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ABSTRACT 
The purpose of this paper is to demonstrate a new benchmark for comparing 
the rate of convergence in neural network classification algorithms. The 
benchmark produces datasets with controllable complexity that can be used by 
an algorithm. The dataset generator uses the concept of random numbers and 
linear normalization to generate the data. In a case of a one-layer perceptron, 
the output datasets are sensitive to weight or bias of the perceptron. A Matlab 
implemented algorithm analyzed the sample datasets and the benchmark 
results. The results demonstrate that the convergence time varies based on some 
selected specifications of the generated dataset. This benchmark and the 
generated datasets can be used by researches that work on neural network 
algorithms and are looking for a straightforward and flexible dataset to examine 
and evaluate the efficiency of neural network classification algorithms.   

INTRODUCTION 
Artificial neural networks (ANN) have been an active area of research in the 

last decade and many achievements have been emerged. After any development 
in the techniques and algorithms, the question comes to the application. Any 
improvement in neural network (NN) algorithms needs a test bed and problem to 
show the results. Some authors have used the real data of their applied problems 
and others used the well-known problems of NN literature.     

For example, Ng et al. (1999) developed a fast convergent generalized 
back-propagation algorithm. They have conducted a number of experiments on 
three different problems , including XOR, 3-bit parity and the 5-bit counting 
problems to illustrate the various aspects of the new algorithm.  The network of 
XOR problem consists of two input nodes, two hidden nodes and one output 
node. In the 3-bit parity problem, the network consists of three input nodes, two 
hidden nodes and one output node. 

Another popular benchmark problem is the two-spiral problem. The two-
dimensional (2D) spiral data set was proposed by Alexis Wieland of MITRE 
Corporation and now forms one the important benchmarks at the Carnegie 
Mellon repository (Singh, 1998). The two-spiral problem is often used as a test 
for comparing the quality of different supervised learning algorithms and 
architectures (Alvarez, 1999). Many authors now include it in the benchmarks 
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for speed and quality of learning for new algorithms and architecture types 
(Riedmiller and Braun, 1993; Treadgold and Gedeon, 1997). 

There are many common datasets described in ANN literature that have 
been used as the applications of techniques. Some examples of those datasets 
include the IRIS, Fishers Iris Set (Fisher 1936), Cleveland Heart Diseases data 
(Murphy and Aha, 1994); IMOX and 80X, hand printed character sets (Jian and 
Ramaswami, 1988), Congressional voting dataset (UC-Irvin), Churn dataset 
(Feraud, 2002), BLOOD published by the American Statistical Association (Cox 
et al., 1982), Sonar (Gorman and Sejnowski, 1988), Glass, a collection of glass 
fragments (Ripley, 1994), Tremor, Parkinson’s disease data (Spyer-Ashby, 
1996), and Ionosphere, radar data (Sigillito et al., 1989).  

Studies show that for almost any ANN a dataset can be constructed for 
which it solves it  well (Duin, 1996). The performance of network is based on the 
class distribution and sample size and therefore of the application. Thus, an 
application domain has to be defined. The common way to do this is by 
selecting a collection of datasets.  

This method of performance evaluation has some pitfalls. A collection of 
datasets may show the diversity but does not show the weight of a particular 
dataset in the overall performance. In addition, some classifiers have many user-
adjustable parameters such as step sizes, momentum terms, weights and 
stopping procedures and therefore the results are user dependent, which makes 
the performance comparisons more difficult because different researchers may 
get different results for the same problem.  The next problem of traditional 
datasets is the need for the training data and limitation of sample size. Generally, 
datasets are divided into three parts training, tuning and testing sections. The 
common pitfall of this procedure is that most researchers tend to adjust their 
algorithms after the testing, with the result that they may be using from the 
testing data, for the training and therefore the results are biased (Duin, 1996). 

Since many researchers and students are developing new methods, a 
standard benchmark dataset is a necessity. The benchmark should be large 
enough and it should include a collection of diverse problems. In addition, it 
should be renewed from time to time. There have been some attempts to build 
such a standard benchmark (Duin, 1996; Michine et al., 1994; Prechelt, 1994). 
Also a workshop about NN benchmarking at NIPS*95 (Neural Information 
Processing Systems) addressed some issues regarding a standard benchmark.  

The purpose of this study is to present a new benchmarking dataset that can 
be used for the test of algorithms  associated with neural networks. The proposed 
data generator will provide a flexible dataset without the limitation of sample 
size. It also may provide a good tool for parameter adjustment of the network. 
By choosing different data each time , a specific behavior of a neural network 
can be studied. This benchmark is not a replacement for real application 
datasets, rather, it is a complementary benchmark that can be used in standard 
benchmark datasets. 
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THE BENCHMARK     
The main idea of this benchmark based on generating random numbers 

from the normal distribution with different complexities for different purposes. 
What will be described in this paper is a special case of the benchmark data in 
two-dimensional space. The idea can be applied to higher dimensions.   

The benchmark contains two types of datasets, Benchmark 1, shown in Fig. 
1 shows the idea of a two-dimensional set of the benchmark data. The sample 
data has a random distribution in two sectors with the radius of one. Based on a, 
the angle between two lines of Fig. 1, two classes of data can be separated by a 
linear perceptron with different complexities. This benchmark is sensitive to 
weight parameter estimation of the perceptron.  
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Figure 1. Random data in two sectors       Figure 2. Random data in two strips  

 
Benchmark 2, shown in Fig. 2, represents two classes of random data 

between two parallel strips. When these two classes are far from each other, 
separation is easier. By changing the b, different data can be obtained. This 
benchmark is sensitive to estimation of bias in the perceptron.  

Research hypothesis states that ‘when the angle of a and bias b decrease, 
the data set is more complex and execution time for classification algorithms 
increase’. If the research hypothesis is proved, it means the benchmark has the 
ability to generate different standardized datasets for benchmarking and 
comparing the rate of convergence, in classification algorithms.  
The following is an example for benchmark 1: 
In the polar coordinate system: 
               Class 1     Class2 

)1,0(Rand=ρ    )1,0(Rand=ρ   
(1)   )1,0(*)(2/4/ Randαπαπθ −++=     )1,0(*)(2/4/ Randαπαπθ +−+−=   

 
and in the cartesian coordinate system: 

 Class 1    Class2 
               )sin(θρ=x      )sin(θρ=x  

(2)    )cos(θρ=y    )cos(θρ=y     
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Each time a new random number for ? and ? should be used to generate 
independent (iid) x and y  in any class. The above formulas generate m  two-
dimensional random sample datasets in two classes.  
The following example is performed  for benchmark 2: 

Class1                                                  Class 2 
             )1,0(*2 Randbyx +=−                     )1,0(*2 Randbyx −−=−  
       (3)  )1,0(*2 RandBBx +−=                       )1,0(*2 RandBBx +−=  
This formula generates different samples, by changing b for a specific B .  These 
sets of data are sensitive to bias and can be used in comparing the learning speed 
in different algorithms.   

RESULTS 
A Microsoft Excel program produced several data sets for benchmark 1 and 

benchmark 2 based on a andb . Figure 3 shows a sample data set for a=30 and 
Fig. 4 represent the scatter plot of a sample data for =b 8. 
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      Figure 3. Data set scatter plot for a=30    Figure 4. Data set scatter plot for b=8 
 

These data were used in a MATLAB program and execution time for any 
dataset was measured. Figures 5 and 6 demonstrate the execution time verses 
angle and bias, which are two parameter to control the complexity of datasets. 
Some researches chose the number of iteration as an indicator for the learning 
speed of algorithm however; in this example, the execution time has been 
chosen that is better indicator for the computational work (Auda, 1998).  
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 Figure 5. Execution time verses angle       Figure 6. Execution time verses bias  
 

The results confirm the hypothesis of the research. The benchmark is  able to 
generate different data sets with various complexities.  Figures 7 and 8 show two 
samples output of the MATLAB program. 



 5 

 

      
Figure 7.  MATLAB output for a=2.8                Figure 8.  MATLAB output for 5=b  

GENERALIZED BENCHMARK  
The demonstrated experiment used the following assumptions:  

v Two-dimensional space  
v A slope of °45 and 10=B  (width of strips) for the benchmark 2 
v Random numbers in Cartesian coordinates  
v One perceptron classification 
v Linear classification 
v Ten samples for any class. 

Relaxing the assumptions provide a more generalized benchmark. 
Generalizing from two-dimensional space to m dimension easily is possible. 
Also for slope and B  different numbers can be chosen. The interesting 
generalization is from Cartesian coordinate to polar format. Figure 9 shows the 
2D spiral problem in Cartesian coordinates and Fig. 10 represents the radius in 
function of angle for the 2D spiral problem. The points of a spiral obey the 
equation 0)2( rnr ++= πθρ .  Figure. 10 demonstrates that a 2D problem can be 
resulted from benchmark 2.     

                        
 
Figure 9. Cartesian plane 
representation of 2D                   

Figure 10. Representation of the 
radius in function of the angle for 2D  
(From Alvarez-Sanchez, 1999) 

Relaxing the assumption of one perceptron is also possible. Figure 10 
illustrates the idea. In the current format ],,[1 mnG α and ],,[2 mnbG represent the 
benchmark when a=angle, b =bias, =n dimension and =m number of samples. 
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CONCLUSION 
In this paper, a benchmark problem for the neural network classification 

algorithms was presented. The results demonstrate the flexibility and capability 
of the bearcat benchmark in generating the variety of data sets with different 
complexit ies for comparing the learning speed of algorithms. Using these two 
benchmarks can also be useful in estimating the initial weight factors in the 
algorithms. In addition, the generalized benchmark can stimulate ideas for 
further research in this field. The output of these researches can be installed in 
the University’s website as a data repository. 
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