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Learning Internal Representations
by Error Propagation

DAVID E. RUMELHART, GEOFFREY E. HINTON, and RONALD J. WILLIAMS

THE PROBLEM

We now have a rather good understanding of simple two-layer associative networks in which
a set of input patterns arriving at an input layer are mapped directly to a sct of output patterns
at an output layer. Such networks have no hidden units. They involve only inpwe and owpus
units. In these cases there is no internal representation. The coding provided by the external
world must suffice. These nctworks have proved useful in a wide varicty of applications (cf.
Chapters 2, 17, and 18). Perhaps the essential character of such networks is that they map simi-
lar input patterns to similar output patterns. This is what allows these networks to make rea-
sonable generalizations and perform reasonably on patterns that have never before been
presented. The similarity of patterns in a PDP system is determined by their overlap. The
overlap in such networks is determined outside the learning system itself—by whatever pro-
duces the patterns.

The constraint that similar input pattemns lead to similar outputs can lead to an inability of
the system to learn certain mappings from input to output. Whenever the representation pro-
vided by the outside world is such that the similarity structure of the input and output pat-
teens are very different, a nctwork without internal representations (i.c., a network without
hidden units) will be unable to perform the necessary mappings. A classic example of this case
is the exclusive-or (XOR) problem illustrated in Table 1. Here we sec that those patterns
which overlap least arc supposed to generate identical output values. This problem and many
others like it cannot be performed by networks without hidden units with which to create

TABLE 1
Input Patterns Output Patteras
00 - 0
0 - 1
10 - 1
1 - 0
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RUMELHART, HINTON, and WILLIAMS

TABLE 2
Input Patterns Output Patterns
000 - 0
010 - 1
100 - 1
11 - 0

their own internal representations of the input patterns. It is interesting to note that had the
input patterns contained a third input taking the value 1 whenever the first two have value 1 as
shown in Table 2, a two-layer system would be able to solve the problem.

Minsky and Papert (1969) have provided a very careful analysis of conditions under which
such systems are capable of carrying out the required mappings. They show that in a large
number of interesting cases, networks of this kind are incapable of solving the problems. On
the other hand, as Minsky and Papert also pointed out, if there is a layer of simple perceptron-
like hidden units, as shown in Figure 1, with which the original input pattern can be aug-
mented, there is always a recoding (i.c., an internal representation) of the input patterns in the
hidden units in which the similarity of the patterns among the hidden units can support any
required mapping from the input to the output units. Thus, if we have the right connections
from the input units to a large enough set of hidden units, we can always find a representation

Output Patterns r

Internal
Representation
Units

Input Patterns

FIGURE 1. A multilayer network. In this case the information coming to the input units is recoded into an ioter-
nal representation and the outputs are generated by the intemal representation rather than by the original pattera.
Input patterns can always be encoded, if there are enough hidden units, in a form so that the appropriate output pat-
tern can be generated from any input pattero.



LEARNING INVERNAL REPRESENTATIONS 3

that will perform any mapping from input to output through these hidden units. In the case
of the XOR problem, the addition of a feature that detects the conjunction of the input units
changes the similarity structure of the patterns sufficiently to allow the solution to be learned.
As illustrated in Figure 2, this can be done with a single hidden unit. The numbers on the
arrows represent the strengths of the connections among the units. The numbers written in
the circles represent the thresholds of the units. The value of +1.5 for the threshold of the
hidden unit insures that it will be turned on only when both input units are on. The value 0.5
for the output unit insures that it will turn on only when it receives a net positive input
greater than 0.5. The weight of —2 from the hidden uait to the output unit insures that the
output unit will not come on when both input units are on. Note that from the point of view
of the output unit, the hidden unit is treated as simply another input unit. It is as if the input
patterns consisted of three rather than two units.

The existence of networks such as this illustrates the potential power of hidden units and
internal representations. The problem, as noted by Minsky and Papert, is that whereas there is
a very simple guaranteed learning rule for all problems that can be solved without hidden units,
namely, the perceptron convergence procedure (or the variation due originally to Widrow and
Hoff, 1960, which we call the delta rule; see Chapter 11), there is no equally powerful rule for
learning in networks with hidden units. There have been three basic responses to this lack.
One response is represented by competitive learning (Chapter 5) in which simple unsupervised
leamning rules are employed so that useful hidden units develop. Although these approaches are
promising, there is no external force to insure that hidden units appropriate for the required
mapping are developed. The second response is to simply assume an internal representation
that, on some a priori grounds, seems reasonable. This is the tack taken in the chapter on verb
leaming (Chapter 18) and in the interactive activation model of word perception (McClelland
& Rumclhart, 1981; Rumeclhart & McClelland, 1982). The third approach is to attempt to
develop a learning procedure capable of learning an internal representation adequate for per-
forming the task at hand. One such devclopment is presented in the discussion of Boltzmann
machines in Chapter 7. As we have scen, this procedure involves the use of stochastic units,
requires the nctwork to reach equilibrium in two different phases, and is limited to symmetric
nctworks. Another recent approach, also employing stochastic units, has been developed by
Barto (1985) and various of his colleagues (cf. Barto & Anandan, 1985). In this chapter we

-

e s e
RSP,

Output Unit

Hidden Unit

Input Units

FIGURE 2. A simple XOR nctwork with one hidden unit. Sec text for explanation.
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4 RUMELHART, HINTON, and WILLIAMS

present another alternative that works with deterministic units, that involves only local compu-
tations, and that is a clear generalization of the delta rule. We call this the generalized delta
rule. From other considerations, Parker (1985) has independently derived a similar generaliza-
tion, which he calls learning-logic. Le Cun (1985) has also studied a roughly similar learning
scheme. In the remainder of this chapter we first derive the generalized delta rule, then we
illustrate its use by providing some results of our simulations, and finally we indicate some
further generalizations of the basic idea.

THE GENERALIZED DELTA RULE

The learning prc cedure we propose involves the presentation of a set of pairs of input and
output patterns. The system first uses the input vector to produce its own output vector and
then compares this with the desired output, or rarget vector. If there is no difference, no learn-
ing takes place. Otherwise the weights are changed to reduce the difference. In this case, with
no hidden units, this generates the standard delta rule as described in Chapters 2 and 11. The
rule for changing wcights following presentation of input/output pair p is given by

Bywy = n(ty = 0p;) ipi = MBpyip 1

where 1, is the target input for jth component of the output pattern for pattern p, o is the
Jjth element of the actual output pattern produced by the presentation of input pattern p, iy,
is the value of the ith clement of the input pattern 8,; =¢,, — o,,, and A,w is the change to
be made to the weight from the ith to the jth unit following presentation of pattern p.

The delta rule and gradient descent. There are many ways of deriving this rule. For
present purposes, it is useful to see that for linear units it minimizes the squares of the
diffcrences between the actual and the desired output values summed over the output units
and all pairs of input/output vectors. One way to show this is to show that the derivative of
the error measure with respect to each weight is proportional to the weight change dictated by
the delta rule, with negative constant of proportionality. This corresponds to performing
steepest descent on a surface in weight space whose height at any point in weight space is equal
to the error measure. (Note that some of the following sections are written in italics. These
sections constitute informal derivations of the claims made in the surrounding text and can be
omitted by the rcader who finds such derivations tedious.)

To be more specific, then, let
_le 2 (2)
E, = _2'%('?1 ~ o)

be our measure of the error on input/outpus panere p and let E = EE, be our overall measure of the
error. We wish to show that the delta rule implemenis a gradiemt descent in E when the units are linear. We
will proceed by simply showing that
oE,
aw,,

= 8yp1s

which is proportional to Ap w, as prescribed by the delta rule. When there are no hidden units it is straighs-
forward 10 compute the relevant derivative. For this purpose we use the chain rule 1o write the derivative as
the product of two paris. the derivative of the error with respect 1o the output of the unit times the derivative
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0
3' of the outpus with respecs 1o the weight.
X/
R oE, _ aE, do, (3)
‘;3 aWﬂ Bo,, aWI‘
‘!é' The first part tells how the error changes with the outpus of the jth unit and the second pari tells how much
é‘v";' changing wj; changes thas output. Now, the derivatives are easy to compute. Firss, from Equation 2
5§yl .
L5
i aE 4
P.,[ 1 d
.‘ S =y —oy) =8y,
- ao’l
o .
4 Not surprisingly, the comribution of unit u; to the error is simply proportional to 8”. Moreover, sin.z we
.‘ have linear uniis,
-
o % = 3 %xipn )
. W {
from which we conclude that
R
;‘ ) 80y _ .
U - = "-
ow g
{ 3
W T hus, substituting back into Equation 3, we see that
et
® _9E, _ i (6)
4 - Yp
e 6 w H e
';&; as desired. Now, combining this with the observation tha
.0
B oE oE,
i —= =3 L
awﬂ P ow '
N should lead us 10 conclude that the net change in W after one complete cycle of patiern presemations is pro-
‘7', portional to this derivative and hence that the delia rule implements a gradiens descent in E . In fact, this is
: stricily true only if the values of the weights are not changed during this cycle. By changing the weights after
‘: each pattern is presented we depart to some extent from a true gradient descent in E . Nevertheless, pro-
vided the learning rate (i.e., the constant of proportionality) is sufficiensly small, this departure will be negli-

gible and the delta rule will implement a very close approximation to gradient descem in sum-squared error.
In particular, with small enough learning rate, the delta rule will find a set of weights minimizing this error

U .

:$ Sunction.

i” .ge . . . .

g The delta rule for semilinear activation functions in feedforward networks. We have
\ shown how the standard delta rule essentially implements gradient descent in sum-squared

error for linear activation functions. In this casc, without hidden units, the error surface is
shaped like a bowl with only one minimum, so gradicnt descent is guarantced to find the best
set of weights. With hidden units, however, it is not so obvious how to compute the deriva-
tives, and the error surface is not concave upwards, so there is the danger of getting stuck in
local minima. The main theorctical contribution of this chapter is to show that there is an
efficicnt way of computing the derivatives. The main empirical contribution is to show that
the apparently fatal problem of local minima is irrclevant in a wide varicty of learning tasks.

At the cnd of the chapter we show how the generalized delta rule can be applied to arbitrary
networks, but, to begin with, we confine ourscives to layered feedforward networks. In these
nctworks, the input units are the bottom layer and the output units are the top layer. There
can be many layers of hidden units in between, but every unit must send its output to higher
layers than its own and must receive its input from lower layers than its own. Given an input
vector, the output vector is computed by a forward pass which computes the activity levels of
cach layer in turn using the already computed activity levels in the earlier layers.

-
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) -. Since we are primarily intercsted in cxtending this result to the case with hidden units and
\ since, for rcasons outlined in Chapter 2, hidden units with linear activation functions provide
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6 RUMELHART, HINTON, and WILLIAMS

no advantage, we begin by generalizing our analysis to the sct of nonlincar activation functions
which we call semilinear (sece Chapter 2). A semilinear activation function is one in which the
output of a unit is a differentiable function of the net total input,

M‘pj = 2“"/{0’" (7)
i
where o; = ; if unit i is an input unit. Thus, a semilincar activation function is one in which

0p; = f j(nety;) (8)

and f is differentiable. The generalized delta rule works if the network consists of units hav-
ing semilinear activation functions. Notice that linear threshold units do not satisfy the
requirement because their derivative is infinite at the threshold and zero clsewhere.

To get the correct generalization of the delta rule, we must set

where E is the same sum-squared error function defined earlier. As in the standard delia rule it is again
useful 10 see this derivative as resulting from the product of two parts: one part reflecting the change in
error as a function of the change in the net input to the unit and one part representing the effect of changing
a particular weight on the net inpus. Thus we can write
aE, _ 8E, aﬂC'p’ (9)
aWﬂ anet,,, aW” )

By Equation 7 we see that the second factor is

Omety _ _3_ - (10)
awj, - aw.‘ gwltoﬂ - 0,‘-
J

Now let us define

oE,
by = ————.
dner,,

(By comparing this to Equation 4, note that this is consistent with the definition of 8,, used in the original
delta rule for linear units since 0,; = net,; when unit u; is linear.) Equation 9 thus has the equivalent form

%, _,
el NP
aw,-, piVpt

T his says that 10 implememns gradient descent in E we should make our weight changes according to

prﬂ = 1]8”0’,‘, (Il)

just as in the standard delta rule. The trick is to figure out what 6” should be for each unit u; in the nei-
work. The interesting result, which we now derive, is that there is a simple recursive computation of these 8's
which can be implemented ? propagasing error signals backward through the network.

d

To compute 8” = —3—-‘!-. we apply the chain rule to wriie this partial derivative as the product of two
ne
(]

factors, one factor reflecting the change in error as a function of the outpwt of the unit and one reflecting the
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: y & change in the owtput as a function of changes in the inpwt. Thus, we have

sy

! . BE, BE,, 80” (12)

8»1 -

- g > g am ,
d 2

gle
- F

|

b

-

0

-

3

o

L]

ones,, ao” anet,,

Ler us compute the second factor. By Equation 8 we see that

Val
."w which is simply the derivative of the squashing function f ; for the jth unit, evaluated as the net inpwt nety; to
X that unit. To compute she first factor, we consider two cases. First, assume that unit u; is an outpd unit of i
“ ﬁ:’ the network. In this case, it follows from the definition of E, tha 1
his E |
Y —_—t - -
el == (t; —oy) |
2 aoﬂl !
which is the same result as we obtained with the standard delia rule. Substituting for the two factors in Equa-
e tion 12, we get
ey
Syl _ .
.:. 8p; = (451 = 0p))f "j(nety;) (13)
_,;Q for any output unit u;. If u; is not an output unis we use the chain rule to write
‘Ql. J
"~ 3E, aner oE
ol — P g 0y =S —2-w; =3 8,wy.
‘& < : Bnetﬂ 80” 2 anel‘,, ao, 2 Wi Opi anel‘,* ki ? Tk
AN
:t.\: In this case, substituting for the two factors in Equation 12 yields [
" |
120 , |
N By =/ /("”u)gapt Wiy (14 1
P whenever u; is not an output unit. Equations 13 and 14 give a recursive procedure for computing the 8's for
"-1 all units in the network, which are then used to compute the weight changes in the neswork according to Equa-
f*’/.‘ y tion 11. This procedure constitutes the generalized delta rule for a feedforward network of semilinear units.
ol
":}) These results can be summarized in three equations. First, the generalized delta rule has
N exactly the same form as the standard dclta rule of Equation 1. The wecight on each line
e should be changed by an amount proportional to the product of an error signal, 8, available to
‘e o the unit rccciving input along that line and the output of the unit sending activation along
b‘_-. that line. In symbols,
-y
D Bpwy = M8y 0p,.
%2, P . . . . . .
The other two cquations specify the error signal. Essentially, the determination of the error 1
oy signal is a recursive process which starts with the output units. If a unit is an output unit, its
’:,‘::;. error signal is very similar to the standard dclta rule. It is given by (
P 8oy = () = 0p))f 'y(nety)) |
' where f “;(net,;) is the derivative of the semilinear activation function which maps the total |
! input to the unit to an output value. Finally, the error signal for hidden units for which there i
(e is no specified target is determined recursively in terms of the crror signals of the units to
A ;
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which it directly connects and the weights of those connections. That is,
8, =1 " (net,))3, 8wy,
&

whenever the unit is not an output unit.

The application of the generalized delta rule, thus, involves two phases: During the first
phase the input is presented and propagated forward through the network to compute the out-
put value o, for cach unit. This output is then compared with the targets, resulting in an
error signal §,, for each output unit. The second phase involves a backward pass through the
network (analogous to the initial forward pass) during which the error signal is passed to each
unit in the network and the appropriate weight changes are made. This second, backward pass
allows the recursive computation of 8 as indicated above. The first step is to compute 8 for
each of the output units. This is simply the difference between the actual and desired output
values times the derivative of the squashing function. We can then compute weight changes
for all connections that feed into the final layer. After this is done, then compute §'s for all
units in the penultimate layer. This propagates the errors back one layer, and the same process
can be repeated for cvery layer. The backward pass has the same computational complexity as
the forward pass, and so it is not unduly expensive.

We have now generated a gradicnt descent method for finding weights in any feedforward
network with semilinear units. Before reporting our results with these networks, it is useful to
note some further obscrvations. It is interesting that not all weights need be variable. Any
number of weights in the network can be fixed. In this case, error is still propagated as before;
the fixed weights are simply not modified. It should also be noted that there is no reason why
some output units might not receive inputs from other output units in earlier layers. In this
case, those units reccive two different kinds of error: that from the direct comparison with the
target and that passed through the other output units whose activation it affects. In this case,
the correct procedure is to simply add the weight changes dictated by the direct comparison to
that propagated back from the other output units.

SIMULATION RESULTS

We now have a lcarning procedure which could, in principle, evolve a set of weights to pro-
duce an arbitrary mapping from input to output. However, the procedure we have produced is
a gradicnt descent procedure and, as such, is bound by all of the problems of any hill climbing
procedure—namcly, the problem of local maxima or (in our case) minima. Moreover, there is a
question of how long it might take a system to lcarn. Even if we could guarantee that it
would cventually find a solution, there is the question of whether our procedure could learn in
a rcasonable period of time. It is intercsting to ask what hidden units the system actually
develops in the solution of particular problems. This is the question of what kinds of internal
representations the system actually creates. We do not yet have definitive answers to these
questions. However, we have carricd out many simulations which lead us to be optimistic
about the local minima and timc questions and to be surprised by the kinds of representations
our learning mechanism discovers. Before proceeding with our results, we must describe our
simulation system in more detail. In particular, we must specify an activation function and
show how the system can compute the derivative of this function.

A useful activation function. In our above dcrivations the derivative of the activation func-
tion of unit 4, f ";(net;), always played a role. This implies that we need an activation func-
tion for which a derivative exists. It is interesting to note that the linear threshold function,
on which the perceptron is based, is discontinuous and hence will not suffice for the general-
ized dclta rule. Similarly, since a lincar system achicves no advantage from hidden units, a
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lincar activation function will not suffice either. Thus, we need a continuous, nonlinear activa-
tion function. In most of our experiments we have used the logistic activation function in
which

o, = 1 (15)
L = (w0, +9))
1+e '

where 0, is a bias similar in function to a threshold. ! In order to apply our learning rule, we
need to know the derivative of this function with respect to its total input, ner,,, where
net,; =Y wyo, + 0. It is casy to show that this derivative is given by

do,
7’;;7 = 0,;(1 — 0y).
Thus, for the logistic activation function, the error signal, 8,,, for an output unit is given by

3 = (4 — 0p))0p (1 — o)),

and the error for an arbitrary hidden «; is given by
8 = 0,(1 — oy )gapt Wi -

It should be noted that the derivative, o, (1 — o,), reaches its maximum for o,; = 0.5 and,
since 0<o,;< 1, approaches its minimum as o,, approaches zero or one. Since the amount of
change in a given weight is proportional to this derivative, weights will be changed most for
those units that are ncar their midrange and, in some sense, not yet committed to being either
on or off. This feature, we belicve, contributes to the stability of the learning of the system.

One other feature of this activation function should be noted. The system can not actually
reach its extreme values of 1 or 0 without infinitcly large weights. Therefore, in a practical
learning situation in which the desired outputs arc binary {0,1}, the system can never actually
achicve these values. Therefore, we typically use the values of 0.1 and 0.9 as the targets, even
though we will talk as if values of {0,1} are sought.

The learning rate. Our learning procedure requires only that the change in weight be pro-
portional to dE,/dw. True gradient descent requires that infinitesimal steps be taken. The
constant of proportionality is the learning rate in our procedure. The larger this constant, the
larger the changes in the weights. For practical purposes we choose a learning rate that is as
large as possible without leading to oscillation. This offers the most rapid learning. One way
to increase the learning rate without leading to oscillation is to modify the generalized delta
rule to include a momentum term. This can be accomplished by the following rule:

Awj(n+1) = n(8,;0,,) + aAwy(n) (16)

where the subscript n indcxes the presentation number, n is the Icarning rate, and a is a con-
stant which dctermines the effect of past weight changes on the current direction of movement
in weight space. This provides a kind of momentum in weight space that effectively filters out
high-frequency variations of the error-surface in the weight space. This is useful in spaces con-
taining long ravines that are characterized by sharp curvature across the ravine and a gently
sloping floor. The sharp curvature tends to cause divergent oscillations across the ravine. To
prevent these it is necessary to take very small steps, but this causes very slow progress along
the ravine. The momentum filters out the high curvature and thus allows the effective weight

! Note that the values of the bias, 8,, can be learned just like any other weights. We simply imagine that @, is the
wcight from a unit that is always on.

~w
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:E*‘ steps to be bigger. In most of our simulations a was about 0.9. Our experience has been that
V“§ we get the same solutions by setting a = 0 and reducing the size of 7, but the system leams
:,‘i, much faster overall with larger values of a and v.
Symmetry breaking. Our learning procedure has one more problem that can be readily

KN overcome and this is the problem of symmetry breaking. If all weights start out with equal
\:;:l values and if the solution requires that unequal weights be developed, the system can never
::a; learn. This is because error is propagated back through the weights in proportion to the values
:;su: of the weights. This means that all hidden units connected directly to the output inputs will
0 get identical error signals, and, since the weight changes depend on the error signals, the
V) weights from those units to the output units must always be the same. The system is starting
;,;,: out at a kind of local maximum, which keeps the weights equal, but it is a maximum of the
cz;:o error function, so once it escapes it will never return. We counteract this problem by starting
*:é:': the system with small random weights. Under these conditions symmetry problems of this kind
‘::::: do not arise.

Fa
lifb : The XOR Problem
RS

:Q:Q:S

::t}‘f It is uscful to begin with the exclusive-or problem since it is the classic problem requiring
o hidden units and since many other difficult problems involve an XOR as a subproblem. We
® ’ have run the XOR problem many times and with a couple of exceptions discussed below, the
‘g system has always solved the problem. Figure 3 shows one of the solutions to the problem.
S
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X Input Units

FIGURE 3. Observed XOR network. The connection weights are written on the arrows and the biases are written
e in the circles. Note a positive bias means that the unit is on unless turned off.
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This solution was reached after 558 sweeps through the four stimulus patterns with a learning
rate of m = 0.5. In this case, both the hidden unit and the output unit have positive biases so
they are on unless turned off. The hidden unit turns on if neither input unit is on. When it is
on, it turns off the output unit. The connections from input to output units arranged them-
selves so that they turn off the output unit whenever both inputs are on. In this case, the net-
work has scttled to a solution which is a sort of mirror image of the one illustrated in Figure 2.

We have taught the system to solve the XOR problem hundreds of times. Sometimes we
have used a single hidden unit and direct connections to the output unit as illustrated here,
and other times we have allowed two hidden units and set the connections from the input
units to the outputs to be zero, as shown in Figure 4. In only two cases has the system

. encountered a local minimum and thus been unable to solve the problem. Both cases involved
the two hidden units version of the problem and both ended up in the same local minimum.
Figure 5 shows the weights for the local minimum. In this case, the system correctly responds
to two of the patterns—namely, the patterns 00 and 10. In the cases of the other two patterns
11 and 01, the output unit gets a net input of zero. This lecads to an output value of 0.5 for
both of these patterns. This state was reached after 6,587 presentations of each pattern with
1=0.25.2 Although many problems require more presentations for learning to occur, further tri-
als on this problem merely increase the magnitude of the weights but do not lead to any
improvement in performance. We do not know the frequency of such local minima, but our
experience with this and other problems is that they are quite rare. We have found only one
other situation in which a local minimum has occurred in many hundreds of problems of vari-
ous sorts. We will discuss this case below.

The XOR problem has proved a useful test case for a number of other studies. Using the
architecture illustrated in Figure 4, a student in our laboratory, Yves Chauvin, has studied the
cffect of varying the number of hidden units and varying the learning rate on time to solve the
problem. Using as a learning criterion an error of 0.01 per pattern, Yves found that the average

FIGURE 4. A simple architecture for solving XOR with two hidden units and no direct connections from input to
output.

2 If we set  ~ 0.5 or above, the system escapes this minimum. In geoeral, bowever, the best way to avoid lecal
minima is probably to use very small values of v.

A
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1

0
i
g
s
._ y FIGURE 5. A opetwork at a local minimum for the exclusive-or problem. The dated lines indicate ncgative weights.
" Note that whenever the right-most input unit is oo it turns on bork hidden units. The weights connecting the hidden
; f units to the output arc arranged so that when both bidden units are on, the output unit gets a met input of zero.
? : This leads to an output value of 0.5. In the other cases the network provides the correct answer.
number of presentations to solve the problem with o = 0.25 varied from about 245 for the case
[ with two hidden units to about 120 presentations for 32 hidden units. The results can be sum-
i:& marized by P = 280 — 33log;H , where P is the required number of presentations and H is the
;:;;: number of hidden units employed. Thus, the time to solve XOR is reduced linearly with the
Wy logarithm of the number of hidden units. This result holds for values of H up to about 40 in
‘!!" the casc of XOR. The gencral result that the time to solution is reduced by increasing the
N number of hidden units has been observed in virtually all of our simulations. Yves also studied
;,:.;;j the time to solution as a function of lcarning rate for the case of cight hidden units. He found
iy an average of about 450 presentations with n = 0.1 to about 68 presentations with n = 0.75.
-:& ! He also found that learning rates larger than this led to unstable behavior. However, within
i:% this range larger lcarning rates speeded the leamning substantially. In most of our problems we
A have employed learning rates of v = 0.25 or smaller and have had no difficulty.
LW /
% Parit
) y
o‘ 2“
2: L One of the problems given a good deal of discussion by Minsky and Papert (1969) is the par-
ity problem, in which the output required is 1 if the input pattern contains an odd number of
:-4. 1s and 0 otherwise. This is a very difficult problem because the most similar patterns (those
(-" which differ by a single bit) require different answers. The XOR problem is a parity problem
'\43:"‘ with input patterns of size two. We have tried a number of parity problems with pattemns
2{‘ ranging from size two to cight. Generally we have employed layered networks in which direct
e connections from the input to the output units are not allowed, but must be mediated
through a set of hidden units. In this architecture, it requires at least N hidden units to solve
\: parity with patterns of length N. Figure 6 illustrates the basic paradigm for the solutions
\
M
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j‘:’ FIGURE 6. A panadigm for the solutions to the parity problem discovered by the learning system. See text for ex-
vt: $ planation.
e
el
W
) discovered by the system. The solid lincs in the figure indicate weights of +1 and the dotted
N lines indicate weights of —1. The numbers in the circles represent the biases of the units. Basi-
- cally, the hidden units arranged themselves so that they count the number of inputs. In the
?. diagram, the one at the far left comes on if one or more input units are on, the next comes on
b} if two or more are on, ctc. All of the hidden units come on if all of the input lines are on.
25 The first m hidden units come on whenever m bits are on in the input pattern. The hidden
units then connect with alternately positive and negative weights. In this way the net input
from the hidden units is zero for even numbers and +1 for odd numbers. Table 3 shows the
XN actual solution attained for onec of our simulations with four input lines and four hidden
r: units. This solution was rcached after 2,825 presentations of each of the sixteen patterns with
§ > n = 0.5. Note that the solution is roughly a mirror image of that shown in Figure 6 in that
56 the number of hidden units turned on is equal to the number of zero input values rather than
D) the number of ones. Beyond that the principle is that shown above. It should be noted that
oS the internal representation created by the learning rule is to arrange that the number of hidden
’.\: units that come on is equal to the number of zeros in the input and that the particular hidden
) units that come on depend only on the number, not on which input units are on. This is
& exactly the sort of recoding required by parity. It is not the kind of representation readily
W discovered by unsupervised lcarning schemes such as competitive learning.
(.
.
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FIGURE 7. A nctwork for solving the encoder problem. In this problem there are N orthogonal input patterns cach
paired with one of N orthogonal output patterns. There arc onfy logN ; hidden units. Thus, if the hidden units take
on binary values, the hidden units must form a binary number to encode each of the input patterns. This is exactly
what the system learns to do.

The Encoding Problem

Ackley, Hinton, and Sejnowski (1985) have posed a problem in which a set of orthogonal
input patterns arc mapped to a sct of orthogonal output patterns through a small set of hidden
units. In such cases the intermnal representations of the patterns on the hidden units must be
rather cfficient. Suppose that we attempt to map N input patterns onto N output patterns.
Suppose further that log,N hidden units are provided. In this case, we expect that the system
will learn to use the hidden units to form a binary code with a distinct binary pattern for each
of the N input patterns. Figure 7 illustrates the basic architecture for the encoder problem.
Essentially, the problem is to learn an encoding of an N bit pattern into a logoN bit pattern
and then learn to decode this representation into the output pattern. We have presented the
system with a number of these problems. Here we present a problem with eight input pat-
terns, eight output patterns, and three hidden units. In this case the required mapping is the
identity mapping illustrated in Table 4. The problem is simply to tum on the same bit in the
output as in the input. Table 5 shows the mapping gencrated by our lcarning system on this
example. It is of some interest that the system employed its ability to usc intermediate values
in solving this problem. It could, of course, have found a solution in which the hidden units

TABLE 4
Input Patterns Output Patterns
10000000 - 10000000
01000000 - 01000000
00100000 - 00100000
00010000 - 00010000
00001000 - 00001000
00000100 - 00000100
00000010 - 00000010
00000001 - 00000001

.
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TABLE §

Input Hidden Unit Output
Patterns Patterns Patterns
0000000 - 5 0 0 . 10000000 {
01000000 -~ 0o 1 o - 01000000 :
00100000 - 1 1 0 - 00100000 1
00010000 - 1 1 - 00010000 |
00001000 - 0o 1 1 -~ 00001000 ‘
00000100 - 5 0 1 - 00000100 ‘
00000010 - 1 0 5 -~ 00000010 |
00000001 - o 0 5 - 00000001 |

took on only the values of zero and one. Often it does just that, but in this instance, and
many others, there are solutions that usc the intermediate valucs, and the leaming system finds
them cven though it has a bias toward extreme values. It is possible to set up problems that
require the system to make use of intermediate values in order to solve a problem. We now
turn to such a case.

Table 6 shows a very simple problem in which we have to convert from a distributed represen-
tation over two units into a local representation over four units. The similarity structure of the
distributed input patterns is simply not preserved in the local output representation.

We presented this problem to our learning system with a number of constraints which made
it especially difficult. The two input units were only allowed to connect to a single hidden
unit which, in turn, was allowed to connect to four more hidden units. Only these four hidden
units were allowed to connect to the four output units. To solve this problem, then, the sys-
tem must first convert the distributed representation of the input patterns into various inter-
mediate values of the singleton hidden unit in which different activation values correspond to
the different input patterns. These continuous values must then be converted back through
the next layer of hidden units—first to another distributed representation and then, finally, to
a local representation. This problem was presented to the system and it rcached a solution
after 5,226 presentations with n = 0.05.3 Table 7 shows the sequence of representations the

TABLE 6
Input Patterns Output Patterns
00 - 1000
0] - 0100
10 - 0010
1n - 0001
TABLE 7
Input Singictoo Remaining Output 1
Patterns Hidden Unit Hidden Units Patterns ‘
10 . 0 1 110 0010
1 - 2 - 1 100 0001
00 . .6 - 5 0 0.3 - 1000
01 . 1 - o 001 - 0100

3 Relatively small learning rates make units employing intermediate values casier to obtan.
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\
~:l system actually developed in order to transform the patterns and solve the problem. Note each
::ﬁ of the four input patterns was mapped onto a particular activation value of the singleton hid-
‘) den unit. Thesc values were then mapped onto distributed patterns at the next layer of hidden
i units which were finally mapped into the required local representation at the output level. In
ot principle, this trick of mapping patterns into activation values and then converting those
!q‘ activation values back into patterns could be done for any number of patterns, but it becomes
"‘; increasingly difficult for the system to make the neccssary distinctions as ever smaller
'l':“ differences among activation values must be distinguished. Figure 8 shows the network the sys-
:::': tem developed to do this job. The connection weights from the hidden units to the output
"t\’ units have been suppressed for clarity. (The sign of the connection, however, is indicated by
;-.,.,- the form of the connection—e.g., dashed lines mean inhibitory connections). The four
‘.1": differcnt activation values were generated by having relatively large weights of opposite sign.
’l'al One input line turns the hidden unit full on, onc turns it full off. The two differ by a rela-
s tively small amount so that when both turn on, the unit attains a value intermediate between 0
Ex and 0.5. When neither turns on, the near zero bias causes the unit to attain a value slightly
° over 0.5. The connections to the second layer of hidden units is likewise interesting. When

- the hidden unit is full on, the right-most of these hidden units is turned on and all others
:3:‘ turned off. When the hidden unit is tumed off, the other three of these hidden units are on
P> and the left-most unit off. The other connections from the singleton hidden unit to the other
: ‘z hidden units are graded so that a distinct pattern is turned on for its other two values. Here
AN we have an example of the flexibility of the lcarning system.

e Our experience is that there is a propensity for the hidden units to take on extreme values,
" but, whenever the learning problem calls for it, they can learn to take on graded values. It is
K likely that the propensity to take on extreme values follows from the fact that the logistic is a
:s’ sigmoid so that incrcasing magnitudes of its inputs push it toward zcro or one. This means
N that in a problem in which intermediate values are required, the incoming weights must remain
'k of moderate size. It is interesting that the derivation of the generalized delta rule does not
At depend on all of the units having identical activation functions. Thus, it would be possible for
o some units, those required to encode information in a graded fashion, to be linear while others
';.:' might be logistic. The linear unit would have a much wider dynamic range and could encode
w::'. more diffcrent values. This would be a useful role for a lincar unit in a network with hidden
:.:é units.
N
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::i:l. FIGURE 8. The natwork illustrating the use of intermediate values in solviog a problem. See text for explanation.

[}

gt

o

l'.‘




ij

) LEARNING INTERNAL REPRESENTATIONS 17
s
iy
|:":|
'::{ Another interesting problem we studied is that of classifying input strings as to whether or
v::' not they are symmetric about their center. We used patterns of various lengths with various
".\", - numbers of hidden units. To our surprisc, we discovered that the problem can always be
;:'2 solved with only two hidden units. To understand the derived representation, consider one of
C the solutions generated by our system for strings of length six. This solution was arrived at
ol after 1,208 presentations of each six-bit pattern with n = 0.1. The final network is shown in
;:j,! ‘ Figure 9. For simplicity we have shown the six input units in the center of the diagram with
W one hidden uanit above and one below. The output unit, which signals whether or not the
’;{’: string is symmetric about its center, is shown at the far right. The key point to see about this
’,g:g: solution is that for a given hidden unit, weights that are symmetric about the middle are equal

in magnitude and opposite in sign. That means that if a symmetric pattern is on, both hidden
. units will receive a net input of zero from the input units, and, since the hidden units have a
negative bias, both will be off. In this case, the output unit, having a positive bias, will be on.

§:n 2 The next most important thing to note about the solution is that the weights on each side of
N the midpoint of the string are in the ratio of 1:2:4. This insures that each of the cight patterns
f:l,* that can occur on cach side of the midpoint scnds a unique activation sum to the hidden unit.
‘ This assures that therc is no pattern on the left that will exactly balance 2 non-mirror-image

pattern on the right. Finally, the two hidden units have identical patterns of weights from the
input units except for sign. This insures that for every nonsymmetric pattern, at least onc of
the two hidden units will come on and tum on the output unit. To summarize, the network is
arranged so that both hidden units will receive exactly zero activation from the input units
when the pattern is symmetric, and at least one of them will receive positive input for every
nonsymmetric pattern.
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. FIGURE 9. Network for solving the symmetry problem. The six open circles represent the input units. There are
two hidden units, one shown above and one below the input units. The output unit is shown to the far left. See
text for explanation.
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This problem was interesting to us because the learning system developed a much more
clegant solution to the problem than we had previously considered. This problem was not the
only onc in which this happened. The parity solution discovered by the learning procedure
was also one that we had not «"'scovered prior to testing the problem with our learning pro-
cedure. Indeed, we frequently discover these more elegant solutions by giving the system more
hidden units than it needs and observing that it does not make use of some of those provided.
Some analysis of the actual solutions discovered often leads us to the discovery of a better
solution involving fewer hidden units.

Addition

Another interesting problem on which we have tested our learning algorithm is the simple
binary addition problem. This problem is intcresting because there is a very elegant solution to
it, because it is the one problem we have found where we can reliably find local minima and
because the way of avoiding these local minima gives us some insight into the conditions under
which local minima may be found and avoided. Figure 10 illustrates the basic problem and a
minimal solution to it. There are four input units, three output units, and two hidden units.
The output patterns can be viewed as the binary representation of the sum of two two-bit
binary numbers represented by the input patterns. The second and fourth input units in the
diagram correspond to the low-order bits of the two binary numbers and the first and third
units correspond to the two higher order bits. The hidden units correspond to the carry bits

Output Units

Hidden
Units

Input Units

FIGURE 10. Minimal network for adding two two-bit binary numbers. There are four input units, three output
units, and two hidden units. The output patteras can be viewed as the binary representation of the sum of two two-
bit binary sumbers represented by the input patterns. The second and fourth input units in the diagram correspood
to the low-order bits of the two binary numbers, and the first and third units correspond to the two higher order
bits. The bidden units correspond to the carry bits ia the summation. The hidden unit on the far right comes on
when both of the lower order bits in the input pattern are turned on, and the one on the left comes on when both
bigher order bits are turned on or when one of the higher order bits and the other hidden unit is turned on. The
weights on all lines are assumed to be +1 except where noted. Negative conoections are indicated by dashed lines.
As usual, the biases are indicated by the oumbers in the circles.
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-’gl,:, in the summation. Thus the hidden unit on the far right comes on when both of the lower
if?';:. order bits in the input pattern are turned on, and the one on the left comes on when both
R y higher order bits arc turned on or when one of the higher order bits and the other hiddcn unit
. is turned on. In the diagram, the weights on all lines are assumed to be +1 except where
:r‘eﬁ noted. Inhibitory conncctions are indicated by dashed lines. As usual, the biases arc indicated
aﬁ’& by the numbers in the circles. To understand how this network works, it is useful to note that
:::z::. . the lowest order output bit is determined by an exclusive-or among the two low-order input
s{ﬁ: Y bits. One way to solve this XOR problem is to have a hidden unit come on when both low-
"‘"ﬂ" order input bits are on and then have it inhibit the output unit. Otherwise cither of the low-
' - order input units can turn on the low-order output bit. The middle bit is somewhat more
» difficult. Note that the middle bit should come on whencver an odd number of the set con-
3 \" taining the two higher order input bits and the lower order carry bit is turned on. Observation
b, will confirm that the network shown performs that task. The lcft-most hidden unit receives
N inputs from the two higher order bits and from the carry bit. Its bias is such that it will come

on whenever two or more of its inputs are turned on. The middle output unit receives positive
inputs from the same three units and a negative input of —2 from the second hidden unit.

V‘;:'c‘ This insurcs that whencver just one of the three are tumed on, the second hidden unit will
2 remain off and the output bit will come on. Whenever cxactly two of the three arc on, the
Ny hidden unit will turn on and counteract the two units exciting the output bit, so it will stay
Egl‘.' off. Finally, when all three are turned on, the output bit will receive —2 from its carry bit and
S +3 from its other three inputs. The uet is positive, so the middle unit will be on. Finally, the
a1 third output bit should turn on whencver the second hidden unit is on—that is, whenever
* J there is a carry from the sccond bit. Here then we have a minimal network to carry out the
} : job at hand. Moreover, it should be noted that thc concept bechind this network is generaliz-
), able to an arbitrary number of input and output bits. In general, for adding two m bit binary
'C: numbers we will require 2m input units, m hidden units, and m +1 output units.
A Unfortunately, this is the one problem we have found that reliably leads the system into
! local minima. At the start in our learning trials on this problem we allow any input unit to
ot connect to any output unit and to any hidden unit. We allow any hidden unit to connect to
'J;}a any output unit, and we allow one of the hidden units to connect to the other hidden unit,
:-.}__‘{ but, since we car have no loops, the connection in the opposite direction is disallowed. Some-
. \ times the system will discover esscntially the same network shown in the figure. ¢ Often, how-
e ever, the system ends up in a local minimum. The problem ariscs when the XOR problem on
:)_ ) the low-order bits is not solved in the way shown in the diagram. One way it can fail is when
:e:~ the "higher” of the two hidden units is "selected” to solve the XOR problem. This is a problem
;’::‘ because then the other hidden unit cannot "see” the carry bit and therefore cannot finally solve
:ﬁ&:: the problem. This problem seems to stem from the fact that the learning of the second output
::::lig‘ bit is always depcndent on learning the first (because information about the carry is necessary
W' to learn the sccond bit) and thercfore lags behind the learning of the first bit and has no
: influence on the sclection of a hidden unit to solve the first XOR problem. Thus, about half
:gf‘ . of the time (in this problem) the wrong unit is chosen and the problem cannot be solved. In
7‘:' A this casc, the system finds a solution for all of the sums cxcept the 11+11 - 110 (343 = 6) case
}:g;" in which it misscs the carry into the middle bit and gets 11411 - 100 instead. This problem
a,'_:' : diffcrs from others we have solved in as much as the hidden units are not "equipotential” here.
‘*-‘-" In most of our other problems the hidden units have been equipotential, and this problcm has
not arisen.
‘;\‘" : It should be notcd, however, that there is a rclatively simple way out of the problem—
‘.' . namely, add some cxtra hidden units. In this casc we can afford to make a mistake on onc or
:: X more sclections and the system can still solve the problems. For the problem of adding two-bit
i ———
4 The network is the same cxcept for the highest order bit. The highest order bit is always on whenever three or
P more of the input units are on. This is always learned first and always learned with direct connections to the input
) nits.
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20 RUMELHART, HINTON, 2ad WILLIAMS

numbers we have found that the system always solves the problem with one extra hidden umit.
With larger numbers it may require two or three more. For purposes of illustration, we show
the results of one of our runs with three rather than the minimum two hidden units. Figure 11
shows the state reached by the network after 3,020 presentations of each input pattern and
with a learning rate of n = 0.5. For convenience, we show the network in four parts. In Fig-
ure 11A we show the connections to and among the hidden units. This figure shows the inter-
nal representation generated for this problem. The "lowest” hidden unit turns off whenever
either of the low-order bits are on. In other words it detects the case in which no low-order
bit is turn on. The “highest” hidden unit is arranged so that it comes on whenever the sum is
less than two. The conditions under which the middle hidden unit comes on are more com-
plex. Table 8 shows the patterns of hidden units which occur to each of the sixteen input pat-
terns. Figure 11B shows the connections to the lowest order output unit. Noting that the
rclevant hidden unit comes on when neither low-order input unit is on, it is clcar how the sys-
tem computes XOR. When both low-order inputs are off, the output unit is turned off by the

B
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/
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FIGURE 11. Network found for the summation problem. A: The connections from the input units to the three
bidden units and the connections among the bidden units. B: The conaections from the input and hidden units to
the lowest order output uait. C: The connections from the input and bidden units to the middle output unit. D:
The connections from the input and hidden units to the highest order output unit.
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G0
3
+ 2 TABLE 8
o5 Input Hidden Unit Output
K ( Patteros Patteras Patterns
_}_ 3 0+00 - m - 000
"3 00 +0 - 110 - 001
}'* ) 0+10 - on - 0w
RN 00+11 - 010 - 011
p L 0+00 - 110 - 001
v ) 0+0 - 010 - 010
{7 01410 - 010 - 011
by o+n - 000 - 100
:';-' 10+00 - 011 . 010
AG) 10+00 . 010 - on
- 10410 - 001 - 100
0+ - 000 - 101
- 11 + 00 010 - 011
. 1+01 - 000 - 100
My 11+10 - 000 - 101
iy 1n+1 000 - 110
:‘\“;‘.‘:‘:
& <
(it hidden unit. When both low-order input units are on, the output is turned off directly by the
d two input units. If just one is on, the positive bias on the output unit keeps it on. Figure
\j:: 11C gives the connections to the middle output unit, and in Figure 11D we show those connec-
X‘-: tions to the left-most, highest order output unit. It is somewhat difficult to see how these
}}_‘}; connections always lead to the correct output answer, but, as can be verified from the figures,
o the network is balanced so that this works.
e It should be pointcd out that most of the problems described thus far have involved hidden
- units with quite simple interpretations. It is much more often the case, especially when the
N £y number of hidden units cxcceds the minimum number required for the task, that the hidden
\J units are not rcadily intcrpreted. This follows from the fact that there is very little tendency
u'_'*: for localist rcpresentations to develop. Typically the internal representations are distributed
WSy and it is the parrern of activity over the hidden units, not the meaning of any particular hidden
e unit tha: is important.
I8
,"‘-N';: The Negation Problem
L
":';_-':: Consider a situation in which the input to a system consists of patterns of n +1 binary valucs
P and an output of n valucs. Suppose further that the general rule is that n of the input units
L should be mapped dircctly to the output patterns. One of the input bits, however, is special.
X -::f It is a ncgation bit. When that bit is off, the rest of the pattern is supposed to map straight
N through, but when it is on, the complement of thc pattern is to be mapped to the output.
- . Table 9 shows the appropriate mapping. In this casc the left clement of the input pattern is
Ay the negation bit, but thc system has no way of knowing this and must Icarn which bit is the
Lty negation bit. In this case, weights were allowed from any input unit to any hidden or output
unit and from any hidden unit to any output unit. The system lcamned to set all of the weights
..'_'J‘:: to zcro cxcept those shown in Figure 12. The basic structure of the problem and of the solu-
2-, tion is cvident in the figurc. Clearly the problem was reduced to a set of thrce XORs between
s the ncgation bit and cach input. In the case of the two right-most input units, the XOR prob-
il lems were solved by recruiting a hidden unit to detect the case in which neitker the negation
I unit nor the corresponding input unit was on. In the third case, the hidden unit detects the
case in which borh the ncgation unit and rclevant input were on. In this case the problem was
A:, solved in less than 5,000 passes through the stimulus set with v = 0.25.
2.' 7
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22 RUMELHART. HINTON, and WILLIAMS
TABLE 9
Input Patterns Output Pattcras
0000 - 000
0001 - 001
0010 - 010
0011 - on
0100 - 100
0101 - 101
0110 - 110
0111 - 11
1000 - m
1001 -~ 110
1010 - 101
1o - 100
1100 - 011
1101 - 010
110 - 001
mi - 000
The T-C Problem
L Most of the problems discussed so far (except the symmetry problem) are rather abstract
121 mathematical problems. We now turmn to a more geometric problem—that of discriminating
‘ between a T and a C—independent of translation and rotation. Figure 13 shows the stimulus
patterns used in these experiments. Note, these patterns are each made of five squares and
differ from one another by a single square. Moreover, as Minsky and Papert (1969) point out,
when considering the sct of patterns over all possible translations and rotations (of 90°, 180°,

and 270°), the patterns do not differ in the set of distances among their pairs of squares. To
sec a difference between the sets of patterns onc must look, at least, at configurations of tri-

FIGURE 12. The solution discovered for the negation problem. The right-most unit is the negation unit. The prob-
lem has been reduced and solved as three exclusive-ors between the negation unit and each of the other three units.
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hali
®
e plets of squares. Thus Minsky and Pattern call this a problem of order three.3 In order to
33 facilitate the learning, a rather different architecture was employed for this problem. Figure 14
4-,‘.;) shows the basic structure of the network we employed. Input patterns were now conceptual-
x'_‘ ized as two-dimensional patterns superimposed on a rectangular grid. Rather than allowing
, each input unit to connect to each hidden unit, the hidden units themselves were organized
into a two-dimensional grid with each unit receiving input from a square 3x3 region of the
A input space. In this sense, the overlapping squarc regions constitute the predefined receptive
[, field of the hidden units. Each of the hidden units, over the entire field, feeds into a single
;; ) output unit which is to take on the value 1 if the input is a T (at any location or orientation)
L and O if the input is a C. Further, in order that the learning that occurred be independent of

o

where on the ficld the pattern appeared, we constrained all of the units to iearn exactly the
same pattern of weights. In this way each unit was constrained to compute exactly the same

)

aras function over its receptive field—the receptive fields were constrained to all have the same
'.:A ' shape. This guaranteces translation independence and avoids any possible "edge effects” in the
\ leaming. The leaming can rcadily be extended to arbitrarily large fields of input units. This
S constraint was accomplished by simply adding together the weight changes dictated by the delta
:"n%! rule for each unit and then changing all weights exactly the same amount. In this way, the
whole field of hidden units consists simply of replications of a single feature detector centered
on different regions of the input space, and the learning that occurs in onec part of the field is
A automatically generalized to the rest of the field.$
‘{-\E We have run this problem in this way a number of times. As a result, we have found a
N number of solutions. Perhaps the simplest way to understand the system is by looking at the
&:»‘. form of the receptive field for the hidden units. Figure 15 shows several of the receptive ficlds

we have scen. ? Figure 15A shows the most local representation developed. This on-center —off -

5 Terry Scjnowski pointed out to us that the T-C problem was difficult for models of this sort to learn and there-
fore worthy of study.

ke § A similar procedure has been employed by Fukushima (1980) in bis neocognitron and by Kienker, Sejnowski, Hin-
- ton, and Schumacher (1985).

e
;‘. 7 The ratios of the weights are about right. The actual values can be larger or smaller than the values given io the
W, figure.
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:% 1 FIGURE 14. The network for solving che T-C problem. Sece text for explanation.
e
;" surround detector turns out to be an exccllent T detector. Since, as illustrated, a T can extend
it into the on-center and achieve a net input of +1, this detector will be turned on for a T at any
;::l orientation. On the other hand, any C extending into the center must cover at least two inhibi-
‘ tory cclls. With this detector the bias can be sct so that only one of the whole field of inhibi-
"' tory units will come on whenever a T is presented and none of the hidden units will be turned
D) on by any C. This is a kind of protrusion dectector which differentiates between a T and C by
o~ detecting the protrusion of the T.
I:::‘ The receptive ficld shown in Figure 15B is again a kind of T detector. Every T activates one
i of the hidden units by an amount +2 and none of the hidden units receives more than +1 from
',':::‘ any of the C’s. As shown in the figure, T’s at 90° and 270° send a total of +2 to the hidden
fg:.' units on which the crossbar lines up. The T's at the other two orientations receive +2 from

the way it detects the vertical protrusions of those two characters. Figure 15C shows a more
W distributed representation. As illustrated in the figure, each T activates five different hidden
ge: units whereas each C excites only three hidden units. In this case the system again is
i:o differcntiating between the characters on the basis of the protruding end of the T which is not
3_" shared by the C.
}.f Finally, the receptive ficld shown in Figure 15D is even more interesting. In this case every
3 hidden unit has a positive bias so that it is on unlcss turned off. The strength of the inhibi-
1 tory weights are such that if a character overlaps the receptive field of a hidden unit, that unit .
' turns off. The system works because a C is more compact than a T and thercfore the T tums

sys

}* off more units that the C. The T tums off 21 hidden units, and the C turns off only 20. This
:v:: is a truly distributed representation. In each case, the solution was reached in from about
"
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FIGURE 15. Receptive ficlds found in different runs of the T-C problem. A: An on-center—off-surround receptive
field for detecting T's. B: A vertical bar detector which responds to T's more strongly than C's. C: A diagonal bar
‘ detector. A T activates five such detectors whereas a C activates only three such detectors. D: A compactness
.h detector. This inhibitory receptive field tumns off whenever an input covers any region of its receptive fiedd. Since
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the C is more compact than the T it turns off 20 such detectors whereas the T turns off 21 of them.
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5,000 to 10,000 prescntations of the set of cight patterns.®
It is intercsting that the inhibitory type of receptive field shown in Figure 15D was the most
common and that there is a predominance of inhibitory connections in this and indeed all of

4».--
V]
*» 47
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"‘ - our simulations. This can be understood by considering the trajectory through which the learn-

) f:j ing typically moves. At first, when the system is presented with a difficult problem, the initial

e random connections are as likely to mislead as to give the correct answer. In this case, it is

- best for the output units to take on a value of 0.5 than to take on a more extreme value. This

S follows from the form of the error function given in Equation 2. The output unit can achieve

: v { a constant output of 0.5 by turning off those urits feeding into it. Thus, the first thing that
happens in virtually every difficult problem is that the hidden units are turned off. One way

[r>

Ry

K0 —_—

,“ ¥ Since transtation independence was built into the leaming procedure, it makes no difference where the input oc-

curs; the same thing will be learned wherever the pattern is prescated. Thus, there are only cight distinct patterns to

,::". be presented to the system.
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to achieve this is to have the input units inhibit the hidden units. As the system begins to sort
things out and to learn the appropriate function some of the connections will typically go posi-
tive, but the majority of the connections will remain negative. This bias for solutions involving

A inhibitory inputs can often lead to nonintuitive results in which hidden units are often on
':: 4 unless turned off by the input.
¢
8
N
o .
's‘-\"- More Simulation Results
1
W
'o::'t We have offered a sample of our results in this section. In addition to having studicd our
O lcarning system on the problems discussed here, we have employed back propagation for lcarn-
) ing to multiply binary digits, to play tic-tac-toe, to distinguish between vertical and horizontal

lines, to perform scquences of actions, to recognize characters, to associate random vectors,
and a host of other applications. In all of these applications we have found that the general-
ized delta rule was capable of generating the kinds of internal representations required for the
problems in question. We have found local minima to be very rare and that the system learns
in a rcasonable period of time. Still more studies of this type will be required to understand
preciscly the conditions under which the system will be plagued by local minima. Suffice it to
say that the problem has not bcen scrious to date. We now turn to a pointer to some future

- 8 k. >

developments.

(w3

i

:: SOME FURTHER GENERALIZATIONS
Rt

We have intensively studied the learning characteristics of the generalized delta rule on feed-
forward networks and semilinear activations functions. Interestingly these are not the most
general cases to which the Icarning procedure is applicable. As yet we have only studied a few

[ ooV

" examples of the more fully generalized system, but it is relatively casy to apply the same learn-
4 ing rule to sigma-pi units and to recurrent nctworks. We will simply sketch the basic ideas
here.
ol
) The Generalized Delta Rule and Sigma-Pi Units
!
i It will be recalled from Chapter 2 that in the case of sigma-pi units we have
o 0 = fl(zw/‘ l;Io,.) 17
. {
3 “M
“~ where i varics over the sct of conjuncts fceding into unit j and k varies over the elements of
.,“ the conjuncts. For simplicity of exposition, we restrict ourscives to the case in which no con-

. - juncts involve more than two clements. In this case we can notate the weight from the con-
junction of units i and j to unit k& by w,,. The weight on the direct connection from unit i
) 1 Y Win

Y to unit j would, thus, be w;,, and since the rclation is multiplicative, wy; = w,,. We can now

g LA e
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wieled
)
Fe?é rewrite Equation 17 as
]
\
W o, = f,(Z,wmono)-
A th
A g We now set
I, -
V ' A 9E,
D Wiy ® — ===
‘:2 p k) 3Wuj
?
"”-i* Taking the derivative and simplifying, we get a rule for sigma-pi units strictly analogous to the
’,!.., rule for semilinear activation functions:
bRy
;::T A’ Wiy = 83 0.0;.
LV
g:: We can sce the correct form of the error signal, 8, for this case by inspecting Figure 16. Con-
dog sider the appropriate value of 8, for unit 4 in the figure. As before, the correct value of 8, is
given by the sum of the 8’s for all of the units into which u, feeds, weighted by the amount of
iy effect due to the activation of u; times the derivative of the activation function. In the case of
-:3‘ semilinear functions, the measure of a unit’s effect on another unit is given simply by the
:." weight w connecting the first unit to the second. In this case, the i 's effect on u;, depends
';:;0‘ not only on wy;, but also on the value of ;. Thus, we have
A
" 3 =1 1(net))3, 8, wy;0;
ik

RIEEI
oTiesd 3 Y

-

FIGURE 16. The gencralized delta rule for sigma-pi units. The products of activation values of individual units ac-
) tivate output units. Sce text for explanation of how the 8 values are computed in this case.
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28 RUMELHART, HINTON, aad WILLIAMS

if 4, is not an output unit and, as before,

8 = f “i(net;)(t;,—0;)

if it is an output unit.

Recurrent Nets

We have thus far restricted ourselves to feedforward nets. This may seem like a substantial
restriction, but as Minsky and Papert point out, there is, for every recurrent network, a feed-
forward network with identical behavior (over a finite period of time). We will now indicate
how this construction can proceed and thereby show the correct form of the learning rule for
the recurrent network. Consider the simple recurrent network shown in Figure 17A. The
same network in a feedforward architecture is shown in Figure 17B. The bchavior of a

Time

t+1

FIGURE 17. A comparison of a recurrent network and s feedforward network with identical bebavior. A: A com-
pletely connected recurrent network with two units. 8: A feedforward actwork which behaves the same as the re-
current oetwork. [n this case, we have a separate unit for each tiine step and we require that the weights coanecting
each layer of usits to the aext be the same for all layers. Moreover, they must be the same as the analogous weights
io the recurrent case.
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k' recurrent network can be achieved in a fecdforward network at the cost of duplicating the
hardware many times over for the feedforward version of the network.® We have distinct units
and distinct weights for each point in time. For naming convenience, we subscript each unit
with its unit number in the corresponding recurrent network and the time it represents. As
long as we constrain the weights at cach level of the feedforward network to be the same, we

Ry 3 have a feedforward network which performs identically with the recurrent network of Figure
nhy 17A. The appropriate method for maintaining the constraint that all weights be equal is simply
:t:.::i; to kecp track of the changes dictated for cach weight at cach level and then change each of the
Rl weights according to the swm of these individually prescribed changes. Now, the general rule
' ) for determining the change prescribed for a weight in the system for a particular time is simply
;:‘I to take the product of an appropriate error measure 8 and the input along the relevant line
.':: both for the appropriate times. Thus, the problem of specifying the correct learning rule for
’:‘,:, recurrent networks is simply one of determining the appropriate value of 8 for each time. In a
,kk . feedforward network we determine 8 by multiplying the derivative of the activation function
A by the sum of the 8’s for those units it feeds into weighted by the connection strengths. The
. same process works for the recurrent network—except in this case, the value of § associated
,:{::ﬁ with a particular unit changes in time as a unit passes error back, sometimes to itsclf. After
):;1!‘ cach iteration, as error is being passed back through the network, the change in weight for that
“ iteration must be added to the weight changes specified by the preceding iterations and the
;'isi sum stored. This process of passing error through the network should continue for a number
! of iterations equal to the number of itcrations through which the activation was originally
’ - passed. At this point, the appropriate changes to all of the weights can be made.

S In general, the procedure for a recurrent network is that an input (gencrally a sequence) is
::5-, presented to the system while it runs for some number of iterations. At certain specificd times
a0 during the opcration of the system, the output of certain units are comparcd to the target for
X ( that unit at that time and error signals are generated. Each such error signal is then passed
. back through the network for a number of iterations equal to the number of iterations used in

" the forward pass. Wcight changes are computed at each itcration and a sum of all the weight
g: changes dictated for a particular weight is saved. Finally, after all such error signals have been
0
)

v -
- <

i\

propagated through the system, the weights are changed. The major problem with this pro-
cedure is the memory required. Not only does the system have to hold its summed weight
changes while the error is being propagated, but each unit must somehow record the sequence
of activation values through which it was driven during the original processing. This follows
from the fact that during each iteration while the error is passed back through the system, the

1‘

:‘: current 8 is rclevant to a point earlier in time and the required weight changes depend on the
W) activation lcvcls of the units at that time. It is not entirely clear how such a mechanism could
o :t: be implemented in the brain. Nevertheless, it is tantalizing to realize that such a procedure is
;::. 3 potentially very powerful, since the problem it is attempting to solve amounts to that of
A finding a sequential program (like that for a digital computer) that produces specified input-

scquence/output-scquence pairs. Furthermore, the intcraction of the teacher with the system
can be quite flexible, so that, for example, should the system get stuck in a local minimum, the
tcacher could introduce "hints” in the form of desired output values for intecrmediate stages of

-
ol
2" a2

‘Q,:"‘ processing. Our cxpericnce with recurrent networks is limited, but we have carried out some
i experiments. We turn first to a very simple problem in which the system is induced to invent a
N plep ys
' j shift register to solve the problem.
KN . . . .
L\ Learning to be a shift register. Pcrhaps the simplest class of rccurrent problems we have
.; studicd is one in which the input and output units are one and the same and there are no hid-
% 3 den units. We simply present a pattern and let the system process it for a period of time. The
:o\ state of the system is then compared to some target state. If it hasn’t rcached the target state
oy
AN 9 Note that in this discussion, and indeed in ous entire devdopment here, we bave assumed a discrete time system
N . with synchronous update and with each connection involving a unit delay.
‘ﬂt“'p‘
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: =

:i: at the designated time, error is injected into the system and it modifies its weights. Then it is
}’). shown a new input pattern and restarted. In these cases, there is no constraint on the connec-
' tions in the system. Any unit can connect to any other unit. The simplest such problem we
¥, have studied is what we call the shift register problem. In this problem, the units are concep-
;‘; tualized as a circular shift register. An arbitrary bit pattern is first established on the units.
A They are then allowed to process for two time-steps. The target state, after those two time-
'f:. steps, is the original pattern shifted two spaces to the left. The interesting question here con-
A cems the state of the units between the presentation of the start state and the time at which

the target statc is presented. One solution to the problem is for the system to become a shift
register and shift the pattern exactly one unit to the left during each time period. If the system

he

;‘\g did this then it would surely be shifted two places to the left after two time units. We have
;’o‘ tried this problem with groups of three or five units and, if we constrain the biases on all of
,{" the units to be negative (so the units are off unless turned on), the system always learns to be a
'"9:3 shift register of this sort.!® Thus, even though in principle any unit can connect to any other
L unit, the system actually learns to set all weights to zero except the ones connecting a unit to
- its left ncighbor. Since the target states were determined on the assumption of a circular regis-
r:{ ter, the Ieft-most unit developed a strong connection to the right-most unit. The system lcarns
;:,: this relatively quickly. With n = 0.25 it learns perfectly in fewer than 200 sweeps through the
tyh sct of possible patterns with cither three- or five-unit systems.

',::' The tasks we have described so far are exceptionally simple, but they do illustrate how the
’ algorithm works with unrestricted networks. We have attempted a few more difficult prob-
ren lems with recurrent networks. One of the more interesting involves lcarning to complcte
‘: z sequences of patterns. Our final example comes from this domain.

1

RN

1 Learning to complete sequences. Table 10 shows a set of 25 sequences which were chosen so
::'.‘ that the first two items of a sequence uniquely determine the remaining four. We used this set
. of sequences to test out the learning abilities of a recurrent network. The network consisted i
of five input units (A, B, C, D, E), 30 hidden units, and three output units (1, 2, 3). At Time 1
1, the input unit corresponding to the first item of the sequence is turned on and the other ‘

1

X ! input units are turned off. At Time 2, the input unit for the sccond item in the sequence is
T turned on and the others are all turned off. Then all the input units arc turned off and kept
:e off for the remaining four steps of the forward iteration. The network must learn to make the
j output units adopt states that represent the rest of the scquence. Unlike simple feedforward ‘
. networks (or their itcrative equivalents), the errors are not only assessed at the final layer or !
.4 time. The output units must adopt the appropriate statcs during the forward iteration, and so ;

v : during the back-propagation phase, errors are injected at ecach time-stcp by comparing the j
] remembered actual states of the output units with their desired states.

TABLE 10
il

/A 25 SEQUENCES TO BE LEARNED

ky

% AAI212  ABI23  ACI231  ADI21  AERD
5

" BA2312  BB2323  BC21  BD221  BE2N

CAIL2 CB1I2} CC3Nn CD3121 CEIN
DA2112 DB2123 DC2131 DD2121 DE2113

0

;: EA1312 EB1123 ECIM ED1321 EE1313

Q8

,’# *

At 10 [f the constraint that bisses be negative is not imposed, other solutions arc possible. These solutions can iovolve
the uaits passing through the complements of the shifted pattern or even through more complicated intermediate

D states. These trajectories are interesting in that they match a simple shift registes on all even numbers of shifts, but

:" do not match following an odd number of shifts.
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i
j«,‘m The learning procedure for recurrent nets places no constraints on the allowable connectivity
9)5';:11 structurc!! For the sequence compliction problem, we used one-way connectioas from the input
na units to the hidden units and from the hidden units to the output uaits. Every hidden unit
v had a one-way connection to every other hidden unit and to itself, and every output unit was
::: , also connected to every other output unit and to itself. All the connections started with small
’g',z random weights uniformly distributed between —0.3 and +0.3. All the hidden and output
:;} . units started with an activity level of 0.2 at the beginning of each sequence.
X We used a version of the learning procedure in which the gradient of the error with respect
" 3 to each weight is computed for a whole sct of examples before the weights are changed. This
ay means that cach connection must accumulate the sum of the gradients for all the examples and
i for all the time steps involved in ecach example. During training, we used a particular sct of 20
?t.:: examples, and after these were learned almost perfectly we tested the network on the remaining
{ 3 examples to see if it had picked up on the obvious regularity that rclates the first two items of
:{5., a scquence to the subsequent four. The results are shown in Table 11. For four out of the five
test scquences, the output units all have the correct values at all times (assuming we treat
oo values above 0.5 as 1 and values below 0.5 as 0). The network has clearly captured the rule that
’ the first item of a sequence determines the third and fourth, and the sccond determines the
K N fifth and sixth. We rcpeated the simulation with a different set of random initial weights, and
::.':_ it got all five test sequences correct.
LIWe

The lcamning required 260 sweeps through all 20 training sequences. The errors in the output
units were computed as follows: For a unit that should be on, there was no error if its activity

level was above 0.8, otherwise the derivative of the crror was the amount below 0.8. Similarly,

_(..f;-j for output units that should be off, the derivative of the error was the amount above 0.2

: After cach sweep, cach weight was decremented by .02 times the total gradient accumulated on
o that sweep plus 0.9 times the previous weight change.

W - We have shown that the learning procedure can be used to create a network with interesting

e sequential bchavior, but the particular problem we used can be solved by simply using the hid-

den units to create "dclay lines” which hold information for a fixed length of time before allow-

-,- ing it to influence the output. A harder problem that cannot be solved with dclay lines of
2} fixed duration is shown in Table 12. The output is the same as before, but the two input items
": can arrive at variable times so that the item arriving at time 2, for example, could be cither the
\ first or the second item and could thercfore determine the states of the output units at either
j the fifth and sixth or the seventh and eighth times. The new task is equivaicnt to requiring a
buffer that reccives two input "words” at variable times and outputs their "phoncmic realiza-

tions” onc after thc other. This problem was solved successfully by a nctwork similar to the

LK
o::‘;’ one above except that it had 60 hidden units and half of their possible intcrconnections were
omitted at random. The learning was much slowcr, requiring thousands of sweeps through all

y 136 training cxamples. There were also a fcw more crrors on the 14 test cxamples, but the gen-
1. eralization was still good with most of the test sequences being completed perfectly.

e

o

§ j,:: CONCLUSION

(L% 0

%%

. Minsky and Papert (1969) in their pessimistic discussion of perceptrons finally, near the end
A of their book, discuss multilayer machines. They state:

r )

}%" The pcrceptron has shown itsclf worthy of study despite (and even because of!) its
}3} severe limitations. It has many fcaturcs that attract attention: its lincarity; its
Wl

b

[t

11 The constraint in feedforward networks is that it must be possible to arrange the units into layers such that units
do not influence units in the same or lower layers. [n recurrent nctworks this amounts (o the constraint that during
the forward iteration, future states must not affect past ones.
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. TABLE 11

PERFORMANCE OF THE NETWORK ON FIVE NOVEL TEST SEQUENCES

Input Sequence A D - - -~ -
Desired Outputs - - 1 2 2 1
Actual States of:
Output Unit 1 0.2 0.12 0.90 0.22 0.11 0.83
Output Unit 2 0.2 0.16 0.13 0.82 0.88 0.03
Output Unit 3 0.2 0.07 0.08 0.03 0.01 0.22
;:' ! Input Sequence B E - - - -
’1‘; Desired Outputs - - 2 3 1 3
()
¥
1: Actual States of:
o Output Unit ) 02 0.12 020 025 048 026
' Output Unit 2 02 0.16 0.80 0.05 0.04 0.09
Output Unit 3 0.2 0.07 0.02 0.7 0.48 0.53
Input Sequence (o} A - - - -
Desired Outputs - - 3 1 1 2
Actual States of:
Output Unit 1 0.2 0.12 0.19 0.80 0.87 on
Output Unit 2 0.2 0.16 0.19 0.00 0.13 0.70
Output Unit 3 0.2 0.07 0.80 0.13 0.01 0.25
Input Sequence D B - - - -
Desired Outputs - - 2 1 2 3
Actual States of:
Output Unit 1 0.2 0.12 0.16 0. 0.07 on
Output Unit 2 0.2 0.16 0.80 0.15 0.87 0.05
Qutput Unit 3 0.2 0.07 0.20 0.0 0.13 0.96
Input Sequence E C - - - -
Desired Outputs - - 1 3 k} 1
Actual States of:
Output Unit 1 0.2 0.12 0.80 0.09 0.27 0.78
Output Unit 2 0.2 0.16 0.20 0.13 0.01 0.02
Output Unit 3 0.2 0.07 0.07 0.94 0.76 0.13
TABLE 12

SIX VARIATIONS OF TIIE SEQUENCE EA1)12 PRODUCED BY
PRESENTING THE FIRST TWO ITEMS AT VARIABLE TIMES

EA--1312 E-A-1312 E--A1312
-EA-1312 -E-A1312 -—EA1312

Note: With these temporal variations, the 25 sequences shown in
Table 10 can be used to generate 150 different sequences.

ft:
LAY
"'g intriguing lcarning theorem; its clear paradigmatic simplicity as a kind of parallel com-
(' = putation. There is no rcason to suppose that any of these virtues catry over to the
A\ many-layered version. Nevertheless, we consider it to be an important rescarch problem
%,;. to clucidate (or reject) our intuitive judgement that the extension is sterile. Perhaps
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K some powerful convergence theorem will be discovered, or some profound reason for
" the failure to produce an interesting "learning theorem® for the multilayered machine
' will be found. (pp. 231-232)

-

Although our leaming results do not guarantee that we can find a solution for all solvable
problems, our analyses and results have shown that as a practical matter, the error propagation
scheme leads to solutions in virtually every case. In short, we believe that we have answered
Minsky and Papert’s challenge and have found a learning result sufficiently powerful to demon-
strate that their pessimism about lcarning in multilayer machines was misplaced.

One way to view the procedure we have been describing is as a parallel computer that, having
been shown the appropriate input/output exemplars specifying some function, programs itself
r to compute that function in general. Parallel computers are notoriously difficult to program.

‘ Here we have a mechanism whereby we do not actually have to know how to write the pro-
J gram in order to get the system to do it. Parker (1985) has emphasized this point.

h On many occasions we have been surprised to learn of new methods of computing interest-
ing functions by observing the behavior of our Icarning algorithm. This also raised the ques-
X tion of generalization. In most of the cases presented above, we have presented the system
with the entire set of exemplars. It is interesting to ask what would happen if we presented
A only a subset of the cxemplars at training time and then watched the system generalize to
§ remaining exemplars. In small problems such as those presented here, the system sometimes
finds solutions to the problems which do not properly generalize. However, preliminary results
on larger problems are very encouraging in this regard. This research is still in progress and
cannot be reported here. This is currently a very active interest of ours.

Finally, we should say that this work is not yet in a finished form. We have only begun our
study of recurrent networks and sigma-pi units. We have not yet applied our learning pro-
; ccdure to many very complex problems. However, the results to date are encouraging and we

are continuing our work.
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