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Training of Elman networks and dynamic system modelling

D. T. Psent and X. Llut

A dynamic backpropagation (DBP) algorithm is presented to train the Elman network
to model dynamic systems. The relationship between the Elman network trained by the
DBP algorithm and the modified Elman network preuiously proposed by the authors
is clarified. The paper shows that the modifed Elntan network is an approxfinate
realization of the Elman network trained by the DBP algorithrn. It is the self-feedback
Iinks of the context units of the rnodified Elman network which prouide a dynamic trace
of the gradients in the parameter space and enable the network to model dynamic systems
of orders higher than one. The paper first giues the results of modelling q second-order
linear plant and a third-order linear plant. N either plant could be modelled using Elman
networks trained by the standard backpropagation algorithm, but both were successfully
modelled by DBP-trained Elman networks as they had been in preuious studies by
modifed Elman networks. Finally, the paper reports on the application of the
DBP-trained Elman net to model a benchmark nonlinear process.

only one input unit and one output unit in this case).
This network is very similar to the network proposed by
Robinson and Fallside (1987). The latter possesses a
structure whose connections are defined in the same way
as that employed by Werbos (1990). By forcing some
weights to zero, the networks given by Elman (1990) and
Robinson and Fallside (1987) have the same structure.
The work of this paper follows the feedforward layered
structure defined by Elman (1990).

From Fig. 1 it can be seen that in a basic Elman
network, in addition to the input unit, the hidden units

Output unit

Context units

' 'fA Hidden units

I
Lo f) f) tnput unit

l.,o

1. Introduction

The Elman network (Elman 1990) is a type of recurrent
network. There has been much research interest in this
network (Pham and Liu 1,992, Hertz et aI. 1991, Kuan
1989, Kuan et al. 1989) and it has been built into the
MATLAB software (The Math Works Inc. 1989) and
applied to dynamic system identification (Pham and Liu
i992) and financial prediction (Kamijo and Tanigawa
1990). A modified Elman network has been proposed by
Pham and Liu (1992) because it was found that the basic
Eiman network trained by the standard backpropagation
(BP) aigorithm (Rumelhart and McClelland 1986) was
abie to model only first-order dynamic systems. This
paper describes the dynamic BP (DBP) algorithm which
is proper for training the basic Elman network and shows
that the modified Eiman network is an approximation
of the Elman network trained by DBP. This further
clarifies why the modified Elman network can model
higher-order dynamic systems.

2. The Elman network

Elman (1990) introduced a simpie recurrent neural net-
work, as shown in Fig. 1 (the network is assumed to have
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Figure 1. Basic Elman network.
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and the output unit, there are also context units. The
input and output units interact with the outside environ-
ment, whereas the hidden and context units do not. The
input unit is only a buffer unit which passes the signals
without changing them. The output unit is a iinear unit
which sums the signals fed to it. The hidden units can
have linear or noniinear activation functions. The context
units are used only to memorise the previous activations
of the hidden units and can be considered to lunction as

one-step time delays. The feedforward connections (dotted
lines) are modifiable; the recurrent connections (solid
lines) are fixed. Because the recurrent connections are
fixed, the Elman network is sometimes cailed a partially
recurrent network.

At a specific time k, the previous activations of the
hidden units (at time k - 1) and the current input (at
time /<) are used as inputs to the network. At this stage,
the network acts as a feedforward network and propagates
these inputs forward to produce the output. The standard
back-propagation learning rule (Rumeihart and McClel-
land 1986) can then be errployed to train the network.
After tl-ris training step the activations of the hidden units
at time k are sent back through the recurrent links to
the context units and saved there for the next training
step (time k + l). At the beginning of the training
process, the activations ofthe hidden units are unknown.
Usuaily, they are set to one-half of their maximum range.
For a sigmoidal activation function the initial values can
be set to 0'5. For a hyperbolic tangent activation function
they can be equated to 0.0.

In Fig. 1 the externai input to the network is represented
by u(k) and the network output by y(k). The total input
to the lth hidden unit is denoted as u,(k). The output of
the ith hidden unit is denoted as x,(k). The output olthe
jth context unit is xj(ft). The following equations hold:

u,(k) l)x,r(k) + w'i(k- l)u(k), (Ia)

equations become

il

u,(k) : I wir(/< - l)x;(k- 1) + 14,;'(k- l)u(k- 1).
j=t

x;1k): u;(k),

n

l(A): I wit/<- l;.r,rk).

(2,,)

(2h)

(2c)

where uri('), ,i;( ) and wi( ), t, j:1,2,..., n, are the
weights ol the links, respectively, between the input unit
and the hidden layer, between the context layer and the
hidden layer, and between the hidden layer and the
output unit. / is a siginoidal activation function. In
particuiar, if input a(k) is delayed by one time step before
it is sent to the input unit, xj(k) is replaced by 1(,k - 1),

and the hidden units are assumed to be linear. the above

Equations (2a)-(2c) are the state-space description q1

an nth-order iinear dynamic system, where ri is llis
dimension of -t(ft) : {.",(/,)}, that is the number of hidden/
context units. The order ol the model depends on the
number ol states, which is also the number o[ hidden
units. Equations (2 a)-(2c) can be expanded into the
foliowing:

y(k) : AJ(k - 1) + Ary(k - 2) +

-t Bru(k - 1) + Bru(k - 2) +

-f A,y(k - n)

1- B,u(k - n). (3)

Therefore, theoretically an Elman network is abie to
model an nth-order dynamic system if it can be trained
to do so. To model a system represented by (3) using
input-output data, 2n input units would be needed if a

feedlorward neurai network is used. For an Elman
network the input unit number is one or n + I if the
context units are regarded as input units. Thus an Elman
network will be significantly smaller in structure than a

feedforward network when n is large.

3. Training of the Elman network

The leedback vector -r"(k): {.*i(ft)} is x(k - 1) which
is a function of w'(k - 2)x(k - 2) + w'(k - 2)u(k 2).

Therefore, x'(k) depends on the weights of previous time
instants. When the BP method is applied, the dependence
olx'(k) on the weights should also be taken into account.
A BP algorithm that takes care of this dependence is the
dynamic BP algorithm (Kuan 1989).

To obtain the dynamic BP algorithm, consider
(1 a)-(1 d). Let the training data set be (u(k), yo(,t)),

k: 7,2,. . ., N, where yo(k) is the desired output of the

network. When an input-output data pair is presented
to the network at time ft, the squared error at the network
output is defined as

Eu:+(yo(k) -y(k))'. (:4)

When pattern-based learning is adopted, the weights are

modified at each time step k. For wi(k - 1), the error
gradient is

AEu

: I ,i;(k -j= t'

x,(k): f(u,),

xj(k):x/k-1),
n

y(k): I witk- l)r,(k).
i= 1

(1 b)

(1 c)

(t d)

dr,vi(ft - 1)



For y,i(/< - 1)

?E,

;rn'j'(k - 1)

aEr

n-li,ft - tl

Elntan rtt' i tttorks an.d

21d i1,;'r(ft - 1)

_ lEr e),qt 1"(l] du,(/r)

dl (A) ,.\i(k) er ,iij F'l1L - r I

-(yo(/<) - y(k))wl(k - 1).f, ir(/<). (6)

_ilL dr,(ft) tx,(k)
it'(k) d.r,(k) ,'r;r1k - t1

-(yo(/,) - y(k))wi(k * 1)

Ax,(k)x_ (1)
dwirlk - 1y'

In, (6) f, denotes the derivative ol f with respect to u,.
As discussed above, the internai leedback x(k - 1) is

dependent on w'(k - 2). Therefore, from (1a) and (lb)
Ax,(k) _ 6x,(k) Au,(k)

1wi,t(k * 1) Au,$) Awi.,(k - 1)

dynanti r: s r- st em m o d el Ii n q

3.2. Al.cloritlun

Arrj(k) :'?(l,j(k) - y(fr)),x,(k),

An,j'(/<) : 4("yd(ft) - .1'(/,.))r,ul'(ft *

Aw;.;(lc) : 4(,ro(k) - y(k))u'i(/r -

f -- r Lr
c/-\ i \KJ

1wi.,(k - 1)

JIJ

(1ta)

1).f,. u(k), (11b)

f,r,r A Il). =' (l1c)
r'ru;',(A - l)

(
f,,f x,(k -I

+i

1)

wilr(k-"rHh+l

(ll r/)

where

:(1 - f'(r,)),

!4-ll- f i wi..&_ 2,d't-\, t+i.Awi./k - 2\ "' ,2, ow;r(/< - 3)' ' r t'

If the dependence of x(k - I) on x,"(k - 2) is ignored,
the above algorithm degenerates to the standard Bp
algorithm, and (11 d) and (1 I c) become

^ df
I:L

oui, Au,(k)
:l

"'d*1'1k - l;
(: .f,,\x,tk _ t)
t

+ I 'i.,rt - l) '*4:l) lt='t r'I'' ' 1wi.,& - l))
If the weight changes are assumed to be small in
iteration, then (8) can be approximately written
recursive form as

Artkt (

tol3l',: /"{x;tk - t)

+ f rvr-,(k - r, at4--l) l,, 
,Lr''i,l\n - t, ar;,trn _ Z1t

(8)

each
ina

(e)

_ar{!
;,wi'1@- D: f'''xfk-1\' (11e)

Awi;(/r) : qjd(k) - y(k))wl(k - l)f,,x,(k - t). (lt f)

Equation (9) keeps a dynamic trace of the gradient. This
is equivalent to applyrng BP through time (Werbos
1 e90).

The generai weight modification in the gradient descent
method is

aE,A,w: -n ",'Aw

The dynamic BP algorithm for training an Elman network
can thus be summarized as foiiows.

3.1. N ettuork
n

u,(k) : I wi;(k - 1)x;(k - 1) + wi'(k - l)u(k),
j=t

r,(k) : /(u,),
n

)(ft): I rri(k-1)r,(k).

4. Relation with the modified Elman network
It has been discovered through simulations that a linear
Elman network trained by the standard Bp algorithm
can only model first-order linear systems (Pham and Liu
1992). It can be seen from (1 1 e) that the gradient only
traces back one time step in standard BP. However, the
gradient in (11 d) traces back indefinitely. Following the
theory of Robinson and traliside (1987) it can be deduced
that an Eiman network trained by the standard Bp
algorithm can only represent a first-order finite impulse
response (hence first-order dynamic systems). However,
11(a)-11(d) can train an Elman network to model an
infinite impulse response (thus higher-order dynamic
systems).

Pham and Liu (1992) introduced self-feedback links
with fixed gains to the context units to enable the Elman
network to represent higher-order systems (see Fig. 2).
The idea of employing self-feedback links was borrowed
from the Jordan network (Jordan 1986). The modified
Elman network of Pham and Liu (1992) can be described
by the lollowing equations.

(10)
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4.1. N etwork
il

u,(k) : I ri;(k - 1)xj(k) + wi(k - I)u(k),
j-t

x;(k) : /(u,),

xi(k) : xi(k - 1) + axf(k - i),
n

y(k): L *i(k - l)x'(k).

4.2. Algorithm (standard BP)

Awi(k) : 40 d(k) - y(k))x;(k),

Awi(k) : n0 a(k) - y(k))wi(k - I)f",u(k),

Awi;(k) :,1(yd$)- y(k))w/(k - l) " :+9\//,\ ,Awf,,(k_l),

5. Simulation results

5.7. Linear systems identffication

The dynamic backpropagation algorithm lias first
been used to identify a second-order linear system and
a third-order linear system. For those linear systern5,

Ehnan networks with linear hidden units were employed.

The second-order iinear system model is

OJ

G(s) : --- -;-- ..(s+a)'+@'

D, T, Pham and X. Liu

(t2 a)

(12b)

(12 c)

(t2 d)

( 1s;

Substituting (13d) into (12c) gives

dx,(k) : f..x,(k_ 1) + o 4",(!:1i . (14)
dwi.;(/<-l) Jvt, Awi.t(k-2)

It can be seen that (14) is similar in structure to (9).

Although (14) does not provide exactly the same search

direction as (9) (note that a(1x,(k - \lAwf,i(k - 2)) ap-
pears in (14), but (9) has

n

f,, L *f,,(k - D Ax,(k - \lAw{.t(k - 2)
l= I

in it), it can provide an infinite impulse response. This is

the reason why the modified Elman network of Pham
and Liu (1992) was able to model higher-order dynamic
systems, even when trained with the standard BP
algorithm.

Output unit

Hidden units

Context units lnput unit

u(k)

Self-feedback links

Figure 2. Modified Elman netrvork.

Its discrete lorm is

y(k) : AJ(k - l)+Ary(k-2)+Bru(k-t)

-2). (16)* Bru(k

With the sampling period 7: 0'1 s and the parameters

a:l'0 and r.'t:2112'5, the coefficients of (16) are
At: l'752821, A2: -0'818 731, Bt: 0'011689 and
82: 0.0t0942.

A linear network with one input unit, six hidden/context
units and one output unit was used to identify the system

represented by (16) (the number of hidden/context units,

which should at least be equal to the order of the system

to be modelled, was taken as six to enable the network
to model r4ost practical systems). A training set of 100

data points was produced by sending a uniformly random

bounded sequence lu(k)l < @2 + af)la(:2'911160) to
the system model with zero initial conditions and record-

ing the output data. After training, the network was

tested using a step input signal u(k) : (a2 * cLtz)lut.

The system described by (16) could not be identified
by the original Elman network trained by the standard
BP algorithm (Pham and Liu 1995). For comparison,
the results of Pham and Liu (1995) are shown in Fig. 3.

Using the dynamic backpropagation algorithm described

above, the responses of the system and the trained
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Figure 3. Response of Elman network trained by standard BP 
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Figure 4. Response of Elman network trained by dynamic BP
(second-order linear system).

Time k

- 

y(k) 

- 
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Figure 5. Response of modified Elman network with a = 0.6
(second-order linear system).

network are shown in Fig. 4. The response of a modified
Elman network with the same number of hidden and
context units trained by standard BP is plotted in Fig. 5.

The third-order system employed in the simulations
has one real pole and two complex poies:

G(s):

Its discrete lorm is

(s+b)[(s+a)2+@2f

y(k) : At(k- 1) + Ar!(k - 2) + Ly& - 3)

-t Bru(k - 1) + Bru(k - 2) + \u(k - 3). (18)

With the sampling period f : 0'08 s, and the character-
lstrc parameters a :1.0, b :2.5 and a :2n12.5, the
coefficients of (18) are A, : 2.621771, A2: -2.333261,At : 0'697 676, Br: 0'017 203, 82: -0.030 862 and
Bs:0'014086. Again a uniformly random bounded
sequence la(/c)i < b(a2 + co2) was applied to the system
with zero initial conditions and the output of the system
was recorded to produce a training data file. The network

O 20 40 60 80 tOO

Time k

- 
y(k) 

-- 
y,*G)

Figure 6. Response of Elman network trained by standard Bp
(third-order linear system).

0.4

o.2

o

Time k

y(k) 

- 
Yn.t(k)

Figure 7. Response of Elman network trained by dynamic Bp
(third-order linear system).

was tested with a step input u(k) : b(a2 + o2;. The
responses of the Elman network trained by the standard
BP algorithm, the Elman network trained by the dynamic
BP algorithm and the modified Elman network trained
by the standard BP algorithm are shown in Figs 6-8.
All three networks had six hidden/context units.

The training times for the dynamic BP-trained Elman
network and the BP-trained modified Elman network
were approximately the same in both simulation examples.

5.2. N onlinear system i.denttfication

The dynamic backpropagation algorithm was also
tested on the problem of identifying a nonlinear system.
An Elman network possessing eight hidden units with
hyperbolic activation functions was employed. The non-
linear system model is (Chen and Billings 1994):

y(ft) : (0.8 - 0.5 exp (-y'(k * l)))y(k - 1)

- (0'3 + 0'9 exp (-y'(k - 1)))y(k - 2)

r 0.1 sin (3'1415926y(k - 1)) + e(k), (19)

(r7)

0
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- 

Yn"t(k)

Figure 8. Response of modified Elman network with a = 0'?

(third-order linear sYstems)'

I -- 
,* vm" 

i

Figure 9. Response of nonlinear process (see (19))'

wlrere e(/t) was a gaussian white noise sequence with zero

mean and variance equal to 0'01. A database ol 1000

data points was created using (19) (initial condition:

y(0) : y(-1):01). The first 900 data were employed

as training data. The last 100 data were reserved as new

data to test the trained model. Tl-re network was trained

using noise e(/<) as the input and y(ft) as the desired

output. The DBP algorithm was employed as the training

algorithm. The response of the trained network to the

new data is shown in Fig. 9.

6. Conclusion

This paper has presented a dynamic backpropagation
(DBP) algorithm for training the Elman network' It lTas

investigated tlie relationship between the Elman network

trained by the DBP algorithm and the modified Elman

netrvork ploposed by Pham and Liu (1992) and has

tl 1tncrntic srsreni n1odeIIinq

shown tl-rat the rnodificd Elman network is lLn nppr.oxi_

m:rte realization of the Elman neti'vork tr.Lincd bv rl^
DBP algorithn. This is borne out in tn. ritout,,tin,l

studies reported in the paper. Both the DBP-traine,i

Elman uetwork and the BP-trained lllodiliecl [1qon
network could model systems with orders highcl than i
whereas the BP-trained original Elman network could

not. The nonlinear system modelling ability ol the Elman

network trained with the DBP algorithm has also becn

illustrated in the paper for a benchmalk nonlinear

system.
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