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Fundamental developments in feedfonvard artificial neural net- 
works from the past thirty years are reviewed. The central theme of 
this paper is a description of the history, origination, operating 
characteristics, and basic theory of several supervised neural net- 
work training algorithms including the Perceptron rule, the LMS 
algorithm, three Madaline rules, and the backpropagation tech- 
nique. These methods were developed independently, but with 
the perspective of history they can a / /  be related to each other. The 
concept underlying these algorithms is the “minimal disturbance 
principle,” which suggests that during training it is advisable to 
inject new information into a network in a manner that disturbs 
stored information to the smallest extent possible. 

I .  INTRODUCTION 

This year marks the 30th anniversary of the Perceptron 
rule and the LMS algorithm, two early rules for training 
adaptive elements. Both algorithms were first published in 
1960. In the years following these discoveries, many new 
techniques have been developed in the field of neural net- 
works, and the discipline is growing rapidly. One early 
development was Steinbuch’s Learning Matrix [I], a pattern 
recognition machine based on linear discriminant func- 
tions. At the same time, Widrow and his students devised 
Madaline Rule I (MRI), the earliest popular learning rule for 
neural networks with multiple adaptive elements [2]. Other 
early work included the “mode-seeking” technique of 
Stark, Okajima, and Whipple [3]. This was probably the first 
example of competitive learning in the literature, though 
it could be argued that earlierwork by Rosenblatt on “spon- 
taneous learning” [4], [5] deserves this distinction. Further 
pioneering work on competitive learning and self-organi- 
zation was performed in the 1970s by von der Malsburg [6] 
and Grossberg [7l. Fukushima explored related ideas with 
his biologically inspired Cognitron and Neocognitron 
models [8], [9]. 
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Widrow devised a reinforcement learning algorithm 
called “punish/reward” or ”bootstrapping” [IO], [ I l l  in the 
mid-1960s. This can be used to solve problems when uncer- 
tainty about the error signal causes supervised training 
methods to  be impractical. A related reinforcement learn- 
ing approach was later explored in a classic paper by Barto, 
Sutton, and Anderson on the “credit assignment” problem 
[12]. Barto et al.’s technique is also somewhat reminiscent 
of Albus’s adaptive CMAC, a distributed table-look-up sys- 
tem based on models of human memory [13], [14]. 

In the 1970s Grossberg developed his Adaptive Reso- 
nance Theory (ART), a number of novel hypotheses about 
the underlying principles governing biological neural sys- 
tems [15]. These ideas served as the basis for later work by 
Carpenter and Grossberg involving three classes of ART 
architectures: ART 1 [16], ART 2 [17], and ART 3 [18]. These 
are self-organizing neural implementations of pattern clus- 
tering algorithms. Other important theory on self-organiz- 
ing systems was pioneered by Kohonen with his work on 
feature maps [19], [201. 

In the early 1980s, Hopfield and others introduced outer 
product rules as well as equivalent approaches based on 
the early work of Hebb [21] for training a class of recurrent 
(signal feedback) networks now called Hopfield models [22], 
[23]. More recently, Kosko extended some of the ideas of 
Hopfield and Grossberg to  develop his adaptive Bidirec- 
tional Associative Memory (BAM) [24], a network model 
employing differential as well as Hebbian and competitive 
learning laws. Other significant models from the past de- 
cade include probabilistic ones such as Hinton, Sejnowski, 
and Ackley‘s Boltzmann Machine [25], [26] which, to over- 
simplify, is a Hopfield model that settles into solutions by 
a simulated annealing process governed by Boltzmann sta- 
tistics. The Boltzmann Machine i s  trained by a clever two- 
phase Hebbian-based technique. 

While these developments were taking place, adaptive 
systems research at Stanford traveled an independent path. 
After devising their Madaline I rule, Widrow and his stu- 
dents developed uses for the Adaline and Madaline. Early 
applications included, among others, speech and pattern 
recognition [27], weather forecasting [28], and adaptive con- 
trols [29]. Work then switched to adaptive filtering and 
adaptive signal processing [30] after attempts to  develop 
learning rules for networks with multiple adaptive layers 
were unsuccessful. Adaptive signal processing proved to  
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bea fruitful avenue for research with applications involving 
adaptive antennas [311, adaptive inverse controls [32], adap- 
tive noise cancelling [33], and seismic signal processing [30]. 
Outstanding work by Lucky and others at Bell Laboratories 
led to major commercial applications of adaptive filters and 
the L M S  algorithm to adaptive equalization in high-speed 
modems [34], [35] and to adaptive echo cancellers for long- 
distance telephone and satellite circuits [36]. After 20 years 
of research in adaptive signal processing, the work in Wid- 
row’s laboratory has once again returned to neural net- 
works. 

The first major extension of the feedforward neural net- 
work beyond Madaline I took place in 1971 when Werbos 
developed a backpropagation training algorithm which, in 
1974, he first published in his doctoral dissertation [371.’ 
Unfortunately, Werbos’s work remained almost unknown 
in the scientific community. In 1982, Parker rediscovered 
the technique [39] and in 1985, published a report on it at 
M.I.T. [40]. Not long after Parker published his findings, 
Rumelhart, Hinton, and Williams [41], [42] also rediscovered 
the techniqueand, largelyasaresultof theclear framework 
within which they presented their ideas, they finally suc- 
ceeeded in making it widely known. 

The elements used by Rumelhart et al. in the backprop- 
agation network differ from those used in the earlier Mada- 
line architectures. The adaptive elements in the original 
Madaline structure used hard-limiting quantizers (sig- 
nums), while the elements in the backpropagation network 
use only differentiable nonlinearities, or “sigmoid” func- 
tions.2 In digital implementations, the hard-limiting 
quantizer is  more easily computed than any of the differ- 
entiable nonlinearities used in backpropagation networks. 
In 1987, Widrow,Winter,and Baxter looked backattheorig- 
inal Madaline I algorithm with the goal of developing a new 
technique that could adapt multiple layers of adaptive ele- 
ments using the simpler hard-limitingquantizers. The result 
was Madaline Rule II [43]. 

David Andes of U.S. Naval Weapons Center of China Lake, 
CA, modified Madaline I I  in 1988 by replacing the hard-lim- 
iting quantizers in the Adaline and sigmoid functions, 
thereby inventing Madaline Rule Ill (MRIII). Widrow and his 
students were first to recognize that this rule i s  mathe- 
matically equivalent to backpropagation. 

The outline above gives only a partial view of the disci- 
pline, and many landmark discoveries have not been men- 
tioned. Needless to say, the field of neural networks is 
quickly becoming a vast one, and in one short survey we 
could not hope to cover the entire subject in any detail. 
Consequently, many significant developments, including 
some of those mentioned above, are not discussed in this 
paper. The algorithms described are limited primarily to 

’Weshould note, however, that in the fieldof variational calculus 
the idea of error backpropagation through nonlinear systems 
existed centuries before Werbosfirstthoughttoapplythisconcept 
to neural networks. In the past 25years, these methods have been 
used widely in the field of optimal control, as discussed by Le Cun 
[381. 

*The term “sigmoid” i s  usually used in reference to monoton- 
ically increasing “S-shaped” functions, such as the hyperbolic tan- 
gent. In this paper, however, we generally use the term to denote 
any smooth nonlinear functions at the output of a linear adaptive 
element. In other papers, these nonlinearities go by a variety of 
names, such as “squashing functions,” ”activation functions,” 
“transfer characteristics,” or ”threshold functions.” 

thosedeveloped in our laboratoryat Stanford, and to related 
techniques developed elsewhere, the most important of 
which is  the backpropagation algorithm. Section I I  explores 
fundamental concepts, Section Ill discusses adaptation and 
the minimal disturbance principle, Sections IV  and V cover 
error correction rules, Sections VI and VI1 delve into 
steepest-descent rules, and Section V l l l  provides a sum- 
mary. 

Information about the neural network paradigms not dis- 
cussed in this papercan beobtainedfromanumberofother 
sources, such as the concise survey by Lippmann [44], and 
the collection of classics by Anderson and Rosenfeld [45]. 
Much of the early work in the field from the 1960s is care- 
fully reviewed in Nilsson’s monograph [46]. A good view 
of some of the more recent results i s  presented in Rumel- 
hart and McClelland’s popular three-volume set [471. A 
paper by Moore [48] presents a clear discussion about ART 
1 and some of Crossberg’s terminology. Another resource 
is the DARPA Study report [49] which gives a very compre- 
hensive and readable “snapshot” of the field in  1988. 

I I .  FUNDAMENTAL CONCEPTS 

Today we can build computers and other machines that 
perform avarietyofwell-defined taskswith celerityand reli- 
ability unmatched by humans. No human can invert matri- 
ces or solve systems of differential equations at speeds 
rivaling modern workstations. Nonetheless, many prob- 
lems remain to be solved to our satisfaction by any man- 
made machine, but are easily disentangled by the percep- 
tual or cognitive powers of humans, and often lower mam- 
mals, or even fish and insects. No computer vision system 
can rival the human ability to  recognize visual images 
formed by objects of all shapes and orientations under a 
wide range of conditions. Humans effortlessly recognize 
objects in diverse environments and lighting conditions, 
even when obscured by dirt, or occluded by other objects. 
Likewise, the performance of current speech-recognition 
technology pales when compared to  the performance of 
the human adult who easily recognizes words spoken by 
different people, at different rates, pitches, and volumes, 
even in the presence of distortion or background noise. 

The problems solved more effectively by the brain than 
by the digital computer typically have two characteristics: 
they are generally ill defined, and they usually require an 
enormous amount of processing. Recognizing the char- 
acter of an object from its image on television, for instance, 
involves resolving ambiguities associated with distortion 
and lighting. It also involves filling in information about a 
three-dimensional scene which i s  missing from the two- 
dimensional image on the screen. An infinite number of 
three-dimensional scenes can be projected into a two- 
dimensional image. Nonetheless, the brain deals well with 
this ambiguity, and using learned cues usually has little dif- 
ficulty correctly determining the role played bythe missing 
dimension. 

As anyone who has performed even simple filtering oper- 
ations on images is aware, processing high-resolution 
images requires a great deal of computation. Our brains 
accomplish this by utilizing massive parallelism, with mil- 
lions and even billions of neurons in partsof the brain work- 
ing together to solve complicated problems. Because solid- 
state operational amplifiers and logic gates can compute 
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many orders of magnitude faster than current estimates of 
the computational speed of neurons in the brain, we may 
soon be able to build relatively inexpensive machines with 
the ability to process as much information as the human 
brain.Thisenormous processing powerwill do l itt leto help 
US solve problems, however, unless we can utilize it effec- 
tively. For instance, coordinating many thousands of pro- 
cessors, which must efficiently cooperate to solve a prob- 
lem, is not a simple task. If each processor must be 
programmed separately, and if all contingencies associated 
with various ambiguities must be designed into the soft- 
ware, even a relatively simple problem can quickly become 
unmanageable. The slow progress over the past 25 years or 
so in machinevision and otherareasofartificial intelligence 
i s  testament to the difficulties associated with solving 
ambiguous and computationally intensive problems on von 
Neumann computers and related architectures. 

Thus, there i s  some reason to consider attacking certain 
problems by designing naturally parallel computers, which 
process information and learn by principles borrowed from 
the nervous systems of biological creatures. This does not 
necessarily mean we should attempt to copy the brain part 
for part. Although the bird served to inspire development 
of the airplane, birds do not have propellers, and airplanes 
do not operate by flapping feathered wings. The primary 
parallel between biological nervous systems and artificial 
neural networks is that each typically consists of a large 
number of simple elements that learn and are able to col- 
lectively solve complicated and ambiguous problems. 

Today, most artificial neural network research and appli- 
cation is  accomplished by simulating networks on serial 
computers. Speed limitations keep such networks rela- 
tively small, but even with small networks some surpris- 
ingly difficult problems have been tackled. Networks with 
fewer than 150 neural elements have been used success- 
fully in vehicular control simulations [50], speech genera- 
tion [51], [52], and undersea mine detection [49]. Small net- 
works have also been used successfully in airport explosive 
detection [53], expert systems [54], [55], and scores of other 
applications. Furthermore, efforts to develop parallel neural 
network hardware are meeting with some success, and such 
hardware should be available in the future for attacking 
more difficult problems, such as speech recognition [56], 
[57l. 

Whether implemented in parallel hardware or simulated 
on a computer, all neural networks consist of a collection 
of simple elements that work together to solve problems. 
A basic building block of nearly all artificial neural net- 
works, and most other adaptive systems, is the adaptive lin- 
ear combiner. 

A. The Adaptive Linear Combiner 

The adaptive linear combiner i s  diagrammed in Fig. 1. Its 
output i s  a linear combination of i t s  inputs. In a digital 
implementation, this element receives at time k an input 
signal vector or input pattern vector X k  = [x,, x l t ,  xzk, 
. . 1 , x,,]' and a desired response dk, a special input used 
to effect learning. The components of the input vector are 
weighted by a set of coefficients, the weight vector Wk = 
[wok, wlk, wZt, * . . , w,~]'. The sum of the weighted inputs 
is then computed, producing a linear output, the inner 
product sk = XLWk. The components of X k  may be either 

Input 

Vector output 

: /  I 
nk 

Error t 
1 
dk 

Desired Response 
Wk 

Weight Vector 

Fig. 1. Adaptive linear combiner. 

continuous analog values or binary values. The weights are 
essentially continuously variable, and can take on negative 
as well as positive values. 

During the training process, input patterns and corre- 
sponding desired responses are presented to the linear 
combiner. An adaptation algorithm automatically adjusts 
the weights so that the output responses to the input pat- 
terns will be as close as possible to their respective desired 
reponses. In signal processing applications, the most pop- 
ular method for adapting the weights is the simple LMS 
(least mean square) algorithm [58], [59], often called the 
Widrow-Hoff delta rule [42]. This algorithm minimizes the 
sum of squares of the linear errors over the training set. The 
linear error t k  i s  defined to be the difference between the 
desired response dk and the linear output s k ,  during pre- 
sentation k .  Having this error signal is necessary for adapt- 
ing the weights. When the adaptive linear combiner i s  
embedded in a multi-element neural network, however, an 
error signal i s  often notdirectlyavailableforeach individual 
linear combiner and more complicated procedures must 
be devised for adapting the weight vectors. These proce- 
dures are the main focus of this paper. 

B. A Linear Classifier-The Single Threshold Element 

The basic building block used in many neural networks 
is the "adaptive linear element," or Adaline3 [58] (Fig. 2). 

This i s  an adaptive threshold logic element. It consists of 
an adaptive linear combiner cascaded with a hard-limiting 
quantizer, which is used to produce a binary 1 output, 
Yk = sgn (sk) .  The bias weight wok which i s  connected to a 
constant input xo = + I ,  effectively controls the threshold 
level of the quantizer. 

In single-element neural networks, an adaptivealgorithm 
(such as the LMS algorithm, or the Perceptron rule) i s  often 
used to adjust the weights of the Adaline so that it responds 
correctly to as many patterns as possible in a training set 
that has binary desired responses. Once the weights are 
adjusted, the responses of the trained element can be tested 
by applying various input patterns. If the Adaline responds 
correctly with high probability to input patterns that were 
not included in the training set, it i s  said that generalization 
has taken place. Learning and generalization are among the 
most useful attributes of Adalines and neural networks. 

Linear Separability: With n binary inputs and one binary 

31n the neural network literature, such elements are often 
referred to as "adaptive neurons." However, in a conversation 
between David Hubel of Harvard Medical School and Bernard Wid- 
row, Dr. Hubel pointed out that the Adaline differs from the bio- 
logical neuron in that it contains not only the neural cell body, but 
also the input synapses and a mechanism for training them. 
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(training signal) 

Fig. 2. Adaptive linear element (Adaline). 

output, a single Adaline of the type shown in Fig. 2 is capa- 
ble of implementing certain logic functions. There are 2" 
possible input patterns. A general logic implementation 
would be capable of classifying each pattern as either + I  
or -1, in accord with the desired response. Thus, there are 
22' possible logic functions connecting n inputs to  a single 
binary output. A single Adaline is capable of realizing only 
asmall subset of thesefunctions, known as the linearlysep- 
arable logic functions or threshold logic functions [60]. 
These are the set of logic functions that can be obtained 
with all possible weight variations. 

Figure3 shows atwo-input Adalineelement. Figure4 rep- 
resents all possible binary inputs to this element with four 
large dots in pattern vector space. In  this space, the com- 
ponentsof the input pattern vector liealongthecoordinate 
axes. The Adaline separates input patterns into two cate- 
gories, depending on the values of the weights. A critical 

Xok= +1 

'k 

Fig. 3. Two-input Adaline. 

Separat ing  Line  

x z  = 3 x , -  "0 
w2 WZ 

Fig. 4. Separating line in pattern space. 

thresholding condition occurs when the linear output s 
equals zero: 

s = XlW, + X,W, + WO = 0, (1) 

therefore 

w 1  x ,  - -. WO 
x 2 =  -- 

w2 w2 

Figure 4 graphs this linear relation, which comprises a 
separating line having slope and intercept given by 

W 
slope = -2 

intercept = -3. 

w 2  

w2 
(3) 

The three weights determine slope, intercept, and the side 
of the separating line that corresponds to  a positive output. 
The opposite side of the separating line corresponds to  a 
negative output. For Adalines with four weights, the sep- 
arating boundary is  a plane; with more than four weights, 
the boundary i s  a hyperplane. Note that if the bias weight 
i s  zero, the separating hyperplane will be homogeneous- 
it wil l pass through the origin in  pattern space. 

As sketched in Fig. 4, the binary input patterns are clas- 
sified as follows: 

(+ I ,  + I )  + + I  

(+I ,  -1) + + I  

(-1, -1) -+ + I  

(-1, +I )  + -1 (4) 

This is an example of a linearly separable function. An 
example of a function which i s  not linearly separable is the 
two-input exclusive NOR function: 

(+ I ,  +I) + +I 

(+I, -1) -+ -1 

(-1, -1) + + I  

(-1, +I) + -1 (5) 

Nosinglestraight lineexiststhat can achievethisseparation 
of the input patterns; thus, without preprocessing, no sin- 
gle Adaline can implement the exclusive NOR function. 

With two inputs, a single Adaline can realize 14 of the 16 
possible logic functions. With many inputs, however, only 
a small fraction of all possible logic functions i s  realizable, 
that is, linearly separable. Combinations of elements or net- 
works of elements can be used to  realize functions that are 
not linearly separable. 

Capacity of  Linear C/assifiers:The number of training pat- 
terns or stimuli that an Adalinecan learn tocorrectlyclassify 
i s  an important issue. Each pattern and desired output com- 
bination represents an inequalityconstraint on the weights. 
It i s  possible to have inconsistencies in sets of simultaneous 
inequalities just as with simultaneous equalities. When the 
inequalities (that is, the patterns) are determined at ran- 
dom, the number that can be picked before an inconsis- 
tency arises i s  a matter of chance. 

In their 1964 dissertations [61], [62], T. M. Cover and R. J. 
Brown both showed that the average number of random 
patterns with random binary desired responses that can be 
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absorbed by an Adaline i s  approximately equal to twice the 
number of weights4 This i s  the statistical pattern capacity 
C, of the Adaline. As reviewed by Nilsson [46], both theses 
included an analyticformuladescribingthe probabilitythat 
such a training set can be separated by an Adaline (i.e., it 
is linearly separable). The probability i s  afunction of Np, the 
number of input patterns in the training set, and N,, the 
number of weights in the Adaline, including the threshold 
weight, i f  used: 

for N, 5 N,. 

In Fig. 5 this formula was used to plot a set of analytical 
curves, which show the probability that a set of Np random 
patterns can be trained into an Adaline as a function of the 
ratio NJN,. Notice from these curves that as the number 
of weights increases, the statistical pattern capacity of the 
AdalineC, = 2N,becomesan accurateestimateofthenum- 
ber of responses it can learn. 

Another fact that can be observed from Fig. 5 i s  that a 

0 8 -  

Probability 
of Linear 0 6 
Separability 

0 4 -  

N,= 15 
N,= 5 
N,= 2 

Np/Nw--Ratio of Input Patterns to Weights 

Fig. 5. Probability that an Adaline can separate a training 
pattern set as a function of the ratio NJN,. 

problem is  guaranteed to have a solution if the number of 
patterns i s  equal to (or less than) half the statistical pattern 
capacity; that is, if the number of patterns i s  equal to the 
number of weights. We will refer to this as the deterministic 
pattern capacityCdof the Adaline. An Adaline can learn any 
two-category pattern classification task involving no more 
patterns than that represented by its deterministic capacity, 

Both the statistical and deterministic capacity results 
depend upon a mild condition on the positionsof the input 
patterns: the patterns must be in general position with 
respect to the Adaline.’ If the input patterns to an Adaline 

Cd = N,. 

4Underlying theory for this result was discovered independently 
by a number of researchers including, among others, Winder [63], 
Cameron [U], and Joseph [65]. 

5Patterns are in general position with respect to an Adaline with 
no threshold weight i f  any subset of pattern vectors containing no 
more than N, members forms a linearly independent set or, equiv- 
alently, i f  no set of N, or more input points in the N,-dimensional 
pattern space lie on a homogeneous hyperplane. For the more 
common case involving an Adaline with a threshold weight, gen- 
eral position means that no set of N, or more patterns in the (N, 
- 1)-dimension pattern space lie on a hyperplane not constrained 
to pass through the origin [61], [46]. 

are continuous valued and smoothly distributed (that is, 
pattern positions are generated by a distribution function 
containing no impulses), general position i s  assured. The 
general position assumption i s  often invalid if the pattern 
vectors are binary. Nonetheless, even when the points are 
not in general position, the capacity results represent use- 
ful upper bounds. 

The capacity results apply to randomly selected training 
patterns. In most problems of interest, the patterns in the 
training set are not random, but exhibit some statistical reg- 
ularities. These regularities are what make generalization 
possible. The number of patterns that an Adaline can learn 
in a practical problem often far exceeds its statistical capac- 
ity becausethe Adaline isabletogeneralizewithin thetrain- 
ing set, and learns many of the training patterns before they 
are even presented. 

C. Nonlinear Classifiers 

Thelinearclassifier i s  limited in itscapacity,andofcourse 
i s  limited to only linearly separable forms of pattern dis- 
crimination. More sophisticated classifiers with higher 
capacities are nonlinear. Two types of nonlinear classifiers 
are described here. The first i s  a fixed preprocessing net- 
work connected to a single adaptive element, and the other 
i s  the multi-element feedforward neural network. 

Polynomial Discriminant Functions: Nonlinear functions 
of the in.puts applied to  the single Adaline can yield non- 
linear decision boundaries. Useful nonlinearities include 
the polynomial functions. Consider the system illustrated 
in Fig. 6 which contains only linear and quadratic input 

Input 
Pattern 
VeCtOl 

X 
X l  

Binary 

Y - output 

(+1,-1) 

Fig. 6. Adalinewith inputs mapped through nonlinearities. 

functions. The critical thresholding condition for this sys- 
tem is 

s = WO + XlWl + x:w1, + X1XzW12 

+ x;w2* + xzw2 = 0. (7) 

With proper choiceof theweights, the separating bound- 
ary in pattern space can be established as shown, for exam- 
ple, in Fig. 7.This representsasolutionfortheexclusive NOR 

function of (5). Of course, all of the linearly separable func- 
tions are also realizable. The use of such nonlinearities can 
be generalized for more than two inputs and for higher 
degree polynomial functions of the inputs. Some of the first 
work in this area was done by Specht [66]-[68] at Stanford 
in the 1960s when he successfully applied polynomial dis- 
criminants to the classification and analysis of electrocar- 
diographic signals. Work on this topic has also been done 
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Separating 
Boundary r Madaline I was built out of hardware [78] and used in pat- 

tern recognition research. Theweights in this machinewere 
memistors, electrically variable resistors developed by 
Widrow and Hoff which are adjusted by electroplating a 
resistive link [79]. 

Madaline I was configured in the following way. Retinal 
inputs were connected to a layer of adaptive Adaline ele- 
ments, the outputs of which were connected to a fixed logic 
device that generated the system output. Methods for 
adapting such systems were developed at that time. An 
exampleof this kind of network is shown in Fig. 8. TwoAda- 

Adaline 
Output = -1 

Adal ine  
-0 O u t p u t =  +1 

Fig. 7. Elliptical separating boundary for realizing a func- 
tion which i s  not linearly separable. 

by Barron and Barron [69]-[71] and by lvankhnenko [72] in 
the Soviet Union. 

The polynomial approach offers great simplicity and 
beauty.Through it onecan realizeawidevarietyofadaptive 
nonlinear discriminant functions by adapting only a single 
Adaline element. Several methods have been developed for 
training the polynomial discriminant function. Specht 
developed a very efficient noniterative (that is, single pass 
through the training set) training procedure: the polyno- 
mial discriminant method (PDM), which allows the poly- 
nomial discriminant function to implement a nonpara- 
metric classifier based on the Bayes decision rule. Other 
methods for training the system include iterative error-cor- 
rection rules such as the Perceptron and a-LMS rules, and 
iterative gradient-descent procedures such as the w-LMS 
and SER (also called RLS) algorithms [30]. Gradient descent 
with a single adaptive element is typically much faster than 
with a layered neural network. Furthermore, as we shall see, 
when the single Adaline is trained by a gradient descent 
procedure, it will converge to a unique global solution. 

After the polynomial discriminant function has been 
trained byagradient-descent procedure, theweights of the 
Adaline will represent an approximation to the coefficients 
in a multidimensional Taylor series expansion of thedesired 
response function. Likewise, if appropriate trigonometric 
terms are used in place of the polynomial preprocessor, the 
Adaline's weight solution will approximate the terms in the 
(truncated) multidimensional Fourier series decomposi- 
tion of a periodic version of the desired response function. 
The choice of preprocessing functions determines how well 
a network will generalize for patterns outside the training 
set. Determining "good" functions remains a focus of cur- 
rent research [73], [74]. Experience seems to indicate that 
unless the nonlinearities are chosen with care to suit the 
problem at hand, often better generalization can be 
obtained from networks with more than one adaptive layer. 
In fact,onecan view multilayer networks assingle-layer net- 
works with trainable preprocessors which are essentially 
self-optimizing. 

Madaline I 

One of the earliest trainable layered neural networks with 
multiple adaptive elements was the Madaline I structure of 
Widrow [2] and Hoff (751. Mathematical analyses of Mada- 
line I were developed in the Ph.D. theses of Ridgway [76], 
Hoff [75], and Glanz [77]. In the early 1960s, a 1000-weight 

Input 
Pattern 
Vector 

X xiT- - ,  
, & py output 

x 1  

Fig. 8. Two-Adaline form of Madaline. 

lines are connected to an AND logic device to provide an 
output. 

With weights suitably chosen, the separating boundary 
in pattern space for the system of Fig. 8 would be as shown 
in Fig. 9. This separating boundary implements the exclu- 
sive NOR function of (5). 

Separating 
Lines ,\ 

o u t p u t  = +1 

Fig. 9. Separating lines for Madaline of Fig. 8. 

Madalines were constructed with many more inputs, with 
many more Adaline elements in the first layer, and with var- 
ious fixed logic devices such as AND, OR, and majority-vote- 
taker elements in the second layer. Those three functions 
(Fig. IO) are all threshold logic functions. The given weight 
valueswill implement these threefunctions, but theweight 
choices are not unique. 

Feedforward Networks 

The Madalines of the 1960s had adaptive first layers and 
fixed threshold functions in the second (output) layers [76], 
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Fig. 10. Fixed-weight Adaline implementations of AND, OR, 
and MAJ logic functions. 

[46]. The feedfoward neural networks of today often have 
many layers, and usually all layers are adaptive. The back- 
propagation networks of Rumelhart et al. [47] are perhaps 
the best-known examples of multilayer networks. A fully 
connected three-layer6 feedforward adaptive network i s  
illustrated in Fig. 11. In a fully connected layered network, 

t 
second-layer 

Adalines 

t 
first-layer 
Adalines 

Fig. 11. Three-layer adaptive neural network. 

each Adaline receives inputs from every output in the pre- 
ceding layer. 

During training, the response of each output element in 
the network is compared with a corresponding desired 
response. Error signals associated with the output elements 
are readily computed, so adaptation of the output layer is 
straightforward. The fundamental difficulty associated with 
adapting a layered network lies in obtaining “error signals” 
for hidden-layer Adalines, that is,forAdalines in layersother 
than the output layer. The backpropagation and Madaline 
Ill algorithms contain methods for establishing these error 
signals. 

61n Rumelhart et al.’s terminology, this would be called a four- 
layer network, following Rosenblatt’s convention of counting lay- 
ers of signals, including the input layer. For our purposes, we find 
it more useful to count only layers of computing elements. We do 
not count as a layer the set of input terminal points. 

There i s  no reason whyafeedforward network must have 
the layered structure of Fig. 11. In Werbos’s development 
of the backpropagation algorithm [37], in fact, the Adalines 
are ordered and each receives signals directly from each 
input component and from the output of each preceding 
Adaline. Many other variations of the feedforward network 
are possible. An interesting areaof current research involves 
a generalized backpropagation method which can be used 
to train “high-order” or ‘’u-T’’ networks that incorporate 
a polynomial preprocessor for each Adaline [47], [80]. 

One characteristic that is often desired in pattern rec- 
ognition problems i s  invariance of the network output to 
changes in the position and size of the input pattern or 
image. Varioustechniques have been used toachievetrans- 
lation, rotation, scale, and time invariance. One method 
involves including in the training set several examples of 
each exemplar transformed in size, angle, and position, but 
with a desired response that depends only on the original 
exemplar [78]. Other research has dealt with various Fourier 
and Mellin transform preprocessors [81], [82], as well as 
neural preprocessors [83]. Giles and Maxwell have devel- 
oped a clever averaging approach, which removes 
unwanted dependencies from the polynomial terms in high- 
order threshold logic units (polynomial discriminant func- 
tions) [74] and high-order neural networks [80]. Other 
approaches have considered Zernike moments [84], graph 
matching [85], spatially repeated feature detectors [9], and 
time-averaged outputs [86]. 

Capacity of Nonlinear Classifiers 

An important consideration that should be addressed 
when comparing various network topologies concerns the 
amount of information they can store.’ Of the nonlinear 
classifiers mentioned above, the pattern capacity of the 
Adaline driven byafixed preprocessor composed of smooth 
nonlinearities is the simplest to determine. If the inputs to 
the system are smoothly distributed in position, the out- 
puts of the preprocessing network will be in general posi- 
tion with respecttotheAdaline.Thus,the inputstothe Ada- 
line will satisfy the condition required in Cover’s Adaline 
capacity theory. Accordingly, the deterministic and statis- 
tical pattern capacities of the system are essentially equal 
to those of the Adaline. 

Thecapacities of Madaline I structures, which utilize both 
the majoritiy element and the OR element, were experi- 
mentally estimated by Koford in the early 1960s. Although 
the logic functions that can be realized with these output 
elements are quite different, both types of elements yield 
essentially the same statistical storage capacity. The aver- 
age number of patterns that a Madaline I network can learn 
to classify was found to be equal to the capacity per Adaline 
multiplied by the number of Adalines in the structure. The 
statistical capacity C, i s  therefore approximately equal to 
twice the number of adaptive weights. Although the Mada- 
line and the Adaline have roughly the same capacity per 
adaptive weight, without preprocessing the Adaline can 
separate only linearly separable sets, while the Madaline 
has no such limitation. 

’We should emphasize that the information referred to herecor- 
responds to the maximum number of binary input/output map- 
pings a network achieve with properly adjusted weights, not the 
number of bits of information that can be stored directly into the 
network’s weights. 

WIDROW AND LEHR PERCEPTRON, MADALINE, AND BACKPROPACATION 

~ ~~ 

1421 



A great deal of theoretical and experimental work has 
been directed toward determining the capacity of both 
Adalines and Hopfield networks [87]-[90]. Somewhat less 
theoretical work has been focused on the pattern capacity 
of multilayer feedforward networks, though some knowl- 
edge exists about the capacity of two-layer networks. Such 
results are of particular interest because the two-layer net- 
work is surprisingly powerful. With a sufficient number of 
hidden elements, a signum network with two layers can 
implement any Boolean function.’ Equally impressive is the 
power of the two-layer sigmoid network. Given a sufficient 
number of hidden Adaline elements, such networks can 
implement any continuous input-output mapping to arbi- 
trary accuracy [92]-[94]. Although two-layer networks are 
quite powerful, it i s  likely that some problems can be solved 
more efficiently by networks with more than two layers. 
Nonfinite-order predicate mappings (such as the connect- 
edness problem [95]) can often be computed by small net- 
works using signal feedback [96]. 

In the mid-I960s, Cover studied the capacity of a feed- 
forward signum networkwith an arbitrary number of layersg 
and a single output element [61], [97. He determined a lower 
bound on the minimum number of weights N, needed to 
enable such a network to  realize any Boolean function 
defined over an arbitrary set of Np patterns in general posi- 
tion. Recently, Baum extended Cover’s result to multi-out- 
put networks, and also used a construction argument to 
find corresponding upper bounds for the special case of 
thetwo-layer signum network[98l.Consideratwo-layerfully 
connected feedforward network of signum Adalines that 
has Nx input components (excluding the bias inputs) and 
N,output components. If this network is required to learn 
to map any set containing Np patterns that are in general 
position to any set of binary desired response vectors (with 
N, components), it follows from Baum’s results” that the 
minimum requisite number of weights N,can be bounded 

by 

1 + l0g,(Np) N x  
5 N, < N - + 1 (N, + N, + 1) + N,. 

(8) 

From Eq. (8), it can be shown that for a two-layer feedfor- 
ward networkwith several times as many inputs and hidden 
elements as outputs (say, at least 5 times as many), the deter- 
ministic pattern capacity is bounded below by something 
slightly smaller than N,/N,. It also follows from Eq. (8) that 
the pattern capacityof any feedforward network with a large 
ratio of weights to outputs (that is, N,IN, at least several 
thousand) can be bounded above by a number of some- 
what larger than (N,/Ny) log, (Nw/Ny). Thus, the determin- 
istic pattern capacity C, of a two-layer network can be 
bounded by 

(” 1 N Y N P  

whereK,and &are positive numberswhich aresmall terms 
if the network i s  large with few outputs relative to the num- 
ber of inputs and hidden elements. 

It is easy to  show that Eq. (8) also bounds the number of 
weights needed to ensure that N, patterns can be learned 
with probability 1/2, except in this case the lower bound on 
N, becomes: (N,N, - .1)/(1 + log, (N,)). It follows that Eq. 
(9) also serves to  bound the statistical capacity C, of a two- 
layer signum network. 

It is interesting to note that the capacity bounds (9) 
encompass the deterministic capacity for the single-layer 
networkcomprisinga bankof N,Adalines. In thiscaseeach 
Adaline would have N,/N, weights, so the system would 
have a deterministic pattern capacity of N,/N,. AS N, 
becomes large, the statistical capacity also approaches 
N,/N, (for N, finite). Until further theory on feedforward 
network capacity is developed, it seems reasonable to use 
the capacity results from the single-layer network to  esti- 
mate that of multilayer networks. 

Little i s  known about the number of binary patterns that 
layered sigmoid networks can learn to classify correctly. 
The pattern capacityof sigmoid networks cannot be smaller 
than that of signum networks of equal size, however, 
because as the weights of a sigmoid network grow toward 
infinity, it becomes equivalent to  a signum network with 
aweight vector in the same direction. Insight relating to the 
capabilities and operating principles of sigmoid networks 
can be winnowed from the literature [99]-[loll. 

A network’s capacity i s  of little utility unless it i s  accom- 
panied by useful generalizations to patterns not presented 
during training. In fact, if generalization is not needed, we 
can simply store the associations in a look-up table, and will 
have little need for a neural network. The relationship 
between generalization and pattern capacity represents a 
fundamental trade-off in neural network applications: 
the Adaline’s inability to  realize all functions i s  in  a sense 
a strength rather than the fatal flaw envisioned by some crit- 
ics of neural networks [95], because it helps limit the capac- 
ity of the device and thereby improves i ts  ability to  gen- 
eralize. 

For good generalization, the training set should contain 
a number of patterns at least several times larger than the 
network‘s capacity (i.e., Np >> N,IN,). This can be under- 
stood intuitively by noting that if the number of degrees of 
freedom in a network (i.e., N,) i s  larger than the number 
of constraints associated with the desired response func- 
tion (i.e., N,N,), the training procedure will be unable to 
completely constrain the weights in the network. Appar- 
ently, this allows effects of initial weight conditions to  inter- 
fere with learned information and degrade the trained net- 
work’s ability to generalize. A detailed analysis of 
generalization performance of signum networks as a func- 
tion of training set size i s  described in 11021. ” 

(9) 
- N, 

N, N, 
Nw - K, I C, 5 - log, (%) + K2 

A Nonlinear Classifier Application 
‘This can be seen by noting that any Boolean function can be 

written in the sum-of-products form [91], and that such an expres- 
sion can be realized with a two-laver network bv using the first-laver 

Neural networks have been used successfully in a wide 
range of applications. To gain Some insight about how 

Adalines to implement AND gates, while using thg second-layer neural networks are trained and what they can be used to  
Adalines to implement OR gates. 

and need not be layered. 

compute, it is instructive to  consider Sejnowski and Rosen- 
berg,s 1986 NETtalk demonstration [521. With the 
exception of work on the traveling salesman problem with 

’Actually, the network can bean arbitrary feedforward structure 

‘qhe uDDer bound used here is B ~ ~ ~ ’ ~  loose bound: minimum 
number i ibden nodes 5 N, rNJN,1 < N,(NJN, + 1). Hopfield networks [103], this was the first neural network 
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application since the 1960s to draw widespread attention. 
NETtalk i s  a two-layer feedforward sigmoid network with 
80 Adalines in the first layer and 26 Adalines in the second 
layer. The network i s  trained to convert text into phonet- 
ically correct speech, a task well suited to  neural imple- 
mentation. The pronunciation of most words follows gen- 
eral rules based upon spelling and word context, but there 
are many exceptions and special cases. Rather than pro- 
gramming a system to respond properly to each case, the 
network can learn the general rules and special cases by 
example. 

One of the more remarkable characteristics of NETtalk 
i s  that it learns to pronounce words in stages suggestive of 
the learning process in children. When the output of NET- 
talk i s  connected to  a voice synthesizer, the system makes 
babbling noises during the early stages of the training pro- 
cess. As the network learns, it next conquers the general 
rules and, like a child, tends to  make a lot of errors by using 
these rules even when not appropriate. As the training con- 
tinues, however, the network eventually abstracts the 
exceptions and special cases and i s  able to  produce intel- 
ligible speech with few errors. 

The operation of NETtalk is  surprisingly simple. Its input 
is  a vector of seven characters (including spaces) from a 
transcript of text, and its output i s  phonetic information 
corresponding to the pronunciation of the center (fourth) 
character in the seven-character input field. The other six 
characters provide context, which helps to determine the 
desired phoneme. To read text, the seven-character win- 
dow i s  scanned across a document in computer memory 
and the networkgenerates a sequenceof phonetic symbols 
that can be used to control a speech synthesizer. Each of 
the seven characters at the network‘s input i s  a 29-corn- 
ponent binary vector, with each component representing 
adifferent alphabetic character or punctuation mark. A one 
is placed in the component associated with the represented 
character; all other components are set to  zero.’’ 

Thesystem’s26outputscorrespond to23 articulatoryfea- 
tures and 3 additional features which encode stress and syl- 
lable boundaries. When training the network, the desired 
response vector has zeros in all components except those 
which correspond to the phonetic features associated with 
the center character in the input field. In  one experiment, 
Sejnowski and Rosenberg had the system scan a 1024-word 
transcript of phonetically transcribed continuous speech. 
With the presentation of each seven-character window, the 
system‘s weights were trained by the backpropagation 
algorithm in  response to the network’s output error. After 
roughly 50 presentations of the entire training set, the net- 
work was able to  produce accurate speech from data the 
network had not been exposed to during training. 

Backpropagation is not the only technique that might be 
used to  train NETtalk. In other experiments, the slower 
Boltzmann learning method was used, and, in fact, Mada- 

”The input representation often has a considerable impact on 
the success of a network. In NETtalk, the inputs are sparselycoded 
in 29 components. One might consider instead choosing a 5-bit 
binary representation of the 7-bit ASCII code. It should be clear, 
however, that in this case the sparse representation helps simplify 
the network’s job of interpreting input characters as 29 distinct 
symbols. Usually the appropriate input encoding i s  not difficult to 
decide. When intuition fails, however, one sometimes must exper- 
iment with different encodings to find one that works well. 

line Rule I l l  could be used as well. Likewise, if the sigmoid 
network was replaced by a similar signum network, Mada- 
line Rule II would also work, although more first-layer Ada- 
lines would likely be needed for comparable performance. 

The remainder of this paper develops and compares var- 
ious adaptive algorithms for training Adalines and artificial 
neural networks to  solve classification problems such as 
NETtalk. These same algorithms can be used to train net- 
works for other problems such as those involving nonlinear 
control [SO], system identification [50], [104], signal pro- 
cessing [30], or decision making [55]. 

II I. ADAPTATION-THE MINIMAL DISTURBANCE PRINCIPLE 

The iterative algorithms described in this paper are all 
designed in accord with a single underlying principle. These 
techniques-the two LMS algorithms, Mays‘s rules, and the 
Perceptron procedurefortrainingasingle Adaline, theMRI 
rulefortrainingthesimpleMadaline,aswell asMRII,MRIII, 
and backpropagation techniques for training multilayer 
Madalines-all rely upon the principle of minimal distur- 
bance: Adapt to reduce the output error for the current 
training pattern, with minimal disturbance to responses 
already learned. Unless this principle i s  practiced, it is dif- 
ficult to simultaneously store the required pattern 
responses. The minimal disturbance principle is intuitive. 
It was the motivating idea that led to  the discovery of the 
L M S  algorithm and the Madaline rules. In  fact, the LMS 
algorithm had existed for several months as an error-reduc- 
tion rule before it was discovered that the algorithm uses 
an instantaneous gradient to  follow the path of steepest 
descent and minimizethe mean-squareerrorofthetraining 
set. It was then given the name “LMS” (least mean square) 
algorit h m. 

IV. ERROR CORRECTION RULES-SINGLE THRESHOLD ELEMENT 

As adaptive algorithms evolved, principally two kinds of 
on-line rules have come to  exist. Error-correction rules alter 
the weights of a network to correct error in the output 
response to the present input pattern. Gradient rules alter 
the weights of a network during each pattern presentation 
by gradient descent with the objective of reducing mean- 
square error, averaged over all training patterns. Both types 
of rules invoke similar training procedures. Because they 
are based upon different objectives, however, they can have 
significantly different learning characteristics. 

Error-correction rules, of necessity, often tend to be a d  
hoc. They are most often used when training objectives are 
not easilyquantified, orwhen a problem does not lend itself 
to  tractable analysis. A common application, for instance, 
concerns training neural networks that contain discontin- 
uous functions. An exception i s  the WLMS algorithm, an 
error-correction rule that has proven to be an extremely 
useful technique for finding solutions to well-defined and 
tractable linear problems. 

We begin with error-correction rules applied initially to 
single Adaline elements, and then to networks of Adalines. 

A. Linear Rules 

Linear error-correction rules alter the weights of the 
adaptive threshold elementwith each pattern presentation 
to make an error correction proportional to the error itself. 
The one linear rule, a-LMS, i s  described next. 
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The a-LMS Algorithm: The a-LMS algorithm or Widrow- 
Hoff delta rule applied to the adaptation of a single Adaline 
(Fig. 2) embodies the minimal disturbance principle. The 
weight update equation for the original form of the algo- 
rithm can be written as 

The time index or adaptation cycle number i s  k .  wk+, i s  the 
next value of the weight vector, wk is  the present value of 
the weight vector, and x k  i s  the present input pattern vector. 
The present linear error E k  i s  defined to be the difference 
between the desired response dk and the linear output sk 

= w$k before adaptation: 

€ k  dk - w,'x,. (11) 

Changing the weights yields a corresponding change in the 
error: 

(1 2) 

In accordance with the a-LMS rule of Eq. (IO), the weight 
change i s  as follows: 

AEk = A(dk - W&) = - x i A w k .  

Combining Eqs. (12) and (13), we obtain 

(1 3) 

Therefore, theerror i s  reduced byafactorof aastheweights 
are changed while holding the input pattern fixed. Pre- 
senting a new input pattern starts the next adaptation cycle. 
The next error is then reduced by a factor of cy, and the pro- 
cess continues. The initial weight vector is  usually chosen 
to be zero and is adapted until convergence. In nonsta- 
tionary environments, the weights are generally adapted 
continually. 

The choice of a controls stability and speed of conver- 
gence [30]. For input pattern vectors independent over time, 
stability i s  ensured for most practical purposes if 

o < c y < 2 .  (1 5) 

Making a greater than 1 generally does not make sense, 
since the error would be overcorrected. Total error cor- 
rection comes with a = 1. A practical range for a is  

0.1 < a < 1.0. (16) 

This algorithm i s  self-normalizing in the sense that the 
choice of a does not depend on the magnitude of the input 
signals. The weight update i s  collinear with the input pat- 
tern and of a magnitude inversely proportional to IXk)2.With 
binary *I inputs, IXkl2 is  equal to the number of weights 
and does not vary from pattern to pattern. If the binary 
inputs are the usual 1 and 0, no adaptation occurs for 
weights with 0 inputs, while with *I inputs, all weights are 
adapted each cycle and convergence tends to be faster. For 
this reason, the symmetric inputs +I and -1 are generally 
preferred. 

Figure12 providesageometrical pictureof howthea-LMS 
rule works. In accord with Eq. (13), wk+, equals wk added 
to AWk, and AWk i s  parallel with the input pattern vector 
xk. From Eq. (12), the change in error is equal to the negative 
dot product of x k  and A",. Since the cy-LMS algorithm 
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Fig. 12. Weight correction by the L M S  rule. 

selects A w k  to be collinear with Xk, the desired error cor- 
rection is achieved with a weight change of the smallest 
possible magnitude. When adapting to respond properly 
to a new input pattern, the responses to previous training 
patterns are therefore minimally disturbed, on the average. 

The a-LMS algorithm corrects error, and if all input pat- 
terns are all of equal length, it minimizes mean-square error 
[30]. The algorithm i s  best known for this property. 

B. Nonlinear Rules 

The a-LMS algorithm is a linear rule that makes error cor- 
rections that are proportional to the error. It i s  known [I051 
that in some cases this linear rule may fail to separate train- 
ing patterns that are linearly separable. Where this creates 
difficulties, nonlinear rules may be used. In the next sec- 
tions,wedescribeearlynonlinear rules,which weredevised 
by Rosenblatt [106], [5] and Mays [IOS]. These nonlinear rules 
also make weight vector changes collinear with the input 
pattern vector (the direction which causes minimal dis- 
turbance), changes that are based on the linear error but 
are not directly proportional to it. 

The Perceptron Learning Rule: The Rosenblatt a-Percep- 
tron [106], [5 ] ,  diagrammed in Fig. 13, processed input pat- 

Fixed Random 
Inputs lo 
Adaptive x 1 Element 

Analog- 
Valued 
Retina 
Input 

Patterns 

\ Desired Response Element 

(+1,-11 
Fixed Threshold 

Elements 

I 
Sparse Random 
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Fig. 13. Rosenblatt's a-Perceptron. 

terns with a first layer of sparse randomly connected fixed 
logic devices. The outputs of the fixed first layer fed a sec- 
ond layer, which consisted of a single adaptive linear 
threshold element. Other than the convention that i t s  input 
signals were {I, 0 }  binary, and that no bias weight was 
included, this element is equivalentto the Adaline element. 
The learning rule for the a-Perceptron is very similarto LMS, 
but its behavior i s  in fact quite different. 
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It is interesting to note that Rosenblatt's Perceptron 
learning rule was first presented in 1960 [106], and Widrow 
and Hoff's LMS rulewas first presented the same year, afew 
months later [59]. These rules were developed indepen- 
dently in 1959. 

The adaptive threshold element of the a-Perceptron i s  
shown in Fig. 14. Adapting with the Perceptron rule makes 

I 
Weights 

Binary 
-output 
[+1,-1) 

L - - - - - - _ _ - - _ - - - - - - - - - -  J t d, [+L.ll 
Desired Respanse Input 

(training signal) 

Fig. 14. The adaptive threshold element of the Perceptron. 

use of the "quantizer error" z k ,  defined to be the difference 
between the desired response and the output of the quan- 
tizer 

z k  d k  - Y k .  (1 7) 

The Perceptron rule, sometimes called the Perceptron 
convergence procedure, does not adapt the weights if the 
output decision Y k  i s  correct, that is, if z k  = 0. If the output 
decision disagrees with the binary desired response d k ,  

however, adaptation i s  effected by adding the input vector 
to the weight vector when the error z k  i s  positive, or sub- 
tracting the input vector from the weight vector when the 
error & i s  negative. Thus, half the product of the input vec- 
tor and the quantizer error gk i s  added to the weight vector. 
The Perceptron rule i s  identical to the a-LMS algorithm, 
except that with the Perceptron rule, half of the quantizer 
error &/2 is used in place of the normalized linear error E k /  

I&)' of the ct-LMS rule. The Perceptron rule i s  nonlinear, 
in contrast to the LMS rule, which i s  linear (compare Figs. 
2 and 14). Nonetheless, the Perceptron rule can be written 
in a form very similar to the a-LMS rule of Eq. (IO): 

w k + ,  = w k  + f f  ' X k .  (18) 

Rosenblatt normally set a to one. In contrast to a-LMS, 
thechoiceof ctdoesnotaffectthestabilityof theperceptron 
algorithm, and it affects convergence time only if the initial 
weight vector i s  nonzero. Also, while a-LMS can be used 
with either analog or binary desired responses, Rosen- 
blatt's rule can be used only with binary desired responses. 

The Perceptron rule stops adapting when the training 
patterns are correctly separated. There is no restraining 
force controlling the magnitude of the weights, however. 
The direction of the weight vector, not i ts  magnitude, deter- 

2 

mines the decision function. The Perceptron rule has been 
proven to be capable of separating any linearly separable 
set of training patterns [SI, [107], [46], [105]. If the training 
patterns are not linearly separable, the Perceptron algo- 
rithm goes on forever, and often does not yield a low-error 
solution, even if one exists. In most cases, if the training set 
is not separable, the weight vector tends to gravitate toward 
zero12 so that even if a i s  very small, each adaptation can 
dramatically affect the switching function implemented by 
the Perceptron. 

This behavior i s  very different from that of the a-LMS 
algorithm. Continued use of ct-LMS does not lead to an 
unreasonable weight solution if the pattern set is not lin- 
early separable. Nor, however, is this algorithm guaranteed 
to separate any linearly separable pattern set. a-LMS typ- 
ically comes close to achieving such separation, but i ts  
objective i s  different-error reduction at the linear output 
of the adaptive element. 

Rosenblatt also introduced variants of the fixed-incre- 
ment rule that we have discussed thus far. A popular one 
was the absolute-correction version of the Perceptron 
rule.13 This rule is identical t o  that stated in Eq. (18) except 
the increment size a i s  chosen with each presentation to 
be the smallest integer which corrects the output error in  
one presentation. If thetraining set is separable, thisvariant 
has all the characteristics of the fixed-increment version 
with a set to 1, except that it usually reaches a solution in  
fewer presentations. 

Mays's Algorithms: In his Ph.D. thesis [105], Mays 
described an "increment adaptation" rule14 and a "modi- 
fied relaxation adaptation" rule. The fixed-increment ver- 
sion of the Perceptron rule i s  a special case of the increment 
adaptation rule. 

lncreinent adaptation in  i t s  general form involves the use 
of a "dead zone" for the linear output s k ,  equal t o  ky about 
zero. All desired responses are +I (refer to Fig. 14). If the 
linear output s k  falls outside the dead zone ( 1 s k (  2 y), adap- 
tation follows a normalized variant of the fixed-increment 
Perceptron rule (with a / ( X k I 2  used in  place of a). If the linear 
output falls within the dead zone, whether or not the output 
response y k  is correct, the weights are adapted by the nor- 
malized variant of the Perceptron rule as though the output 
response Y k  had been incorrect. The weight update rule for 
Mays's increment adaptation algorithm can be written 
mathematically as 

where F k  i s  the quantizer error of Eq. (17). 
With the dead zone y = 0, Mays's increment adaptation 

algorithm reduces to a normalized version of the Percep- 

12This results because the length of the weight vector decreases 
with each adaptation that does not cause the linear output sk to 
change sign and assume a magnitude greater than that before 
adaptation. Although there are exceptions, for most problems this 
situation occursonly rarely if theweight vector is much longer than 
the weight increment vector. 

13The terms "fixed-increment" and "absolute correction" are due 
to Nilsson [46]. Rosenblatt referred to methods of these types, 
respectively, as quantized and nonquantized learning rules. 

14The increment adaptation rule was proposed by others before 
Mays, though from a different perspective [107]. 
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tron rule (18). Mays proved that if the training patterns are 
linearly separable, increment adaptation wil l always con- 
verge and separate the patterns in a finite number of steps. 
He also showed that use of the dead zone reduces sensi- 
tivity to weight errors. If the training set i s  not linearly sep- 
arable, Mays's increment adaptation rule typically per- 
forms much better than the Perceptron rule because a 
sufficiently large dead zone tends to cause the weight vec- 
tortoadapt awayfrom zerowhen any reasonablygood solu- 
tion exists. In such cases, the weight vector may sometimes 
appear to meander rather aimlessly, but it will typically 
remain in a region associated with relatively low average 
error. 

The increment adaptation rule changes the weights with 
increments that generally are not proportional to the linear 
error Ek. The other Mays rule, modified relaxation, i s  closer 
to a-LMS in i ts  use of the linear error Ek (refer to Fig. 2). The 
desired response and the quantizer output levels are binary 
fl. Ifthequantizeroutputykiswrongor ifthelinear output 
sk falls within the dead zone f y ,  adaptation follows a-LMS 
to reduce the linear error. If the quantizer output yk i s  cor- 
rect and the linear output skfallsoutside the dead zone, the 
weights are not adapted. The weight update rule for this 
algorithm can be written as 

if Fk = o and [ S k i  2 y 
(20) 

xk i" IXkl 
wk + c q  7 otherwise 

wk+l = 

where zk is the quantizer error of Eq. (17). 
If the dead zone y is set t o  00, this algorithm reduces to 

the a-LMS algorithm (IO). Mays showed that, for dead zone 
0 < y < 1 and learning rate 0 < a 5 2, this algorithm will 
converge and separate any linearly separable input set in 
a finite number of steps. If the training set is not linearly 
separable, this algorithm performs much like Mays's incre- 
ment adaptation rule. 

Mays's two algorithms achieve similar pattern separation 
results. The choice of a does not affect stability, although 
it does affect convergence time. The two rules differ in  their 
convergence properties but there i s  no consensus on which 
i s  the better algorithm. Algorithms like these can be quite 
useful, and we believe that there are many more to be 
invented and analyzed. 

The a-LMS algorithm, the Perceptron procedure, and 
Mays's algorithms can all be used for adapting the single 
Adaline element or they can be incorporated into proce- 
dures for adapting networks of such elements. Multilayer 
network adaptation procedures that use some of these 
algorithms are discussed in the following. 

V. ERROR-CORRECTION RULES-MULTI-ELEMENT NETWORKS 

The algorithms discussed next are the Widrow-Hoff 
Madaline rule from the early 1960s, now called Madaline 
Rule I (MRI),and MadalineRule II (MRll),developed byWid- 
row and Winter in 1987. 

A. Madaline Rule I 

The M R I  rule allows the adaptation of a first layer of hard- 
limited (signum) Adaline elements whose outputs provide 
inputs to a second layer, consisting of a single fixed-thresh- 
old-logic element which may be, for example, the OR gate, 

Input 
Pattern 
Vector 

X 

Adalines 
1 

output 
Decision 

Desired ! Response 
d {-1JI 

Fig. 15. A five-Adaline example of the Madaline I architec- 
ture. 

AND gate, or majority-vote-taker discussed previously. The 
weights of the Adalines are initially set to small random val- 
ues. 

Figure 15 shows a Madaline I architecture with five fully 
connected first-layer Adalines. The second layer i s  a major- 
ity element (MAJ). Because the second-layer logic element 
is fixed and known, it i s  possible to determine which first- 
layer Adalines can be adapted to correct an output error. 
The Adalines in the first layer assist each other in solving 
problems by automatic load-sharing. 

One procedurefortrainingthe network in Fig. 15follows. 
A pattern i s  presented, and if the output response of the 
majority element matches the desired response, no adap- 
tation takes place. However, if, for instance, the desired 
response i s  +I and three of the five Adalines read -1 for 
agiven input pattern,oneof the latterthreemust beadapted 
to the +I state. The element that i s  adapted by MRI is  the 
onewhose linearoutputsk isclosesttozero-theonewhose 
analog response i s  closest to the desired response. I f  more 
of the Adalines were originally in the -1 state, enough of 
them are adapted to the +I state to make the majority deci- 
sion equal +I.  The elements adapted are those whose lin- 
ear outputs are closest to zero. A similar procedure i s  fol- 
lowed when the desired response i s  -1. When adapting a 
given element, the weight vector can be moved in the LMS 
direction far enough to reverse the Adaline's output (abso- 
lute correction, or "fast" learning), or it can be adapted by 
the small increment determined by the a-LMS algorithm 
(statistical, or "slow" learning). The one desired response 
d k  i s  used for all Adalines that are adapted. The procedure 
can also be modified toallow oneof Mays'srulesto be used. 
In that event, for the case we have considered (majority out- 
put element), adaptations take place if at least half of the 
Adalines either have outputs differing from the desired 
responseor haveanalog outputswhich are in thedead zone. 
By setting the dead zone of Mays's increment adaptation 
rule to zero, the weights can also be adapted by Rosen- 
blatt's Perceptron rule. 

Differences in initial conditions and the results of sub- 
sequent adaptation cause the various elements to take 
"responsibility" for certain parts of the training problem. 
The basic principle of load sharing i s  summarized thus: 
Assign responsibility to the Adaline or Adalines that can 
most easily assume it. 
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In Fig. 15, the “job assigner,” a purely mechanized pro- 
cess, assigns responsibility during training by transferring 
the appropriate adapt commands and desired response sig- 
nals to the selected Adalines. The job assigner utilizes lin- 
ear-output information. Load sharing i s  important, since it 
results in the various adaptive elements developing indi- 
vidual weight vectors. If all the weights vectors were the 
same, there would be no point in having more than one 
element in the first layer. 

When training the Madaline, the pattern presentation 
sequence should be random. Experimenting with this, 
Ridgway [76] found that cyclic presentation of the patterns 
could lead to cycles of adaptation. These cycles would cause 
theweights of the entire Madaline to cycle, preventingcon- 
vergence. 

The adaptive system of Fig. 15 was suggested by common 
sense, and was found to  work well in simulations. Ridgway 
found that the probability that a given Adaline will be 
adapted in response to an input pattern i s  greatest if that 
element had taken such responsibility during the previous 
adapt cycle when the pattern was most recently presented. 
The division of responsibility stabilizes at the same time 
that the responses of individual elements stabilize to their 
share of the load. When the training problem is  not per- 
fectly separable bythis system, the adaptation process tends 
to minimize error probability, although it i s  possible for the 
algorithm to “hang up” on local optima. 

The Madaline structure of Fig. 15 has 2 layers-the first 
layer consists of adaptive logic elements, the second of fixed 
logic. A variety of fixed-logic devices could be used for the 
second layer. A variety of MRI adaptation rules were devised 
by Hoff [75] that can be used with all possible fixed-logic 
output elements. An easily described training procedure 
results when theoutput element i s  an  gate. During train- 
ing, if the desired output for a given input pattern i s  +I,  
only the one Adaline whose linear output is closest to zero 
would be adapted if any adaptation i s  needed-in other 
words, if all Adalines give -1 outputs. If the desired output 
i s  -1, all elements must give -1 outputs, and any giving 
+ I  outputs must be adapted. 

The MRI rule obeys the “minimal disturbance principle” 
in the following sense. No more Adaline elements are 
adapted than necessary to correct the output decision and 
any dead-zone constraint. The elements whose linear out- 
puts are nearest to zero are adapted because they require 
the smallest weight changes to reverse their output 
responses. Furthermore, whenever an Adaline is adapted, 
theweights are changed in the direction of i ts input vector, 
providing the requisite error correction with minimal 
weight change. 

B. Madaline Rule II 

The MRI rule was recently extended to allow the adap- 
tation of multilayer binary networks by Winter and Widrow 
with the introduction of Madaline Rule II (MRII) [43], [83], 
[108]. A typical two-layer M R l l  network i s  shown in Fig. 16. 
The weights in both layers are adaptive. 

Training with the MRll rule is similar to training with the 
M R I  algorithm. The weights are initially set to small random 
values. Training patterns are presented in a random 
sequence. If the network produces an error during a train- 
ing presentation, we begin by adapting first-layer Adalines. 

WIDROW AND LEHR: PERCEPTRON, MADALINE, AND BACKPROPACATION 

~ 

Outnut 
Vecior Vecior 

Desired Responses 
(+1,-1) 

Fig. 16. Typical two-layer Madaline II architecture. 

By the minimal disturbance principle, we select the first- 
layer Adalinewith the smallest linear output magnitudeand 
perform a “trial adaptation” by inverting its binary output. 
This can be done without adaptation by adding a pertur- 
bation Asof suitableamplitudeand polarityto the Adaline’s 
sum (refer to Fig. 16). If the output Hamming error is reduced 
by this bit inversion, that is, if the number of output errors 
is reduced, the perturbation As i s  removed and theweights 
of the selected Adaline element are changed by a-LMS in 
a direction collinear with the corresponding input vector- 
the direction that reinforces the bit reversal with minimal 
disturbance to the weights. Conversely, if the trial adap- 
tation does not improve the network response, no weight 
adaptation i s  performed. 

After finishing with the first element, we perturb and 
update other Adalines in the first layer which have “suf- 
ficiently small” linear-output magnitudes. Further error 
reductions can be achieved, if desired, by reversing pairs, 
triples, and so on, up to some predetermined limit. After 
exhausting possibilities with the first layer, we move on to 
the next layer and proceed in a like manner. When the final 
layer i s  reached, each of the output elements is adapted by 
a-LMS. At this point, a new training pattern i s  selected at 
random and the procedure i s  repeated.Thegoa1 is to reduce 
Hamming error with each presentation, thereby hopefully 
minimizing the average Hamming error over the training 
set. Like MRI, the procedure can be modified so that adap- 
tations follow an absolute correction rule or one of Mays‘s 
rules rather than a-LMS. Like MRI, M R l l  can “hang up” on 
local optima. 

VI. STEEPEST-DESCENT RULES-SINGLE THRESHOLD ELEMENT 

Thus far, we have described a variety of adaptation rules 
that act to reduce error with the presentation of each train- 
ing pattern. Often, the objective of adaptation is to reduce 
error averaged in some way over the training set. The most 
common error function i s  mean-square error (MSE), 
although in some situations other error criteria may be more 
appropriate [log]-[Ill]. The most popular approaches to 
M S E  reduction in both single-element and multi-element 
networks are based upon the method of steepest descent. 
More sophisticated gradient approaches such as quasi- 
Newton [30], [112]-[I141 and conjugate gradient [114], [I151 
techniques often have better convergence properties, but 
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the conditions under which the additional complexity is 
warranted are not generally known. The discussion that fol- 
lows i s  restricted to  minimization of MSE by the method of 
steepest descent [116], [117]. More sophisticated learning 
procedures usuallyrequiremanyofthesamecomputations 
used in the basic steepest-descent procedure. 

Adaptation of a network by steepest-descent starts with 
an arbitrary initial value WO for the system’s weight vector. 
The gradient of the MSE function i s  measured and the 
weight vector i s  altered in the direction corresponding to  
the negative of the measured gradient. This procedure i s  
repeated, causing the M S E  to  be successively reduced on 
average and causing the weight vector to  approach a locally 
optimal value. 

The method of steepest descent can be described by the 
relation 

wk+l = wk + +Vk) (21 ) 

where p i s  a parameter that controls stability and rate of 
convergence, and Vk i s  the value of the gradient at a point 
on the M S E  surface corresponding to  W = w k .  

To begin, we derive rules for steepest-descent minimi- 
zation of the MSE associated with a single Adaline element. 
These rules are then generalized to  apply to  full-blown 
neural networks. Like error-correction rules, the most prac- 
tical and efficient steepest-descent rules typicallyworkwith 
one pattern at a time. They minimize mean-square error, 
approximately, averaged over the entire set of training pat- 
terns. 

A. Linear Rules 

Steepest-descent rules for the single threshold element 
are said to  be linear if weight changes are proportional to  
the linear error, the difference between the desired 
response dk and the linear output of the element sk. 

Mean-Square Error Surface o f  the Linear Combiner: In this 
section we demonstrate that the MSE surface of the linear 
combiner of Fig. 1 is a quadratic function of the weights, 
and thus easily traversed by gradient descent. 

Let the input pattern Xk and the associated desired 
response dk be drawn from a statistically stationary pop- 
ulation. During adaptation, the weight vector varies so that 
even with stationary inputs, the output sk and error ek will 
generally be nonstationary. Care must be taken in defining 
the M S E  since it is time-varying. The only possibility i s  an 
ensemble average, defined below. 

At the k th  iteration, let theweight vector be wk. Squaring 
and expanding Eq. (11) yields 

€: = (dk - XLWk)’ (22) 

(23) = d i  - 2dkxIwk + W ~ x k X ~ W k .  

Now assume an ensemble of identical adaptive linear com- 
biners, each having the same weight vector Wk at the k th  
iteration. Let each combiner have individual inputs xk and 
d k  derived from stationary ergodic ensembles. Each com- 
biner will produce an individual error Ek represented by Eq. 
(23). Averaging Eq. (23) over the ensemble yields 

E[E;]w= wk = f [ d i l  - 2E[dkXi]Wk 

(24) 

Defining the vector P as the crosscorrelation between the 
desired response (a scalar) and the X-vector” then yields 

The input correlation matrix R i s  defined in terms of the 
ensemble average 

R P E[XkXL] 

X l k  

X l kX lk  

XnkXlk 

. . .  

. . .  

This matrix i s  real, symmetric, and positive definite, or in 
rare cases, positive semi-definite. The MSE [k can thus be 
expressed as 

= €[di] - 2PTWk + WLRWk. (27) 

Note that the MSE is a quadratic function of the weights. 
It i s  a convex hyperparaboloidal surface, a function that 
never goes negative. Figure 17 shows a typical MSE surface 

Fig. 17. Typical mean-square-error surface of a linear com- 
biner. 

for a linear combiner with two weights. The position of a 
point on the grid in this figure represents the value of the 
Adaline’s two weights. The height of the surface at each 
point represents MSE over the training set when the Ada- 
line’sweightsarefixed atthevaluesassociated with thegrid 
point. Adjusting theweights involvesdescending along this 
surface toward the unique minimum point (“the bottom of 
the bowl”) by the method of steepest descent. 

The gradient Vk of the MSE function with W = wk i s  
obtained by differentiating Eq. (27): 

(28) Vk 4 = -2P + 2RWk. 

15We assume here that X includes a bias component xOk = +I .  
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This i s  a linear function of the weights. The optimal weight 
vector W * ,  generally called the Wiener weight vector, i s  
obtained from Eq. (28) by setting the gradient to zero: 

W *  = R-’P. (29) 
This i s  a matrix form of the Wiener-Hopf equation [118]- 
[120]. In the next section we examine p-LMS, an algorithm 
which enables us to obtain an accurate estimateof W *  with- 
out first computing R- ’  and P. 

Thep-LMSA1gorithm:The p-LMS algorithm works by per- 
forming approximate steepest descent on the M S E  surface 
in weight space. Because it is a quadratic function of the 
weights, this surface is convex and has a unique (global) 
minimum.” An instantaneous gradient based upon the 
square of the instantaneous linear error is 

- ae2 “ - ‘ = I  - aw, i 
LMS works by using this crude gradient estimate in place 
of the true gradient v k  of Eq. (28). Making this replacement 
into Eq. (21) yields 

The instantaneous gradient is used because it is readily 
available from a single data sample. The true gradient i s  
generally difficult to obtain. Computing it would involve 
averaging the instantaneous gradients associated with all 
patterns in the training set. This i s  usually impractical and 
almost always inefficient. 

Performing the differentiation in Eq. (31) and replacing 
the linear error by definition (11) gives 

Noting that dk and x k  are independent of wk yields 

wk+1 = wk + 2pekxk. (33) 

This i s  the p-LMS algorithm. The learning constant p deter- 
mines stability and convergence rate. For input patterns 
independent over time, convergence of the mean and vari- 
ance of the weight vector i s  ensured [30] for most practical 
purposes if 

1 

O < p < L  
trace [RI (34) 

where trace [RI = C(diagona1 elements of R) is the average 
signal power of the X-vectors, that is, € ( X J X ) .  With p set 
within this range,17 the p-LMS algorithm converges in the 

lblftheautocorrelation matrixofthepatternvector set hasmzero 
eigenvalues, the minimum M S E  solution will be an m-dimensional 
subspace in weight space [30]. 

17Horowitz and Senne [I211 have proven that (34) is not sufficient 
in general to guarantee convergence of the weight vector’s vari- 
ance. For input patterns generated by a zero-mean Gaussian pro- 
cess independent over time, instability can occur in the worst case 
if f i  is greater than 1/(3 trace [RI) .  
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mean to W * ,  the optimal Wiener solution discussed above. 
A proof of this can be found in [30]. 

In the p-LMS algorithm, and other iterative steepest- 
descent procedures, use of the instantaneous gradient i s  
perfectly justified if the step size i s  small. For small p,  Wwill 
remain essentially constant over a relatively small number 
of training presentations K. The total weight change during 
this period will be proportional to 

(35) 

where denotes the MSE function. Thus, on average the 
weights follow the true gradient. It i s  shown in [30] that the 
instantaneous gradient i s  an unbiased estimate of the true 
gradient. 

Comparison of p-LMS and a-LMS: We have now pre- 
sented two forms of the LMS algorithm, a-LMS (IO) in Sec- 
tion IV-A and p-LMS (33) in the last section. They are very 
similar algorithms, both using the LMS instantaneous gra- 
dient. a-LMS is self-normalizing, with the parameter a 
determining the fraction of the instantaneous error to be 
corrected with each adaptation. p-LMS is a constant-coef- 
ficient linear algorithm which i s  considerably easier to ana- 
lyze than a-LMS. Comparing the two, the a-LMS algorithm 
i s  like thep-LMS algorithm with acontinuallyvariable learn- 
ing constant. Although a-LMS is  somewhat more difficult 
to implement and analyze, it has been demonstrated exper- 
imentally to be a better algorithm than p-LMS when the 
eigenvalues of the input autocorrelation matrix Rare highly 
disparate, giving faster convergence for a given level of gra- 
dient noise” propagated into the weights. I t  will be shown 
next that p-LMS has the advantage that it will always con- 
verge in the mean to the minimum MSE solution, while 
a-LMS may converge to a somewhat biased solution. 

We begin with a-LMS of Eq. (IO): 

Replacing the error with its definition (11) and rearranging 
terms yields 

(37) 

We define a new training set of pattern vectors and desired 

responses {xk, a k }  by normalizing elements of the original 
training set as f o I I o ~ s , ’ ~  

- -  

(39) 

”Gradient noise is the difference between the gradient estimate 

?he idea of a normalized training set was suggested by Derrick 
and the true gradient. 

Nguyen. 

1429 



Eq. (38) then becomes 
- -  

w k + ,  = w k  + a ( a k  - W L X k ) X k .  (40) 

This i s  the p-LMS rule of Eq. (33) with 2p  replaced by a. 
Theweight adaptations chosen bythea-LMS ruleare equiv- 
alent to those of the K-LMS algorithm presented with a dif- 
ferent training set-the normalized training set defined by 
(39). The solution that will be reached by the p-LMS algo- 
rithm is  the Wiener solution of this training set 

where 

is the input correlation matrix of the normalized training 
set and the vector 

i s  the crosscorrelation between the normalized input and 
the normalized desired response. Therefore a-LMS con- 
verges in the mean to the Wiener solution of the normalized 
training set. When the input vectors are binary with + _ I  
components, al l  input vectors have the same magnitude 
and the two algorithms are equivalent. For nonbinary train- 
ing patterns, however, the Wiener solution of the nor- 
malized training set generally i s  no longer equal to that of 
the original problem, so a-LMS converges in the mean to 
a somewhat biased version of the optimal least-squares 
solution. 

The idea of a normalized training set can also be used to 
relate the stable ranges for the learning constants a and p 
in the two algorithms. The stable range for a in the a-LMS 
algorithm given in Eq. (15) can be computed from the cor- 
responding range for p given in Eq. (34) by replacing Rand 

p in Eq. (34) by @ and a/2, respectively, and then noting that 

trace[i?l i s  equal to one: 

2 

trace[R] 
O < a < ~ , o r  

o < a < 2 .  (44) 

B. Nonlinear Rules 

The Adalineelements considered thus far useat theirout- 
puts either hard-limiting quantizers (signums), or no non- 
linearity at all. The input-output mapping of the hard-lim- 
iting quantizer i s  Y k  =.sgn ( s k ) .  Other forms of nonlinearity 
have come into use in the past two decades, primarily of 
the sigmoid type. These nonlinearities provide saturation 
for decision making, yet they have differentiable input-out- 
put characteristics that facilitate adaptivity. We generalize 
the definition of the Adaline element to include the pos- 
sible use of a sigmoid in place of the signum, and then 
determine suitable adaptation algorithms. 

Fig. 18 shows a "sigmoid Adaline" element which incor- 
porates a sigmoidal nonlinearity. The input-output relation 
of the sigmoid can be denoted by yk = sgm ( s k ) .  A typical 
sigmoid function is the hyperbolic tangent: 

(45) 

We shall adapt this Adaline with the objective of mini- 
mizing the mean square of the sigmoid error i k ,  de- 

fined as 

z k  A d k  - y k  = d k  - sgm ( s k ) .  (46) 

Backpropagation for the Sigmoid Adaline: Our objective 
is to minimize E[(&)* ] ,  averaged over the set of training pat- 
terns, by proper choice of the weight vector. To accomplish 
this, we shall derive a backpropagation algorithm for the 
sigmoid Adaline element. An instantaneous gradient is 
obtained with each input vector presentation, and the 
method of steepest descent i s  used to minimize error aswas 
done with the p-LMS algorithm of Eq. (33). 

Referring to Fig. 18, the instantaneous gradient estimate 

Input Pattern 
vector Weight Vector 

Linear Sigmoid 
Error Error 

Id,  
Desired Response 

Fig. 18. Adaline with sigmoidal nonlinearity. 

obtained during presentation of the k th input vector X k  i s  
given by 

Differentiating Eq. (46) yields 

We may note that 

s k  = X L W k .  

Therefore, 

Substituting into Eq. (48) gives 

Inserting this into Eq. (47) yields 

6, = - 2 z k  sgm' ( S k ) X k .  

Using this gradient estimate with the method of steepest 
descent provides a means for minimizing the mean-square 
erroreven afterthe summed signal skgoes through the non- 
linear sigmoid. The algorithm is  

(53) 

(54) 

Algorithm (54) i s  the backpropagation algorithm for the 
sigmoid Adaline element. The backpropagation name 
makes more sense when the algorithm is  utilized in a lay- 

w k + ,  = w k  + c ( ( - 6 k )  

= w k  + 2 / . b c k  sgm' (sk) x k .  
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An instantaneous estimated gradient can be obtained as 
follows: 

Input Pattern Weight Vector 
Vector 

Desired 
2PLksgm’(sg,) d, Respons 

Fig. 19. Implementation of backpropagation for the sig- 
moid Adaline element. 

ered network, which will be studied below. Implementa- 
tion of algorithm (54) i s  illustrated in Fig. 19. 

If the sigmoid i s  chosen to be the hyperbolic tangent 
function (45), then the derivative sgm’ ( s k )  is given by 

a(tanh ( s k ) )  
sgm‘ ( s k )  = 

a s k  

= I - (tanh (Sk))’ = I - y;. (55) 

Accordingly, Eq. (54) becomes 

wk+1 = wk + 2pzk(1 - y i ) x k .  (56) 

Madaline Rule 111 for the Sigmoid Adaline: The imple- 
mentation of algorithm (54) (Fig. 19) requires accurate real- 
ization of the sigmoid function and its derivative function. 
These functions may not be realized accurately when 
implemented with analog hardware. Indeed, in an analog 
network, each Adaline will have its own individual nonlin- 
earities. Difficulties in adaptation have been encountered 
in practice with the backpropagation algorithm because of 
imperfections in the nonlinear functions. 

Tocircumvent these problems a new algorithm has been 
devised by David Andes for adapting networks of sigmoid 
Adalines. This i s  the Madaline Rule I l l  (MRIII) algorithm. 

The idea of MRlll for a sigmoid Adaline i s  illustrated in 
Fig. 20. The derivative of the sigmoid function i s  not used 
here. Instead, a small perturbation signal As is added to the 
sum Sk, and the effect of this perturbation upon output Y k  

and error Ek i s  noted. 

Perturbation 

P 
. I  

1 Desired 
dk Response 

Fig. 20. Implementation of the M R l l l  algorithm for the sig- 
moid Adaline element. 

Since As i s  small, 

Another way to obtain an approximate instantaneous gra- 
dient by measuring the effects of the perturbation As can 
be obtained from Eq. (57). 

Accordingly, there are two forms of the M R l l l  algorithm for 
the sigmoid Adaline. They are based on the method of 
steepest descent, using the estimated instantaneous gra- 
dients: 

For small perturbations, these two forms are essentially 
identical. Neither one requires a priori knowledge of the 
sigmoid’s derivative, and both are robust with respect to 
natural variations, biases, and drift in the analog hardware. 
Which form to use is a matter of implementational con- 
venience. The algorithm of Eq. (60) i s  illustrated in Fig. 20. 

Regarding algorithm (61), some changes can be made to 
establish a point of interest. Note that, in accord with Eq. 

z k  = dk - Y k .  (62) 

Adding the perturbation As causes a change in t k  equal to 

Aik = -AYk. (63) 

(46)r 

Now, Eq. (61) may be rewitten as 

Since As is small, the ratio of increments may be replaced 
by a ratio of differentials, finally giving 

= wk + 2pzk sgm’ ( s k ) x k .  (66) 

This i s  identical to the backpropagation algorithm (54) for 
the sigmoid Adaline. Thus, backpropagation and MRll l  are 
mathematically equivalent i f  the perturbation As is  small, 
but MRlll i s  robust, even with analog implementations. 

MSE Surfaces of the Adaline: Fig. 21 shows a linear com- 
biner connected to both sigmoid and signum devices. Three 
errors, E, Zk, and are designated in this figure. They are: 

linear error = E = d - s 

sigmoid error = E = d - sgm (s) 

signum error = E = d - sgn (sgm (s)) 

= d - sgn (s). (67) 
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Fig. 21. The linear, sigmoid, and signum errors of the Ada- 
line. 

To demonstrate the nature of the square error surfaces 
associated with these three types of error, a simple exper- 
imentwith a two-input Adalinewas performed. The Adaline 
was driven by a typical set of input patterns and their asso- 
ciated binary { +I,  -1) desired responses. The sigmoid 
function used was the hyperbolic tangent. The weights 
could have been adapted to  minimize the mean-square 
error of E ,  i ,  or E. The M S E  surfaces of € [ ( E ) ~ ] ,  € [ ( E ) 2 ] ,  E [ ( : ) * ]  
plotted as functions of the two weight values, are shown 
in Figs. 22, 23, and 24, respectively. 

Fig. 22. Example MSE surface of linear error. 

Fig. 23. Example MSE surface of sigmoid error. 

Although the above experiment i s  not all encompassing, 
we can infer from it that minimizing the mean square of the 
linear error is easy and minimizing the mean square of the 
sigmoid error i s  more difficult, but typically much easier 

Fig. 24. Example MSE surface of signum error. 

than minimizing the mean square of the signum error. Only 
the linear error i s  guaranteed to  have an M S E  surface with 
a unique global minimum (assuming invertible R-matrix). 
The other M S E  surfaces can have local optima [122], [123]. 

In  nonlinear neural networks, gradient methods gener- 
ally work better with sigmoid rather than signum nonlin- 
earities. Smooth nonlinearities are required by the M R l l l  
and backpropagation techniques. Moreover, sigmoid net- 
works are capable of forming internal representations that 
are more complex than simple binarycodes and, thus, these 
networks can often form decision regions that are more 
sophisticated than those associated with similar signum 
networks. In fact, if a noiseless infinite-precision sigmoid 
Adaline could be constructed, it would be able to  convey 
an infinite amount of information at each time step. This 
i s  in contrast to the maximum Shannon information capac- 
ity of one bit associated with each binary element. 

The signum does have some advantages over the sigmoid 
in that it is easier to implement in hardware and much sim- 
pler to compute on a digital computer. Furthermore, the 
outputs of signums are binary signals which can be effi- 
ciently manipulated by digital computers. In a signum net- 
work with binary inputs, for instance, the output of each 
linear combiner can be computed without performing 
weight multiplications. This involves simply adding 
together the values of weights with +I  inputs and sub- 
tracting from this the values of all weights that are con- 
nected to  -1 inputs. 

Sometimes a signum i s  used in an Adaline to  produce 
decisive output decisions. The error probability is then pro- 
portional to the mean square of the output error :. To min- 
imize this error probability approximately, one can easily 
minimize E [ ( E ) ~ ]  instead of directly minimizing [58]. 
However, with only a little more computation one could 
minimize and typically come much closer to the 
objective of minimizing €[(E)2]. The sigmoid can therefore 
be used in training the weights even when the signum i s  
used to form the Adaline output, as in  Fig. 21. 

VII. STEEPEST-DESCENT RULES-MULTI-ELEMENT NETWORKS 

We now study rules for steepest-descent minimization 
of the MSE associated with entire networks of sigmoid Ada- 
line elements. Like their single-element counterparts, the 
most practical and efficient steepest-descent rules for multi- 
element networks typically work with one pattern presen- 
tation at a time. We will describe two steepest-descent rules 
for multi-element sigmoid networks, backpropagation and 
Madaline Rule Ill. 
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Fig. 25. Example two-layer backpropagation network architecture. 

A. Backpropagation for Networks 

The publication of the backpropagation technique by 
Rumelhart et al. [42] has unquestionably been the most 
influential development in the field of neural networks dur- 
ing the past decade. In retrospect, the technique seems 
simple. Nonetheless, largely because early neural network 
research dealt almost exclusively with hard-limiting non- 
linearities, the idea never occurred to neural network 
researchers throughout the 1960s. 

The basic concepts of backpropagation are easily 
grasped. Unfortunately, these simple ideas are often 
obscured by relatively intricate notation, so formal deri- 
vations of the backpropagation rule are often tedious. We 
present an informal derivation of the algorithm and illus- 
trate how it works for the simple network shown in Fig. 25. 

The backpropagation technique i s  a nontrivial general- 
ization of the single sigmoid Adaline case of Section VI-B. 
When applied to  multi-element networks, the backprop- 
agation technique adjusts the weights in the direction 
opposite the instantaneous error gradient: 

“) awmk 

Now, however, wk is a long rn-component vector of all 
weights in  the entire network. The instantaneous sum 
squared error € 2  i s  the sum of the squares of the errors at 
each of the N, outputs of the network. Thus 

In the network example shown in Fig. 25, the sum square 
error i s  given by 

E 2  = (d, - yJ2 + (d2 - y2)2 

where we now suppress the time index k for convenience. 
In its simplest form, backpropagation training begins by 

presenting an input pattern vector Xto the network, sweep- 
ing forward through the system to generate an output 
response vector Y, and computing the errors at each out- 
put.The next step involvessweeping theeffectsof theerrors 
backward through the network to  associate a “square error 
derivative” 6 with each Adaline, computing a gradient from 
each 6, and finally updating the weights of each Adaline 
based upon the corresponding gradient. A new pattern is 
then presented and the process i s  repeated. The initial 
weight values are normally set to  small random numbers. 
The algorithm will not work properly with multilayer net- 
works if the initial weights are either zero or poorlychosen 
nonzero 

We can get some idea about what i s  involved in the cal- 
culations associated with the backpropagation algorithm 
by examining the network of Fig. 25. Each of the five large 
circles represents a linear combiner, as well as some asso- 
ciated signal paths for error backpropagation, and the cor- 
responding adaptive machinery for updating the weights. 
This detail is shown in Fig. 26. The solid lines in these dia- 
grams represent forward signal paths through the network, 

20Recently, Nguyen has discovered that a more sophisticated 
choice of initial weight values in hidden layers can lead to reduced 
problems with local optima and dramatic increases in network 
training speed [IOO]. Experimental evidence suggests that it i s  
advisable to choose the initial weights of each hidden layer in a 
quasi-random manner, which ensures that at each position in a 
layer’s input space the outputs of all but a few of i ts Adalines will 
besaturated, whileensuringthateach Adaline in the layer i s  unsat- 
urated in some region of i ts  input space. When this method i s  used, 
the weights in the output layer are set to small random values. 
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Fig. 26. Detail of linear combiner and associated circuitry 
in backpropagation network. 

and the dotted lines represent the separate backward paths 
that are used in  association with calculations of the square 
error derivatives 6. From Fig. 25, we see that the calculations 
associated with the backward sweep are of a complexity 
roughly equal to  that represented by the forward pass 
through the network. The backward sweep requires the 
same numberoffunctioncalculationsas the forward sweep, 
but no weight multiplications in  the first layer. 

As stated earlier, after a pattern has been presented to  
thenetwork,and the responseerrorofeachoutput has been 
calculated, the next step of the backpropagation algorithm 
involves finding the instantaneous square-error derivative 
6 associated with each summing junction in the network. 
The square error derivative associated with the j t h  Adaline 
in layer I is defined as21 

Each of these derivatives in  essence tells us how sensitive 
the sum square output error of the network i s  to  changes 
in the linear output of the associated Adaline element. 

The instantaneous square-error derivatives are first com- 
puted for each element in the output layer. The calculation 
i s  simple. As an example, below we derive the required 
expression for 67), the derivative associated with the top 
Adalineelement in  theoutput layer of Fig. 25. We begin with 
the definition of 67) from Eq. (71) 

Expanding the squared-error term e2 by Eq. (70) yields 

(74) 

"In Fig. 25, all notation follows the convention that superscripts 
within parentheses indicate the layer number of the associated 
Adaline or input node, while subscripts identify the associated 
Adaline(s) within a layer. 

We note that the second term is zero. Accordingly, 

Observing that dl and s:" are independent yields 

= (dl - sgm by)))  sgm' (sy)).  (77) 

We denote the error dl - sgm (sy ) ) ,  by €7'. Therefore, 

6:) = e!,2) sgm' (s:)). (78) 

Notethatthiscorrespondstothecomputationof6?'as illus- 
trated in Fig. 25. The value of S associated with the other 
output element in the figure can be expressed in an anal- 
ogous fashion. Thus each square-error derivative 6 in the 
output layer i s  computed by multiplying the output error 
associated with that element by the derivative of the asso- 
ciated sigmoidal nonlinearity. Note from Eq. (55) that if the 
sigmoid function is the hyperbolic tangent, Eq. (78) becomes 
simply 

(79) 

Developing expressions for the square-error derivatives 
associated with hidden layers is not much more difficult 
(refer to Fig. 25). We need an expression for Ay), the square- 
error derivative associated with the top element in the first 
layer of Fig. 25. The derivative 87) i s  defined by 

6;" = 1 (1 - 0q2). 

(80) 

Expanding this by the chain rule, noting that e2 is deter- 
mined entirely by the values of s:) and s!', yields 

Using the definitions of 6:" and S:", and then substituting 
expanded versions of Adaline linear outputs sp)  and 
sf)  gives 

Referring to Fig. 25, we can trace through the circuit to  
verify that 6 7 )  is computed in accord with Eqs. (86) and (87). 
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The easiest way to  find values of 6 for all the Adaline ele- 
ments in  the network i s  t o  follow the schematic diagram of 
Fig. 25. 

Thus, the procedure for finding 6('), the square-error 
derivative associated with a given Adaline in hidden layer 
I ,  involves respectively multiplying each derivative 6 ( ' + ' )  
associated with each element in the layer immediately 
downstream from a given Adaline by the weight that con- 
nects it to  the given Adaline. These weighted square-error 
derivatives are then added together, producing an error 
term E ( ' ) ,  which, in turn, is multiplied bysgm'(s(')), thederiv- 
ative of the given Adaline's sigmoid function at its current 
operating point. If a network has more than two layers, this 
process of backpropagating the instantaneous square-error 
derivatives from one layer to the immediately preceding 
layer is successively repeated until a square-error derivative 
6 is computed for each Adaline in  the network. This i s  easily 
shown at each layer by repeating the chain rule argument 
associated with Eq. (81). 

We now have a general method for finding a derivative 
6 for each Adaline element in  the network. The next step 
i s  to  use these 6's to  obtain the corresponding gradients. 
Consider an Adalinesomewhere in the networkwhich,dur- 
ing presentation k, has a weight vector w k ,  an input vector 
x k ,  and a linear output s k  = W L X k .  

The instantaneous gradient for this Adaline element i s  

at ; 6, = - 
a w k '  

This can be written as 

v A ae2 at', as 
k -  awk ask aw,' 

Note that w k  and X k  are independent so 

Therefore, 

For this element, 

(90) 

(91) 

Accordingly, 

6, = - 2 6 k X k .  (93) 

Updating the weights of the Adaline element using the 
method of steepest descent with the instantaneous gra- 
dient is a process represented by 

w k + 1  = w k  + p ( - $ k )  = w k  + 2 p 6 k x k .  (94) 

Thus, after backpropagating all square-error derivatives, we 
complete a backpropagation iteration by adding to each 
weight vector thecorresponding input vector scaled by the 
associated square-error derivative. Eq. (94) and the means 
for finding 8 k  comprise the general weight update rule of 
the backpropagation algorithm. 

There is a great similarity between Eq. (94) and the p-LMS 
algorithm (33), but one should view this similarity with cau- 
tion. The quantity 6 k ,  defined as a squared-error derivative, 

might appear to play the same role in backpropagation as 
that played by the error in the p-LMS algorithm. However, 
6 k  i s  not an error. Adaptation of the given Adaline i s  effected 
to reduce the squared output error e; ,  not t ik  of the given 
Adaline or of any other Adaline in  the network. The objec- 
tive i s  not to  reduce the 6 k ' S  of the network, but to  reduce 
E', at the network output. 

It i s  interesting to examine the weight updates that back- 
propagation imposes on the Adalineelements in theoutput 
layer. Substituting Eq. (77) into Eq. (94) reveals the Adaline 
which provides output y1 in Fig. 25 is  updated by the rule 

(95) 

This rule turns out to be identical to the single Adaline ver- 
sion (54) of the backpropagation rule. This i s  not surprising 
since the output Adaline is provided with both input signals 
and desired responses, so i t s  training circumstance i s  the 
same as that experienced by an Adaline trained in isolation. 

There are many variants of the backpropagation algo- 
rithm. Sometimes, the size of p i s  reduced during training 
to diminish the effects of gradient noise in the weights. 
Another extension is the momentum technique [42] which 
involves including in theweightchangevectorAWkof each 
Adaline a term proportional to  the corresponding weight 
change from the previous iteration. That is, Eq.  (94) is 
replaced by a pair of equations: 

w k + l  = w k  + 2pe:'sgm' ( S y ) ) X k .  

A w k  = 2p(1 - ??)6,x,  f q A w k _ - (  (96) 

(97) 

where the momentum constant 0 I 9 < 1 i s  in practice usu- 
ally set to something around 0.8 or 0.9. 

The momentum technique low-pass filters the weight 
updates and thereby tends to resist erratic weight changes 
caused either by gradient noise or high spatial frequencies 
in  the MSE surface. The factor (1 - 7) in  Eq. (96) is included 
to give the filter a DC gain of unity so that the learning rate 
p does not need to  be stepped down as the momentum con- 
stant 9 i s  increased. A momentum term can also be added 
to the update equations of other algorithms discussed in 
this paper. A detailed analysis of stability issues associated 
with momentum updating for the p-LMS algorithm, for 
instance, has been described by Shynk and Roy [124]. 

In  our experience, the momentum technique used alone 
is  usually of little value. We have found, however, that it i s  
often useful to apply the technique in situations that require 
relatively "clean"22 gradient estimates. One case i s  a nor- 
malized weight update equation which makes the net- 
work's weight vector move the same Euclidean distance 
with each iteration. This can be accomplished by replacing 
Eq. (96) and (97) with 

(98) A k  = 6 k X k  + V A k + l  

where again 0 < 7 < 1. The weight updates determined by 
Eqs. (98) and (99) can help a network find a solution when 
a relatively flat local region in  the MSE surface is encoun- 

**"Clean" gradient estimates are those with little gradient noise. 
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tered. The weights move by the same amount whether the 
surfaceis flat or inclined. It i s  reminiscentof a-LMS because 
the gradient term in  the weight update equation is nor- 
malized by a time-varying factor. The weight update rule 
could be further modified by including terms from both 
techniques associated with Eqs. (96) through (99). Other 
methods for speeding up  backpropagation training include 
Fahlman’s popular quickprop method [125], as well as the 
delta-bar-delta approach reported in an excellent paper by 
Jacobs [126].23 

One of the most promising new areas of neural network 
research involves backpropagation variants for training var- 
ious recurrent (signal feedback) networks. Recently, back- 
propagation rules have been derived for training recurrent 
networks to learn static associations [127l, [128]. More inter- 
esting is the on-line technique of Williams and Zipser [I291 
which allows a wide class of recurrent networks to  learn 
dynamic associations and trajectories. A more general and 
computationally viable variant of this technique has been 
advanced by Narendra and Parthasarathy [104]. These on- 
line methods are generalizations of a well-known steepest- 
descent algorithm for training linear IIR filters [130], [30]. 

An equivalent technique that i s  usually far less compu- 
tationally intensive but best suited for off-line computation 
[37, [42], [131], called “backpropagation through time,” has 
been used by Nguyen and Widrow [SO] to  enable a neural 
network to  learn without a teacher how to back up a com- 
puter-simulated trailer truck to a loading dock (Fig. 27). This 
i s  a highly nonlinear steering task and it i s  not yet known 
how to  design a controller to  perform it. Nevertheless, with 
just 6 inputs providing information about the current posi- 
tion of the truck, a two-layer neural network with only 26 
Adalines was able to  learn of i t s  own accord to solve this 
problem. Once trained, the network could successfully 
back up  the truck from any initial position and orientation 
in front of the loading dock. 

B. Madaline Rule 111 for Networks 

It i s  difficult to  build neural networks with analog hard- 
ware that can be trained effectively by the popular back- 
propagation technique. Attempts to  overcome this diffi- 
culty have led to the development of the M R l l l  algorithm. 
A commercial analog neurocomputing chip based primar- 
ily on this algorithm has already been devised [132]. The 
method described in  this section is a generalization of the 
singleAdalineMRlll technique(60).The multi-element gen- 
eralization of the other single element M R l l l  rule (61) i s  
described in [133]. 

The MRlll algorithm can be readilydescribed by referring 
to  Fig. 28. Although this figure shows a simple two-layer 
feedforward architecture, the procedure to  be developed 
will work for neural networks with any number of Adaline 

23Jacob’s paper, like many other papers in the literature, assumes 
for analysis that the true gradients rather than instantaneous gra- 
dients are used to update the weights, that is, that weights are 
changed periodically, only after all training patterns are presented. 
This eliminates gradient noise but can slow down training enor- 
mously if the training set is large. The delta-bar-delta procedure 
in Jacob’s paper involves monitoring changes of the true gradients 
in response to weight changes. It should be possible to avoid the 
expense of computing the true gradients explicitly in this case by 
instead monitoringchanges in theoutputs of, say, two momentum 
filters with different time constants. 

initial state 

-I T- 

I final state 

Fig. 27. Example truck backup sequence. 
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Example two-layer Madaline I l l  architecture. Fig. 28. 

elements in  any feedforward structure. In [133], we discuss 
variants of the basic MRlll approach that allow steepest- 
descent training to  be applied to  more general network 
topologies, even those with signal feedback. 

Assume that an input pattern Xand its associated desired 
output responses d, and d2 are presented to  the network 
of Fig.28.Atthispoint,we measurethesum squaredoutput 
response error e* = (d, - Y , ) ~  + (d2 - y2)2 = E :  + E ; .  We then 
add asmall quantity Astoaselected Adaline in  the network, 
providing a perturbation to  the element’s linear sum. This 
perturbation propagates through the network, and causes 
a change in the sum of the squares of the errors, A(e2)  = 
A(€: + E ; ) .  An easily measured ratio i s  
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Below we use this to obtain the instantaneous gradient of 
e: with respect to the weight vector of the selected Adaline. 
For the k th  presentation, the instantaneous gradient i s  

Replacing the derivative with a ratio of differences yields 

The ideaof obtainingaderivative by perturbing the linear 
output of the selected Adaline element i s  the same as that 
expressed for the single element in Section VI-B, except that 
here the error i s  obtained from the output of a multi-ele- 
ment network rather than from the output of a single ele- 
ment. 

The gradient (102) can be used to optimize the weight 
vector in accord with the method of steepest descent: 

Maintaining the same input pattern, onecould either per- 
turb all the elements in the network in sequence, adapting 
after each gradient calculation, or else the derivatives could 
be computed and stored to allow all Adalines to be adapted 
at once. These two M R l l l  approaches both involve the same 
weight update equation (103), and if p i s  small, both lead 
to equivalent solutions. With large p, experience indicates 
that adapting one element at a time results in convergence 
after fewer iterations, especially in  large networks. Storing 
the gradients, however, has the advantage that after the ini- 
tial unperturbed error is measured during a given training 
presentation, each gradient estimate requires only the per- 
turbed error measurement. If adaptations take place after 
each error measurement, both perturbed and unperturbed 
errors must be measured for each gradient calculation. This 
i s  because each weight update changes the associated 
unperturbed error. 

C. Comparison of MRll l  with MRll 

M R l l l  was derived from MRll by replacing the signum 
nonlinearities with sigmoids. The similarity of these algo- 
rithms becomes evident when comparing Fig. 28, repre- 
senting MRIII, with Fig. 16, representing MRII. 

The MRll network i s  highlydiscontinuous and nonlinear. 
Usingan instantaneousgradient toadjusttheweights is not 
possible. In fact, from the M S E  surface for the signum Ada- 
line presented in Section VI-€3, it is clear that even gradient 
descent techniques that use the true gradient could run 
into severe problems with local minima. The idea of adding 
a perturbation to the linear sum of a selected Adaline ele- 
ment i s  workable, however. If the Hamming error has been 
reduced by the perturbation, the Adaline is adapted to 
reverse i ts  output decision. This weight change i s  in the LMS 
direction, along i ts  X-vector. If adapting the Adaline would 
not reduce network output error, it is not adapted. This is 
in accord with the minimal disturbance principle. The Ada- 
lines selected for possible adaptation are those whose ana- 
log sums are closest to zero, that is, the Adalines that can 
be adapted to give opposite responses with the smallest 
weight changes. It is useful to note that with binary + I  
desired responses, the Hamming error i s  equal to 114 the 

sum square error. Minimizing the output Hamming error 
isthereforeequivalentto minimizingtheoutput sum square 
error. 

The MRlll algorithm works in a similar manner. All the 
Adalines in theMRll l  networkareadapted, butthosewhose 
analog sums areclosesttozerowill usually beadapted most 
strongly, because the sigmoid has its maximum slope at 
zero,contributingto highgradientvalues.Aswith MRII, the 
objective is  to change the weights for the given input pre- 
sentation to reduce the sum square error at the network 
output. In accord with the minimal disturbance principle, 
the weight vectors of the Adaline elements are adapted in 
the L M S  direction, along their X-vectors, and are adapted 
in proportion to their capabilities for reducing the sum 
square error (the square of the Euclidean error) at the out- 
put. 

D. Comparison of MRll l  with Backpropagation 

In Section VI-B, we argued that for the sigmoid Adaline 
element, the M R l l l  algorithm (61) i s  essentially equivalent 
to the backpropagation algorithm (54). The same argument 
can be extended to the network of Adaline elements, dem- 
onstrating that if A s  i s  small and adaptation i s  applied to 
all elementsinthenetworkatonce,then M R l l l  isessentially 
equivalent to backpropagation. That is, to the extent that 
the sample derivative AE;/As  from Eq. (103) i s  equal to the 
analytical derivtive &;/ask from Eq. (91), the two rules fol- 
low identical instantaneous gradients, and thus perform 
identical weight updates. 

The backpropagation algorithm requires fewer opera- 
tions than MRlll to calculate gradients, since it i s  able to 
take advantage of a priori knowledge of the sigmoid non- 
linearities and their derivative functions. Conversely, the 
MRl l l  algorithm uses no prior knowledge about the char- 
acteristics of the sigmoid functions. Rather, it acquires 
instantaneous gradients from perturbation measurements. 
Using MRIII, tolerances on the sigmoid implementations 
can be greatly relaxed compared to acceptable tolerances 
for successful backpropagation. 

Steepest-descent training of multilayer networks imple- 
mented by computer simulation or by precise parallel dig- 
i tal hardware i s  usually best carried out by backpropaga- 
tion. During each training presentation, the backprop- 
agation method requires only one forward computation 
through the network followed by one backward compu- 
tation in order to adapt all the weights of an entire network. 
To accomplish the same effect with the form of MRlIl that 
updates all weights at once, one measures the unperturbed 
error followed by a number of perturbed error measure- 
mentsequal tothenumberofelements in the network.This 
could require a lot of computation. 

If a network i s  to be implemented in analog hardware, 
however, experience has shown that MRlll offers strong 
advantages over backpropagation. Comparison of Fig. 25 
with Fig. 28 demonstrates the relative simplicity of MRIII. 
All the apparatus for backward propagation of error-related 
signals i s  eliminated, and the weights do not need to carry 
signals in both directions (see Fig. 26). MRlll i s  a much sim- 
pler algorithm to build and to understand, and in principle 
it produces the same instantaneous gradient as the back- 
propagation algorithm. The momentum technique and 
most other common variants of the backpropagation algo- 
rithm can be applied to MRlll training. 
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E. MSE Surfaces of Neural Networks 

In Section VI-6, "typical" mean-square-error surfaces of 
sigmoid and signum Adalines were shown, indicating that 
sigmoid Adalines are much more conducive to gradient 
approaches than signum Adalines. The same phenomena 
result when Adalines are incorporated into multi-element 
networks. The M S E  surfaces of M R l l  networks are reason- 
ably chaotic and will not be explored here. In this section 
we examine only M S E  surfaces from a typical backpropa- 
gation training problem with a sigmoidal neural network. 

In a network with more than two weights, the M S E  sur- 
face i s  high-dimensional and difficult to  visualize. I t  i s  pos- 
sible, however, to look at slices of this surface by plotting 
the MSE surfacecreated byvaryingtwooftheweightswhile 
holding all others constant. The surfaces plotted in Figs. 29 

Fig. 31. Example M S E  surface of untrained sigmoidal net- 
work as a function of a first-layer weight and a third-layer 
weight. 

Fig. 29. Example M S E  surface of untrained sigmoidal net- 
work as a function of two first-layer weights. 

Fig. 32. Example MSE surface of trained sigmoidal network 
as a function of a first-layer weight and a third-layer weight. 

Fig. 30. Example M S E  surface of trained sigmoidal network 
as a function of two first-layer weights. 

and 30 show two such slices of the MSE surface from a typ- 
ical learning problem involving, respectively, an untrained 
sigmoidal network and a trained one. The first surface 
resulted from varying two first-layer weights of an untrained 
network. The second surface resulted from varying the same 
two weights after the network was fully trained. The two 
surfaces are similar, but the second one has a deeper min- 
imum which was carved out by the backpropagation learn- 
ing process. Figs. 31 and 32 resulted from varying adifferent 
set of two weights in the same network. Fig. 31 is the result 
from varying a first-layer weight and third-layer weight in 
the untrained network, whereas Fig. 32 is the surface that 
resulted from varying the same two weights after the net- 
work was trained. 
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By studying many plots, it becomes clear that backpro- 
pagation and M R l l l  will be subject to convergence on local 
optima. The same is  true for MRII. The most common rem- 
edyfor this i s  the sporadic addition of noise to the weights 
or gradients. Some of the "simulated an.nealing" methods 
[47] do this. Another method involves retraining the net- 
work several times using differnt random initial weight val- 
ues until a satisfactory solution i s  found. 

Solutions found by people in everyday life are usually not 
optimal, but many of them are useful. If a local optimum 
yields satisfactory performance, often there is simply no 
need to search for a better solution. 

VIII. SUMMARY 

This year is the 30th anniversary of the publication of the 
Perceptron rule by Rosenblatt and the LMS algorithm by 
Widrow and Hoff. I t  has also been 16 years since Werbos 
first published the backpropagation algorithm. These 
learning rules and several others have been studied and 
compared. Although they differ significantly from each 
other, they all belong to the same "family." 

A distinction was drawn between error-correction rules 
and steepest-descent rules. The former includes the Per-, 
ceptron rule, Mays' rules, the CY-LMS algorithm, the original 
Madaline I rule of 1962, and the Madaline II rule. The latter 
includes thep-LMS algorithm, theMadaline Ill rule,and the 
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backpropagation algorithm. Fig. 33categorizes the learning 
rules that have been studied. 

Although these algorithms have been presented asestab- 
lished learning rules, one should not gain the impression 
that they are perfect and frozen for all time. Variations are 
possible for every one of them. They should be regarded 
as substrates upon which to  build new and better rules. 
There i s  a tremendous amount of invention waiting “in the 
wings.” We look forward to  the next 30 years. 
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