aspects to utterances (assuming, for instance, that all the information in an
utterance is somehow made available simultaneously in a syntactic tree); but
the research in natural language parsing suggests that the problem is not
trivially solved (e.g., Frazier & Fodor, 1978; Marcus, 1980). Thus, what is
one of the most elementary facts about much of human activity-that it has
temporal extend-is sometimes ignored and is often problematic.

In parallel distributed processing models, the processing of sequential
inputs has been accomplished in several ways. The most common solution is
to attempt to “paralielize time” by giving it a spatial representation. How-
ever, there are problems with this approach, and it is ultimately not a good
solution. A better approach would be to represent time implicitly rather
than explicitly. That is, we represent time by the effect it has on processing
and not as an additional dimension of the input.

This article describes the results of pursuing this approach, with particu-
lar emphasis on problems that are relevant to natural language processing.
The approach taken is rather simple, but the results are sometimes complex
and unexpected. Indeed, it seems that the solution to the problem of time
may interact with other problems for connectionist architectures, including
the problem of symbolic representation and how connectionist representa-
tions encode structure. The current approach supports the notion outlined
by Van Gelder (in press) (see also, Elman, 1989; Smolensky, 1987, 1988),
that connectionist representations may have a functional compositionality
without being syntactically compositional.

The first section briefly describes some of the problems that arise when
time is represented externally as a spatial dimension. The second section
describes the approach used in this work. The major portion of this article
presents the results of applying this new architecture to a diverse set of prob-
lems. These problems range in complexity from a temporal version of the
Exclusive-OR function to the discovery of syntactic/semantic categories in
natural language data.

THE PROBLEM WITH TIME

One obvious way of dealing with patterns that have a temporal extent is to
represent time explicitly by associating the serial order of the pattern with

FINDING STRUCTURE IN TIME 181

the dimensionality of the pattern vector. The first temporal event is repre-
sented by the first element in the pattern vector, the second temporal event
is represented by the second position in the pattern vector, and so on. The
entire pattern vector is processed in parallel by the model. This approach
has been used in a variety of models (e.g., Cottrell, Munro, & Zipser, 1987;
Elman & Zipser, 1988; Hanson & Kegl, 1987).

There are several drawbacks to this approach, which basically uses a
spatial metaphor for time. First, it requires that there be some interface with
the world, which buffers the input, so that it can be presented all at once. It
is not clear that biological systems make use of such shift registers. There
are also logical problems: How should a system know when a buffer’s con-
tents should be examined?

Second, the shift register imposes a rigid limit on the duration of patterns
(since the input layer must provide for the longest possible pattern), and
furthermore, suggests that all input vectors be the same length. These prob-
lems are particularly troublesome in domains such as language, where one
would like comparable representations for patterns that are of variable
length. This is as true of the basic units of speech (phonetic segments) as it is
of sentences.

Finally, and most seriously, such an approach does not easily distinguish
relative temporal position from absolute temporal position. For example,
consider the following two vectors.

[0 1 1 1 0 0 0 0 0 1
[0 0 0 1 1 1 0 0 0 1

These two vectors appear to be instances of the same basic pattern, but dis-
placed in space (or time, if these are given a temporal interpretation). How-
ever, as the geometric interpretation of these vectors makes clear, the two
patterns are in fact quite dissimilar and spatially distant.’ PDP models can,
of course, be trained to treat these two patterns as similar. But the similarity
is a consequence of an external teacher and not of the similarity structure of
the patterns themselves, and the desired similarity does not generalize to
novel patterns. This shortcoming is serious if one is interested in patterns in
which the relative temporal structure is preserved in the face of absolute
temporal displacements.

What one would like is a representation of time that is richer and does
not have these problems. In what follows here, a simple architecture is
described, which has a number of desirable temporal properties, and has
yielded interesting results.

--

I The reader may more easily be convinced of this by comparing the locations of the vectors
11 0 01, [O 1 01, and 10 0 11 in 3-space. Although these patterns might be considered “temporally
displaced” versions of the same basic pattern, the vectors are very different.

1 82 ELMAN

NETWORKS WITH MEMORY

The spatial representation of time described above treats time as an explicit
part of the input. There is another, very different possibility: Allow time to
be represented by the effect it has on processing. This means giving the pro-
cessing system dynamic properties that are responsive to temporal sequences.
In short, the network must be given memory.

There are many ways in which this can be accomplished, and a number
of interesting proposals have appeared in the literature (e.g., Jordan, 1986;
Pineda, 1988; Stornetta, Hogg, & Huberman, 1987; Tank & Hopfield, 1987;
Waibel, Hanazawa, Hinton, Shikano, & Lang, 1987; Watrous & Shastri,
1987; Williams & Zipser, 1988). One of the most promising was suggested
by Jordan (1986). Jordan described a network (shown in Figure 1) contain-
ing recurrent connections that were used to associate a static pattern (a
“Plan”) with a serially ordered output pattern (a sequence of “Actions”).
The recurrent connections allow the network’s hidden units to see its own
previous output, so that the subsequent behavior can be shaped by previous
responses. These recurrent connections are what give the network memory.

This approach can be modified in the following way. Suppose a network
(shown in Figure 2) is augmented at the input level by additional units; call
these Context Units. These units are also “hidden” in the sense that they
interact exclusively with other nodes internal to the network, and not the
outside world.

Imagine that there is a sequential input to be processed, and some clock
which regulates presentation of the input to the network. Processing would
then consist of the following sequence of events. At time t, the input units
receive the first input in the sequence. Each unit might be a single scalar
value or a vector, depending upon the nature of the problem. The context
units are initially set to 0.5.* Both the input units and context units activate
the hidden units; the hidden units then feed forward to activate the output
units. The hidden units also feed back to activate the context units. This
constitutes the forward activation. Depending upon- the task, there may or
may not be a learning phase in this time cycle. If so, the output is compared
with a teacher input, and back propagation of error (Rumelhart, Hinton, &
Williams, 1986) is used to adjust connection strengths incrementally. Recur-
rent connections are fixed at 1.0 and are not subject to ad j~s tment .~ At the
next time step, t + 1, the above sequence is repeated. This time the context

The activation function used here bounds values between 0.0 and 1.0.
’ A little more detail is in order about the connections between the context units and hidden

units. In the networks used here, there were one-for-one connections between each hidden unit
and each context unit. This implies that there are an equal number of context and hidden units.
The upward connections between the context units and the hidden units were fully distributed,
such that each context unit activates all the hidden units.

FINDING STRUCTURE IN TIME

OUTPUT

183

INPUT

Figure 1. Architecture used by Jordan (1986). Connections from output to state units are
one-for-one, with a fixed weight of 1 .O Not all connections are shown.

units contain values which are exactly the hidden unit values at time 1. These
context units thus provide the network with memory.

Internal Representation of Time. In feed forward networks employing
hidden units and a learning algorithm, the hidden units develop internal
representations for the input patterns that recode those patterns in a way
which enables the network to produce the correct output for a given input.
In the present architecture, the context units remember the previous internal
state. Thus, the hidden units have the task of mapping both an external

184 ELMAN

OUTPUT UNITS

,
I ,

CONTEXT urws INPUT UNITS

Figure 2. A simple recurrent network in which activations are copied from hidden layer to
context layer on a one-for-one basis, with fixed weight of 1 .O. Dotted lines represent train-
able connections.

input, and also the previous internal state of some desired output. Because
the patterns on the hidden units are saved as context, the hidden units must
accomplish this mapping and at the same time develop representations which
are useful encodings of the temporal properties of the sequential input.
Thus, the internal representations that develop are sensitive to temporal
context; the effect of time is implicit in these internal states. Note, however,
that these representations of temporal context need not be literal. They rep-
resent a memory which is highly task- and stimulus-dependent.

FINDING STRUCTURE IN TIME 185

Consider now the results of applying this architecture to a number of
problems that involve processing of inputs which are naturally presented in
sequence.

EXCLUSIVE-OR

The Exclusive-Or (XOR) function has been of interest because it cannot be
learned by a simple two-layer network. Instead, it requires at least three
layers. The XOR is usually presented as a problem involving 2-bit input
vectors (00, 11, 01, 10) yielding 1-bit output vectors (0, 0, 1, 1, respectively).

This problem can be translated into a temporal domain in several ways.
One version involves constructing a sequence of 1 -bit inputs by presenting
the 2-bit inputs one bit at a time (Le., in 2 time steps), followed by the 1-bit
output; then continuing with another input/output pair chosen at random.
A sample input might be:

1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 . . .
Here, the first and second bits are XOR-ed to produce the third; the fourth
and fifth are XOR-ed to give the sixth; and so on. The inputs are concatenated
and presented as an unbroken sequence.

In the current version of the XOR problem, the input consisted of a
sequence of 3,000 bits constructed in this manner. This input stream was
presented to the network shown in Figure 2 (with 1 input unit, 2 hidden units,
1 output unit, and 2 context units), one bit at a time. The task of the network
was, at each point in time, to predict the next bit in the sequence. That is,
given the input sequence shown, where one bit at a time is presented, the
correct output at corresponding points in time is shown below.

input:
output:

Recall that the actual input to the hidden layer consists of the input shown
above, as well as a copy of the hidden unit activations from the previous
cycle. The prediction is thus based not just on input from the world, but
also on the network’s previous state (which is continuously passed back to
itself on each cycle).

Notice that, given the temporal structure of this sequence, it is only some-
times possible to predict the next item correctly. When the network has
received the first bit-1 in the example above-there is a 50% chance that
the next bit will be a 1 (or a 0). When the network receives the second bit (0),
however, it should then be possible to predict that the third will be the XOR,
1. When the fourth bit is presented, the fifth is not predictable. But from
the fifth bit, the sixth can be predicted, and so on.

1 0 1 0 0 0 0 1 1 1 1 0 1.0 1. ..
0 1 0 0 0 0 1 1 1 1 0 1 0 1 ?... -

186 ELMAN

0.50 c
0.40 1

0.

Figure 3. Graph of root mean squared error over 12 consecutive inputs in sequential XOR
task. Data points are averaged over 1200 trials.

In fact, after 600 passes through a 3,000-bit sequence constructed in this
way, the network's ability to predict the sequential input closely follows the
above schedule. This can be seen by looking at the sum squared error in the
output prediction at successive points in the input. The error signal provides
a useful guide as to when the network recognized a temporal sequence,
because at such moments its outputs exhibit low error. Figure 3 contains a
plot of the sum squared error over 12 time steps (averaged over 1,200 cycles).
The error drops at those points in the sequence where a correct prediction is
possible; at other points; the error is high. This is an indication that the net-
work has learned something about the temporal structure of the input, and
is able to use previous context and current input to make predictions about
future input. The network, in fact, attempts to use the XOR rule at'all points
in time; this fact is obscured by the averaging of error, which is done for
Figure 3. If one looks at the output activations, it is apparent from the nature
of the errors that the network predicts successive inputs to be the XOR of
the previous two. This is guaranteed to be successful every third bit, and will
sometimes, fortuitously, also result in correct predictions at other times.

It is interesting that the solution to the temporal version of XOR is some-
what different than the static version of the same problem. In a network
with two hidden units, one unit is highly activated when the input sequence
is a series of identical elements (all 1s or Os), whereas the other unit is highly

FINDING STRUCTURE IN TIME 187

activated when the input elements alternate. Another way of viewing this is
that the network develops units which are sensitive to high- and low-fre-
quency inputs. This is a different solution than is found with feed-forward
networks and simultaneously presented inputs. This suggests that problems
may change their nature when cast in a temporal form. It is not clear that
the solution will be easier or. more difficult in this form, but it is an impor-
tant lesson to realize that the solution may be different.

In this simulation, the prediction task has been used in a way that is
somewhat analogous to auto-association. Auto-association is a useful tech-
nique for discovering the intrinsic structure possessed by a set of patterns.
This occurs because the network must transform the patterns into more
compact representations; it generally does so by exploiting redundancies in
the patterns. Finding these redundancies can be of interest because of what
they reveal about the similarity structure of the data set (cf. Cottrell et al.
1987; Elman & Zipser, 1988).

In this simulation, the goal is to find the temporal structure of the XOR
sequence. Simple auto-association would not work, since the task of simply
reproducing the input at all points in time is trivially solvable and does not
require sensitivity to sequential patterns. The prediction task is useful because
its solution requires that the network be sensitive to temporal structure.

STRUCTURE IN LETTER SEQUENCES

One question which might be asked is whether the memory capacity of the
network architecture employed here is sufficient to detect more complex
sequential patterns than the XOR. The XOR pattern is simple in several
respects. It involves single-bit inputs, requires a memory which extends only
one bit back in time, and has only four different input patterns. More chal-
lenging inputs would require multi-bit inputs of greater temporal extent,
and a larger inventory of possible sequences. Variability in the duration of a
pattern might also complicate the problem.

An input sequence was devised which was intended to provide just these
sorts of complications. The sequence was composed of six different 6-bit
binary vectors. Although the vectors were not derived from real speech, one
might think of them as representing speech sounds, with the six dimensions
of the vector corresponding to articulatory features. Table 1 shows the vector
for each of the six letters.

The sequence was formed in two steps. First, the three consonants (b, d,
g) were combined in random order to :btain a 1,000-letter sequence. Then,
each consonant was replaced using the rules

b- ba
d- dii
g- guuu

188 ELMAN

TABLE 1
Vector Definitions of Alphabet

Consonant Vowel Interrupted High Back Voiced

b [1 0 1 0 0 1 1
d 1 1 0 1 1 0 1 1
g [1 0 1 0 1 1 1
a [O 1 0 0 1 1 1
I [O 1 0 1 0 1 1
u [O 1 0 1 1 1 1

Thus, an initial sequence of the form dbgbddg . . . gave rise to the final se-
quence diibaguuubadiidiiguuu. . . (each letter being represented by one of
the above 6-bit vectors). The sequence was semi-random; consonants occurred
randomly, but following a given consonant, the identity and number of
following vowels was regular.

The basic network used in the XOR simulation was expanded to provide
for the 6-bit input vectors; there were 6 input units, 20 hidden units, 6 out-
put units, and 20 context units.

The training regimen involved presenting each 6-bit input vector, one at a
time, in sequence. The task for the network was to predict the next input.
(The sequence wrapped around, that the first pattern was presented after
the last.) The network was trained on 200 passes through the sequence. It
was then tested on another sequence that obeyed the same regularities, but
created from a different initial randomizaiton.

The error signal for part of this testing phase is shown in Figure 4. Target
outputs are shown in parenthesis, and the graph plots the corresponding
error for each prediction. It is obvious that the error oscillates markedly; at
some points in time, the prediction is correct (and error is low), while at
other points in time, the ability to predict correctly is quite poor. More pre-
cisely, error tends to be high when predicting consonants, and low when
predicting vowels.

Given the nature of the sequence, this behavior is sensible. The conso-
nants were ordered randomly, but the vowels were not. Once the network
has received a consonant as input, it can predict the identity of the following
vowel. Indeed, it can do more; it knows how many tokens of the vowel to
expect. At the end of the vowel sequence it has no way to predict the next
consonant; at these points in time, the error is high.

This global error pattern does not tell the whole story, however. Remem-
ber that the input patterns (which are also the patterns the network is trying
to predict) are bit vectors. The error shown in Figure 4 is the sum squared
error over all 6 bits. Examine the error on a bit-by-bit basis; a graph of the
error for bits [l] and [4] (over 20 time steps) is shown in Figure 5 . There is a

FINDING STRUCTURE IN TIME 189

Figure 4. Graph of root mean squared error in letter prediction task. Labels indicate the
correct output prediction at each point in time. Error is computed over the entire output
vector.

striking difference in the error patterns. Error on predicting the first bit is
consistently lower than error for the fourth bit, and at all points in time. .
Why should this be so?

The first bit corresponds to the features Consonant; the fourth bit cor-
responds to the feature High. It happens that while all consonants have the
same value for the feature Consonant, they differ for High. The network
has learned which vowels follow which consonants; this is why error on
vowels is low. It has also learned how many vowels follow each consonant.
An interesting corollary is that the network also knows how soon to expect
the next consonant. The network cannot know which consonant, but it can
predict correctly that a consonant follows. This is why the bit patterns for
Consonant show low error, and the bit patterns for High show high error.
(It is this behavior which requires the use of context units; a simple feed-
forward network could learn the transitional probabilities from one input to
the next, but could not learn patterns that span more than two inputs.)

Figure 5 (a). Graph of root mean squared error in letter prediction task. Error
on bit 1 , representing the feature CONSONANTAL.

is computed

Flgure 5 (b). Graph of root mean squared error in letter prediction task. Error is computed
on bit 4, representing the feature HIGH.

190

FINDING STRUCTURE IN TIME 191

This simulation demonstrates an interesting point. This input sequence
was in some ways more complex than the XOR input. The serial patterns
are longer in duration; they are of variable length so that a prediction de-
pends upon a variable mount of temporal context; and each input consists
of a 6-bit rather than a 1-bit vector. One might have reasonably thought
that the more extended sequential dependencies of these patterns would
exceed the temporal processing capacity of the network. But almost the
opposite is true. The fact that there are subregularities (at the level of indi-
vidual bit patterns) enables the network to make partial predictions, even in
cases where the complete prediction is not possible. All of this is dependent
upon the fact that the input is structured, of course. The lesson seems to be
that more extended sequential dependencies may not necessarily be more
difficult to learn. If the dependencies are structured, that structure may
make learning easier and not harder.

DISCOVERING THE NOTION “WORD”

It is taken for granted that learning a language involves (among many other
things) learning the sounds of that language, as well as the morphemes and
words. Many theories of acquisition depend crucially upon such primitive
types as word, or morpheme, or more abstract categories as noun, verb, or
phrase (e.g., Berwick & Weinberg, 1984; Pinker, 1984). Rarely is it asked
how a language learner knows when to begin or why these entities exist.
These notions are often assumed to be innate.

Yet, in fact, there is considerable debate among linguists and psycholin-
guists about what representations are used in language. Although it is com-
monplace to speak of basic units such as “phoneme,” “morpheme,” and
“word,” these constructs have no clear and uncontroversial definition.
Moreover, the commitment to such distinct levels of representation leaves a
troubling residue of entities that appear to lie between the levels. For in-
stance, in many languages, there are sound/meaning correspondences which
lie between the phoneme and the morpheme (i.e., sound symbolism). Even
the concept “word” is not as straightforward as one might think (cf. Green-
berg, 1963; Lehman, 1962). In English, for instance, there is no consistently
definable distinction among words (e.g., “apple”), compounds (“apple
pie”) and phrases (“Library of Congress” or “man in the street”). Further-
more, languages differ dramatically in what they treat as words. In polysyn-
thetic languages (e.g., Eskimo), what would be called words more nearly
resemble what the English speaker would call phrases or entire sentences.

Thus, the most fundamental concepts of linguistic analysis have a fluidity,
which at the very least, suggests an important role for learning; and the
exact form of the those concepts remains an open and important question.

In PDP networks, representational form and representational content
often can be learned simultaneously. Moreover, the representations which

1.

192 ELMAN

result have many of the flexible and graded characteristics noted above.
Therefore, one can ask whether the notion “word” (or something which
maps on to this concept) could emerge as a consequence of learning the
sequential structure of letter sequences that form words and sentences (but
in which word boundaries are not marked).

Imagine then, another version of the previous task, in which the latter
sequences form real words, and the words form sentences. The input will
consist of the individual letters (imagine these as analogous to speech sounds,
while recognizing that the orthographic input is vastly simpler than acoustic
input would be). The letters will be presented in sequence, one at a time,
with no breaks between the letters in a word, and no breaks between the
words of different sentences.

Such a sequence was created using a sentence-generating program and a
lexicon of 15 words.4 The program generated 200 sentences of varying length,
from four to nine words. The sentences were concatenated, forming a stream
of 1,270 words. Next, the words were broken into their letter parts, yielding
4,963 letters. Finally, each letter in each word was converted into a 5-bit
random vector.

The result was a stream of 4,963 separate 5-bit vectors, one for each
letter. These vectors were the input and were presented one at a time. The
task at each point in time was to predict the next letter. A fragment of the
input and desired output is shown in Table 2.

A network with 5 input units, 20 hidden units, 5 output units, and 20
context units was trained on 10 complete presentations of the sequence. The
error was relatively high at this point; the sequence was sufficiently random
that it would be difficult to obtain very low error without memorizing the
entire sequence (which would have required far more than 10 presentations).

Nonetheless, a graph of error over time reveals an interesting pattern. A
portion of the error is plotted in Figure 6; each data point is marked with
the letter that should be predicted at that point in time. Notice that at the
onset of each new word, the error is high. As more of the word is received
the error declines, since the sequence is increasingly predictable.

The error provides a good clue as to what the recurring sequences in the
input are, and these correlate highly with words. The information is not
categorical, however. The error reflects statistics of co-occurrence, and
these are graded. Thus, while it is possible to determine, more or less, what
sequences constitute words (those sequences bounded by high error), the
criteria for boundaries are relative. This leads to ambiguities, as in the case
of the y in they (see Figure 6); it could also lead to the misidentification of

‘ The program used was a simplified version of the program described in greater detail in
the next simulation.

FINDING STRUCTURE IN TIME 1 93

TABLE 2
Fragment of Training Sequence for letters-in-Words Simulation

Input output

01101 (m) oooo1 (0)

00001 (0) 01110 (n)
01110 (n) 11001 (Y)
11001 (Y) 11001 (Y)
11001 (Y) 00101 (e)
00101 (e) oooo1 (0)

00001 (0) 10010 (r)
10010 (r) 10011 (5)

10011 (s) oooO1 (a)
oooO1 (a) 00111 (9)
00111 (9) 01111 (0)

01111 (0) oooo1 (0)

00001 (a) oOo10 (b)
O0010 (b) 01111 (0)

01111 (0) 11001 (Y)
11001 (Y) oooO1 (a)

01110 (n) oooo1 (0)
01110 (n) 00100 (d)
00100 (d) 00111 (9)

01001 (i) 00111 (9)
01001 (i) 10010 (r)
10010 (r) 01100 (f)
01100 (I) 01100 (i)
11001 (i)

common sequences that incorporate more than one word, but which co-occur
frequently enough to be treated as a quasi-unit. This is the sort of behavior
observed in children, who at early stages of language acquisition may treat
idioms and other formulaic phrases as fixed lexical items (MacWhinney,
1978).

This simulation should -not be taken as a model of word acquisition.
While listeners are clearly able to make predictions based upon partial input
(Grosjean, 1980; Marslen-Wilson & Tyler, 1980; Salasoo & Pisoni, 1985),
prediction is not the major goal of the language learner. Furthermore, the
co-occurrence of sounds is only part of what identifies a word as such. The
environment in which those sounds are uttered, and the linguistic context,
are equally critical in establishing the coherence of the sound sequence and
associating it with meaning. This simulation focuses only on a limited part
of the information available to the language learner. The simulation makes
the simple point that there is information in the signal that could serve as a
cue to the boundaries of linguistic units which must be learned, and it demon-
strates the ability of simple recurrent nerworks to extract this information.

194

a

ELMAN

I I

Y

a

e

n a
I

Y

I

la

Figure 6. Graph of root mean squared error in letter-in-word precition task.

DISCOVERING LEXICAL CLASSES FROM WORD ORDER

Consider now another problem which arises in the context of word sequences.
The order of words in sentences reflects a number of constraints. In lan-
guages such as English (so-called “fixed word-order” languages), the order
is tightly constrained. In many other languages (the “free word-order” lan-
guages), there are more options as to word order (but even here the order is
not free in the sense of random). Syntactic structure, selective restrictions,
subcategorization, and discourse considerations are among the many factors
which join together to fix the order in which words occur. Thus, the sequen-
tial order of words in sentences is neither simple, nor is it determined by a
single cause. In addition, it has been argued that generalizations about word
order cannot be accounted for solely in terms of linear order (Chomsky,
1957, 1965). Rather, there is an abstract structure which underlies the sur-
face strings and it is this structure which provides a more insightful basis for
understanding the constraints on word order.

FINDING STRUCTURE IN TIME 195

While it is undoubtedly true that the surface order of words does not pro-
vide the most insightful basis for generalizations about word order, it is also
true that from the point of view of the listener, the surface order is the only
visible (or audible) part. Whatever the abstract underlying structure be, it is
cued by the surface forms, and therefore, that structure is implicit in them.

In the previous simulation, it was demonstrated that a network was able
to learn the temporal structure of letter sequences. The order of letters in
that simulation, however, can be given with a small set of relatively simple
r ~ l e s . ~ The rules for determining word order in English, on the other hand,
will be complex and numerous. Traditional accounts of word order generally
invoke symbolic processing systems to express abstract structural relation-
ships. One might, therefore, easily believe that there is a qualitative differ-
ence in the nature of the computation needed for the last simulation, which
is required to predict the word order of English sentences. Knowledge of
word order might require symbolic representations that are beyond the
capacity of (apparently) nonsymbolic PDP systems. Furthermore, while it is
true, as pointed out above, that the surface strings may be cues to abstract
structure, considerable innate knowledge may be required in order to recon-
struct the abstract structure from the surface strings. It is, therefore, an
interesting question to ask whether a network can learn any aspects of that
underlying abstract structure.

Simple Sentences
As a first step, a somewhat modest experiment was undertaken. A sentence
generator program was used to construct a set of short (two- and three-
word) utterances. Thirteen classes of nouns and verbs were chosen; these
are listed in Table 3. Examples of each category are given; it will be noticed
that instances of some categories (e.g., VERB-DESTROY) may be included
in others (e.g., VERB-TRAN). There were 29 different lexical items.

The generator program used these categories and the 15 sentence templates
given in Table 4 to create 10,OOO random two- and three-word sentence
frames. Each sentence frame was then filled in by randomly selecting one of
the possible words appropriate to each category. Each word was replaced by
a randomly assigned 31-bit vector in which each word was represented by a
different bit. Whenever the word was present, that bit was flipped on. Two
extra bits were reserved for later simulations. This encoding scheme guaran-
teed that each vector was orthogonal to every other vector and reflected
nothing about the form class or meaning of the words. Finally, the 27,534
word vectors in the 10,OOO sentences were concatenated, so that an input
stream of 27,534 31-bit vectors was created. Each word vector was distinct,

In the worst case, each word constitutes a rule. Hopefully, networks will learn that recur-
ring orthographic regularities provide additional and more general constraints (cf. Sejnowski &
Rosenberg, 1987).

196 ELMAN

TABLE 3
Categories of Lexical Items Used in Sentence Simulation

Category

NOUN-HUM
NOUN-ANIM
NOUN-INANIM
NOUN-AGRESS
NOUN-FRAG
NOUN-FOOD
VERB-INTRAN
VERB-TRAN
VERB-AGPAT
VERB-PERCEPT
VERB-DESTROY
VERB-EAT

Examples

man, woman
cat, mouse
book, rock
dragon, monster
glass, plate
cookie, break
think, sleep
see, chase
move, break
smell, see
break, smash
eat

TABLE 4
Templates for Sentence Generator

WORD 1 WORD 2 WORD 3

NOUN-HUM VERB-EAT NOUN-FOOD
NOUN-HUM VERB-PERCEPT NOUN-INANIM
NOUN-HUM VERB-DESTROY NOUN-FRAG
NOUN-HUM VERB-INTRAN
NOUN-HUM VERB-TRAN NOUN-HUM
NOUN-HUM VERB-AGPAT NOUN-INANIM
NOUN-HUM VERB-AGPAT
NOUN-ANIM VERB-EAT NOUN-FOOD
NOUN-ANIM VERB-TRAN NOUN-ANIM
NOUN-ANIM VERB-AGPAT NOUN-INANIM
NOUN-ANIM VERB-AGPAT
NOUN-INANIM VERB-AGPAT
NOUN-AGRESS VERB-DESTROY NOUN-FRAG
NOUN-AGRESS VERB-EAT NOUN-HUM
NOUN-AGRESS VERB-EAT NOUN-ANIM
NOUN-AGRESS VERB-EAT NOUN-FOOD

but there were no breaks between successive sentences. A fragment of the
input stream is shown in Column 1 of Table 5, with the English gloss for
each vector in parentheses. The desired output is given in Column 2.

For this simulation a network similar to that in the first simulation was
used, except that the input layer and output layers contained 31 nodes each,
and the hidden and context layers contained 150 nodes each.

The task given to the network was to learn to predict the order of succes-
sive words. The training strategy was as follows. The sequence of 27,354

FINDING STRUCTURE IN TIME 197

TABLE 5
Fragment of Training Sequences for Sentence Simulation

Input output

0000000000000000000010 (woman)
00000000000000000000lW (smash)
000000000000000000001- (plate)
O O O O O I P (cat)
-1OOOOOOOOOOO (move)
-1- (man)
0001- (break)
W l P (car)
01- (boy)
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move)
-1- @id)
-1- (eat)
001- (bread)
-1- (dog)
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move)
-1- (mouse)
-1- (mouse)
OOOOOOOOOOOOOOOOOOOlOOOOOOOOOOO (move)
1OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO (book) -1-0 (lion)

31-bit vectors formed an input sequence. Each word in the sequence was
input, one at a time, in order. The task on each input cycle was to predict
the 31-bit vector corresponding to the next word in the sequence. At the end
of the 27,534 word sequence, the process began again, without a break,
starting with the first word. The training continued in this manner until the
network had experienced six complete passes through the sequence.

Measuring the performance of the network in this simulation is not
straightforward. RMS error after training dropped to 0.88. When output
vectors are as sparse as those used in this simulation (only 1 out of 31 bits
turned on), the network quickly learns to turn off all the output units, which
drops error from the initial random value of - 15.5 to 1.0. In this light, a
final error of 0.88 does not seem impressive.

Recall that the prediction task is nondeterministic. Successors cannot be
predicted with absolute certainty; there is a built-in error which is inevitable.
Nevertheless, although the prediction cannot be error-free, it is also true
that word order is not random. For any given sequence of words there are a
limited number of possible successors. Under these circumstances, the net-
work should learn the expected frequency of occurrence of each of the possi-
ble successor words; it should then activate the output nodes proportional
to these expected frequencies.

This suggests that rather than testing network performance with the RMS
error calculated on the actual successors, the output should be compared

198 ELMAN

with the expected frequencies of occurrence of possible successors. These
expected latter values can be determined empirically from the training corpus.
Every word in a sentence is compared against all other sentences that are, up
to that point, identical. These constitute the comparison set. The probability
of occurrence for all possible successors is then determined from this set.
This yields a vector for each word in the training set. The vector is of the
same dimensionality as the output vector, but rather than representing a dis-
tinct word (by turning on a single bit), it represents the likelihood of each
possible word occurring next (where each bit position is a fractional number
equal to the probability). For testing purposes, this likelihood vector can be
used in place of the actual teacher and a RMS error computed based on the
comparison with the network output. (Note that it is appropriate to use
these likelihood vectors only for the testing phase. Training must be done
on actual successors, because the point is to force the network to learn the
probabilities.)

When performance is evaluated in this manner, RMS error on the train-
ing set is 0.053 (SD=0.100). One remaining minor problem with this error
measure is that although the elements in the likelihood vectors must sum to
1 .O (since they represent probabilities), the activations of the network need
not sum to 1 .O. It is conceivable that the network output learns the relative
frequency of occurrence of successor words more readily than it approxi-
mates exact probabilities. In this case the shape of the two vectors might be
similar, but their length different. An alternative measure which normalizes
for length differences and captures the degree to which the shape of the
vectors is similar is the cosine of the angle between them. Two vectors might
be parallel (cosine of 1.0) but still yield an RMS error, and in this case it
might be felt that the network has extracted the crucial information. The
mean cosine of the angle between network output on training items and
likelihood vectors is 0.916 (SD =0.123). By either measure, RMS or cosine,
the network seems to have learned to approximate the likelihood ratios of
potential successors.

How has this been accomplished? The input representations give no in-
formation (such as form class) that could be used for prediction. The word
vectors are orthogonal to each other. Whatever generalizations are true of
classes of words must be learned from the co-occurrence statistics, and the
composition of those classes must itself be learned.

If indeed the network has extracted such generalizations, as opposed
simply to memorizing the sequence, one might expect to see these patterns
emerge in the internal representations which the network develops in the
course of learning the task. These internal representations are captured by
the pattern of hidden unit activations which are evoked in response to each
word and its context. (Recall that hidden units are activated by both input
units and context units. There are no representations of words in isolation.)

FINDING STRUCTURE IN TIME 199

The nature of these internal representations was studied in the following
way. After the learning phase of six complete passes through the corpus, the
connection strengths in the network were frozen. The input stream was
passed through the network one final time, with no learning taking place.
During this testing, the network produced predictions of future inputs on
the output layer. These were ignored. Instead, the hidden unit activations
for each word +context input were saved, resulting in 27,354 150-bit vectors.
Each word occurs many times, in different contexts. As a first approxima-
tion of a word’s prototypical or composite representation, all hidden unit
activation patterns produced by a given word (in all its contexts) were aver-
aged to yield a single 150-bit vector for each of the 29 unique words in the
input stream.6 (In the next section it will be shown how it is possible to study
the internal representations of words in context.) These internal representa-
tions were then subject to a hierarchical clustering analysis. Figure 7 shows
the resulting tree; this tree reflects the similarity structure of the internal
representations these lexical items. Lexical items which have similar proper-
ties are grouped together lower in the tree, and clusters of similar words
which resemble other clusters are connected higher in the tree.

The network has discovered that there are several major categories of
words. One large category corresponds to verbs; another category corre-
sponds to nouns. The verb category is broken down into groups that require
a direct object, or are intransitive, or where a direct object is optional. The
noun category is broken into two major groups: inanimates, and animates.
Animates are divided into human and nonhuman; the nonhuman are divided
into large animals and small animals. Inanimates are broken into breakable,
edibles, and nouns which appeared as subjects of agentless active verbs.

The network has developed internal representations for the input vectors
which reflect facts about the possible sequential ordering of the inputs. The
network is not able to predict the precise order of words, but it recognizes
that (in this corpus) there is a class of inputs (namely, verbs) that typically
follow other inputs (namely, nouns). This knowledge of class behavior is
quite detailed; from the fact that there is a class of items which always pre-
cedes “chase,” “break,” “smash,” it infers that the large animals form
a class.

Tony Plate (personal communication) has pointed out that this technique is dangerous,
inasmuch as it may introduce a statistical artifact. The hidden unit activation patterns are
highly dependent upon preceding inputs. Because the preceding inputs are not uniformly dis-
tributed (they follow precisely the co-occurrence conditions which are appropriate for the
different categories), this means that the mean hidden unit pattern across all contexts of a
specific item will closely resemble the mean hidden unit pattern for other items in the same
category. This could occur even without learning, and is a consequence of the averaging of
vectors which occurs prior to cluster analysis. Thus the results of the averaging technique
should be verified by clustering individual tokens; tokens should always be closer to other
members of the same type than to tokens of other types.

200 ELMAN

VERBS
mash DQOPT -

fioT ANIMALS

‘I

ANIMATES

NOUNS

INANIMATES
1 V&F

I-cE BREAKABLES

2.0 I .5 1 .o 0.0 -0.5

Figure 7. Hierarchical cluster diagram of hidden unit activation vectors in simple sentence
prediction task. Labels indicate the inputs which produced the hidden unit vectors; inputs
were presented in context, and the hidden unit vectors averaged across multiple contexts.

Several points should be emphasized. First, the category structure appears
to be hierarchical. Thus, “dragons” are large animals, but also members of
the class of [-human, +animate] nouns. The hierarchical interpretation is
achieved through the way in which the spatial relations (of the representa-
tions) are organized. Representations that are near one another in the repre-
sentational space form classes, while higher level categories correspond to
larger and more general regions of this space.

Second, it is also true that the hierarchy is “soft” and implicit. While
some categories may be qualitatively distinct (Le., very far from each other

FINDING STRUCTURE IN TIME 201

in space), there may also be other categories that share properties and have
less distinct boundaries. Category membership in some cases may be marginal
of unambiguous.

Finally, the content of the categories is not known to the network. The
network has no information available which would “ground” the structural
information in the real world. In this respect, the network has much less
information to work with than is available to real language learners.’ In a
more realistic model of acquisition, one might imagine that the utterance
provides one source of information about the nature of lexical categories;
the world itself provides another source. One might model this by embedding
the “linguistic” task in an environment; the network would have the dual
task of extracting structural information contained in the utterance, and
structural information about the environment. Lexical meaning would grow
out of the associations of these two types of input.

In this simulation, an important component of meaning is context. The
representation of a word is closely tied up with the sequence in which it is
embedded. Indeed, it is incorrect to speak of the hidden unit patterns as
word representations in the conventional sense, since these patterns also
reflect the prior context. This view of word meaning, that is, its dependence
upon context, can be demonstrated in the following way.

Freeze the connections in the network that has just been trained, so that
no further learning occurs. Imagine a novel word, zog, which the network
has never seen before, and assign to this word a bit pattern which is differ-
ent from those it was trained on. This word will be used in place of the word
man; everywhere that man could occur, zog will occur instead. A new se-
quence of 10,OOO sentences is created, and presented once to the trained net-
work. The hidden unit activations are saved, and subjected to a hierarchical
clustering analysis of the same sort used with the training data.

The resulting tree is shown in Figure 8. The internal representation for
the word zog bears the same relationship to the other words as did the word
man in the original training set. This new word has been assigned an internal
representation that is consistent with what the network has already learned
(no learning occurs in this simulation) and the new word’s behavior. Another
way of looking at this is in certain contexts, the network expects man, or
something very much like it. In just such a way, one can imagine real lan-
guage learners making use of the cues provided by word order to make intel-
ligent guesses about the meaning of novel words.

Although this simulation was not designed to provide a model of context
effects in word recognition, its behavior is consistent with findings that have
been described in the experimental literature. A number of investigators

’ Jay McClelland has suggested a humorous-but entirely accurate-metaphor for this
task: It is like trying to learn a language by listening to the radio.

202 ELMAN

smell

move

like
chase

ea[

2.0 1.5 1 .o 0.0 -0.5

Figure 8. Hierarchical clustering diagram of hidden unit activation vectors in simple sen-
tence prediction task, with the addition of the novel input ZOG.

have studied the effects of sentential context on word recognition. Although
some researchers have claimed that lexical access is insensitive to context
(Swinney, 1979), there are other results which suggest that when context is
sufficiently strong, it does indeed selectively facilitate access to related words
(Tabossi, Colombo, & Job, 1987). Furthermore, individual items are typi-
cally not very predictable but classes of words are (Schwanenflugel8c Shoben,
1985; Tabossi, 1988). This is precisely the pattern found here, in which the
error in predicting the actual next word in a given context remains high, but

FINDING STRUCTURE IN TIME 203

the network is able to predict the approximate likelihood of occurrence of
classes of words.

TYPES, TOKENS, AND STRUCTURED REPRESENTATIONS

There has been considerable discussion about the ways in which PDP net-
works differ from traditional computational models. One apparent differ-
ence is that traditional models involve symbolic representations, whereas
PDP nets seem, to many people, to be non- or perhaps subsymbolic (Fodor
& Pylyshyn, 1988; Smolensky, 1987, 1988). This is a difficult and complex
issue, in part because the definition of symbol is problematic. Symbols do
many things, and it might be more useful to contrast PDP versus traditional
models with regard to the various functions that symbols can serve.

Both traditional and PDP networks involve representations which are
symbolic in the specific sense that the representations refer to other things.
In traditional systems, the symbols have names such as A, or x, or P. In
PDP nets, the internal representations are generally activation patterns
across a set of hidden units. Although both kinds of representations do the
task of referring, there are important differences. Classical symbols typi-
cally refer to classes or categories, but in PDP nets the representations may
be highly context-dependent. This does not mean that the representations
do not capture information about category or class (this should be clear
from the previous simulation); it does mean that there is also room in the
representation scheme to pick out individuals.

This property of PDP representations might seem to be a serious draw-
back to some. In the extreme, it suggests that there could be separate repre-
sentations for the entity John in every different context in which that entity
can occur, leading to an infinite number of Johni. But rather than being a
drawback, I suggest this aspect of PDP networks significantly extends their
representational power. The use of distributed representations, together
with the use of context in representing words (which is a consequence of
simple recurrent networks) provides one solution to a thorny problem-the
question of how to represent typehoken differences-and sheds insight on
the ways in which distributed representations can represent structure.

In order to justify this claim, let me begin by commenting on the repre-
sentational richness provided by the distributed representations developed
across the hidden units. In localist schemes, each node stands for a separate
concept. Acquiring new concepts usually requires adding new nodes. In
contrast, the hidden unit patterns in the simulations reported here have
tended to develop distributed representations. In this scheme, concepts are
expressed as activation patterns over a fixed number of nodes. A given node
participates in representing multiple concepts. It is the activation pattern in
its entirety that is meaningful. The activation of an individual node may be

204 ELMAN

uninterpretable in isolation (i.e., it may not even refer to a feature or micro-
feature).

Distributed representations have a number fo advantages over localist
representations (although the latter are not without their own benefits).* If
the units are analog (Le., capable of assuming activation states in a continu-
ous range between some minimum and maximum values), then, in principle,
there is no limit to the number of concepts which can be represented with a
finite set of units. In the simulations here, the hidden unit patterns do double
duty. They are required not only to represent inputs, but to develop repre-
sentations which will serve as useful encodings of temporal context that can
be used when processing subsequent inputs. Thus, in theory, analog hidden
units would also be capable of providing infinite memory.

Of course, there are many reasons why in practice the memory is bounded,
and why the number of concepts that can be stored is finite. There is limited
numeric precision in the machines on which these simulations are run; the
activation function is repetitively applied to the memory and results in expo-
nential decay; and the training regimen may not be optimal for exploiting
the full capacity of the networks. For instance, many of the simulations
reported here involve the prediction task. This task incorporates feedback
on every training cycle. In other pilot work, it was found that there was
poorer performance in tasks in which there was a delay in injecting error into
the network. Still, just what the representational capacity is of these simple
recurrent networks remains an open question (but, see Servan-Schreiber,
Cleeremans, & McClelland, 1988).

Having made these preliminary observations, the question of the context-
sensitivity of the representations developed in the simulations reported here
will be addressed. Consider the sentence-processing simulation. It was found
that after learning to predict words in sentence sequences, the network de-
veloped representations that reflected aspects of the words’ meaning as well
as their grammatical category. This was apparent in the similarity structure
of the internal representation of each word; this structure was presented
graphically as a tree in Figure 7.

In what sense are the representations, which have been clustered in Figure
7, context sensitive? In fact, they are not; recall that these representations
are composites of the hidden unit activation patterns in response to each
word averaged across many different contexts. So the hidden unit activation
pattern used to represent boy, for instance, was really the mean vector of
activation patterns in response to boy as it occurs in many different contexts.

The reason for using the mean vector in the previous analysis was in large
part practical. It is difficult to do a hierarchical clustering of 27,454 patterns,
and even more difficult to display the resulting tree graphically. However,

These advantages are discussed at length in Hinton, McClelland, and Rumelhart (1986).

FINDING STRUCTURE IN TIME 205

one might want to know whether the patterns displayed in the tree in Figure
7 are in any way artifactual. Thus, a second analysis was carried out, in
which all 27,454 patterns were clustered. The tree cannot be displayed here,
but the numerical results indicate that the tree would be identical to the tree
shown in Figure 7; except that instead of ending with the terminals that
stand for the different lexical items, the branches would continue with fur-
ther arborization containing the specific instances of each lexical item in its
context. No instance of any lexical item appears inappropriately in a branch
belonging to another.

It would be correct to think of the tree in Figure 7 as showing that the net-
work has discovered that there are 29 types (among the sequence of 27,454
inputs). These types are the different lexical items shown in that figure. A
finer grained analysis reveals that the network also distinguishes between
the specific occurrences of each lexical item, that is, the tokens. The internal
representations of the various tokens of a lexical type are very similar.
Hence, they are all gathered under a single branch in the tree. However, the
internal representations also make subtle distinctions between (for example),
boy in one context and boy in another. Indeed, as similar as the representa-
tions of the various tokens are, no two tokens of a type are exactly identical.

Even more interesting is that there is a substructure of the representations
of the various types of a token. This can be seen by looking at Figure 9,
which shows the subtrees corresponding to the tokens of boy and girl. (Think
of these as expansions of the terminal leaves for boy and girl in Figure 8.)
The individual tokens are distinguished by labels which indicate their origi-
nal context.

One thing that is apparent is that subtrees of both types (boy and girl) are
similar to one another. On closer scrutiny, it is seen that there is some orga-
nization here; (with some exceptions) tokens of boy that occur in sentence-
initial position are clustered together, and tokens of boy in sentence-final
position are clustered together. Furthermore, this same pattern occurs among
the patterns representing girl. Sentence-final words are clustered together
on the basis of similarities in the preceding words. The basis for clustering
of sentence-initial inputs is simply that they are all preceded by what is effec-
tively noise (prior sentences). This is because there are no useful expectations
about the sentence-initial noun (other than that it will be a noun) based
upon the prior sentences. On the other hand, one can imagine that if there
were some discourse structure relating sentences to each other, then there
might be useful information from one sentence which would affect the rep-
resentation of sentence-initial words. For example, such information might
disambiguate (i.e. , give referential content to) sentence-initial pronouns.

Once again, it is useful to try to understand these results in geometric
terms. The hidden unit activation patterns pick out points in a high (but
fixed) dimensional space. This is the space available to the network for its

Figure 9. Hierarchical cluster diagram of hidden unit activation vectors in response to some
occurrences of the inputs BOY and GIRL. Upper-case labels indicate the actual input; lower-
case labels indicate the context for each input.

206

FINDING STRUCTURE IN TIME 207

internal representations. The network structures that space in such a way
that important relations between entities is translated into spatial relation-
ships. Entities which are nouns are located in one region of space and verbs
in another. In a similar manner, different types (here, lexical items) are dis-
tinguished from one another by occupying different regions of space; but
also, tokens of a same type are differentiated. The differentiation is nonran-
dom, and the way in which tokens of one type are elaborated is similar to
elaboration of another type. That is, John1 bears the same spatial relation-
tionship to John2 as Mary1 bears to Maryz.

This use of context is appealing, because it provides the basis both for
establishing generalizations about classes of items and also allows for the
tagging of individual items by their context. The result is that types can be
identified at the same time as tokens. In symbolic systems, typeltoken dis-
tinctions are often made by indexing or binding operations; the networks
here provide an alternative account of how such distinctions can be made
without indexing or binding.

CONCLUSIONS

There are many human behaviors which unfold over time. It would be folly
to try to understand those behaviors without taking into account their tem-
poral nature. The current set of simulations explores the consequences of
attempting to develop representations of time that are distributed, task-de-
pendent, and in which time is represented implicitly in the network dynamics.

The approach described here employs a simple architecture, but is sur-
prisingly powerful. There are several points worth highlighting.

Some problems change their nature when expressed as temporal events.
In the first simulation, a sequential version of the XOR was learned.
The solution to this problem involved detection of state changes, and
the development of frequency-sensitive hidden units. Casting the XOR
problem in temporal terms led to a different solution than is typically
obtained in feed-forward (simultaneous input) networks.
The time-varying error signal can be used as a clue to temporal struc-
ture. Temporal sequences are not always uniformly structured, nor uni-
formly predictable. Even when the network has successfully learned
about the structure of a temporal sequence, the error may vary. The
error signal is a good metric of where structure exists; it thus provides a
potentially very useful form of feedback to the system.
Increasing the sequential dependencies in a task does not necessarily
result in worse performance. In the second simulation, the task was
complicated by increasing the dimensionality of the input vector, by
extending the duration of the sequence, and by making the duration of
the sequence variable. Performance remained good, because these com-

208 ELMAN

plications were accompanied by redundancy, which provided additional
cues for the task. The network was also able to discover which parts of
the complex input were predictable, making it possible to maximize per-
formance in the face of partial unpredictability.
The representation of time-and memory-is high& task-dependent.
The networks here depend upon internal representations which have
available, as part of their input, their own previous state. In this way
the internal representations intermix the demands of the task with the
demands imposed by carrying out that task over time. There is no sepa-
rate “representation of time.” There is simply the representation of input
patterns in the context of a given output function; it just happens that
those input patterns are sequential. That representation, and thus the
representation of time, varies from task to task. This presents a some-
what novel view of memory. In this account, memory is neither passive
nor a separate subsystem. One cannot properly speak of a memory for
sequences; that memory is inextricably bound up with the rest of the
processing mechanism.
The representations need not be “flat, ”atomistic, or unstructured. The
sentence task demonstrated that sequential inputs may give rise to inter-
nal representations which are hierarchical in nature. The hierarchy is
implicit in the similarity structure of the hidden unit activations and
does not require an a priori architectural commitment to the depth or
form of the hierarchy. Importantly, distributed representations make
available a space which can be richly structured. Categorical relation-
ships as well as typekoken distinctions are readily apparent. Every item
may have its own representation, but because the representations are
structured, relations between representations are preserved.

*

The results described here are preliminary in nature. They are highly sug-
gestive, and often raise more questions than they answer. These networks
are properly thought of as dynamical systems, and one would like to know
more about their properties as such. For instance, the analyses reported
here made frequent use of hierarchical clustering techniques in order to
examine the similarity structure of the internal representations. These repre-
sentations are snapshots of the internal states during the course of process-
ing a sequential input. Hierarchical clustering of these snapshots gives useful
information about the ways in which the internal states of the network at
different points in time are similar or dissimilar. But the temporal relation-
ship between states is lost. One would like to know what the trajectories
between states (Le., the vector field) look like. What sort of attractors develop
in these systems? It is a problem, of course, that the networks studied here
are high-dimensional systems, and consequently difficult to study using
traditional techniques. One promising approach, which is currently being
studied, is to carry out a principal components analysis of the hidden unit

FINDING STRUCTURE IN TIME 209

activation pattern time series, and then to construct phase state portraits of
the most significant principal components (Elman, 1989).

Another question of interest is what is the memory capacity of such net-
works. The results reported here suggest that these networks have consider-
able representational power; but more systematic analysis using better defined
tasks is clearly desirable. Experiments are currently underway using sequences
generated by finite state automata of various types; these devices are rela-
tively well understood, and their memory requirements may be precisely
controlled (Servan-Schreiber et al., 1988).

One of the things which feedforward PDP models have shown is that
simple networks are capable of discovering useful and interesting internal
representations of many static tasks. Or put the other way around: Rich
representations are implicit in many tasks. However, many of the most in-
teresting human behaviors have a serial component. What is exciting about
the present results is that they suggest that the inductive power of the PDP
approach can be used to discover structure and representations in tasks
which unfold over time.

REFERENCES

Berwick, R.C., & Weinberg, A.S. (1984). The grammatical basis of linguistic performance.

Chomsky, N. (1957). Syntacric strucfures. The Hague: Moutin.
Chomsky, N. (1965). Aspecrs of the theory of syntax. Cambridge, MA: MIT Press.
Cottrell, G.W., Munro, P.W., & Zipser, D. (1987). Image compression by back propagation:

A demonstration of extensional programming. In N.E. Sharkey (Ed.), Advances in
cognitive science (Vol. 2). Chichester, England: Ellis Horwood.

Elman, J.L. (1989). Structured representations and connectionist models. (CRL Tech. Rep.
No. 8901). San Diego: University of California, Center for Research in Language.

Elman, J.L., & Zipser, D. (1988). Discovering the hidden structure of speech. Journal of rhe
Acoustical Society of America, 83, 1615-1626.

Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: A critical analysis. .

In S. Pinker & J. Mehler (Eds.), Connecrionsandsymbols(pp. 3-71). Cambridge, MA:
MIT Press.

Fowler, C. (1977). Timing confrol in speech producrion. Bloomington, IN: Indiana University
Linguistics Club.

Fowler, C. (1980). Coarticulation and theories of extrinsic timing control. Journalof Phonetics,

Frazier, L., & Fodor, J.D. (1978). The sausage machine: A new two-stage parsing model.

Greenberg, J.H. (1963). Universals of language. Cambridge, MA: MIT Press.
Grosjean, F. (1980). Spoken word recognition processes and the gating paradigm. Perception

Hanson, S.J., & Kegl, J. (1987). Parsnip: Aconnectionist network that learns natural language
grammar from exposure to natural language sentences. Ninth Annual Conference of the
Cognitive Science Sociefy, Seattle, Washington. Hillsdale, NJ: Erlbaum.

Hinton, G.E., McClelland, J.L., & Rumelhart, D.E. (1986). Distributed representations. In
D.E. Rumelhart & J.L. McClelland (Eds.), Parallel distributed processing: Explora-

Cambridge, MA: MIT Press.

8, 113-133.

Cognition, 6, 291-325.

& PSyChOphySiCS, 28, 267-283.

210 ELMAN

tions in the microstructure of cognition (Vol. 1 , pp. 77-109). Cambridge, MA: MIT
Press.

Jordan, M.I. (1986). Serial order: A parallel distributed processing approach (Tech. Rep. No.
8604). San Diego: University of California, Institute for Cognitive Science.

Jordan, M.I., & Rosenbaum, D.A. (1988). Action (Tech. Rep. No. 88-26). Amherst: Univer-
sity of Massachusetts, Department of Computer Science.

Kelso, J.A.S., Saltzman, E., & Tuller, B. (1986). The dynamical theory of speech production:
Data and theory. Journal of Phonetics, 14, 29-60.

Lashley, K.S. (1951). The problem of serial order in behavior. In L.A. Jeffress (Ed.), Cerebral
mechanisms in behavior. New York: Wiley.

Lehman, W.P. (1962). Historical linguistics: A n introduction. New York: Holt, Rinehart, and
W h t o n .

MacNeilage, P.F. (1970). Motor control of serial ordering of speech. Psychological Review,

MacWhinney, B. (1978). The acquisition of morphophonology. Monographs of the Society for
Research in Child Development, 43, (Serial No. 1).

Marcus, M. (1980). A theory of syntactic recognition for natural language. Cambridge, MA:
MIT Press.

Marslen-Wilson, W., &Tyler, L.K. (1980). The temporal structure of spoken language under-
standing. Cognition, 8, 1-71.

Pineda, F.J. (1988). Generalization of back propagation to recurrent and higher order neural
networks. In D.Z. Anderson (Ed.), Neural information processing systems. New York:
American Institute of Physics.

Pinker, S. (1984). Language learnability and language development. Cambridge, MA: Harvard
University Press.

Rumelhart, D.E., Hinton, G.E., &Williams, R.J. (1986). Learning internal representations by
error propagation. In D.E. Rumelhart & J.L. McClelland (Eds.), Parallel distributed
processing: Explorations in the microstructure of cognition (Vol. 1, pp. 318-362). Cam-
bridge, MA: MIT Press.

Salasoo, A., & Pisoni, D.B. (1985). Interaction of knowledge sources in spoken word identifi-
cation. Journal of Memory and Language, 24, 210-231.

Saltzman, E., & Kelso, J.A.S. (1987). Skilled actions: A task dynamic approach. Psychological
Review, 94, 84-106.

Schwanenflugel, P.J., & Shoben, E.J. (1985). The influence of sentence constraint on the
scope of facilitation for upcoming words. Journal of Memory and Language, 24,

Sejnowski, T.J., & Rosenberg, C.R. (1987). Parallel networks that learn to pronounce English
text. Complex Systems, I , 145-168.

Servan-Schreiber, D., Cleeremans, A., & McClelland, J.L. (1988). Encoding sequentialstruc-
ture in simple recurrent networks (CMU Tech. Rep. No. CMU-CS-88-183). Pittsburgh,
P A Carnegie-Mellon University, Computer Science Department.

Smolensky, P. (1987). On variable binding and the representation of symbolic structures in
connectionist systems (Tech. Rep. No. CU-CS-355-87). Boulder, CO: University of
Colorado, Department of Computer Science.

Smolensky, P. (1988). On the proper treatment of connectionism. The Behavioral and Brain
Sciences, I I .

Stornetta, W.S., Hogg, T., & Huberman, B.A. (1987). A dynamical approach to temporal
pattern processing. Proceedings of the IEEE Conference on Neural Information Pro-
cessing Systems. Denver, CO.

Swinney, D. (1979). Lexical access during sentence comprehension: (Re)consideration of con-
text effects. Journal of Verbal Learning and Verbal Behavior, 6, 645-659.

77, 182-196.

232-252.

FINDING STRUCTURE IN TIME 21 1

Tabossi, P. (1988). Effects of context on the immediate interpretation of unambiguous nouns.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 153-162.

Tabossi, P., Colombo, L., & Job, R. (1987). Accessing lexical ambiguity: Effects of context
and dominance. Psychological Research, 49, 161-167.

Tank, D.W., & Hopfield, J.J. (1987, June). Neural computation by concentrating information
in time. Proceedings of the IEEE International Conference on Neural Networks. San
Diego, CA.

Van Gelder, T.J. (in press). Compositionality: Variations on a classical theme. Cognitive
Science.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1987). Phoneme recognition
using time-delay neural networks (ATR Tech. Rep. TR-1-0006). Japan: ATR Interpret-
ing Telephony Research Laboratories.

Watrous, R.L., & Shastri, L. (1987). Learning phonetic features using connectionist networks:
An experiment in speech recognition. Proceedings of fhe IEEE International Confer-
ence on Neural Networks. San Diego, CA.

Williams, R.J., & Zipser, D. (1988). A learning algorithm for continually running fully recur-
rent neural networks (Tech. Rep. No. 8805). San Diego: University of California, Insti-
tute for Cognitive Science.

