
30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation

BERNARD WIDROW, FELLOW, IEEE, AND MICHAEL A. LEHR

Fundamental developments in feedfonvard artificial neural net-
works from the past thirty years are reviewed. The central theme of
this paper is a description of the history, origination, operating
characteristics, and basic theory of several supervised neural net-
work training algorithms including the Perceptron rule, the LMS
algorithm, three Madaline rules, and the backpropagation tech-
nique. These methods were developed independently, but with
the perspective of history they can a / / be related to each other. The
concept underlying these algorithms is the “minimal disturbance
principle,” which suggests that during training it is advisable to
inject new information into a network in a manner that disturbs
stored information to the smallest extent possible.

I . INTRODUCTION

This year marks the 30th anniversary of the Perceptron
rule and the LMS algorithm, two early rules for training
adaptive elements. Both algorithms were first published in
1960. In the years following these discoveries, many new
techniques have been developed in the field of neural net-
works, and the discipline is growing rapidly. One early
development was Steinbuch’s Learning Matrix [I], a pattern
recognition machine based on linear discriminant func-
tions. At the same time, Widrow and his students devised
Madaline Rule I (MRI), the earliest popular learning rule for
neural networks with multiple adaptive elements [2]. Other
early work included the “mode-seeking” technique of
Stark, Okajima, and Whipple [3]. This was probably the first
example of competitive learning in the literature, though
it could be argued that earlierwork by Rosenblatt on “spon-
taneous learning” [4], [5] deserves this distinction. Further
pioneering work on competitive learning and self-organi-
zation was performed in the 1970s by von der Malsburg [6]
and Grossberg [7l. Fukushima explored related ideas with
his biologically inspired Cognitron and Neocognitron
models [8], [9].

Manuscript received September 12,1989; revised April 13,1990.
This work was sponsored by SDI0 Innovative Science and Tech-
nologyoffice and managed by ONR under contract no. N00014-86-
K-0718, by the Dept. of the Army Belvoir RD&E Center under con-
tracts no. DAAK70-87-P-3134and no. DAAK-70-89-K-0001, by a grant
from the Lockheed Missiles and Space Co., by NASA under con-
tract no. NCA2-389, and by Rome Air Development Center under
contract no. F30602-88-D-0025, subcontract no. E-21-T22-S1.

The authors are with the Information Systems Laboratory,
Department of Electrical Engineering, Stanford University, Stan-
ford, CA 94305-4055, USA.

IEEE Log Number 9038824.

Widrow devised a reinforcement learning algorithm
called “punish/reward” or ”bootstrapping” [IO], [I l l in the
mid-1960s. This can be used to solve problems when uncer-
tainty about the error signal causes supervised training
methods to be impractical. A related reinforcement learn-
ing approach was later explored in a classic paper by Barto,
Sutton, and Anderson on the “credit assignment” problem
[12]. Barto et al.’s technique is also somewhat reminiscent
of Albus’s adaptive CMAC, a distributed table-look-up sys-
tem based on models of human memory [13], [14].

In the 1970s Grossberg developed his Adaptive Reso-
nance Theory (ART), a number of novel hypotheses about
the underlying principles governing biological neural sys-
tems [15]. These ideas served as the basis for later work by
Carpenter and Grossberg involving three classes of ART
architectures: ART 1 [16], ART 2 [17], and ART 3 [18]. These
are self-organizing neural implementations of pattern clus-
tering algorithms. Other important theory on self-organiz-
ing systems was pioneered by Kohonen with his work on
feature maps [19], [201.

In the early 1980s, Hopfield and others introduced outer
product rules as well as equivalent approaches based on
the early work of Hebb [21] for training a class of recurrent
(signal feedback) networks now called Hopfield models [22],
[23]. More recently, Kosko extended some of the ideas of
Hopfield and Grossberg to develop his adaptive Bidirec-
tional Associative Memory (BAM) [24], a network model
employing differential as well as Hebbian and competitive
learning laws. Other significant models from the past de-
cade include probabilistic ones such as Hinton, Sejnowski,
and Ackley‘s Boltzmann Machine [25], [26] which, to over-
simplify, is a Hopfield model that settles into solutions by
a simulated annealing process governed by Boltzmann sta-
tistics. The Boltzmann Machine i s trained by a clever two-
phase Hebbian-based technique.

While these developments were taking place, adaptive
systems research at Stanford traveled an independent path.
After devising their Madaline I rule, Widrow and his stu-
dents developed uses for the Adaline and Madaline. Early
applications included, among others, speech and pattern
recognition [27], weather forecasting [28], and adaptive con-
trols [29]. Work then switched to adaptive filtering and
adaptive signal processing [30] after attempts to develop
learning rules for networks with multiple adaptive layers
were unsuccessful. Adaptive signal processing proved to

0018-9219/90/0900-1415$01.00 0 1990 IEEE

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990 1415

bea fruitful avenue for research with applications involving
adaptive antennas [311, adaptive inverse controls [32], adap-
tive noise cancelling [33], and seismic signal processing [30].
Outstanding work by Lucky and others at Bell Laboratories
led to major commercial applications of adaptive filters and
the L M S algorithm to adaptive equalization in high-speed
modems [34], [35] and to adaptive echo cancellers for long-
distance telephone and satellite circuits [36]. After 20 years
of research in adaptive signal processing, the work in Wid-
row’s laboratory has once again returned to neural net-
works.

The first major extension of the feedforward neural net-
work beyond Madaline I took place in 1971 when Werbos
developed a backpropagation training algorithm which, in
1974, he first published in his doctoral dissertation [371.’
Unfortunately, Werbos’s work remained almost unknown
in the scientific community. In 1982, Parker rediscovered
the technique [39] and in 1985, published a report on it at
M.I.T. [40]. Not long after Parker published his findings,
Rumelhart, Hinton, and Williams [41], [42] also rediscovered
the techniqueand, largelyasaresultof theclear framework
within which they presented their ideas, they finally suc-
ceeeded in making it widely known.

The elements used by Rumelhart et al. in the backprop-
agation network differ from those used in the earlier Mada-
line architectures. The adaptive elements in the original
Madaline structure used hard-limiting quantizers (sig-
nums), while the elements in the backpropagation network
use only differentiable nonlinearities, or “sigmoid” func-
tions.2 In digital implementations, the hard-limiting
quantizer is more easily computed than any of the differ-
entiable nonlinearities used in backpropagation networks.
In 1987, Widrow,Winter,and Baxter looked backattheorig-
inal Madaline I algorithm with the goal of developing a new
technique that could adapt multiple layers of adaptive ele-
ments using the simpler hard-limitingquantizers. The result
was Madaline Rule II [43].

David Andes of U.S. Naval Weapons Center of China Lake,
CA, modified Madaline I I in 1988 by replacing the hard-lim-
iting quantizers in the Adaline and sigmoid functions,
thereby inventing Madaline Rule Ill (MRIII). Widrow and his
students were first to recognize that this rule i s mathe-
matically equivalent to backpropagation.

The outline above gives only a partial view of the disci-
pline, and many landmark discoveries have not been men-
tioned. Needless to say, the field of neural networks is
quickly becoming a vast one, and in one short survey we
could not hope to cover the entire subject in any detail.
Consequently, many significant developments, including
some of those mentioned above, are not discussed in this
paper. The algorithms described are limited primarily to

’Weshould note, however, that in the fieldof variational calculus
the idea of error backpropagation through nonlinear systems
existed centuries before Werbosfirstthoughttoapplythisconcept
to neural networks. In the past 25years, these methods have been
used widely in the field of optimal control, as discussed by Le Cun
[381.

*The term “sigmoid” i s usually used in reference to monoton-
ically increasing “S-shaped” functions, such as the hyperbolic tan-
gent. In this paper, however, we generally use the term to denote
any smooth nonlinear functions at the output of a linear adaptive
element. In other papers, these nonlinearities go by a variety of
names, such as “squashing functions,” ”activation functions,”
“transfer characteristics,” or ”threshold functions.”

thosedeveloped in our laboratoryat Stanford, and to related
techniques developed elsewhere, the most important of
which is the backpropagation algorithm. Section I I explores
fundamental concepts, Section Ill discusses adaptation and
the minimal disturbance principle, Sections IV and V cover
error correction rules, Sections VI and VI1 delve into
steepest-descent rules, and Section V l l l provides a sum-
mary.

Information about the neural network paradigms not dis-
cussed in this papercan beobtainedfromanumberofother
sources, such as the concise survey by Lippmann [44], and
the collection of classics by Anderson and Rosenfeld [45].
Much of the early work in the field from the 1960s is care-
fully reviewed in Nilsson’s monograph [46]. A good view
of some of the more recent results i s presented in Rumel-
hart and McClelland’s popular three-volume set [471. A
paper by Moore [48] presents a clear discussion about ART
1 and some of Crossberg’s terminology. Another resource
is the DARPA Study report [49] which gives a very compre-
hensive and readable “snapshot” of the field in 1988.

I I . FUNDAMENTAL CONCEPTS

Today we can build computers and other machines that
perform avarietyofwell-defined taskswith celerityand reli-
ability unmatched by humans. No human can invert matri-
ces or solve systems of differential equations at speeds
rivaling modern workstations. Nonetheless, many prob-
lems remain to be solved to our satisfaction by any man-
made machine, but are easily disentangled by the percep-
tual or cognitive powers of humans, and often lower mam-
mals, or even fish and insects. No computer vision system
can rival the human ability to recognize visual images
formed by objects of all shapes and orientations under a
wide range of conditions. Humans effortlessly recognize
objects in diverse environments and lighting conditions,
even when obscured by dirt, or occluded by other objects.
Likewise, the performance of current speech-recognition
technology pales when compared to the performance of
the human adult who easily recognizes words spoken by
different people, at different rates, pitches, and volumes,
even in the presence of distortion or background noise.

The problems solved more effectively by the brain than
by the digital computer typically have two characteristics:
they are generally ill defined, and they usually require an
enormous amount of processing. Recognizing the char-
acter of an object from its image on television, for instance,
involves resolving ambiguities associated with distortion
and lighting. It also involves filling in information about a
three-dimensional scene which i s missing from the two-
dimensional image on the screen. An infinite number of
three-dimensional scenes can be projected into a two-
dimensional image. Nonetheless, the brain deals well with
this ambiguity, and using learned cues usually has little dif-
ficulty correctly determining the role played bythe missing
dimension.

As anyone who has performed even simple filtering oper-
ations on images is aware, processing high-resolution
images requires a great deal of computation. Our brains
accomplish this by utilizing massive parallelism, with mil-
lions and even billions of neurons in partsof the brain work-
ing together to solve complicated problems. Because solid-
state operational amplifiers and logic gates can compute

1416 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

1

many orders of magnitude faster than current estimates of
the computational speed of neurons in the brain, we may
soon be able to build relatively inexpensive machines with
the ability to process as much information as the human
brain.Thisenormous processing powerwill do l itt leto help
US solve problems, however, unless we can utilize it effec-
tively. For instance, coordinating many thousands of pro-
cessors, which must efficiently cooperate to solve a prob-
lem, is not a simple task. If each processor must be
programmed separately, and if all contingencies associated
with various ambiguities must be designed into the soft-
ware, even a relatively simple problem can quickly become
unmanageable. The slow progress over the past 25 years or
so in machinevision and otherareasofartificial intelligence
i s testament to the difficulties associated with solving
ambiguous and computationally intensive problems on von
Neumann computers and related architectures.

Thus, there i s some reason to consider attacking certain
problems by designing naturally parallel computers, which
process information and learn by principles borrowed from
the nervous systems of biological creatures. This does not
necessarily mean we should attempt to copy the brain part
for part. Although the bird served to inspire development
of the airplane, birds do not have propellers, and airplanes
do not operate by flapping feathered wings. The primary
parallel between biological nervous systems and artificial
neural networks is that each typically consists of a large
number of simple elements that learn and are able to col-
lectively solve complicated and ambiguous problems.

Today, most artificial neural network research and appli-
cation is accomplished by simulating networks on serial
computers. Speed limitations keep such networks rela-
tively small, but even with small networks some surpris-
ingly difficult problems have been tackled. Networks with
fewer than 150 neural elements have been used success-
fully in vehicular control simulations [50], speech genera-
tion [51], [52], and undersea mine detection [49]. Small net-
works have also been used successfully in airport explosive
detection [53], expert systems [54], [55], and scores of other
applications. Furthermore, efforts to develop parallel neural
network hardware are meeting with some success, and such
hardware should be available in the future for attacking
more difficult problems, such as speech recognition [56],
[57l.

Whether implemented in parallel hardware or simulated
on a computer, all neural networks consist of a collection
of simple elements that work together to solve problems.
A basic building block of nearly all artificial neural net-
works, and most other adaptive systems, is the adaptive lin-
ear combiner.

A. The Adaptive Linear Combiner

The adaptive linear combiner i s diagrammed in Fig. 1. Its
output i s a linear combination of i t s inputs. In a digital
implementation, this element receives at time k an input
signal vector or input pattern vector X k = [x,, x l t , xzk,
. . 1 , x,,]' and a desired response dk, a special input used
to effect learning. The components of the input vector are
weighted by a set of coefficients, the weight vector Wk =
[wok, wlk, wZt, * . . , w,~]'. The sum of the weighted inputs
is then computed, producing a linear output, the inner
product sk = XLWk. The components of X k may be either

Input

Vector output

: / I
nk

Error t
1
dk

Desired Response
Wk

Weight Vector

Fig. 1. Adaptive linear combiner.

continuous analog values or binary values. The weights are
essentially continuously variable, and can take on negative
as well as positive values.

During the training process, input patterns and corre-
sponding desired responses are presented to the linear
combiner. An adaptation algorithm automatically adjusts
the weights so that the output responses to the input pat-
terns will be as close as possible to their respective desired
reponses. In signal processing applications, the most pop-
ular method for adapting the weights is the simple LMS
(least mean square) algorithm [58], [59], often called the
Widrow-Hoff delta rule [42]. This algorithm minimizes the
sum of squares of the linear errors over the training set. The
linear error t k i s defined to be the difference between the
desired response dk and the linear output s k , during pre-
sentation k . Having this error signal is necessary for adapt-
ing the weights. When the adaptive linear combiner i s
embedded in a multi-element neural network, however, an
error signal i s often notdirectlyavailableforeach individual
linear combiner and more complicated procedures must
be devised for adapting the weight vectors. These proce-
dures are the main focus of this paper.

B. A Linear Classifier-The Single Threshold Element

The basic building block used in many neural networks
is the "adaptive linear element," or Adaline3 [58] (Fig. 2).

This i s an adaptive threshold logic element. It consists of
an adaptive linear combiner cascaded with a hard-limiting
quantizer, which is used to produce a binary 1 output,
Yk = sgn (sk) . The bias weight wok which i s connected to a
constant input xo = + I , effectively controls the threshold
level of the quantizer.

In single-element neural networks, an adaptivealgorithm
(such as the LMS algorithm, or the Perceptron rule) i s often
used to adjust the weights of the Adaline so that it responds
correctly to as many patterns as possible in a training set
that has binary desired responses. Once the weights are
adjusted, the responses of the trained element can be tested
by applying various input patterns. If the Adaline responds
correctly with high probability to input patterns that were
not included in the training set, it i s said that generalization
has taken place. Learning and generalization are among the
most useful attributes of Adalines and neural networks.

Linear Separability: With n binary inputs and one binary

31n the neural network literature, such elements are often
referred to as "adaptive neurons." However, in a conversation
between David Hubel of Harvard Medical School and Bernard Wid-
row, Dr. Hubel pointed out that the Adaline differs from the bio-
logical neuron in that it contains not only the neural cell body, but
also the input synapses and a mechanism for training them.

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION 1417

Linear
output

Binary
output
(+L-11

' - _ - - - _ _ - - _ _ _ - - _ _ _ _ _ _ - - I

'k-1-
Desired Response Input

(training signal)

Fig. 2. Adaptive linear element (Adaline).

output, a single Adaline of the type shown in Fig. 2 is capa-
ble of implementing certain logic functions. There are 2"
possible input patterns. A general logic implementation
would be capable of classifying each pattern as either + I
or -1, in accord with the desired response. Thus, there are
22' possible logic functions connecting n inputs to a single
binary output. A single Adaline is capable of realizing only
asmall subset of thesefunctions, known as the linearlysep-
arable logic functions or threshold logic functions [60].
These are the set of logic functions that can be obtained
with all possible weight variations.

Figure3 shows atwo-input Adalineelement. Figure4 rep-
resents all possible binary inputs to this element with four
large dots in pattern vector space. In this space, the com-
ponentsof the input pattern vector liealongthecoordinate
axes. The Adaline separates input patterns into two cate-
gories, depending on the values of the weights. A critical

Xok= +1

'k

Fig. 3. Two-input Adaline.

Separat ing Line

x z = 3 x , - "0
w2 WZ

Fig. 4. Separating line in pattern space.

thresholding condition occurs when the linear output s
equals zero:

s = XlW, + X,W, + WO = 0, (1)

therefore

w 1 x , - -. WO
x 2 = --

w2 w2

Figure 4 graphs this linear relation, which comprises a
separating line having slope and intercept given by

W
slope = -2

intercept = -3.

w 2

w2
(3)

The three weights determine slope, intercept, and the side
of the separating line that corresponds to a positive output.
The opposite side of the separating line corresponds to a
negative output. For Adalines with four weights, the sep-
arating boundary is a plane; with more than four weights,
the boundary i s a hyperplane. Note that if the bias weight
i s zero, the separating hyperplane will be homogeneous-
it wil l pass through the origin in pattern space.

As sketched in Fig. 4, the binary input patterns are clas-
sified as follows:

(+ I , + I) + + I

(+I , -1) + + I

(-1, -1) -+ + I

(-1, +I) + -1 (4)

This is an example of a linearly separable function. An
example of a function which i s not linearly separable is the
two-input exclusive NOR function:

(+ I , +I) + +I

(+I, -1) -+ -1

(-1, -1) + + I

(-1, +I) + -1 (5)

Nosinglestraight lineexiststhat can achievethisseparation
of the input patterns; thus, without preprocessing, no sin-
gle Adaline can implement the exclusive NOR function.

With two inputs, a single Adaline can realize 14 of the 16
possible logic functions. With many inputs, however, only
a small fraction of all possible logic functions i s realizable,
that is, linearly separable. Combinations of elements or net-
works of elements can be used to realize functions that are
not linearly separable.

Capacity of Linear C/assifiers:The number of training pat-
terns or stimuli that an Adalinecan learn tocorrectlyclassify
i s an important issue. Each pattern and desired output com-
bination represents an inequalityconstraint on the weights.
It i s possible to have inconsistencies in sets of simultaneous
inequalities just as with simultaneous equalities. When the
inequalities (that is, the patterns) are determined at ran-
dom, the number that can be picked before an inconsis-
tency arises i s a matter of chance.

In their 1964 dissertations [61], [62], T. M. Cover and R. J.
Brown both showed that the average number of random
patterns with random binary desired responses that can be

1418 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

absorbed by an Adaline i s approximately equal to twice the
number of weights4 This i s the statistical pattern capacity
C, of the Adaline. As reviewed by Nilsson [46], both theses
included an analyticformuladescribingthe probabilitythat
such a training set can be separated by an Adaline (i.e., it
is linearly separable). The probability i s afunction of Np, the
number of input patterns in the training set, and N,, the
number of weights in the Adaline, including the threshold
weight, i f used:

for N, 5 N,.

In Fig. 5 this formula was used to plot a set of analytical
curves, which show the probability that a set of Np random
patterns can be trained into an Adaline as a function of the
ratio NJN,. Notice from these curves that as the number
of weights increases, the statistical pattern capacity of the
AdalineC, = 2N,becomesan accurateestimateofthenum-
ber of responses it can learn.

Another fact that can be observed from Fig. 5 i s that a

0 8 -

Probability
of Linear 0 6
Separability

0 4 -

N,= 15
N,= 5
N,= 2

Np/Nw--Ratio of Input Patterns to Weights

Fig. 5. Probability that an Adaline can separate a training
pattern set as a function of the ratio NJN,.

problem is guaranteed to have a solution if the number of
patterns i s equal to (or less than) half the statistical pattern
capacity; that is, if the number of patterns i s equal to the
number of weights. We will refer to this as the deterministic
pattern capacityCdof the Adaline. An Adaline can learn any
two-category pattern classification task involving no more
patterns than that represented by its deterministic capacity,

Both the statistical and deterministic capacity results
depend upon a mild condition on the positionsof the input
patterns: the patterns must be in general position with
respect to the Adaline.’ If the input patterns to an Adaline

Cd = N,.

4Underlying theory for this result was discovered independently
by a number of researchers including, among others, Winder [63],
Cameron [U], and Joseph [65].

5Patterns are in general position with respect to an Adaline with
no threshold weight i f any subset of pattern vectors containing no
more than N, members forms a linearly independent set or, equiv-
alently, i f no set of N, or more input points in the N,-dimensional
pattern space lie on a homogeneous hyperplane. For the more
common case involving an Adaline with a threshold weight, gen-
eral position means that no set of N, or more patterns in the (N,
- 1)-dimension pattern space lie on a hyperplane not constrained
to pass through the origin [61], [46].

are continuous valued and smoothly distributed (that is,
pattern positions are generated by a distribution function
containing no impulses), general position i s assured. The
general position assumption i s often invalid if the pattern
vectors are binary. Nonetheless, even when the points are
not in general position, the capacity results represent use-
ful upper bounds.

The capacity results apply to randomly selected training
patterns. In most problems of interest, the patterns in the
training set are not random, but exhibit some statistical reg-
ularities. These regularities are what make generalization
possible. The number of patterns that an Adaline can learn
in a practical problem often far exceeds its statistical capac-
ity becausethe Adaline isabletogeneralizewithin thetrain-
ing set, and learns many of the training patterns before they
are even presented.

C. Nonlinear Classifiers

Thelinearclassifier i s limited in itscapacity,andofcourse
i s limited to only linearly separable forms of pattern dis-
crimination. More sophisticated classifiers with higher
capacities are nonlinear. Two types of nonlinear classifiers
are described here. The first i s a fixed preprocessing net-
work connected to a single adaptive element, and the other
i s the multi-element feedforward neural network.

Polynomial Discriminant Functions: Nonlinear functions
of the in.puts applied to the single Adaline can yield non-
linear decision boundaries. Useful nonlinearities include
the polynomial functions. Consider the system illustrated
in Fig. 6 which contains only linear and quadratic input

Input
Pattern
VeCtOl

X
X l

Binary

Y - output

(+1,-1)

Fig. 6. Adalinewith inputs mapped through nonlinearities.

functions. The critical thresholding condition for this sys-
tem is

s = WO + XlWl + x:w1, + X1XzW12

+ x;w2* + xzw2 = 0. (7)

With proper choiceof theweights, the separating bound-
ary in pattern space can be established as shown, for exam-
ple, in Fig. 7.This representsasolutionfortheexclusive NOR

function of (5). Of course, all of the linearly separable func-
tions are also realizable. The use of such nonlinearities can
be generalized for more than two inputs and for higher
degree polynomial functions of the inputs. Some of the first
work in this area was done by Specht [66]-[68] at Stanford
in the 1960s when he successfully applied polynomial dis-
criminants to the classification and analysis of electrocar-
diographic signals. Work on this topic has also been done

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPAGATION 1419

Separating
Boundary r Madaline I was built out of hardware [78] and used in pat-

tern recognition research. Theweights in this machinewere
memistors, electrically variable resistors developed by
Widrow and Hoff which are adjusted by electroplating a
resistive link [79].

Madaline I was configured in the following way. Retinal
inputs were connected to a layer of adaptive Adaline ele-
ments, the outputs of which were connected to a fixed logic
device that generated the system output. Methods for
adapting such systems were developed at that time. An
exampleof this kind of network is shown in Fig. 8. TwoAda-

Adaline
Output = -1

Adal ine
-0 O u t p u t = +1

Fig. 7. Elliptical separating boundary for realizing a func-
tion which i s not linearly separable.

by Barron and Barron [69]-[71] and by lvankhnenko [72] in
the Soviet Union.

The polynomial approach offers great simplicity and
beauty.Through it onecan realizeawidevarietyofadaptive
nonlinear discriminant functions by adapting only a single
Adaline element. Several methods have been developed for
training the polynomial discriminant function. Specht
developed a very efficient noniterative (that is, single pass
through the training set) training procedure: the polyno-
mial discriminant method (PDM), which allows the poly-
nomial discriminant function to implement a nonpara-
metric classifier based on the Bayes decision rule. Other
methods for training the system include iterative error-cor-
rection rules such as the Perceptron and a-LMS rules, and
iterative gradient-descent procedures such as the w-LMS
and SER (also called RLS) algorithms [30]. Gradient descent
with a single adaptive element is typically much faster than
with a layered neural network. Furthermore, as we shall see,
when the single Adaline is trained by a gradient descent
procedure, it will converge to a unique global solution.

After the polynomial discriminant function has been
trained byagradient-descent procedure, theweights of the
Adaline will represent an approximation to the coefficients
in a multidimensional Taylor series expansion of thedesired
response function. Likewise, if appropriate trigonometric
terms are used in place of the polynomial preprocessor, the
Adaline's weight solution will approximate the terms in the
(truncated) multidimensional Fourier series decomposi-
tion of a periodic version of the desired response function.
The choice of preprocessing functions determines how well
a network will generalize for patterns outside the training
set. Determining "good" functions remains a focus of cur-
rent research [73], [74]. Experience seems to indicate that
unless the nonlinearities are chosen with care to suit the
problem at hand, often better generalization can be
obtained from networks with more than one adaptive layer.
In fact,onecan view multilayer networks assingle-layer net-
works with trainable preprocessors which are essentially
self-optimizing.

Madaline I

One of the earliest trainable layered neural networks with
multiple adaptive elements was the Madaline I structure of
Widrow [2] and Hoff (751. Mathematical analyses of Mada-
line I were developed in the Ph.D. theses of Ridgway [76],
Hoff [75], and Glanz [77]. In the early 1960s, a 1000-weight

Input
Pattern
Vector

X xiT- - ,
, & py output

x 1

Fig. 8. Two-Adaline form of Madaline.

lines are connected to an AND logic device to provide an
output.

With weights suitably chosen, the separating boundary
in pattern space for the system of Fig. 8 would be as shown
in Fig. 9. This separating boundary implements the exclu-
sive NOR function of (5).

Separating
Lines ,\

o u t p u t = +1

Fig. 9. Separating lines for Madaline of Fig. 8.

Madalines were constructed with many more inputs, with
many more Adaline elements in the first layer, and with var-
ious fixed logic devices such as AND, OR, and majority-vote-
taker elements in the second layer. Those three functions
(Fig. IO) are all threshold logic functions. The given weight
valueswill implement these threefunctions, but theweight
choices are not unique.

Feedforward Networks

The Madalines of the 1960s had adaptive first layers and
fixed threshold functions in the second (output) layers [76],

1420 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

w, =+1

xg= +1
1

AND

W] = +1

XI‘-- xo$:o = o

Fig. 10. Fixed-weight Adaline implementations of AND, OR,
and MAJ logic functions.

[46]. The feedfoward neural networks of today often have
many layers, and usually all layers are adaptive. The back-
propagation networks of Rumelhart et al. [47] are perhaps
the best-known examples of multilayer networks. A fully
connected three-layer6 feedforward adaptive network i s
illustrated in Fig. 11. In a fully connected layered network,

t
second-layer

Adalines

t
first-layer
Adalines

Fig. 11. Three-layer adaptive neural network.

each Adaline receives inputs from every output in the pre-
ceding layer.

During training, the response of each output element in
the network is compared with a corresponding desired
response. Error signals associated with the output elements
are readily computed, so adaptation of the output layer is
straightforward. The fundamental difficulty associated with
adapting a layered network lies in obtaining “error signals”
for hidden-layer Adalines, that is,forAdalines in layersother
than the output layer. The backpropagation and Madaline
Ill algorithms contain methods for establishing these error
signals.

61n Rumelhart et al.’s terminology, this would be called a four-
layer network, following Rosenblatt’s convention of counting lay-
ers of signals, including the input layer. For our purposes, we find
it more useful to count only layers of computing elements. We do
not count as a layer the set of input terminal points.

There i s no reason whyafeedforward network must have
the layered structure of Fig. 11. In Werbos’s development
of the backpropagation algorithm [37], in fact, the Adalines
are ordered and each receives signals directly from each
input component and from the output of each preceding
Adaline. Many other variations of the feedforward network
are possible. An interesting areaof current research involves
a generalized backpropagation method which can be used
to train “high-order” or ‘’u-T’’ networks that incorporate
a polynomial preprocessor for each Adaline [47], [80].

One characteristic that is often desired in pattern rec-
ognition problems i s invariance of the network output to
changes in the position and size of the input pattern or
image. Varioustechniques have been used toachievetrans-
lation, rotation, scale, and time invariance. One method
involves including in the training set several examples of
each exemplar transformed in size, angle, and position, but
with a desired response that depends only on the original
exemplar [78]. Other research has dealt with various Fourier
and Mellin transform preprocessors [81], [82], as well as
neural preprocessors [83]. Giles and Maxwell have devel-
oped a clever averaging approach, which removes
unwanted dependencies from the polynomial terms in high-
order threshold logic units (polynomial discriminant func-
tions) [74] and high-order neural networks [80]. Other
approaches have considered Zernike moments [84], graph
matching [85], spatially repeated feature detectors [9], and
time-averaged outputs [86].

Capacity of Nonlinear Classifiers

An important consideration that should be addressed
when comparing various network topologies concerns the
amount of information they can store.’ Of the nonlinear
classifiers mentioned above, the pattern capacity of the
Adaline driven byafixed preprocessor composed of smooth
nonlinearities is the simplest to determine. If the inputs to
the system are smoothly distributed in position, the out-
puts of the preprocessing network will be in general posi-
tion with respecttotheAdaline.Thus,the inputstothe Ada-
line will satisfy the condition required in Cover’s Adaline
capacity theory. Accordingly, the deterministic and statis-
tical pattern capacities of the system are essentially equal
to those of the Adaline.

Thecapacities of Madaline I structures, which utilize both
the majoritiy element and the OR element, were experi-
mentally estimated by Koford in the early 1960s. Although
the logic functions that can be realized with these output
elements are quite different, both types of elements yield
essentially the same statistical storage capacity. The aver-
age number of patterns that a Madaline I network can learn
to classify was found to be equal to the capacity per Adaline
multiplied by the number of Adalines in the structure. The
statistical capacity C, i s therefore approximately equal to
twice the number of adaptive weights. Although the Mada-
line and the Adaline have roughly the same capacity per
adaptive weight, without preprocessing the Adaline can
separate only linearly separable sets, while the Madaline
has no such limitation.

’We should emphasize that the information referred to herecor-
responds to the maximum number of binary input/output map-
pings a network achieve with properly adjusted weights, not the
number of bits of information that can be stored directly into the
network’s weights.

WIDROW AND LEHR PERCEPTRON, MADALINE, AND BACKPROPACATION

~ ~~

1421

A great deal of theoretical and experimental work has
been directed toward determining the capacity of both
Adalines and Hopfield networks [87]-[90]. Somewhat less
theoretical work has been focused on the pattern capacity
of multilayer feedforward networks, though some knowl-
edge exists about the capacity of two-layer networks. Such
results are of particular interest because the two-layer net-
work is surprisingly powerful. With a sufficient number of
hidden elements, a signum network with two layers can
implement any Boolean function.’ Equally impressive is the
power of the two-layer sigmoid network. Given a sufficient
number of hidden Adaline elements, such networks can
implement any continuous input-output mapping to arbi-
trary accuracy [92]-[94]. Although two-layer networks are
quite powerful, it i s likely that some problems can be solved
more efficiently by networks with more than two layers.
Nonfinite-order predicate mappings (such as the connect-
edness problem [95]) can often be computed by small net-
works using signal feedback [96].

In the mid-I960s, Cover studied the capacity of a feed-
forward signum networkwith an arbitrary number of layersg
and a single output element [61], [97. He determined a lower
bound on the minimum number of weights N, needed to
enable such a network to realize any Boolean function
defined over an arbitrary set of Np patterns in general posi-
tion. Recently, Baum extended Cover’s result to multi-out-
put networks, and also used a construction argument to
find corresponding upper bounds for the special case of
thetwo-layer signum network[98l.Consideratwo-layerfully
connected feedforward network of signum Adalines that
has Nx input components (excluding the bias inputs) and
N,output components. If this network is required to learn
to map any set containing Np patterns that are in general
position to any set of binary desired response vectors (with
N, components), it follows from Baum’s results” that the
minimum requisite number of weights N,can be bounded

by

1 + l0g,(Np) N x
5 N, < N - + 1 (N, + N, + 1) + N,.

(8)

From Eq. (8), it can be shown that for a two-layer feedfor-
ward networkwith several times as many inputs and hidden
elements as outputs (say, at least 5 times as many), the deter-
ministic pattern capacity is bounded below by something
slightly smaller than N,/N,. It also follows from Eq. (8) that
the pattern capacityof any feedforward network with a large
ratio of weights to outputs (that is, N,IN, at least several
thousand) can be bounded above by a number of some-
what larger than (N,/Ny) log, (Nw/Ny). Thus, the determin-
istic pattern capacity C, of a two-layer network can be
bounded by

(” 1 N Y N P

whereK,and &are positive numberswhich aresmall terms
if the network i s large with few outputs relative to the num-
ber of inputs and hidden elements.

It is easy to show that Eq. (8) also bounds the number of
weights needed to ensure that N, patterns can be learned
with probability 1/2, except in this case the lower bound on
N, becomes: (N,N, - .1)/(1 + log, (N,)). It follows that Eq.
(9) also serves to bound the statistical capacity C, of a two-
layer signum network.

It is interesting to note that the capacity bounds (9)
encompass the deterministic capacity for the single-layer
networkcomprisinga bankof N,Adalines. In thiscaseeach
Adaline would have N,/N, weights, so the system would
have a deterministic pattern capacity of N,/N,. AS N,
becomes large, the statistical capacity also approaches
N,/N, (for N, finite). Until further theory on feedforward
network capacity is developed, it seems reasonable to use
the capacity results from the single-layer network to esti-
mate that of multilayer networks.

Little i s known about the number of binary patterns that
layered sigmoid networks can learn to classify correctly.
The pattern capacityof sigmoid networks cannot be smaller
than that of signum networks of equal size, however,
because as the weights of a sigmoid network grow toward
infinity, it becomes equivalent to a signum network with
aweight vector in the same direction. Insight relating to the
capabilities and operating principles of sigmoid networks
can be winnowed from the literature [99]-[loll.

A network’s capacity i s of little utility unless it i s accom-
panied by useful generalizations to patterns not presented
during training. In fact, if generalization is not needed, we
can simply store the associations in a look-up table, and will
have little need for a neural network. The relationship
between generalization and pattern capacity represents a
fundamental trade-off in neural network applications:
the Adaline’s inability to realize all functions i s in a sense
a strength rather than the fatal flaw envisioned by some crit-
ics of neural networks [95], because it helps limit the capac-
ity of the device and thereby improves i ts ability to gen-
eralize.

For good generalization, the training set should contain
a number of patterns at least several times larger than the
network‘s capacity (i.e., Np >> N,IN,). This can be under-
stood intuitively by noting that if the number of degrees of
freedom in a network (i.e., N,) i s larger than the number
of constraints associated with the desired response func-
tion (i.e., N,N,), the training procedure will be unable to
completely constrain the weights in the network. Appar-
ently, this allows effects of initial weight conditions to inter-
fere with learned information and degrade the trained net-
work’s ability to generalize. A detailed analysis of
generalization performance of signum networks as a func-
tion of training set size i s described in 11021. ”

(9)
- N,

N, N,
Nw - K, I C, 5 - log, (%) + K2

A Nonlinear Classifier Application
‘This can be seen by noting that any Boolean function can be

written in the sum-of-products form [91], and that such an expres-
sion can be realized with a two-laver network bv using the first-laver

Neural networks have been used successfully in a wide
range of applications. To gain Some insight about how

Adalines to implement AND gates, while using thg second-layer neural networks are trained and what they can be used to
Adalines to implement OR gates.

and need not be layered.

compute, it is instructive to consider Sejnowski and Rosen-
berg,s 1986 NETtalk demonstration [521. With the
exception of work on the traveling salesman problem with

’Actually, the network can bean arbitrary feedforward structure

‘qhe uDDer bound used here is B ~ ~ ~ ’ ~ loose bound: minimum
number i ibden nodes 5 N, rNJN,1 < N,(NJN, + 1). Hopfield networks [103], this was the first neural network

1422 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

application since the 1960s to draw widespread attention.
NETtalk i s a two-layer feedforward sigmoid network with
80 Adalines in the first layer and 26 Adalines in the second
layer. The network i s trained to convert text into phonet-
ically correct speech, a task well suited to neural imple-
mentation. The pronunciation of most words follows gen-
eral rules based upon spelling and word context, but there
are many exceptions and special cases. Rather than pro-
gramming a system to respond properly to each case, the
network can learn the general rules and special cases by
example.

One of the more remarkable characteristics of NETtalk
i s that it learns to pronounce words in stages suggestive of
the learning process in children. When the output of NET-
talk i s connected to a voice synthesizer, the system makes
babbling noises during the early stages of the training pro-
cess. As the network learns, it next conquers the general
rules and, like a child, tends to make a lot of errors by using
these rules even when not appropriate. As the training con-
tinues, however, the network eventually abstracts the
exceptions and special cases and i s able to produce intel-
ligible speech with few errors.

The operation of NETtalk is surprisingly simple. Its input
is a vector of seven characters (including spaces) from a
transcript of text, and its output i s phonetic information
corresponding to the pronunciation of the center (fourth)
character in the seven-character input field. The other six
characters provide context, which helps to determine the
desired phoneme. To read text, the seven-character win-
dow i s scanned across a document in computer memory
and the networkgenerates a sequenceof phonetic symbols
that can be used to control a speech synthesizer. Each of
the seven characters at the network‘s input i s a 29-corn-
ponent binary vector, with each component representing
adifferent alphabetic character or punctuation mark. A one
is placed in the component associated with the represented
character; all other components are set to zero.’’

Thesystem’s26outputscorrespond to23 articulatoryfea-
tures and 3 additional features which encode stress and syl-
lable boundaries. When training the network, the desired
response vector has zeros in all components except those
which correspond to the phonetic features associated with
the center character in the input field. In one experiment,
Sejnowski and Rosenberg had the system scan a 1024-word
transcript of phonetically transcribed continuous speech.
With the presentation of each seven-character window, the
system‘s weights were trained by the backpropagation
algorithm in response to the network’s output error. After
roughly 50 presentations of the entire training set, the net-
work was able to produce accurate speech from data the
network had not been exposed to during training.

Backpropagation is not the only technique that might be
used to train NETtalk. In other experiments, the slower
Boltzmann learning method was used, and, in fact, Mada-

”The input representation often has a considerable impact on
the success of a network. In NETtalk, the inputs are sparselycoded
in 29 components. One might consider instead choosing a 5-bit
binary representation of the 7-bit ASCII code. It should be clear,
however, that in this case the sparse representation helps simplify
the network’s job of interpreting input characters as 29 distinct
symbols. Usually the appropriate input encoding i s not difficult to
decide. When intuition fails, however, one sometimes must exper-
iment with different encodings to find one that works well.

line Rule I l l could be used as well. Likewise, if the sigmoid
network was replaced by a similar signum network, Mada-
line Rule II would also work, although more first-layer Ada-
lines would likely be needed for comparable performance.

The remainder of this paper develops and compares var-
ious adaptive algorithms for training Adalines and artificial
neural networks to solve classification problems such as
NETtalk. These same algorithms can be used to train net-
works for other problems such as those involving nonlinear
control [SO], system identification [50], [104], signal pro-
cessing [30], or decision making [55].

II I. ADAPTATION-THE MINIMAL DISTURBANCE PRINCIPLE

The iterative algorithms described in this paper are all
designed in accord with a single underlying principle. These
techniques-the two LMS algorithms, Mays‘s rules, and the
Perceptron procedurefortrainingasingle Adaline, theMRI
rulefortrainingthesimpleMadaline,aswell asMRII,MRIII,
and backpropagation techniques for training multilayer
Madalines-all rely upon the principle of minimal distur-
bance: Adapt to reduce the output error for the current
training pattern, with minimal disturbance to responses
already learned. Unless this principle i s practiced, it is dif-
ficult to simultaneously store the required pattern
responses. The minimal disturbance principle is intuitive.
It was the motivating idea that led to the discovery of the
L M S algorithm and the Madaline rules. In fact, the LMS
algorithm had existed for several months as an error-reduc-
tion rule before it was discovered that the algorithm uses
an instantaneous gradient to follow the path of steepest
descent and minimizethe mean-squareerrorofthetraining
set. It was then given the name “LMS” (least mean square)
algorit h m.

IV. ERROR CORRECTION RULES-SINGLE THRESHOLD ELEMENT

As adaptive algorithms evolved, principally two kinds of
on-line rules have come to exist. Error-correction rules alter
the weights of a network to correct error in the output
response to the present input pattern. Gradient rules alter
the weights of a network during each pattern presentation
by gradient descent with the objective of reducing mean-
square error, averaged over all training patterns. Both types
of rules invoke similar training procedures. Because they
are based upon different objectives, however, they can have
significantly different learning characteristics.

Error-correction rules, of necessity, often tend to be a d
hoc. They are most often used when training objectives are
not easilyquantified, orwhen a problem does not lend itself
to tractable analysis. A common application, for instance,
concerns training neural networks that contain discontin-
uous functions. An exception i s the WLMS algorithm, an
error-correction rule that has proven to be an extremely
useful technique for finding solutions to well-defined and
tractable linear problems.

We begin with error-correction rules applied initially to
single Adaline elements, and then to networks of Adalines.

A. Linear Rules

Linear error-correction rules alter the weights of the
adaptive threshold elementwith each pattern presentation
to make an error correction proportional to the error itself.
The one linear rule, a-LMS, i s described next.

WIDROW AND LEHR PERCEPTRON, MADALINE, AND BACKPROPACATIO\

~

1423

The a-LMS Algorithm: The a-LMS algorithm or Widrow-
Hoff delta rule applied to the adaptation of a single Adaline
(Fig. 2) embodies the minimal disturbance principle. The
weight update equation for the original form of the algo-
rithm can be written as

The time index or adaptation cycle number i s k . wk+, i s the
next value of the weight vector, wk is the present value of
the weight vector, and x k i s the present input pattern vector.
The present linear error E k i s defined to be the difference
between the desired response dk and the linear output sk

= w$k before adaptation:

€ k dk - w,'x,. (11)

Changing the weights yields a corresponding change in the
error:

(1 2)

In accordance with the a-LMS rule of Eq. (IO), the weight
change i s as follows:

AEk = A(dk - W&) = - x i A w k .

Combining Eqs. (12) and (13), we obtain

(1 3)

Therefore, theerror i s reduced byafactorof aastheweights
are changed while holding the input pattern fixed. Pre-
senting a new input pattern starts the next adaptation cycle.
The next error is then reduced by a factor of cy, and the pro-
cess continues. The initial weight vector is usually chosen
to be zero and is adapted until convergence. In nonsta-
tionary environments, the weights are generally adapted
continually.

The choice of a controls stability and speed of conver-
gence [30]. For input pattern vectors independent over time,
stability i s ensured for most practical purposes if

o < c y < 2 . (1 5)

Making a greater than 1 generally does not make sense,
since the error would be overcorrected. Total error cor-
rection comes with a = 1. A practical range for a is

0.1 < a < 1.0. (16)

This algorithm i s self-normalizing in the sense that the
choice of a does not depend on the magnitude of the input
signals. The weight update i s collinear with the input pat-
tern and of a magnitude inversely proportional to IXk)2.With
binary *I inputs, IXkl2 is equal to the number of weights
and does not vary from pattern to pattern. If the binary
inputs are the usual 1 and 0, no adaptation occurs for
weights with 0 inputs, while with *I inputs, all weights are
adapted each cycle and convergence tends to be faster. For
this reason, the symmetric inputs +I and -1 are generally
preferred.

Figure12 providesageometrical pictureof howthea-LMS
rule works. In accord with Eq. (13), wk+, equals wk added
to AWk, and AWk i s parallel with the input pattern vector
xk. From Eq. (12), the change in error is equal to the negative
dot product of x k and A",. Since the cy-LMS algorithm

1424

~

X = input pattern vector
A

W = next weight vector

-Awk = weight vector
change

/
x

Fig. 12. Weight correction by the L M S rule.

selects A w k to be collinear with Xk, the desired error cor-
rection is achieved with a weight change of the smallest
possible magnitude. When adapting to respond properly
to a new input pattern, the responses to previous training
patterns are therefore minimally disturbed, on the average.

The a-LMS algorithm corrects error, and if all input pat-
terns are all of equal length, it minimizes mean-square error
[30]. The algorithm i s best known for this property.

B. Nonlinear Rules

The a-LMS algorithm is a linear rule that makes error cor-
rections that are proportional to the error. It i s known [I051
that in some cases this linear rule may fail to separate train-
ing patterns that are linearly separable. Where this creates
difficulties, nonlinear rules may be used. In the next sec-
tions,wedescribeearlynonlinear rules,which weredevised
by Rosenblatt [106], [5] and Mays [IOS]. These nonlinear rules
also make weight vector changes collinear with the input
pattern vector (the direction which causes minimal dis-
turbance), changes that are based on the linear error but
are not directly proportional to it.

The Perceptron Learning Rule: The Rosenblatt a-Percep-
tron [106], [5] , diagrammed in Fig. 13, processed input pat-

Fixed Random
Inputs lo
Adaptive x 1 Element

Analog-
Valued
Retina
Input

Patterns

\ Desired Response Element

(+1,-11
Fixed Threshold

Elements

I
Sparse Random

Connections

Fig. 13. Rosenblatt's a-Perceptron.

terns with a first layer of sparse randomly connected fixed
logic devices. The outputs of the fixed first layer fed a sec-
ond layer, which consisted of a single adaptive linear
threshold element. Other than the convention that i t s input
signals were {I, 0 } binary, and that no bias weight was
included, this element is equivalentto the Adaline element.
The learning rule for the a-Perceptron is very similarto LMS,
but its behavior i s in fact quite different.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

It is interesting to note that Rosenblatt's Perceptron
learning rule was first presented in 1960 [106], and Widrow
and Hoff's LMS rulewas first presented the same year, afew
months later [59]. These rules were developed indepen-
dently in 1959.

The adaptive threshold element of the a-Perceptron i s
shown in Fig. 14. Adapting with the Perceptron rule makes

I
Weights

Binary
-output
[+1,-1)

L - - - - - - _ _ - - _ - - - - - - - - - - J t d, [+L.ll
Desired Respanse Input

(training signal)

Fig. 14. The adaptive threshold element of the Perceptron.

use of the "quantizer error" z k , defined to be the difference
between the desired response and the output of the quan-
tizer

z k d k - Y k . (1 7)

The Perceptron rule, sometimes called the Perceptron
convergence procedure, does not adapt the weights if the
output decision Y k i s correct, that is, if z k = 0. If the output
decision disagrees with the binary desired response d k ,

however, adaptation i s effected by adding the input vector
to the weight vector when the error z k i s positive, or sub-
tracting the input vector from the weight vector when the
error & i s negative. Thus, half the product of the input vec-
tor and the quantizer error gk i s added to the weight vector.
The Perceptron rule i s identical to the a-LMS algorithm,
except that with the Perceptron rule, half of the quantizer
error &/2 is used in place of the normalized linear error E k /

I&)' of the ct-LMS rule. The Perceptron rule i s nonlinear,
in contrast to the LMS rule, which i s linear (compare Figs.
2 and 14). Nonetheless, the Perceptron rule can be written
in a form very similar to the a-LMS rule of Eq. (IO):

w k + , = w k + f f ' X k . (18)

Rosenblatt normally set a to one. In contrast to a-LMS,
thechoiceof ctdoesnotaffectthestabilityof theperceptron
algorithm, and it affects convergence time only if the initial
weight vector i s nonzero. Also, while a-LMS can be used
with either analog or binary desired responses, Rosen-
blatt's rule can be used only with binary desired responses.

The Perceptron rule stops adapting when the training
patterns are correctly separated. There is no restraining
force controlling the magnitude of the weights, however.
The direction of the weight vector, not i ts magnitude, deter-

2

mines the decision function. The Perceptron rule has been
proven to be capable of separating any linearly separable
set of training patterns [SI, [107], [46], [105]. If the training
patterns are not linearly separable, the Perceptron algo-
rithm goes on forever, and often does not yield a low-error
solution, even if one exists. In most cases, if the training set
is not separable, the weight vector tends to gravitate toward
zero12 so that even if a i s very small, each adaptation can
dramatically affect the switching function implemented by
the Perceptron.

This behavior i s very different from that of the a-LMS
algorithm. Continued use of ct-LMS does not lead to an
unreasonable weight solution if the pattern set is not lin-
early separable. Nor, however, is this algorithm guaranteed
to separate any linearly separable pattern set. a-LMS typ-
ically comes close to achieving such separation, but i ts
objective i s different-error reduction at the linear output
of the adaptive element.

Rosenblatt also introduced variants of the fixed-incre-
ment rule that we have discussed thus far. A popular one
was the absolute-correction version of the Perceptron
rule.13 This rule is identical t o that stated in Eq. (18) except
the increment size a i s chosen with each presentation to
be the smallest integer which corrects the output error in
one presentation. If thetraining set is separable, thisvariant
has all the characteristics of the fixed-increment version
with a set to 1, except that it usually reaches a solution in
fewer presentations.

Mays's Algorithms: In his Ph.D. thesis [105], Mays
described an "increment adaptation" rule14 and a "modi-
fied relaxation adaptation" rule. The fixed-increment ver-
sion of the Perceptron rule i s a special case of the increment
adaptation rule.

lncreinent adaptation in i t s general form involves the use
of a "dead zone" for the linear output s k , equal t o ky about
zero. All desired responses are +I (refer to Fig. 14). If the
linear output s k falls outside the dead zone (1 s k (2 y), adap-
tation follows a normalized variant of the fixed-increment
Perceptron rule (with a / (X k I 2 used in place of a). If the linear
output falls within the dead zone, whether or not the output
response y k is correct, the weights are adapted by the nor-
malized variant of the Perceptron rule as though the output
response Y k had been incorrect. The weight update rule for
Mays's increment adaptation algorithm can be written
mathematically as

where F k i s the quantizer error of Eq. (17).
With the dead zone y = 0, Mays's increment adaptation

algorithm reduces to a normalized version of the Percep-

12This results because the length of the weight vector decreases
with each adaptation that does not cause the linear output sk to
change sign and assume a magnitude greater than that before
adaptation. Although there are exceptions, for most problems this
situation occursonly rarely if theweight vector is much longer than
the weight increment vector.

13The terms "fixed-increment" and "absolute correction" are due
to Nilsson [46]. Rosenblatt referred to methods of these types,
respectively, as quantized and nonquantized learning rules.

14The increment adaptation rule was proposed by others before
Mays, though from a different perspective [107].

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION 1425

tron rule (18). Mays proved that if the training patterns are
linearly separable, increment adaptation wil l always con-
verge and separate the patterns in a finite number of steps.
He also showed that use of the dead zone reduces sensi-
tivity to weight errors. If the training set i s not linearly sep-
arable, Mays's increment adaptation rule typically per-
forms much better than the Perceptron rule because a
sufficiently large dead zone tends to cause the weight vec-
tortoadapt awayfrom zerowhen any reasonablygood solu-
tion exists. In such cases, the weight vector may sometimes
appear to meander rather aimlessly, but it will typically
remain in a region associated with relatively low average
error.

The increment adaptation rule changes the weights with
increments that generally are not proportional to the linear
error Ek. The other Mays rule, modified relaxation, i s closer
to a-LMS in i ts use of the linear error Ek (refer to Fig. 2). The
desired response and the quantizer output levels are binary
fl. Ifthequantizeroutputykiswrongor ifthelinear output
sk falls within the dead zone f y , adaptation follows a-LMS
to reduce the linear error. If the quantizer output yk i s cor-
rect and the linear output skfallsoutside the dead zone, the
weights are not adapted. The weight update rule for this
algorithm can be written as

if Fk = o and [S k i 2 y
(20)

xk i" IXkl
wk + c q 7 otherwise

wk+l =

where zk is the quantizer error of Eq. (17).
If the dead zone y is set t o 00, this algorithm reduces to

the a-LMS algorithm (IO). Mays showed that, for dead zone
0 < y < 1 and learning rate 0 < a 5 2, this algorithm will
converge and separate any linearly separable input set in
a finite number of steps. If the training set is not linearly
separable, this algorithm performs much like Mays's incre-
ment adaptation rule.

Mays's two algorithms achieve similar pattern separation
results. The choice of a does not affect stability, although
it does affect convergence time. The two rules differ in their
convergence properties but there i s no consensus on which
i s the better algorithm. Algorithms like these can be quite
useful, and we believe that there are many more to be
invented and analyzed.

The a-LMS algorithm, the Perceptron procedure, and
Mays's algorithms can all be used for adapting the single
Adaline element or they can be incorporated into proce-
dures for adapting networks of such elements. Multilayer
network adaptation procedures that use some of these
algorithms are discussed in the following.

V. ERROR-CORRECTION RULES-MULTI-ELEMENT NETWORKS

The algorithms discussed next are the Widrow-Hoff
Madaline rule from the early 1960s, now called Madaline
Rule I (MRI),and MadalineRule II (MRll),developed byWid-
row and Winter in 1987.

A. Madaline Rule I

The M R I rule allows the adaptation of a first layer of hard-
limited (signum) Adaline elements whose outputs provide
inputs to a second layer, consisting of a single fixed-thresh-
old-logic element which may be, for example, the OR gate,

Input
Pattern
Vector

X

Adalines
1

output
Decision

Desired ! Response
d {-1JI

Fig. 15. A five-Adaline example of the Madaline I architec-
ture.

AND gate, or majority-vote-taker discussed previously. The
weights of the Adalines are initially set to small random val-
ues.

Figure 15 shows a Madaline I architecture with five fully
connected first-layer Adalines. The second layer i s a major-
ity element (MAJ). Because the second-layer logic element
is fixed and known, it i s possible to determine which first-
layer Adalines can be adapted to correct an output error.
The Adalines in the first layer assist each other in solving
problems by automatic load-sharing.

One procedurefortrainingthe network in Fig. 15follows.
A pattern i s presented, and if the output response of the
majority element matches the desired response, no adap-
tation takes place. However, if, for instance, the desired
response i s +I and three of the five Adalines read -1 for
agiven input pattern,oneof the latterthreemust beadapted
to the +I state. The element that i s adapted by MRI is the
onewhose linearoutputsk isclosesttozero-theonewhose
analog response i s closest to the desired response. I f more
of the Adalines were originally in the -1 state, enough of
them are adapted to the +I state to make the majority deci-
sion equal +I. The elements adapted are those whose lin-
ear outputs are closest to zero. A similar procedure i s fol-
lowed when the desired response i s -1. When adapting a
given element, the weight vector can be moved in the LMS
direction far enough to reverse the Adaline's output (abso-
lute correction, or "fast" learning), or it can be adapted by
the small increment determined by the a-LMS algorithm
(statistical, or "slow" learning). The one desired response
d k i s used for all Adalines that are adapted. The procedure
can also be modified toallow oneof Mays'srulesto be used.
In that event, for the case we have considered (majority out-
put element), adaptations take place if at least half of the
Adalines either have outputs differing from the desired
responseor haveanalog outputswhich are in thedead zone.
By setting the dead zone of Mays's increment adaptation
rule to zero, the weights can also be adapted by Rosen-
blatt's Perceptron rule.

Differences in initial conditions and the results of sub-
sequent adaptation cause the various elements to take
"responsibility" for certain parts of the training problem.
The basic principle of load sharing i s summarized thus:
Assign responsibility to the Adaline or Adalines that can
most easily assume it.

1426 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

In Fig. 15, the “job assigner,” a purely mechanized pro-
cess, assigns responsibility during training by transferring
the appropriate adapt commands and desired response sig-
nals to the selected Adalines. The job assigner utilizes lin-
ear-output information. Load sharing i s important, since it
results in the various adaptive elements developing indi-
vidual weight vectors. If all the weights vectors were the
same, there would be no point in having more than one
element in the first layer.

When training the Madaline, the pattern presentation
sequence should be random. Experimenting with this,
Ridgway [76] found that cyclic presentation of the patterns
could lead to cycles of adaptation. These cycles would cause
theweights of the entire Madaline to cycle, preventingcon-
vergence.

The adaptive system of Fig. 15 was suggested by common
sense, and was found to work well in simulations. Ridgway
found that the probability that a given Adaline will be
adapted in response to an input pattern i s greatest if that
element had taken such responsibility during the previous
adapt cycle when the pattern was most recently presented.
The division of responsibility stabilizes at the same time
that the responses of individual elements stabilize to their
share of the load. When the training problem is not per-
fectly separable bythis system, the adaptation process tends
to minimize error probability, although it i s possible for the
algorithm to “hang up” on local optima.

The Madaline structure of Fig. 15 has 2 layers-the first
layer consists of adaptive logic elements, the second of fixed
logic. A variety of fixed-logic devices could be used for the
second layer. A variety of MRI adaptation rules were devised
by Hoff [75] that can be used with all possible fixed-logic
output elements. An easily described training procedure
results when theoutput element i s an gate. During train-
ing, if the desired output for a given input pattern i s +I,
only the one Adaline whose linear output is closest to zero
would be adapted if any adaptation i s needed-in other
words, if all Adalines give -1 outputs. If the desired output
i s -1, all elements must give -1 outputs, and any giving
+ I outputs must be adapted.

The MRI rule obeys the “minimal disturbance principle”
in the following sense. No more Adaline elements are
adapted than necessary to correct the output decision and
any dead-zone constraint. The elements whose linear out-
puts are nearest to zero are adapted because they require
the smallest weight changes to reverse their output
responses. Furthermore, whenever an Adaline is adapted,
theweights are changed in the direction of i ts input vector,
providing the requisite error correction with minimal
weight change.

B. Madaline Rule II

The MRI rule was recently extended to allow the adap-
tation of multilayer binary networks by Winter and Widrow
with the introduction of Madaline Rule II (MRII) [43], [83],
[108]. A typical two-layer M R l l network i s shown in Fig. 16.
The weights in both layers are adaptive.

Training with the MRll rule is similar to training with the
M R I algorithm. The weights are initially set to small random
values. Training patterns are presented in a random
sequence. If the network produces an error during a train-
ing presentation, we begin by adapting first-layer Adalines.

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION

~

Outnut
Vecior Vecior

Desired Responses
(+1,-1)

Fig. 16. Typical two-layer Madaline II architecture.

By the minimal disturbance principle, we select the first-
layer Adalinewith the smallest linear output magnitudeand
perform a “trial adaptation” by inverting its binary output.
This can be done without adaptation by adding a pertur-
bation Asof suitableamplitudeand polarityto the Adaline’s
sum (refer to Fig. 16). If the output Hamming error is reduced
by this bit inversion, that is, if the number of output errors
is reduced, the perturbation As i s removed and theweights
of the selected Adaline element are changed by a-LMS in
a direction collinear with the corresponding input vector-
the direction that reinforces the bit reversal with minimal
disturbance to the weights. Conversely, if the trial adap-
tation does not improve the network response, no weight
adaptation i s performed.

After finishing with the first element, we perturb and
update other Adalines in the first layer which have “suf-
ficiently small” linear-output magnitudes. Further error
reductions can be achieved, if desired, by reversing pairs,
triples, and so on, up to some predetermined limit. After
exhausting possibilities with the first layer, we move on to
the next layer and proceed in a like manner. When the final
layer i s reached, each of the output elements is adapted by
a-LMS. At this point, a new training pattern i s selected at
random and the procedure i s repeated.Thegoa1 is to reduce
Hamming error with each presentation, thereby hopefully
minimizing the average Hamming error over the training
set. Like MRI, the procedure can be modified so that adap-
tations follow an absolute correction rule or one of Mays‘s
rules rather than a-LMS. Like MRI, M R l l can “hang up” on
local optima.

VI. STEEPEST-DESCENT RULES-SINGLE THRESHOLD ELEMENT

Thus far, we have described a variety of adaptation rules
that act to reduce error with the presentation of each train-
ing pattern. Often, the objective of adaptation is to reduce
error averaged in some way over the training set. The most
common error function i s mean-square error (MSE),
although in some situations other error criteria may be more
appropriate [log]-[Ill]. The most popular approaches to
M S E reduction in both single-element and multi-element
networks are based upon the method of steepest descent.
More sophisticated gradient approaches such as quasi-
Newton [30], [112]-[I141 and conjugate gradient [114], [I151
techniques often have better convergence properties, but

1427

~-

the conditions under which the additional complexity is
warranted are not generally known. The discussion that fol-
lows i s restricted to minimization of MSE by the method of
steepest descent [116], [117]. More sophisticated learning
procedures usuallyrequiremanyofthesamecomputations
used in the basic steepest-descent procedure.

Adaptation of a network by steepest-descent starts with
an arbitrary initial value WO for the system’s weight vector.
The gradient of the MSE function i s measured and the
weight vector i s altered in the direction corresponding to
the negative of the measured gradient. This procedure i s
repeated, causing the M S E to be successively reduced on
average and causing the weight vector to approach a locally
optimal value.

The method of steepest descent can be described by the
relation

wk+l = wk + +Vk) (21)

where p i s a parameter that controls stability and rate of
convergence, and Vk i s the value of the gradient at a point
on the M S E surface corresponding to W = w k .

To begin, we derive rules for steepest-descent minimi-
zation of the MSE associated with a single Adaline element.
These rules are then generalized to apply to full-blown
neural networks. Like error-correction rules, the most prac-
tical and efficient steepest-descent rules typicallyworkwith
one pattern at a time. They minimize mean-square error,
approximately, averaged over the entire set of training pat-
terns.

A. Linear Rules

Steepest-descent rules for the single threshold element
are said to be linear if weight changes are proportional to
the linear error, the difference between the desired
response dk and the linear output of the element sk.

Mean-Square Error Surface o f the Linear Combiner: In this
section we demonstrate that the MSE surface of the linear
combiner of Fig. 1 is a quadratic function of the weights,
and thus easily traversed by gradient descent.

Let the input pattern Xk and the associated desired
response dk be drawn from a statistically stationary pop-
ulation. During adaptation, the weight vector varies so that
even with stationary inputs, the output sk and error ek will
generally be nonstationary. Care must be taken in defining
the M S E since it is time-varying. The only possibility i s an
ensemble average, defined below.

At the k th iteration, let theweight vector be wk. Squaring
and expanding Eq. (11) yields

€: = (dk - XLWk)’ (22)

(23) = d i - 2dkxIwk + W ~ x k X ~ W k .

Now assume an ensemble of identical adaptive linear com-
biners, each having the same weight vector Wk at the k th
iteration. Let each combiner have individual inputs xk and
d k derived from stationary ergodic ensembles. Each com-
biner will produce an individual error Ek represented by Eq.
(23). Averaging Eq. (23) over the ensemble yields

E[E;]w= wk = f [d i l - 2E[dkXi]Wk

(24)

Defining the vector P as the crosscorrelation between the
desired response (a scalar) and the X-vector” then yields

The input correlation matrix R i s defined in terms of the
ensemble average

R P E[XkXL]

X l k

X l kX lk

XnkXlk

. . .

. . .

This matrix i s real, symmetric, and positive definite, or in
rare cases, positive semi-definite. The MSE [k can thus be
expressed as

= €[di] - 2PTWk + WLRWk. (27)

Note that the MSE is a quadratic function of the weights.
It i s a convex hyperparaboloidal surface, a function that
never goes negative. Figure 17 shows a typical MSE surface

Fig. 17. Typical mean-square-error surface of a linear com-
biner.

for a linear combiner with two weights. The position of a
point on the grid in this figure represents the value of the
Adaline’s two weights. The height of the surface at each
point represents MSE over the training set when the Ada-
line’sweightsarefixed atthevaluesassociated with thegrid
point. Adjusting theweights involvesdescending along this
surface toward the unique minimum point (“the bottom of
the bowl”) by the method of steepest descent.

The gradient Vk of the MSE function with W = wk i s
obtained by differentiating Eq. (27):

(28) Vk 4 = -2P + 2RWk.

15We assume here that X includes a bias component xOk = +I .

1428 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

-

This i s a linear function of the weights. The optimal weight
vector W * , generally called the Wiener weight vector, i s
obtained from Eq. (28) by setting the gradient to zero:

W * = R-’P. (29)
This i s a matrix form of the Wiener-Hopf equation [118]-
[120]. In the next section we examine p-LMS, an algorithm
which enables us to obtain an accurate estimateof W * with-
out first computing R- ’ and P.

Thep-LMSA1gorithm:The p-LMS algorithm works by per-
forming approximate steepest descent on the M S E surface
in weight space. Because it is a quadratic function of the
weights, this surface is convex and has a unique (global)
minimum.” An instantaneous gradient based upon the
square of the instantaneous linear error is

- ae2 “ - ‘ = I - aw, i
LMS works by using this crude gradient estimate in place
of the true gradient v k of Eq. (28). Making this replacement
into Eq. (21) yields

The instantaneous gradient is used because it is readily
available from a single data sample. The true gradient i s
generally difficult to obtain. Computing it would involve
averaging the instantaneous gradients associated with all
patterns in the training set. This i s usually impractical and
almost always inefficient.

Performing the differentiation in Eq. (31) and replacing
the linear error by definition (11) gives

Noting that dk and x k are independent of wk yields

wk+1 = wk + 2pekxk. (33)

This i s the p-LMS algorithm. The learning constant p deter-
mines stability and convergence rate. For input patterns
independent over time, convergence of the mean and vari-
ance of the weight vector i s ensured [30] for most practical
purposes if

1

O < p < L
trace [RI (34)

where trace [RI = C(diagona1 elements of R) is the average
signal power of the X-vectors, that is, € (X J X) . With p set
within this range,17 the p-LMS algorithm converges in the

lblftheautocorrelation matrixofthepatternvector set hasmzero
eigenvalues, the minimum M S E solution will be an m-dimensional
subspace in weight space [30].

17Horowitz and Senne [I211 have proven that (34) is not sufficient
in general to guarantee convergence of the weight vector’s vari-
ance. For input patterns generated by a zero-mean Gaussian pro-
cess independent over time, instability can occur in the worst case
if f i is greater than 1/(3 trace [RI) .

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION

mean to W * , the optimal Wiener solution discussed above.
A proof of this can be found in [30].

In the p-LMS algorithm, and other iterative steepest-
descent procedures, use of the instantaneous gradient i s
perfectly justified if the step size i s small. For small p, Wwill
remain essentially constant over a relatively small number
of training presentations K. The total weight change during
this period will be proportional to

(35)

where denotes the MSE function. Thus, on average the
weights follow the true gradient. It i s shown in [30] that the
instantaneous gradient i s an unbiased estimate of the true
gradient.

Comparison of p-LMS and a-LMS: We have now pre-
sented two forms of the LMS algorithm, a-LMS (IO) in Sec-
tion IV-A and p-LMS (33) in the last section. They are very
similar algorithms, both using the LMS instantaneous gra-
dient. a-LMS is self-normalizing, with the parameter a
determining the fraction of the instantaneous error to be
corrected with each adaptation. p-LMS is a constant-coef-
ficient linear algorithm which i s considerably easier to ana-
lyze than a-LMS. Comparing the two, the a-LMS algorithm
i s like thep-LMS algorithm with acontinuallyvariable learn-
ing constant. Although a-LMS is somewhat more difficult
to implement and analyze, it has been demonstrated exper-
imentally to be a better algorithm than p-LMS when the
eigenvalues of the input autocorrelation matrix Rare highly
disparate, giving faster convergence for a given level of gra-
dient noise” propagated into the weights. I t will be shown
next that p-LMS has the advantage that it will always con-
verge in the mean to the minimum MSE solution, while
a-LMS may converge to a somewhat biased solution.

We begin with a-LMS of Eq. (IO):

Replacing the error with its definition (11) and rearranging
terms yields

(37)

We define a new training set of pattern vectors and desired

responses {xk, a k } by normalizing elements of the original
training set as f o I I o ~ s , ’ ~

- -

(39)

”Gradient noise is the difference between the gradient estimate

?he idea of a normalized training set was suggested by Derrick
and the true gradient.

Nguyen.

1429

Eq. (38) then becomes
- -

w k + , = w k + a (a k - W L X k) X k . (40)

This i s the p-LMS rule of Eq. (33) with 2p replaced by a.
Theweight adaptations chosen bythea-LMS ruleare equiv-
alent to those of the K-LMS algorithm presented with a dif-
ferent training set-the normalized training set defined by
(39). The solution that will be reached by the p-LMS algo-
rithm is the Wiener solution of this training set

where

is the input correlation matrix of the normalized training
set and the vector

i s the crosscorrelation between the normalized input and
the normalized desired response. Therefore a-LMS con-
verges in the mean to the Wiener solution of the normalized
training set. When the input vectors are binary with + _ I
components, al l input vectors have the same magnitude
and the two algorithms are equivalent. For nonbinary train-
ing patterns, however, the Wiener solution of the nor-
malized training set generally i s no longer equal to that of
the original problem, so a-LMS converges in the mean to
a somewhat biased version of the optimal least-squares
solution.

The idea of a normalized training set can also be used to
relate the stable ranges for the learning constants a and p
in the two algorithms. The stable range for a in the a-LMS
algorithm given in Eq. (15) can be computed from the cor-
responding range for p given in Eq. (34) by replacing Rand

p in Eq. (34) by @ and a/2, respectively, and then noting that

trace[i?l i s equal to one:

2

trace[R]
O < a < ~ , o r

o < a < 2 . (44)

B. Nonlinear Rules

The Adalineelements considered thus far useat theirout-
puts either hard-limiting quantizers (signums), or no non-
linearity at all. The input-output mapping of the hard-lim-
iting quantizer i s Y k =.sgn (s k) . Other forms of nonlinearity
have come into use in the past two decades, primarily of
the sigmoid type. These nonlinearities provide saturation
for decision making, yet they have differentiable input-out-
put characteristics that facilitate adaptivity. We generalize
the definition of the Adaline element to include the pos-
sible use of a sigmoid in place of the signum, and then
determine suitable adaptation algorithms.

Fig. 18 shows a "sigmoid Adaline" element which incor-
porates a sigmoidal nonlinearity. The input-output relation
of the sigmoid can be denoted by yk = sgm (s k) . A typical
sigmoid function is the hyperbolic tangent:

(45)

We shall adapt this Adaline with the objective of mini-
mizing the mean square of the sigmoid error i k , de-

fined as

z k A d k - y k = d k - sgm (s k) . (46)

Backpropagation for the Sigmoid Adaline: Our objective
is to minimize E[(&)*] , averaged over the set of training pat-
terns, by proper choice of the weight vector. To accomplish
this, we shall derive a backpropagation algorithm for the
sigmoid Adaline element. An instantaneous gradient is
obtained with each input vector presentation, and the
method of steepest descent i s used to minimize error aswas
done with the p-LMS algorithm of Eq. (33).

Referring to Fig. 18, the instantaneous gradient estimate

Input Pattern
vector Weight Vector

Linear Sigmoid
Error Error

Id,
Desired Response

Fig. 18. Adaline with sigmoidal nonlinearity.

obtained during presentation of the k th input vector X k i s
given by

Differentiating Eq. (46) yields

We may note that

s k = X L W k .

Therefore,

Substituting into Eq. (48) gives

Inserting this into Eq. (47) yields

6, = - 2 z k sgm' (S k) X k .

Using this gradient estimate with the method of steepest
descent provides a means for minimizing the mean-square
erroreven afterthe summed signal skgoes through the non-
linear sigmoid. The algorithm is

(53)

(54)

Algorithm (54) i s the backpropagation algorithm for the
sigmoid Adaline element. The backpropagation name
makes more sense when the algorithm is utilized in a lay-

w k + , = w k + c ((- 6 k)

= w k + 2 / . b c k sgm' (sk) x k .

1430 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

An instantaneous estimated gradient can be obtained as
follows:

Input Pattern Weight Vector
Vector

Desired
2PLksgm’(sg,) d, Respons

Fig. 19. Implementation of backpropagation for the sig-
moid Adaline element.

ered network, which will be studied below. Implementa-
tion of algorithm (54) i s illustrated in Fig. 19.

If the sigmoid i s chosen to be the hyperbolic tangent
function (45), then the derivative sgm’ (s k) is given by

a(tanh (s k))
sgm‘ (s k) =

a s k

= I - (tanh (Sk))’ = I - y;. (55)

Accordingly, Eq. (54) becomes

wk+1 = wk + 2pzk(1 - y i) x k . (56)

Madaline Rule 111 for the Sigmoid Adaline: The imple-
mentation of algorithm (54) (Fig. 19) requires accurate real-
ization of the sigmoid function and its derivative function.
These functions may not be realized accurately when
implemented with analog hardware. Indeed, in an analog
network, each Adaline will have its own individual nonlin-
earities. Difficulties in adaptation have been encountered
in practice with the backpropagation algorithm because of
imperfections in the nonlinear functions.

Tocircumvent these problems a new algorithm has been
devised by David Andes for adapting networks of sigmoid
Adalines. This i s the Madaline Rule I l l (MRIII) algorithm.

The idea of MRlll for a sigmoid Adaline i s illustrated in
Fig. 20. The derivative of the sigmoid function i s not used
here. Instead, a small perturbation signal As is added to the
sum Sk, and the effect of this perturbation upon output Y k

and error Ek i s noted.

Perturbation

P
. I

1 Desired
dk Response

Fig. 20. Implementation of the M R l l l algorithm for the sig-
moid Adaline element.

Since As i s small,

Another way to obtain an approximate instantaneous gra-
dient by measuring the effects of the perturbation As can
be obtained from Eq. (57).

Accordingly, there are two forms of the M R l l l algorithm for
the sigmoid Adaline. They are based on the method of
steepest descent, using the estimated instantaneous gra-
dients:

For small perturbations, these two forms are essentially
identical. Neither one requires a priori knowledge of the
sigmoid’s derivative, and both are robust with respect to
natural variations, biases, and drift in the analog hardware.
Which form to use is a matter of implementational con-
venience. The algorithm of Eq. (60) i s illustrated in Fig. 20.

Regarding algorithm (61), some changes can be made to
establish a point of interest. Note that, in accord with Eq.

z k = dk - Y k . (62)

Adding the perturbation As causes a change in t k equal to

Aik = -AYk. (63)

(46)r

Now, Eq. (61) may be rewitten as

Since As is small, the ratio of increments may be replaced
by a ratio of differentials, finally giving

= wk + 2pzk sgm’ (s k) x k . (66)

This i s identical to the backpropagation algorithm (54) for
the sigmoid Adaline. Thus, backpropagation and MRll l are
mathematically equivalent i f the perturbation As is small,
but MRlll i s robust, even with analog implementations.

MSE Surfaces of the Adaline: Fig. 21 shows a linear com-
biner connected to both sigmoid and signum devices. Three
errors, E, Zk, and are designated in this figure. They are:

linear error = E = d - s

sigmoid error = E = d - sgm (s)

signum error = E = d - sgn (sgm (s))

= d - sgn (s). (67)

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION

~~

1431

Input Pattern Weight
Vector Vector

Non-Quadratic MSE
Desired Response

Fig. 21. The linear, sigmoid, and signum errors of the Ada-
line.

To demonstrate the nature of the square error surfaces
associated with these three types of error, a simple exper-
imentwith a two-input Adalinewas performed. The Adaline
was driven by a typical set of input patterns and their asso-
ciated binary { +I, -1) desired responses. The sigmoid
function used was the hyperbolic tangent. The weights
could have been adapted to minimize the mean-square
error of E , i , or E. The M S E surfaces of € [(E) ~] , € [(E) 2] , E [(:) *]
plotted as functions of the two weight values, are shown
in Figs. 22, 23, and 24, respectively.

Fig. 22. Example MSE surface of linear error.

Fig. 23. Example MSE surface of sigmoid error.

Although the above experiment i s not all encompassing,
we can infer from it that minimizing the mean square of the
linear error is easy and minimizing the mean square of the
sigmoid error i s more difficult, but typically much easier

Fig. 24. Example MSE surface of signum error.

than minimizing the mean square of the signum error. Only
the linear error i s guaranteed to have an M S E surface with
a unique global minimum (assuming invertible R-matrix).
The other M S E surfaces can have local optima [122], [123].

In nonlinear neural networks, gradient methods gener-
ally work better with sigmoid rather than signum nonlin-
earities. Smooth nonlinearities are required by the M R l l l
and backpropagation techniques. Moreover, sigmoid net-
works are capable of forming internal representations that
are more complex than simple binarycodes and, thus, these
networks can often form decision regions that are more
sophisticated than those associated with similar signum
networks. In fact, if a noiseless infinite-precision sigmoid
Adaline could be constructed, it would be able to convey
an infinite amount of information at each time step. This
i s in contrast to the maximum Shannon information capac-
ity of one bit associated with each binary element.

The signum does have some advantages over the sigmoid
in that it is easier to implement in hardware and much sim-
pler to compute on a digital computer. Furthermore, the
outputs of signums are binary signals which can be effi-
ciently manipulated by digital computers. In a signum net-
work with binary inputs, for instance, the output of each
linear combiner can be computed without performing
weight multiplications. This involves simply adding
together the values of weights with +I inputs and sub-
tracting from this the values of all weights that are con-
nected to -1 inputs.

Sometimes a signum i s used in an Adaline to produce
decisive output decisions. The error probability is then pro-
portional to the mean square of the output error :. To min-
imize this error probability approximately, one can easily
minimize E [(E) ~] instead of directly minimizing [58].
However, with only a little more computation one could
minimize and typically come much closer to the
objective of minimizing €[(E)2]. The sigmoid can therefore
be used in training the weights even when the signum i s
used to form the Adaline output, as in Fig. 21.

VII. STEEPEST-DESCENT RULES-MULTI-ELEMENT NETWORKS

We now study rules for steepest-descent minimization
of the MSE associated with entire networks of sigmoid Ada-
line elements. Like their single-element counterparts, the
most practical and efficient steepest-descent rules for multi-
element networks typically work with one pattern presen-
tation at a time. We will describe two steepest-descent rules
for multi-element sigmoid networks, backpropagation and
Madaline Rule Ill.

1432 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

Input
Pattern
Vector

X

Fig. 25. Example two-layer backpropagation network architecture.

A. Backpropagation for Networks

The publication of the backpropagation technique by
Rumelhart et al. [42] has unquestionably been the most
influential development in the field of neural networks dur-
ing the past decade. In retrospect, the technique seems
simple. Nonetheless, largely because early neural network
research dealt almost exclusively with hard-limiting non-
linearities, the idea never occurred to neural network
researchers throughout the 1960s.

The basic concepts of backpropagation are easily
grasped. Unfortunately, these simple ideas are often
obscured by relatively intricate notation, so formal deri-
vations of the backpropagation rule are often tedious. We
present an informal derivation of the algorithm and illus-
trate how it works for the simple network shown in Fig. 25.

The backpropagation technique i s a nontrivial general-
ization of the single sigmoid Adaline case of Section VI-B.
When applied to multi-element networks, the backprop-
agation technique adjusts the weights in the direction
opposite the instantaneous error gradient:

“) awmk

Now, however, wk is a long rn-component vector of all
weights in the entire network. The instantaneous sum
squared error € 2 i s the sum of the squares of the errors at
each of the N, outputs of the network. Thus

In the network example shown in Fig. 25, the sum square
error i s given by

E 2 = (d, - yJ2 + (d2 - y2)2

where we now suppress the time index k for convenience.
In its simplest form, backpropagation training begins by

presenting an input pattern vector Xto the network, sweep-
ing forward through the system to generate an output
response vector Y, and computing the errors at each out-
put.The next step involvessweeping theeffectsof theerrors
backward through the network to associate a “square error
derivative” 6 with each Adaline, computing a gradient from
each 6, and finally updating the weights of each Adaline
based upon the corresponding gradient. A new pattern is
then presented and the process i s repeated. The initial
weight values are normally set to small random numbers.
The algorithm will not work properly with multilayer net-
works if the initial weights are either zero or poorlychosen
nonzero

We can get some idea about what i s involved in the cal-
culations associated with the backpropagation algorithm
by examining the network of Fig. 25. Each of the five large
circles represents a linear combiner, as well as some asso-
ciated signal paths for error backpropagation, and the cor-
responding adaptive machinery for updating the weights.
This detail is shown in Fig. 26. The solid lines in these dia-
grams represent forward signal paths through the network,

20Recently, Nguyen has discovered that a more sophisticated
choice of initial weight values in hidden layers can lead to reduced
problems with local optima and dramatic increases in network
training speed [IOO]. Experimental evidence suggests that it i s
advisable to choose the initial weights of each hidden layer in a
quasi-random manner, which ensures that at each position in a
layer’s input space the outputs of all but a few of i ts Adalines will
besaturated, whileensuringthateach Adaline in the layer i s unsat-
urated in some region of i ts input space. When this method i s used,
the weights in the output layer are set to small random values.

WIDROW AND LEHR PERCEPTRON, MADALINE, AND BACKPROPACATION 1433

~ _ _

Fig. 26. Detail of linear combiner and associated circuitry
in backpropagation network.

and the dotted lines represent the separate backward paths
that are used in association with calculations of the square
error derivatives 6. From Fig. 25, we see that the calculations
associated with the backward sweep are of a complexity
roughly equal to that represented by the forward pass
through the network. The backward sweep requires the
same numberoffunctioncalculationsas the forward sweep,
but no weight multiplications in the first layer.

As stated earlier, after a pattern has been presented to
thenetwork,and the responseerrorofeachoutput has been
calculated, the next step of the backpropagation algorithm
involves finding the instantaneous square-error derivative
6 associated with each summing junction in the network.
The square error derivative associated with the j t h Adaline
in layer I is defined as21

Each of these derivatives in essence tells us how sensitive
the sum square output error of the network i s to changes
in the linear output of the associated Adaline element.

The instantaneous square-error derivatives are first com-
puted for each element in the output layer. The calculation
i s simple. As an example, below we derive the required
expression for 67), the derivative associated with the top
Adalineelement in theoutput layer of Fig. 25. We begin with
the definition of 67) from Eq. (71)

Expanding the squared-error term e2 by Eq. (70) yields

(74)

"In Fig. 25, all notation follows the convention that superscripts
within parentheses indicate the layer number of the associated
Adaline or input node, while subscripts identify the associated
Adaline(s) within a layer.

We note that the second term is zero. Accordingly,

Observing that dl and s:" are independent yields

= (dl - sgm by))) sgm' (sy)). (77)

We denote the error dl - sgm (sy)) , by €7'. Therefore,

6:) = e!,2) sgm' (s:)). (78)

Notethatthiscorrespondstothecomputationof6?'as illus-
trated in Fig. 25. The value of S associated with the other
output element in the figure can be expressed in an anal-
ogous fashion. Thus each square-error derivative 6 in the
output layer i s computed by multiplying the output error
associated with that element by the derivative of the asso-
ciated sigmoidal nonlinearity. Note from Eq. (55) that if the
sigmoid function is the hyperbolic tangent, Eq. (78) becomes
simply

(79)

Developing expressions for the square-error derivatives
associated with hidden layers is not much more difficult
(refer to Fig. 25). We need an expression for Ay), the square-
error derivative associated with the top element in the first
layer of Fig. 25. The derivative 87) i s defined by

6;" = 1 (1 - 0q2).

(80)

Expanding this by the chain rule, noting that e2 is deter-
mined entirely by the values of s:) and s!', yields

Using the definitions of 6:" and S:", and then substituting
expanded versions of Adaline linear outputs sp) and
sf) gives

Referring to Fig. 25, we can trace through the circuit to
verify that 6 7) is computed in accord with Eqs. (86) and (87).

1434 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

I ~~

The easiest way to find values of 6 for all the Adaline ele-
ments in the network i s t o follow the schematic diagram of
Fig. 25.

Thus, the procedure for finding 6('), the square-error
derivative associated with a given Adaline in hidden layer
I , involves respectively multiplying each derivative 6 (' + ')
associated with each element in the layer immediately
downstream from a given Adaline by the weight that con-
nects it to the given Adaline. These weighted square-error
derivatives are then added together, producing an error
term E (') , which, in turn, is multiplied bysgm'(s(')), thederiv-
ative of the given Adaline's sigmoid function at its current
operating point. If a network has more than two layers, this
process of backpropagating the instantaneous square-error
derivatives from one layer to the immediately preceding
layer is successively repeated until a square-error derivative
6 is computed for each Adaline in the network. This i s easily
shown at each layer by repeating the chain rule argument
associated with Eq. (81).

We now have a general method for finding a derivative
6 for each Adaline element in the network. The next step
i s to use these 6's to obtain the corresponding gradients.
Consider an Adalinesomewhere in the networkwhich,dur-
ing presentation k, has a weight vector w k , an input vector
x k , and a linear output s k = W L X k .

The instantaneous gradient for this Adaline element i s

at ; 6, = -
a w k '

This can be written as

v A ae2 at', as
k - awk ask aw,'

Note that w k and X k are independent so

Therefore,

For this element,

(90)

(91)

Accordingly,

6, = - 2 6 k X k . (93)

Updating the weights of the Adaline element using the
method of steepest descent with the instantaneous gra-
dient is a process represented by

w k + 1 = w k + p (- $ k) = w k + 2 p 6 k x k . (94)

Thus, after backpropagating all square-error derivatives, we
complete a backpropagation iteration by adding to each
weight vector thecorresponding input vector scaled by the
associated square-error derivative. Eq. (94) and the means
for finding 8 k comprise the general weight update rule of
the backpropagation algorithm.

There is a great similarity between Eq. (94) and the p-LMS
algorithm (33), but one should view this similarity with cau-
tion. The quantity 6 k , defined as a squared-error derivative,

might appear to play the same role in backpropagation as
that played by the error in the p-LMS algorithm. However,
6 k i s not an error. Adaptation of the given Adaline i s effected
to reduce the squared output error e; , not t ik of the given
Adaline or of any other Adaline in the network. The objec-
tive i s not to reduce the 6 k ' S of the network, but to reduce
E', at the network output.

It i s interesting to examine the weight updates that back-
propagation imposes on the Adalineelements in theoutput
layer. Substituting Eq. (77) into Eq. (94) reveals the Adaline
which provides output y1 in Fig. 25 is updated by the rule

(95)

This rule turns out to be identical to the single Adaline ver-
sion (54) of the backpropagation rule. This i s not surprising
since the output Adaline is provided with both input signals
and desired responses, so i t s training circumstance i s the
same as that experienced by an Adaline trained in isolation.

There are many variants of the backpropagation algo-
rithm. Sometimes, the size of p i s reduced during training
to diminish the effects of gradient noise in the weights.
Another extension is the momentum technique [42] which
involves including in theweightchangevectorAWkof each
Adaline a term proportional to the corresponding weight
change from the previous iteration. That is, Eq. (94) is
replaced by a pair of equations:

w k + l = w k + 2pe:'sgm' (S y)) X k .

A w k = 2p(1 - ??)6,x, f q A w k _ - ((96)

(97)

where the momentum constant 0 I 9 < 1 i s in practice usu-
ally set to something around 0.8 or 0.9.

The momentum technique low-pass filters the weight
updates and thereby tends to resist erratic weight changes
caused either by gradient noise or high spatial frequencies
in the MSE surface. The factor (1 - 7) in Eq. (96) is included
to give the filter a DC gain of unity so that the learning rate
p does not need to be stepped down as the momentum con-
stant 9 i s increased. A momentum term can also be added
to the update equations of other algorithms discussed in
this paper. A detailed analysis of stability issues associated
with momentum updating for the p-LMS algorithm, for
instance, has been described by Shynk and Roy [124].

In our experience, the momentum technique used alone
is usually of little value. We have found, however, that it i s
often useful to apply the technique in situations that require
relatively "clean"22 gradient estimates. One case i s a nor-
malized weight update equation which makes the net-
work's weight vector move the same Euclidean distance
with each iteration. This can be accomplished by replacing
Eq. (96) and (97) with

(98) A k = 6 k X k + V A k + l

where again 0 < 7 < 1. The weight updates determined by
Eqs. (98) and (99) can help a network find a solution when
a relatively flat local region in the MSE surface is encoun-

**"Clean" gradient estimates are those with little gradient noise.

WIDROW AND LEHR. PERCEPTRON, MADALINE, AND BACKPROPACATION

~

1435

tered. The weights move by the same amount whether the
surfaceis flat or inclined. It i s reminiscentof a-LMS because
the gradient term in the weight update equation is nor-
malized by a time-varying factor. The weight update rule
could be further modified by including terms from both
techniques associated with Eqs. (96) through (99). Other
methods for speeding up backpropagation training include
Fahlman’s popular quickprop method [125], as well as the
delta-bar-delta approach reported in an excellent paper by
Jacobs [126].23

One of the most promising new areas of neural network
research involves backpropagation variants for training var-
ious recurrent (signal feedback) networks. Recently, back-
propagation rules have been derived for training recurrent
networks to learn static associations [127l, [128]. More inter-
esting is the on-line technique of Williams and Zipser [I291
which allows a wide class of recurrent networks to learn
dynamic associations and trajectories. A more general and
computationally viable variant of this technique has been
advanced by Narendra and Parthasarathy [104]. These on-
line methods are generalizations of a well-known steepest-
descent algorithm for training linear IIR filters [130], [30].

An equivalent technique that i s usually far less compu-
tationally intensive but best suited for off-line computation
[37, [42], [131], called “backpropagation through time,” has
been used by Nguyen and Widrow [SO] to enable a neural
network to learn without a teacher how to back up a com-
puter-simulated trailer truck to a loading dock (Fig. 27). This
i s a highly nonlinear steering task and it i s not yet known
how to design a controller to perform it. Nevertheless, with
just 6 inputs providing information about the current posi-
tion of the truck, a two-layer neural network with only 26
Adalines was able to learn of i t s own accord to solve this
problem. Once trained, the network could successfully
back up the truck from any initial position and orientation
in front of the loading dock.

B. Madaline Rule 111 for Networks

It i s difficult to build neural networks with analog hard-
ware that can be trained effectively by the popular back-
propagation technique. Attempts to overcome this diffi-
culty have led to the development of the M R l l l algorithm.
A commercial analog neurocomputing chip based primar-
ily on this algorithm has already been devised [132]. The
method described in this section is a generalization of the
singleAdalineMRlll technique(60).The multi-element gen-
eralization of the other single element M R l l l rule (61) i s
described in [133].

The MRlll algorithm can be readilydescribed by referring
to Fig. 28. Although this figure shows a simple two-layer
feedforward architecture, the procedure to be developed
will work for neural networks with any number of Adaline

23Jacob’s paper, like many other papers in the literature, assumes
for analysis that the true gradients rather than instantaneous gra-
dients are used to update the weights, that is, that weights are
changed periodically, only after all training patterns are presented.
This eliminates gradient noise but can slow down training enor-
mously if the training set is large. The delta-bar-delta procedure
in Jacob’s paper involves monitoring changes of the true gradients
in response to weight changes. It should be possible to avoid the
expense of computing the true gradients explicitly in this case by
instead monitoringchanges in theoutputs of, say, two momentum
filters with different time constants.

initial state

-I T-

I final state

Fig. 27. Example truck backup sequence.

Input
Pattern Perturbation

output
Vector

YI
)Y,k

Desired Responses

Example two-layer Madaline I l l architecture. Fig. 28.

elements in any feedforward structure. In [133], we discuss
variants of the basic MRlll approach that allow steepest-
descent training to be applied to more general network
topologies, even those with signal feedback.

Assume that an input pattern Xand its associated desired
output responses d, and d2 are presented to the network
of Fig.28.Atthispoint,we measurethesum squaredoutput
response error e* = (d, - Y ,) ~ + (d2 - y2)2 = E : + E ; . We then
add asmall quantity Astoaselected Adaline in the network,
providing a perturbation to the element’s linear sum. This
perturbation propagates through the network, and causes
a change in the sum of the squares of the errors, A(e2) =
A(€: + E ;) . An easily measured ratio i s

1436 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

Below we use this to obtain the instantaneous gradient of
e: with respect to the weight vector of the selected Adaline.
For the k th presentation, the instantaneous gradient i s

Replacing the derivative with a ratio of differences yields

The ideaof obtainingaderivative by perturbing the linear
output of the selected Adaline element i s the same as that
expressed for the single element in Section VI-B, except that
here the error i s obtained from the output of a multi-ele-
ment network rather than from the output of a single ele-
ment.

The gradient (102) can be used to optimize the weight
vector in accord with the method of steepest descent:

Maintaining the same input pattern, onecould either per-
turb all the elements in the network in sequence, adapting
after each gradient calculation, or else the derivatives could
be computed and stored to allow all Adalines to be adapted
at once. These two M R l l l approaches both involve the same
weight update equation (103), and if p i s small, both lead
to equivalent solutions. With large p, experience indicates
that adapting one element at a time results in convergence
after fewer iterations, especially in large networks. Storing
the gradients, however, has the advantage that after the ini-
tial unperturbed error is measured during a given training
presentation, each gradient estimate requires only the per-
turbed error measurement. If adaptations take place after
each error measurement, both perturbed and unperturbed
errors must be measured for each gradient calculation. This
i s because each weight update changes the associated
unperturbed error.

C. Comparison of MRll l with MRll

M R l l l was derived from MRll by replacing the signum
nonlinearities with sigmoids. The similarity of these algo-
rithms becomes evident when comparing Fig. 28, repre-
senting MRIII, with Fig. 16, representing MRII.

The MRll network i s highlydiscontinuous and nonlinear.
Usingan instantaneousgradient toadjusttheweights is not
possible. In fact, from the M S E surface for the signum Ada-
line presented in Section VI-€3, it is clear that even gradient
descent techniques that use the true gradient could run
into severe problems with local minima. The idea of adding
a perturbation to the linear sum of a selected Adaline ele-
ment i s workable, however. If the Hamming error has been
reduced by the perturbation, the Adaline is adapted to
reverse i ts output decision. This weight change i s in the LMS
direction, along i ts X-vector. If adapting the Adaline would
not reduce network output error, it is not adapted. This is
in accord with the minimal disturbance principle. The Ada-
lines selected for possible adaptation are those whose ana-
log sums are closest to zero, that is, the Adalines that can
be adapted to give opposite responses with the smallest
weight changes. It is useful to note that with binary + I
desired responses, the Hamming error i s equal to 114 the

sum square error. Minimizing the output Hamming error
isthereforeequivalentto minimizingtheoutput sum square
error.

The MRlll algorithm works in a similar manner. All the
Adalines in theMRll l networkareadapted, butthosewhose
analog sums areclosesttozerowill usually beadapted most
strongly, because the sigmoid has its maximum slope at
zero,contributingto highgradientvalues.Aswith MRII, the
objective is to change the weights for the given input pre-
sentation to reduce the sum square error at the network
output. In accord with the minimal disturbance principle,
the weight vectors of the Adaline elements are adapted in
the L M S direction, along their X-vectors, and are adapted
in proportion to their capabilities for reducing the sum
square error (the square of the Euclidean error) at the out-
put.

D. Comparison of MRll l with Backpropagation

In Section VI-B, we argued that for the sigmoid Adaline
element, the M R l l l algorithm (61) i s essentially equivalent
to the backpropagation algorithm (54). The same argument
can be extended to the network of Adaline elements, dem-
onstrating that if A s i s small and adaptation i s applied to
all elementsinthenetworkatonce,then M R l l l isessentially
equivalent to backpropagation. That is, to the extent that
the sample derivative AE;/As from Eq. (103) i s equal to the
analytical derivtive &;/ask from Eq. (91), the two rules fol-
low identical instantaneous gradients, and thus perform
identical weight updates.

The backpropagation algorithm requires fewer opera-
tions than MRlll to calculate gradients, since it i s able to
take advantage of a priori knowledge of the sigmoid non-
linearities and their derivative functions. Conversely, the
MRl l l algorithm uses no prior knowledge about the char-
acteristics of the sigmoid functions. Rather, it acquires
instantaneous gradients from perturbation measurements.
Using MRIII, tolerances on the sigmoid implementations
can be greatly relaxed compared to acceptable tolerances
for successful backpropagation.

Steepest-descent training of multilayer networks imple-
mented by computer simulation or by precise parallel dig-
i tal hardware i s usually best carried out by backpropaga-
tion. During each training presentation, the backprop-
agation method requires only one forward computation
through the network followed by one backward compu-
tation in order to adapt all the weights of an entire network.
To accomplish the same effect with the form of MRlIl that
updates all weights at once, one measures the unperturbed
error followed by a number of perturbed error measure-
mentsequal tothenumberofelements in the network.This
could require a lot of computation.

If a network i s to be implemented in analog hardware,
however, experience has shown that MRlll offers strong
advantages over backpropagation. Comparison of Fig. 25
with Fig. 28 demonstrates the relative simplicity of MRIII.
All the apparatus for backward propagation of error-related
signals i s eliminated, and the weights do not need to carry
signals in both directions (see Fig. 26). MRlll i s a much sim-
pler algorithm to build and to understand, and in principle
it produces the same instantaneous gradient as the back-
propagation algorithm. The momentum technique and
most other common variants of the backpropagation algo-
rithm can be applied to MRlll training.

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION 1437

E. MSE Surfaces of Neural Networks

In Section VI-6, "typical" mean-square-error surfaces of
sigmoid and signum Adalines were shown, indicating that
sigmoid Adalines are much more conducive to gradient
approaches than signum Adalines. The same phenomena
result when Adalines are incorporated into multi-element
networks. The M S E surfaces of M R l l networks are reason-
ably chaotic and will not be explored here. In this section
we examine only M S E surfaces from a typical backpropa-
gation training problem with a sigmoidal neural network.

In a network with more than two weights, the M S E sur-
face i s high-dimensional and difficult to visualize. I t i s pos-
sible, however, to look at slices of this surface by plotting
the MSE surfacecreated byvaryingtwooftheweightswhile
holding all others constant. The surfaces plotted in Figs. 29

Fig. 31. Example M S E surface of untrained sigmoidal net-
work as a function of a first-layer weight and a third-layer
weight.

Fig. 29. Example M S E surface of untrained sigmoidal net-
work as a function of two first-layer weights.

Fig. 32. Example MSE surface of trained sigmoidal network
as a function of a first-layer weight and a third-layer weight.

Fig. 30. Example M S E surface of trained sigmoidal network
as a function of two first-layer weights.

and 30 show two such slices of the MSE surface from a typ-
ical learning problem involving, respectively, an untrained
sigmoidal network and a trained one. The first surface
resulted from varying two first-layer weights of an untrained
network. The second surface resulted from varying the same
two weights after the network was fully trained. The two
surfaces are similar, but the second one has a deeper min-
imum which was carved out by the backpropagation learn-
ing process. Figs. 31 and 32 resulted from varying adifferent
set of two weights in the same network. Fig. 31 is the result
from varying a first-layer weight and third-layer weight in
the untrained network, whereas Fig. 32 is the surface that
resulted from varying the same two weights after the net-
work was trained.

1438

By studying many plots, it becomes clear that backpro-
pagation and M R l l l will be subject to convergence on local
optima. The same is true for MRII. The most common rem-
edyfor this i s the sporadic addition of noise to the weights
or gradients. Some of the "simulated an.nealing" methods
[47] do this. Another method involves retraining the net-
work several times using differnt random initial weight val-
ues until a satisfactory solution i s found.

Solutions found by people in everyday life are usually not
optimal, but many of them are useful. If a local optimum
yields satisfactory performance, often there is simply no
need to search for a better solution.

VIII. SUMMARY

This year is the 30th anniversary of the publication of the
Perceptron rule by Rosenblatt and the LMS algorithm by
Widrow and Hoff. I t has also been 16 years since Werbos
first published the backpropagation algorithm. These
learning rules and several others have been studied and
compared. Although they differ significantly from each
other, they all belong to the same "family."

A distinction was drawn between error-correction rules
and steepest-descent rules. The former includes the Per-,
ceptron rule, Mays' rules, the CY-LMS algorithm, the original
Madaline I rule of 1962, and the Madaline II rule. The latter
includes thep-LMS algorithm, theMadaline Ill rule,and the

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

Error
A

Steepest
Descent Correction

’n
Rules

Layered Wngle
Network Element

Nonlinear f h Nonlinear Linear

r u m) (, ,
MRlIl MRll l p-LMS MRI Perceptron a-LMS

Backprop Backprop MRII Mays

Fig. 33. Learning rules.

backpropagation algorithm. Fig. 33categorizes the learning
rules that have been studied.

Although these algorithms have been presented asestab-
lished learning rules, one should not gain the impression
that they are perfect and frozen for all time. Variations are
possible for every one of them. They should be regarded
as substrates upon which to build new and better rules.
There i s a tremendous amount of invention waiting “in the
wings.” We look forward to the next 30 years.

REFERENCES

K. 5teinbuchandV.A. W. Piske,“Learningmatricesand their
applications,” / € € E Trans. Electron. Comput., vol. EC-12, pp.
846-862, Dec. 1963.
B. Widrow, “Generalization and information storage in net-
works of adaline ’neurons,‘ in Self-OrganizingSystems 1962,
M. Yovitz, G. Jacobi, and G. Goldstein, Eds. Washington,
DC: Spartan Books, 1962, pp. 435-461.
L. Stark, M. Okajima, and G. H. Whipple, ”Computer pat-
tern recognition techniques: Electrocardiographic diag-
nosis,” Commun. Ass. Comput. Mach., vol. 5, pp. 527-532,
Oct. 1962.
F. Rosenblatt, “Two theorems of statistical separability in
the perceptron,” in Mechanization of Thought Processes:
Proceedings of a Symposium held a t the National Physical
Laboratory, Nov. 1958, vol. 1 pp. 421-456. London: HM Sta-
tionery Office, 1959.
F. Rosenblatt, Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms. Washington, DC: Spartan
Books, 1962.
C. von der Malsburg, “Self-organizing of orientation sen-
sitive cells in the striate cortex,” Kybernetik, vol. 14, pp. 85-
100, 1973.
S. Grossberg, “Adaptive pattern classification and universal
recoding, I: Parallel development and coding of neural fea-
ture detectors,” Biolog. Cybernetics, vol. 23, pp. 121-134,
1976.
K. Fukushima, “Cognitron: A self-orgainizing multilayered
neural network,” Biolog. Cybernetics, vol. 20, pp. 121-136,
1975.
- , “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected
by shift in position,” Biolog. Cybernetics, vol. 36, pp. 193-
202,1980.
B. Widrow,”Bootstrap learning in threshold logic systems,”
presented at the American Automatic Control Council (The-
orycornmittee), IFAC Meeting, London, England, June1966.
B. Widrow, N. K. Gupta, and S. Maitra, “Punishlreward:
Learning with a critic in adaptive threshold systems,” / € E €
Trans. Syst., Man, Cybernetics, vol. SMC-3, pp. 455-465, Sept.
1973.
A. G. Barto, R. S. Sutton, and C. W. Anderson, ”Neuronlike
adaptive elements that can solve difficult learning control
problems,” /E€€ Trans. Syst., Man, Cybernetics, vol.

J . S. Albus, ”A new approach to manipulator control: the
SMC-13, pp. 834-846, 1983.

cerebellar model articulation controller (CMAC),” J . Dyn.
Sys., Meas., Contr., vol. 97, pp. 220-227, 1975.

(141 W. T. Miller, Ill, “Sensor-based control of robotic rnanip-
ulators using a general learning algorithm.” I€€€] . Robotics
Automat., vol. RA-3, pp. 157-165, Apr. 1987.

1151 S. Grossberg, “Adaptive pattern classification and universal
recoding, 11: Feedback, expectation, olfaction, and illu-
sions,” Biolog. Cybernetics, vol. 23, pp. 187-202, 1976.

[I61 G. A. Carpenter and S. Grossberg, “A massively parallel
architecture for a self-organizing neural pattern recognition
machine,” Computer Vision, Graphics, and Image Process-
ing, vol. 37, pp. 54-115, 1983.

[I7 -, “Art 2: Self-organization of stable category recognition
codes for analog output patterns,” Applied Optics, vol. 26,
pp. 4919-4930, Dec. 1, 1987.

[I81 -, “Art 3 hierarchical search: Chemical transmitters in self-
organizing pattern recognition architectures,” in Proc. lnt.
Joint Conf. on Neural Networks, vol. 2, pp. 30-33, Wash.,
DC, Jan. 1990.

[I91 T. Kohonen, “Self-organized formation of topologically cor-
rect feature maps,” Biolog. Cybernetics, vol. 43, pp. 59-69,
1982.

[20] -, Self-organization and Associative Memory. New York:
Springer-Verlag, 2d ed., 1988.

[21] D. 0. Hebb, Theorganization ofBehavior. New York: Wiley,
1949.

1221 1. J. Hopfield, “Neural networks and physical systems with
emergent collective computational abilities,” Proc. Natl.
Acad. Sci., vol. 79, pp. 2554-2558, Apr. 1982.

[23] -, “Neurons with graded response have collective com-
putational properties like those of two-state neurons,” Proc.
Natl. Acad. Sci.,\ol. 81, pp. 3088-3092, May 1984.

[24] B. Kosko, “Adaptive bidirectional associative memories,”
Appl. Optics, vol. 26, pp. 4947-4960, Dec. 1, 1987.

[25] G. E. Hinton, R. J. Sejnowski, and D. H. Ackley, “Boltzmann
machines: Constraint satisfaction networks that learn,”
Tech. Rep. CMU-CS-84-119, Carnegie-Mellon University,
Dept. of Computer Science, 1984.

[26] G. E. Hinton and T. J. Sejnowski, “Learning and relearning
in Boltzmann machines,” in Parallel Distributed Processing,
vol. 1, ch. 7, D. E. Rumelhart and J. L. McClelland, Eds. Cam-
bridge, MA, M.I.T. Press, 1986.

[2 7 L. R. Talbert etal., “A real-time adaptive speech-recognition
system,” Tech. rep., Stanford University, 1963.

[28] M. J. C. Hu, Application of the Adaline System to Weather
Forecasting. Thesis, Tech. Rep. 6775-1, Stanford Electron.
Labs., Stanford, CA, June 1964.

1291 B. Widrow, ”The original adaptive neural net broom-bal-
ancer,” Proc. /€€€ lntl. Symp. Circuits andSystems, pp. 351-
357, Phila., PA, May 4-7 1987.

[30] B. Widrow and S. D. Stearns, Adaptive Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1985.

[31] B. Widrow, P. Mantey, L. Griffiths, and B. Goode, “Adaptive
antenna systems,” Proc. / € E € , vol. 55, pp. 2143-2159, Dec.
1967.

[32] B. Widrow, “Adaptive inverse control,” Proc. 2d lntl. fed.
ofAutomatic Control Workshop, pp. 1-5, Lund, Sweden, July

[33] B. Widrow, etal., “Adaptive noise cancelling: Principles and
applications,” Proc. /€€€, vol. 63, pp. 1692-1716, Dec. 1975.

[34] R. W. Lucky, “Automatic equalization for digital commu-
nication,” Bell Syst. Tech. J., vol. 44, pp. 547-588, Apr. 1965.

[35] R. W. Lucky, et al., Principles of Data Communication. New
York: McGraw-Hill, 1968.

[36] M. M. Sondhi,”An adaptive echo canceller,” BellSyst. Tech.
J., vol. 46, pp. 497-511, Mar. 1967.

[37 P. Werbos, Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. Ph.D. thesis, Harvard
University, Cambridge, MA, Aug. 1974.

[38] Y. le Cun, “A theoretical framework for back-propagation,”
in Proc. 1988 Connectionist Models Summer School, D.
Touretzky, G. Hinton, and T. Sejnowski, Eds. June 17-26, pp.
21-28. San Mateo, CA; Morgan Kaufmann.

[39] D. Parker, “Learning-logic,’‘ Invention Report 581-64, File 1,
Office of Technology Licensing, Stanford University, Stan-
ford, CA, Oct. 1982.

[40] -, “Learning-logic,” Technical Report TR-47, Center for

I-3,1986.

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION 1439

Computational Research in Economics and Management
Science, M.I.T., Apr. 1985.

[41] D. E. Rumelhart, C. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” ICs Report
8506, Institute for Cognitive Science, University of Califor-
nia at San Diego, La Jolla, CA, Sept. 1985.

[42] -, ”Learning internal representations by error propaga-
tion,” in Parallel Distributed Processing, vol. 1, ch. 8, D. E.
Rumelhart and J. L. McClelland, Eds., Cambridge, MA: M.I.T.
Press, 1986.

[43] B. Widrow, R. G . Winter, and R. Baxter, ”Learning phenom-
ena in layered neural networks,” Proc. 1st lEEE lntl. Conf.
on NeuralNetworks, vol. 2, pp. 411-429, San Diego, CA, June
1987.

[44] R. P. Lippmann, “An introduction to computing with neural
nets,” lEEE ASSP Mag., Apr. 1987.

[45] J. A. Anderson and E. Rosenfeld, Eds., Neurocomputing:
Foundations ofResearch. Cambridge, MA: M.I.T. Press, 1988.

[46] N. Nilsson, Learning Machines. New York: McCraw-Hill,
1965.

[473 D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distrib-
uted Processing. Cambridge, MA: M.I.T. Press, 1986.

[48] B. Moore, “Art 1 and pattern clustering,” in Proc. 1988 Con-
nectionistModels SummerSchool, D. Touretzky, C. Hinton,
and T. Sejnowski, Eds., June 17-26 1988, pp. 174-185, San
Mateo, CA: Morgan Kaufmann.

[49] DARPA Neural Network Study. Fairfax, VA: AFCEA Interna-
tional Press, 1988.

[50] D. Nguyen and B. Widrow, “The truck backer-upper: An
exampleof self-learning in neural networks,” Proc. lntl.loint
Conf. on Neural Networks, vol. 2, pp. 357-363, Wash., DC,
lune 7989.

[51] T. J. Sejnowski and C. R. Rosenberg, “Nettalk: a parallel net-
work that learns to read aloud,”Tech. Rep. JHU/EECS-86/01,
Johns Hopkins University, 1986.

[52] -, “Parallel networks that learn to pronounce English
text,” Complex Systems, vol. 1, pp. 145-168,1987.

[53] P. M. Shea and V. Lin, “Detection of explosives in checked
airline baggage using an artificial neural system,” Proc. htl.
joint Conf. on Neural Networks, vol. 2, pp. 31-34, Wash.,
DC, June 1989.

[54] D. G. Bounds, P. 1. Lloyd, B. Mathew, and G. Waddell, “A
multilayer perceptron networkforthediagnosisof low back
pain,” Proc. 2d lEEE lntl. Conf. on Neural Networks, vol. 2,
pp. 481-489, San Diego, CA, July 1988.

[55] G. Bradshaw, R. Fozzard, and L. Ceci, “A connectionist
expert system that actually works,” in Advances in Neural
lnformation Processing Systems I, D. S. Touretzky, Ed. San
Mateo, CA: Morgan Kaufmann, 1989, pp. 248-255.

[56] N. Mokhoff, “Neural nets making the leap out of lab,” Elec-
tronic Engineering Times, p. 1, Jan. 22, 1990.

[57] C. A. Mead, Analog VLSl and Neural Systems. Reading, MA:
Addison-Wesley, 1989.

[58] B. Widrow and M. E. Hoff, Jr., “Adaptive switching circuits.”
1960 IRE Western Electric Show and Convention Record, Part

[59] -, “Adaptive switching circuits,” Tech. Rep. 1553-1, Stan-
ford Electron. Labs., Stanford, CA June 30,1960.

[60] P. M. Lewis II and C. Coates, Threshold Logic. New York:
Wiley, 1967.

[61] T. M. Cover, Geometrical and Statistical Properties of Linear
ThresholdDevices. Ph.D. thesis,Tech. Rep. 6107-1, Stanford
Electron. Labs., Stanford, CA, May 1964.

[62] R. J. Brown, Adaptive Multiple-Output Threshold Systems
and Their Storage Capacities. Thesis, Tech. Rep. 6771-1,
Stanford Electron. Labs., Stanford, CA, June 1964.

[63] R. 0. Winder, ThresholdLogic. Ph.D. thesis, Princeton Uni-
versity, Princeton, NJ, 1962.

[64] S. H. Cameron, ”An estimate of the complexity requisite in
a universal decision network,” Proc. 1960 Bionics Sympos-
ium, Wright Air Development Division Tech. Rep. 60-600,
pp. 197-211, Dayton, OH, Dec. 1960.

[65] R. D. Joseph, “The number of orthants in n-space inter-
sected by an s-dimensional subspace,” Tech. Memorandum
8, Project PARA, Cornell Aeronautical Laboratory, Buffalo,
New York 1960.

[66] D. F. Specht, Generation of Polynomial Discriminant Func-

4, pp. 96-104, Aug. 23, 1960.

1440

tions for Pattern Recognition. Ph.D. thesis, Tech. Rep. 6764-
5, Stanford Electron. Labs., Stanford, CA, May 1966.

[67] -, “Vectorcardiographic diagnosis using the polynomial
discriminant method of pattern recognition,” l E E E Trans.
Biomed. Eng., vol. BME-14, pp. 90-95, Apr. 1967.

[68] -, “Generation of polynomial discriminant functions for
pattern recognition,” lEEE Trans. Electron. Comput., vol.
EC-16, pp. 308-319, June 1967.

[69] A. R. Barron, “Adaptive learning networks: Development
and application in the United States of algorithms related
to gmdh,“ in Self-organizing Methods in Modeling, S. J . Far-
low, Ed., New York: Marcel Dekker Inc., 1984, pp. 25-65.

[70] -, “Predicted squared error: A criterion for automatic
model selection,” Self-organizing Methods in Modeling, in
S. J. Farlow, Ed. NewYork: Marcel Dekker Inc., 1984, pp. 87-
103.

[71] A. R. Barron and R. L. Barron, ”Statistical learning networks:
A unifying view,” 1988 Symp. on the Interface: Statistics and
Computing Science, pp. 192-203, Reston, VA, Apr. 21-23,
1988.

[72] A. C . Ivakhnenko, “Polynomial theoryof complexsystems,”
/E€€ Trans. Syst., Man, Cybernetics, SMC-1, pp. 364-378, Oct.
1971.

[73] Y. H. Pao, “Functional link nets: Removing hidden layers.”
A/ Expert, pp. 60-68, Apr. 1989.

[74] C. L. Ciles and T. Maxwell, “Learning, invariance, and gen-
eralization in high-order neural networks,” Applied Optics,
vol. 26, pp. 4972-4978, Dec. 1, 1987.

[75] M. E. Hoff, Jr., Learning Phenomena in NetworksofAdaptive
Switching Circuits. Ph.D. thesis, Tech. Rep. 1554-1, Stanford
Electron. Labs., Stanford, CA, July 1962.

[76] W. C. Ridgway 111, An Adaptive Logic System with Gener-
alizing Properties. Ph.D. thesis, Tech. Rep. 1556-1, Stanford
Electron. Labs., Stanford, CA, April 1962.

[77l F. H. Glanz, Statistical Extrapolation in Certain Adaptive Pat-
tern-Recognition Systems. Ph.D. thesis, Tech. Rep.
6767-1, Stanford Electron. Labs., Stanford, CA, May 1965.

[78] B. Widrow, “Adaline and Madaline-1963, plenary speech,”
Proc. 1st lEEE lntl. Conf. on Neural Networks, vol. 1, pp. 145-
158, San Diego, CA, June 23, 1987.

[79] -, “An adaptive ”adaline” neuron using chemical ‘mem-
istors.”’ Tech. Rep. 1553-2, Stanford Electron. Labs., Stan-
ford, CA, Oct. 17, 1960.

[80] C. L. Ciles, R. D. Griffin, and T. Maxwell, “Encoding geo-
metric invariances in higher order neural networks,” Neural
lnformation ProcessingSystems, in D. Z. Anderson, Ed. New
York: American Institute of Physics, 1988, pp. 301-309.

[81] D. Casasent and D. Psaltis, “Position, rotation, and scale
invariant optical correlation,” Appl. Optics, vol. 15, pp. 1795-
1799, July 1976.

[82] W. L. Reber and J. Lyman, “An artificial neural system design
for rotation and scale invariant pattern recognition,” Proc.
Ist lEEE lntl. Conf. on Neural Networks, vol. 4, pp. 277-283,
San Diego, CA, June 1987.

[83] B. Widrow and R. C. Winter, “Neural nets for adaptive fil-
tering and adaptive pattern recognition,” lEEE Computer,
pp. 25-39, Mar. 1988.

[84] A. Khotanzad and Y. H. Hong, “Rotation invariant pattern
recognition using zernike moments,” Proc. 9th lntl. Conf.
on Pattern Recognition, vol. 1, pp. 326-328, 1988.

[85] C. von der Malsburg, “Pattern recognition by labeled graph
matching,” Neural Networks, vol. 1, pp. 141-148, 1988.

[86] A. Waibel,T. Hanazawa,C. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time delay neural networks,”
lEEE Trans. Acoust., Speech, and Signal Processing, vol.
ASSP-37, pp. 328-339, Mar. 1989.

[871 C. M. Newman, “Memory capacity in neural network
models: Rigorous lower bounds,” Neural Networks, vol. 1,

[88] Y. S. Abu-Mostafa and J. St. Jacques, “Information capacity
of the hopfield model,” /E€€ Trans. Inform. Theory, vol.

[89] Y. S. Abu-Mostafa, ”Neural networks for computing?” in
Neural Networks for Computing, Amer. Inst. of Phys. Conf.
Proc. No. 151, J. S. Denker, Ed. New York: American Institute
of Physics, 1986, pp. 1-6.

I901 S. S. Venkatesh, “Epsilon capacity of neural networks,” in

pp. 223-238, 1988.

IT-31, pp. 461-464,1985.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

Neural Networks for Computing, Amer. Inst. of Phys. Conf.
Proc. No. 151, J. S. Denker, Ed. New York: American Institute
of Physics, 1986, pp. 440-445.

[91] J. D. Greenfield, Practical Digital Design Using IC's. 2d ed.,
New York: Wiley, 1983.

[92] M. Stinchombe and H. White, "Universal approximation
using feedforward networkswith non-sigmoid hidden layer
activation functions," Proc. lntl. Joint Conf. on Neural Net-
works, vol. 1, pp. 613-617, Wash., DC, June 1989.

[93] G. Cybenko,"Continuousvalued neural networkswith two
hidden layersare sufficient,"Tech. Rep., Dept. of Computer
Science, Tufts University, Mar. 1988.

[94] B. Irie and S. Miyake, "Capabilities of three-layered per-
ceptrons," Proc. 2d IEEE lntl. Conf. on Neural Networks, vol.
1, pp. 641-647, San Diego, CA, July 1988.

[95] M. L. Minsky and S. A. Papert, Perceptrons:An lntroduction
to Computational Geometry. Cambridge, MA: M.I.T. Press,
expanded ed., 1988.

[96] M. W. Roth,"Surveyof neural network technology for auto-
matic target recognition," / €€E Trans. Neural Networks, vol.
1, pp. 28-43, Mar. 1990.

[971 T. M. Cover, "Capacity problems for linear ma-
chines,"Pattern Recognition, in L. N. Kanal, Ed. Wash., DC:
Thompson Book Co., 1968, pp. 283-289, part 3.

[98] E. B. Baum, "On the capabilitiesof multilayer perceptrons,"
1. Complexity, vol. 4, pp. 193-215, Sept. 1988.

[99] A. Lapedes and R. Farber, "How neural networks work,"
Tech. Rep. LA-UR-88-418, Los Alamos Nat. Laboratory, Los
Alamos, NM, 1987.

[loo] D. Nguyen and B. Widrow, "Improving the learning speed
of 2-layer neural networks by choosing initial values of the
adaptive weights," Proc. lntl. Joint Conf. on Neural Net-
works, San Diego, CA, June 1990.

[I011 G. Cybenko, "Approximation by superpositions of a sig-
moidal function," Mathematics of Control, Signals, and Sys-
tems, vol. 2, 1989.

[I021 E. B. Baum and D. Haussler, "What size net gives valid gen-
eralization?" Neural Computation, vol. 1, pp. 151-160,1989.

[lo31 J. J. Hopfield and D. W.Tank,"Neural computationsof deci-
sions in optimization problems," Biolog. Cybernetics, vol.

[I041 K. S. Narendra and K. Parthasarathy, "Identification and
control of dynamical systems using neural networks," / €€E
Trans. Neural Networks, vol. 1 , pp. 4-27, Mar. 1990.

[I051 C. H. Mays, Adaptive Threshold Logic. Ph.D. thesis, Tech.
Rep. 1557-1, Stanford Electron. Labs., Stanford, CA,Apr. 1963.

[I061 F. Rosenblatt, "On the convergence of reinforcement pro-
cedures in simple perceptrons," Cornell Aeronautical Lab-
oratory Report VG-1796-G-4, Buffalo, NY, Feb. 1960.

[IO71 H. Block, "The perceptron: A model for brain functioning,
I," Rev. Modern Phys., vol. 34, pp. 123-135, Jan. 1962.

[lo81 R. G. Winter, Madaline Rule /I: A New Method for Training
Networks of Adalines. Ph.D. thesis, Stanford University,
Stanford, CA, Jan. 1989.

[I091 E. Walach and B. Widrow,"The least mean fourth (1mf)adap-
tive algorithm and its family," lEEE Trans. Inform. Theory,
vol. IT-30, pp. 275-283, Mar. 1984.

[I101 E. B. Baum and F. Wilczek, "Supervised learning of prob-
ability distributions by neural networks," in Neural lnfor-
mation Processing Systems, D. Z. Anderson, Ed. New York:
American Institute of Physics, 1988, pp. 52-61.

[l l l] S. A. Solla, E. Levin, and M. Fleisher, "Accelerated learning
in layered neural networks," Complex Systems, vol. 2, pp.
625-640,1988.

[112] D. B. Parker, "Optimal algorithms for adaptive neural net-
works: Second order back propagation, second order direct
propagation, and second order Hebbian learning," Proc. 1st
/ € E € lntl. Conf. on Neural Networks, vol. 2, pp. 593-600, San
Diego, CA, June 1987.

[113] A. J. Owens and D. L. Filkin, "Efficient training of the back
propagation network by solving a system of stiff ordinary
differential equations," Proc. lntl. Joint Conf. on Neural
Networks, vol. 2, pp. 381-386, Wash., DC, June 1989.

[I141 D. G. Luenberger, Linear and Nonlinear Programming.
Reading, MA: Addison-Wesley, 2d ed., 1984.

[I151 A. Kramer and A. Sangiovanni-Vincentelli, "Efficient parallel
learning algorithms for neural networks," in Advances in

52, pp. 141-152, 1985.

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION

Neural lnformation Processing Systems I, D. S. Touretzky,
Ed., pp. 40-48, San Mateo, CA: Morgan Kaufmann, 1989.

[116] R. V. Southwell, Relaxation Methods in Engineering Sci-
ence. New York: Oxford, 1940.

[I17 D. J. Wilde; Optimum Seeking Methods. Englewood Cliffs,
NJ: Prentice-Hall, 1964.

[I181 N . Wiener, Extrapolation, Interpolation, and Smoothing of
Stationary Time Series, with Engineering Applications. New
York: Wiley, 1949.

[I191 T. Kailath, "A view of three decades of linear filtering the-
ory," /€€€ Trans. Inform. Theory, vol. IT-20, pp. 145-181, Mar.
1974.

[I201 H. Bode and C. Shannon, "A simplified derivation of linear
least squares smoothing and prediction theory," Proc. lR€,
vol. 38, pp. 417-425, Apr. 1950.

[I211 L. L. Horowitz and K. D. Senne, "Performance advantage of
complex LMS for controlling narrow-band adaptive arrays,"
/ € € E Trans. Circuits, Systems, vol. CAS-28, pp. 562-576, June
1981.

[I221 E. D. Sontag and H. J. Sussmann, "Backpropagation sepa-
rates when perceptrons do," Proc. lntl. Joint Conf. on Neural
Networks, vol. 1 , pp. 639-642, Wash., DC, June 1989.

[I231 -, "Backpropagation can give rise to spurious local min-
ima even for networks without hidden layers," Complex
Systems, vol. 3, pp. 91-106, 1989.

[I241 J. J. Shynk and S. Roy, "The Ims algorithm with momentum
updating," lSCAS 88, Espoo, Finland, June 1988.

[I251 S. E. Fahlman, "Faster learning variations on backpropa-
gation: An empirical study," in Proc. 1988 Connectionist
Models Summer School, D. Touretzky, G. Hinton, and T.
Sejnowski, Eds. June 17-26,1988, pp. 38-51, San Mateo, CA:
Morgan Kaufmann.

[I261 R.A. Jacobs, "Increased ratesof convergencethrough learn-
ing rate adaptation, Neural Networks, vol. 1, pp. 295-307,
1988.

[I271 F. J. Pineda, "Generalization of backpropagation to recur-
rent neural networks," Phys. Rev. Lett., vol. 18, pp. 2229-
2232, 1987.

[I281 L. B. Almeida, "A learning rule for asynchronous percep-
trons with feedback in a combinatorial environment," Proc.
1st IEEE lntl. Conf. on Neural Networks, vol. 2, pp. 609-618,
San Diego, CA, June 1987.

[I291 R. J. Williams and D. Zipser, "A learning algorithm for con-
tinually running fully recurrent neural networks," ICs
Report 8805, Inst. for Cog. Sci., University of California at
San Diego, La Jolla, CA, Oct. 1988.

[I301 S. A. White, "An adaptive recursive digital filter," Proc. 9th
Asilomar Conf. Circuits Syst. Comput., p. 21, Nov. 1975.

[I311 B. Pearlmutter, "Learning state space trajectories in recur-
rent neural networks," in Proc. 1988 Connectionist Models
SummerSchool, D. Touretzky, G. Hinton, and T. Sejnowski,
Eds. June 17-26,1988, pp. 113-117. San Mateo, CA: Morgan
Kaufmann.

[I321 M. Holler, et al., "An electrically trainable artificial neural
network (etann) with 10240 'floating gate' synapses," Proc.
lntl. Joint Conf. on Neural Networks, vol. 2, pp. 191-196,
Wash., DC, June 1989.

[I331 D. Andes, B. Widrow, M. Lehr, and E. Wan, "MRIII: A robust
algorithm for training analog neural networks, Proc. lntl.
Joint Conf. on Neural Networks, vol. 1, pp. 533-536, Wash.,
DC, Jan. 1990.

Bernard Widrow (Fellow, IEEE) received the
S.B.,S.M.,andSc.D.degreesfromtheMas-
sachusetts Institute of Technology in 1951,
1953, and 1956, respectively.

He was with M.I.T. until he joined the
Stanford University faculty in 1959, where
he is now a Professor of electrical engi-
neering. He is presently engaged in
research and teaching in neural networks,
pattern recognition, adaptive filtering, and
adaptive control systems. He i s associate

1441

editor of the journals Adaptive Control and Signal Processing,
Neural Networks, lnformation Sciences, and Pattern Recognition
and coauthor with S. D. Stearns of Adaptive Signal Processing
(Prentice Hall).

Dr. Widrow received the SB, S M and ScD degrees from MIT in
1951,1953, and 1956. He i s a member of the American Association
of University Professors, the Pattern Recognition Society, Sigma
Xi, and Tau Beta Pi. He i s a fellow of the American Association for
the Advancement of Science. He i s president of the International
Neural Network Society. He received the IEEE Alexander Graham
Bell Medal in 1986 for exceptional contributions to the advance-
ment of telecommunications.

1442

Michael A. Lehr was born in New Jersey on
April 18,1964. He received the B.E.E. degree
in electrical engineering at the Georgia
Institute of Technology in 1987, graduating
top in his class. He received the M.S.E.E.
from Stanford University in 1986.

From 1982 to 1984, he worked on two-way
radio development at Motorola in Ft. Lau-
derdale, Florida, and from 1984 to 1987 he
was involved with naval sonar system
development and test at IBM in Manassas,

Virginia. Currently, he i s a doctoral candidate in the Department
of Electrical Engineering at Stanford University. His research inter-
ests include adaptive signal processing and neural networks.

Mr. Lehr holds a General RadiotelephoneOperator License (1981)
and Radar Endorsement (1982), and i s a member of Tau Beta Pi, Eta
Kappa Nu, and Phi Kappa Phi.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990

1 __

