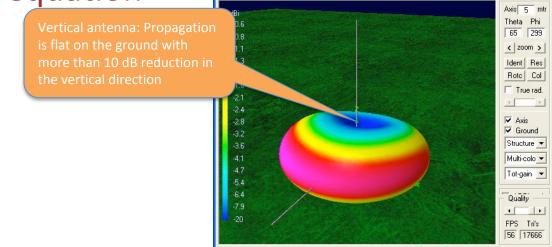


EHB 453, Introduction to Mobile Communications


Lecture 5: Wireless Channel

Prof. Mustafa Ergen

Outline

- After digital modulation, the constructed signal is sent to antenna to be transmitted over the air.
- A voltage is applied to an antenna and it creates electromagnetic field that propagates according to Maxwell's equation

Antenna Size

- Electromagnetic waves in all direction.
- Waves induce electric currents in the receiver's antenna.
- Energy it creates for a given voltage of a given frequency is directly coupled with antenna size.
- Antenna size is directly coupled with the field's wavelength $(\pmb{\lambda})$
- λ is inversely proportional with the carrier frequency $\lambda = c/f_c$ where c is speed of light.

Dynamics

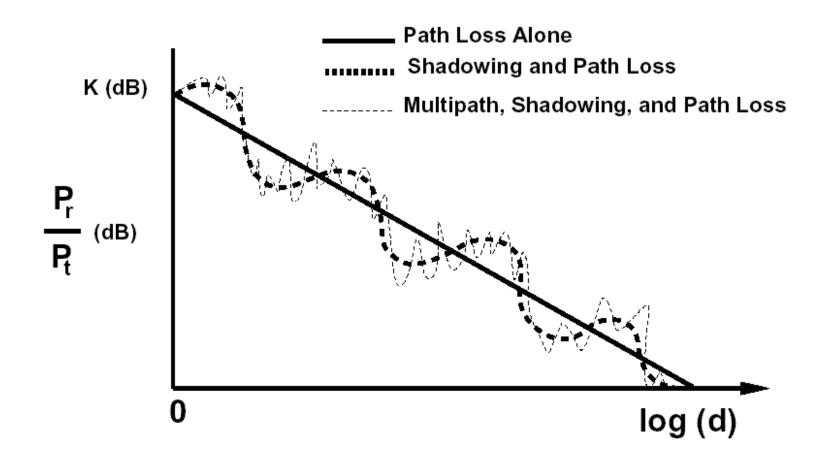
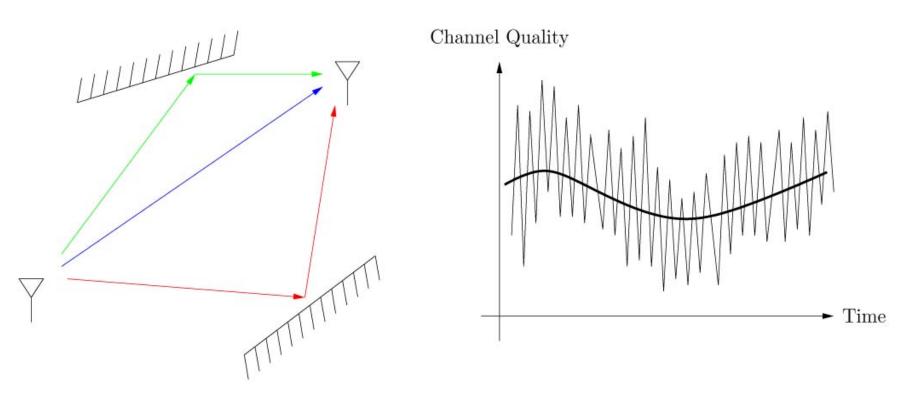

 Pathloss Receive Antenna Aperture - Due to conservation of energy Trans mit Antenna Enabler of cellular communication Shadowing - Due to blocking ol Fading reflection scattering – Due to multipath comp LOS

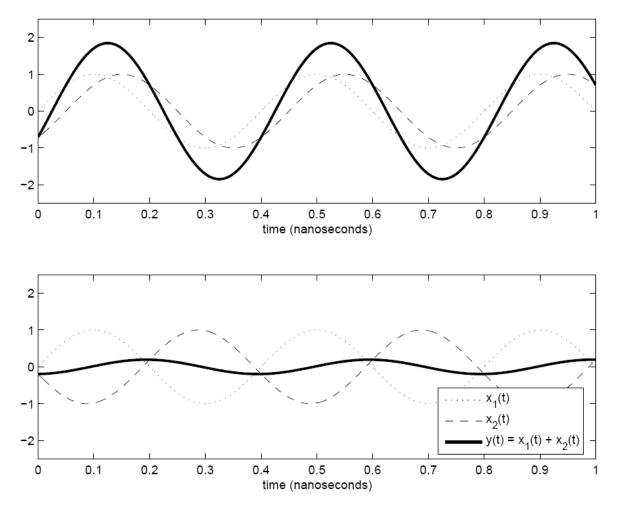
Fig. 2.15 Multipath components


diffraction

Overall

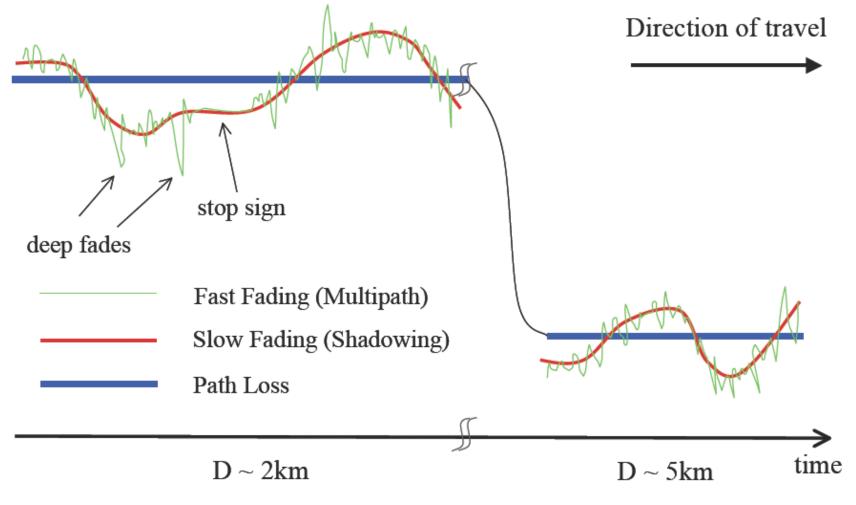
Wireless Multipath Channel

Channel varies at two spatial scales:


- * Large scale fading: path loss, shadowing
- * Small scale fading:

Multi-path fading (frequency selectivity, coherence b/w, ~500kHz),

Doppler (time-selectivity, coherence time, ~2.5ms)


MultiPath Interference: Constructive & Destructive

The difference between constructive interference (top) and destructive interference (bottom) at $f_c = 2.5$ GHz is less than 0.1 nanoseconds in phase, which corresponds to about 3 cm.

Mobile Wireless Channel w/ Multipath

Goal

- We wish to understand how physical parameters such as
 - carrier frequency
 - mobile speed
 - bandwidth
 - delay spread
 - angular spread

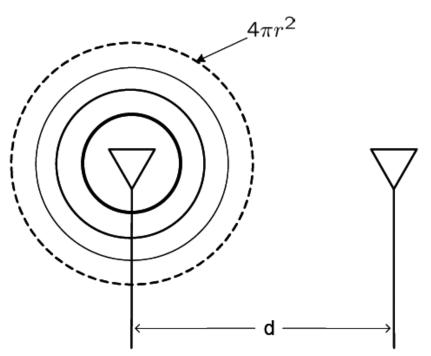
impact how a wireless channel behaves from the cell planning and communication system point of view.

• We start with deterministic <u>physical</u> model and progress towards <u>statistical</u> models, which are more useful for design and performance evaluation.

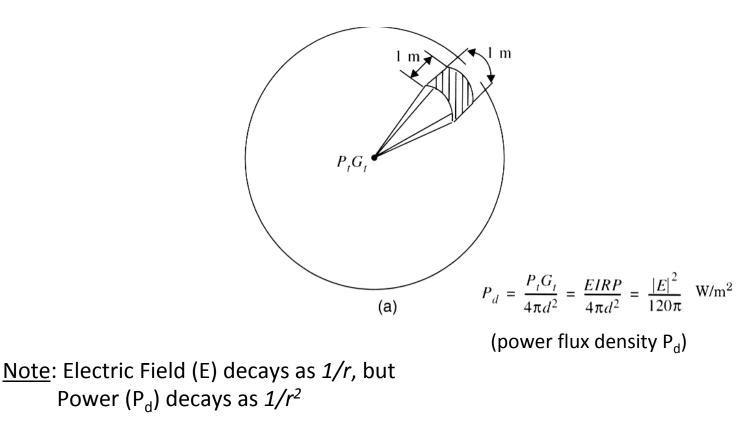
Large-scale fading: Cell-Site Planning

- In free space, received power attenuates like 1/r².
- With reflections and obstructions, can attenuate even more rapidly with distance. Detailed modelling complicated.
- Time constants associated with variations are very long as the mobile moves, many seconds or minutes.
- More important for cell site planning, less for communication system design.

Path Loss Modeling


- Maxwell's equations
 Complex and impractical
- Free space path loss model
 Too simple
- Ray tracing models

 Requires site-specific information
- Empirical Models
 - Don't always generalize to other environments
- Simplified power falloff models
 - Main characteristics: good for high-level analysis


Free-Space-Propagation

- If oscillating field at transmitter, it produces three components:
 - The electrostatic and inductive fields that decay as 1/d² or 1/d³
 - The EM radiation field that decays as 1/d (power decays as 1/d²)

Free-space and received fields: Path Loss

Path Loss in dB:

$$P_L \, \mathrm{d}\mathbf{B} = 10 \log_{10} \frac{P_t}{P_r} \, \mathrm{d}\mathbf{B}. \qquad \qquad \frac{P_r}{P_t} = \left[\frac{\sqrt{G_l}\lambda}{4\pi d}\right]^2$$

 $\sqrt{G_l}$ is the product of the transmit and receive antenna field radiation patterns in the LOS direction.

Decibels: dB, dBm

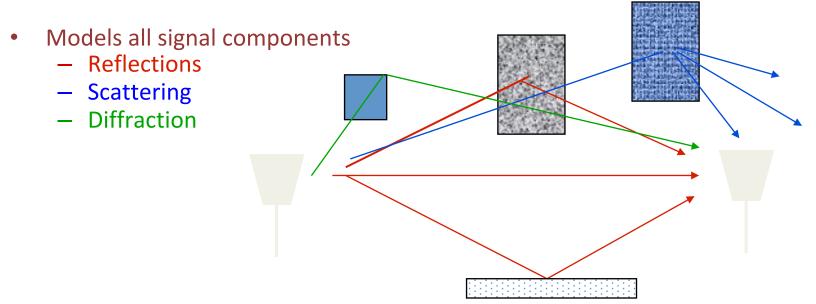
 dB (Decibel) = 10 log 10 (Pr/Pt) Log-ratio of two signal levels. Named after Alexander Graham Bell. For example, a cable has 6 dB loss or an amplifier has 15 dB of gain. System gains and losses can be added/subtracted, especially when changes are in several orders of magnitude.

• dBm (dB milliWatt)

Relative to 1mW, i.e. 0 dBm is 1 mW (milliWatt). Small signals are -ve (e.g. -83dBm). Typical 802.11b WLAN cards have +15 dBm (32mW) of output power. They also spec a -83 dBm RX sensitivity (minimum RX signal level required for 11Mbps reception).

For example,

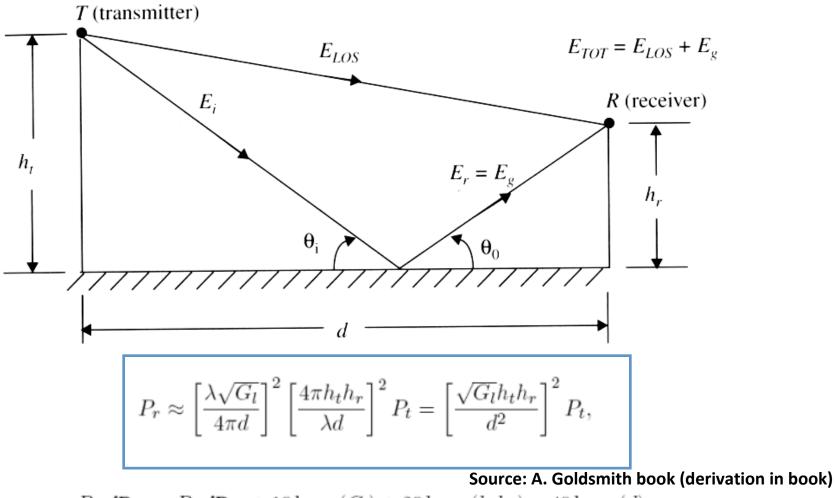
- 33dBm is 2W Macro Base Station
- 20dBm is 100mW WiFi
- 7dBm is 5mW 3G Femtocell


Path Loss: <u>Range</u> vs <u>Bandwidth</u>

Tradeoff

- Frequencies < 1 GHz are often referred to as "beachfront" spectrum. Why?
- <u>**1.</u>** High frequency RF electronics have traditionally been harder to design and manufacture, and hence more expensive. [less so nowadays]</u>
- **<u>2.</u>** Pathloss increases ~ $O(f_c^2)$
 - A signal at 3.5 GHz (one of WiMAX's candidate frequencies) will be received with about <u>20 times less power than at 800 MHz</u> (a popular cellular frequency).
 - Effective path loss exponent also increases at higher frequencies, due to increased absorption and attenuation of high frequency signals
- Tradeoff:
 - Bandwidth at higher carrier frequencies is more plentiful and less expensive.
 - Does not support large transmission ranges.
 - (also increases problems for mobility/Doppler effects etc)
- WIMAX Choice:
 - Pick any two out of three: high data rate, high range, low cost.

Ray Tracing

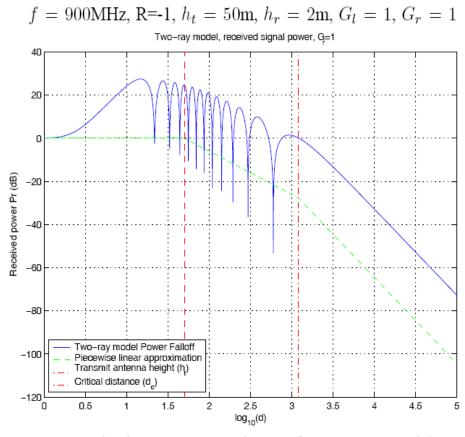

• Diffraction: signal "bends around" an object in its path to the receiver:

Diffraction Path loss exceeding 100 dB

- Error of the ray tracing approximation is smallest when the receiver is many wavelengths from the nearest scatterer, and all the scatterers are large relative to a wavelength and fairly smooth.
 - Good match w/ empirical data in rural areas, along city streets (Tx/Rx close to ground), LAN with adjusted diffraction coefficients

Classical 2-ray Ground Bounce model

 $P_r \ \mathrm{dBm} = P_t \ \mathrm{dBm} + 10 \log_{10}(G_l) + 20 \log_{10}(h_t h_r) - 40 \log_{10}(d).$

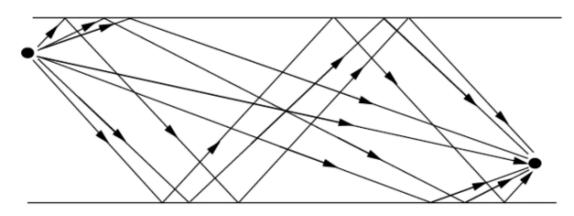


2-ray model: distance effect, critical distance

- $d < h_t$: constructive i/f
- h_t < d < d_c: constructive and destructive i/f (multipath fading upto critical distance)
- *d_c < d:* only destructive interference

 $\dot{d}_c = 4h_t h_r / \lambda,$

 Piecewise linear approximation w/ slopes 0, -20 dB/decade, -40 dB/ decade



Received Power versus Distance for Two-Ray Model.

Source: A. Goldsmith book

10-Ray Model: Urban Microcells

- Ground and 1-3 wall reflections
- Falloff with distance squared $(d^{-2})!$
 - Dominance of the multipath rays which decay as d^{-2} , ...
 - ... over the combination of the LOS and ground-reflected rays (the two-ray model), which decays as d^{-4} .
- *Empirical studies:* $d^{-\gamma}$, where γ lies anywhere between two and six

Simplified Path Loss Model

- Used when path loss dominated by reflections.
- Most important parameter is the path loss exponent γ, determined empirically.

$$P_r = P_t K \left[\frac{d_0}{d} \right]^{\gamma}, \qquad 2 \le \gamma \le 8$$

- <u>Cell design impact:</u> If the radius of a cell is reduced by half when the propagation path loss exponent is 4, the transmit power level of a base station is reduced by 12dB (=10 log 16 dB).
 - Costs: More base stations, frequent handoffs

Typical large-scale path loss

Path Loss Exponents for Di	ifferent Environments
----------------------------	-----------------------

Environment	Path Loss Exponent, <i>n</i>
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed urban cellular radio	3 to 5
In building line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

Environment	γ range
Urban macrocells	3.7-6.5
Urban microcells	2.7-3.5
Office Building (same floor)	1.6-3.5
Office Building (multiple floors)	2-6
Store	1.8-2.2
Factory	1.6-3.3
Home	3

Source: Rappaport and A. Goldsmith books

Empirical Models

- Okumura model
 - Empirically based (site/freq specific)
 - Awkward (uses graphs)
- Hata model
 - Analytical approximation to Okumura model
- Cost 136 Model:
 - Extends Hata model to higher frequency (2 GHz)
- Walfish/Bertoni:
 - Cost 136 extension to include diffraction from rooftops
- Erceg:
 - Extends Hata-Okumura with empirical data

Commonly used in cellular system simulations

Empirical Path Loss: Okamura, Hata, COST231

- Empirical models include effects of path loss, shadowing and multipath.
 - Multipath effects are averaged over several wavelengths: local mean attenuation (LMA)
 - Empirical path loss for a given environment is the average of LMA at a distance d over all measurements
- <u>Okamura</u>: based upon Tokyo measurements. 1-100 lm, 150-1500MHz, base station heights (30-100m), median attenuation over free-space-loss, 10-14dB standard deviation.

 $P_L(d) \, d\mathbf{B} = L(f_c, d) + A_{mu}(f_c, d) - G(h_t) - G(h_r) - G_{AREA}$

• Hata: closed form version of Okamura

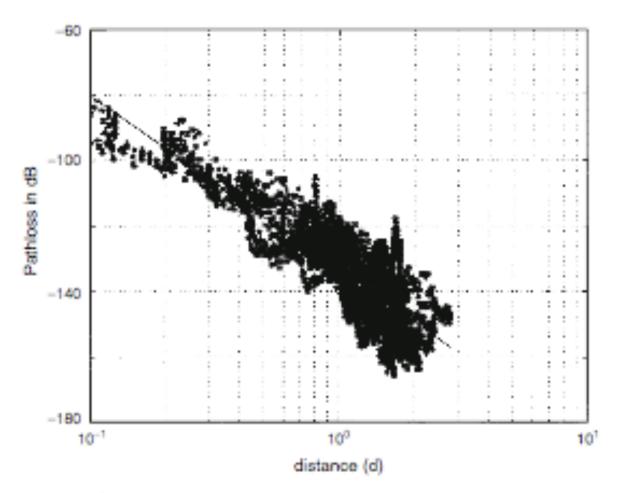
 $P_{L,urban}(d) \ \mathbf{dB} = 69.55 + 26.16 \log_{10}(f_c) - 13.82 \log_{10}(h_t) - a(h_r) + (44.9 - 6.55 \log_{10}(h_t)) \log_{10}(d).$ (2.31)

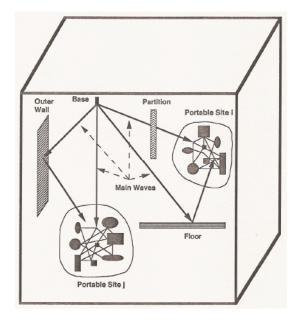
<u>COST 231:</u> Extensions to 2 GHz

 $P_{L,urban}(d) d\mathbf{B} = 46.3 + 33.9 \log_{10}(f_c) - 13.82 \log_{10}(h_t) - a(h_r) + (44.9 - 6.55 \log_{10}(h_t)) \log_{10}(d) + C_M, \quad (2.34)$

Source: A. Goldsmith book

Erceg Model.




Fig. 2.17 Pathloss for a macrocell in the Seattle area: base station height is 25 m. Source: Erceg, IEEE JSAC, 1999

Indoor Models

- 900 MHz: 10-20dB attenuation for 1-floor, 6-10dB/floor for next few floors (and frequency dependent)
- Partition loss each time depending upon material (see table)
- Outdoor-to-indoor: building penetration loss (8-20 dB), decreases by 1.4dB/floor for higher floors. (reduced clutter)
- Windows: 6dB less loss than walls (if not lead lined)

Partition Type	Partition Loss in dB
Cloth Partition	1.4
Double Plasterboard Wall	3.4
Foil Insulation	3.9
Concrete wall	13
Aluminum Siding	20.4
All Metal	26

Shadowing

Figure 3.3: Shadowing can cause large deviations from path loss predictions.

• Log-normal model for shadowing r.v. (χ)

Log-Normal Shadowing

- Assumption: shadowing is dominated by the attenuation from <u>blocking</u> objects.
- Attenuation of for depth *d*:

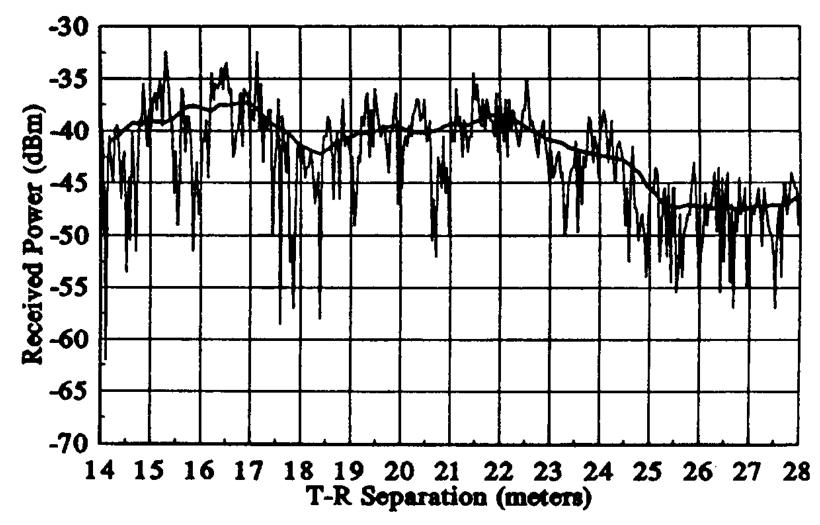
 $s(d) = e^{-\alpha d},$

(α : attenuation constant).

• Many objects:

 $s(d_t) = e^{-\alpha \sum di} = e^{-\alpha dt}$, $d_t = \sum d_i$ is the sum of the random object depths

Cental Limit Theorem (CLT): αd_t = log s(d_t) ~ N(μ, σ).
 – log s(d_t) is therefore log-normal



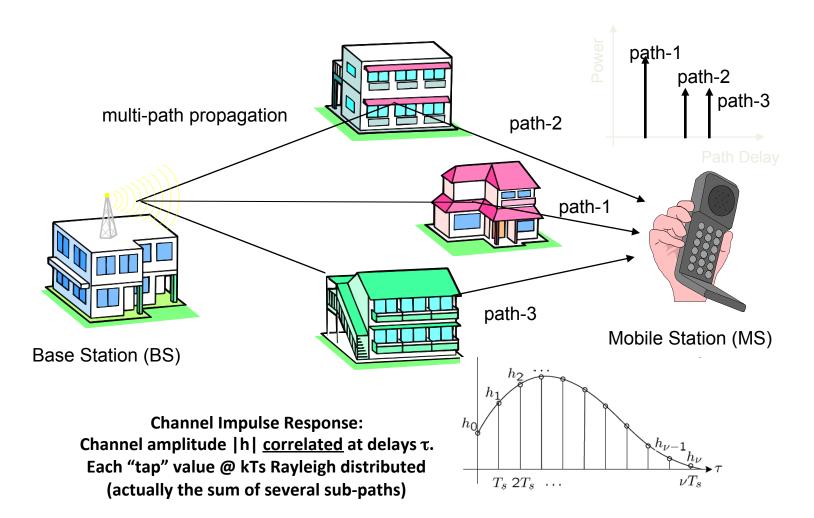
Small-scale Multipath fading: System Design

- Wireless communication typically happens at very high carrier frequency. (eg. f_c = 900 MHz or 1.9 GHz for cellular)
- Multipath fading due to constructive and destructive interference of the transmitted waves.
- Channel varies when mobile moves a distance of the order of the carrier wavelength. This is about 0.3 m for 900 Mhz cellular.
- For vehicular speeds, this translates to channel variation of the order of 100 Hz.
- *Primary driver* behind wireless communication system design.

Fading: Small Scale vs Large Scale

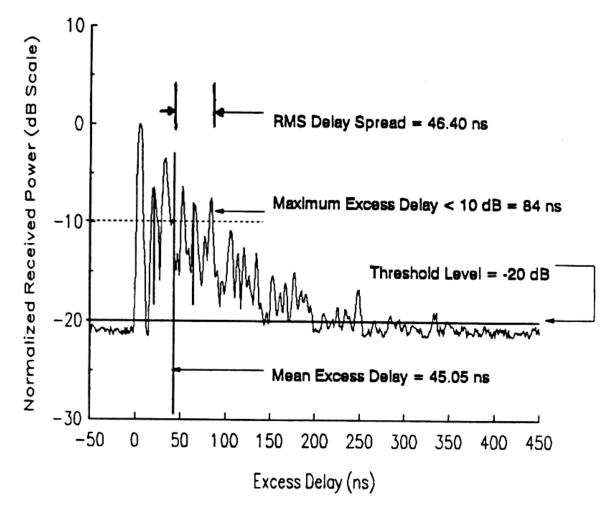
Source #1: Single-Tap Channel: Rayleigh Dist'n

- Path loss, shadowing => average signal power loss
 - Fading around this average.
 - Subtract out average => fading modeled as a zero-mean random process
- Narrowband Fading channel: Each symbol is long in time
 - The channel h(t) is assumed to be uncorrelated across symbols => single "tap" in time domain.
- Fading w/ many scatterers: Central Limit Theorem
 - In-phase (cosine) and quadrature (sine) components of the snapshot r(0), denoted as r₁ (0) and r_Q(0) are independent Gaussian random variables.


- Envelope Amplitude:
$$|r| = \sqrt{r_I^2 + r_Q^2}$$
 is Rayleigh

– Received Power:

$$|r|^2 = r_I^2 + r_Q^2$$
 is exponentially distributed.



Source #2: Multipaths: Power-Delay Profile

Eg: Power Delay Profile (WLAN/ indoor)

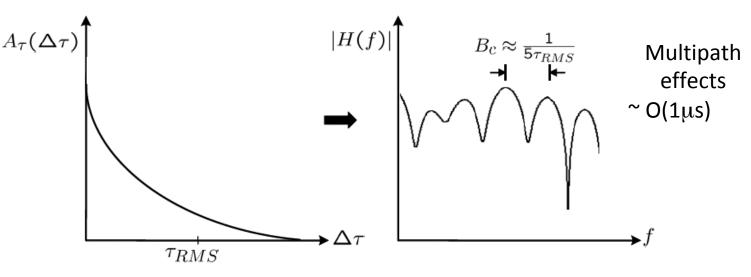
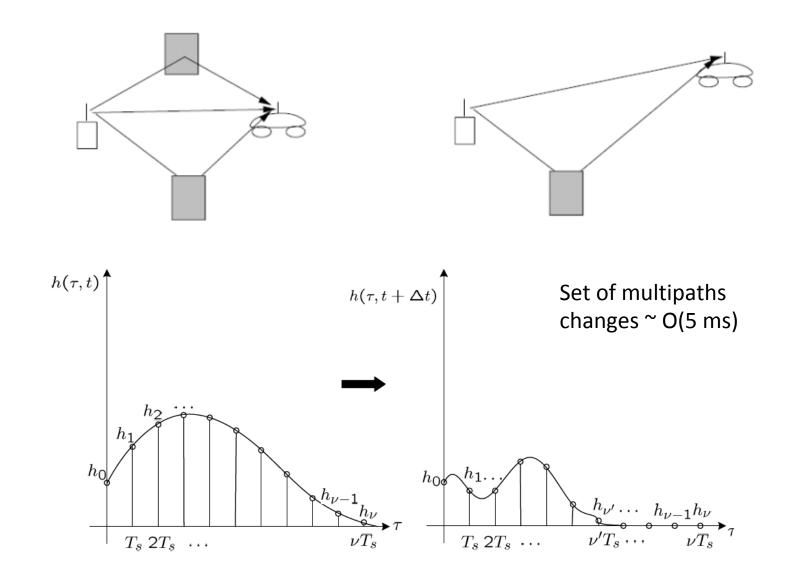


Figure 5.10 Example of an indoor power delay profile; rms delay spread, mean excess delay, maximum excess delay (10 dB), and threshold level are shown.


<u>Multipath</u>: Time-Dispersion => Frequency Selectivity

- The impulse response of the channel is correlated in the time-domain (sum of "echoes")
 - Manifests as a power-delay profile, dispersion in channel autocorrelation function A($\Delta \tau$)
- Equivalent to "selectivity" or "deep fades" in the frequency domain
- **Delay spread**: $\tau \sim 50$ ns (indoor) 1µs (outdoor/cellular).
- **<u>Coherence Bandwidth</u>**: Bc = 500kHz (outdoor/cellular) 20MHz (indoor)
- <u>Implications</u>: High data rate: symbol smears onto the adjacent ones (ISI).

, the shape of the multipath intensity profile $A_{\tau}(\Delta \tau)$ determines the correlation pattern of the channel frequency response (bottom)

Source #3: Doppler: Non-Stationary Impulse Response.

Doppler: Dispersion (Frequency) => Time-Selectivity

- The doppler power spectrum shows dispersion/flatness ~ doppler spread (100-200 Hz for vehicular speeds)
 - Equivalent to "selectivity" or "deep fades" in the time domain correlation envelope.
 - Each envelope point in time-domain is drawn from Rayleigh distribution. But because of Doppler, it is not IID, but correlated for a time period ~ Tc (correlation time).
- **Doppler Spread:** Ds ~ 100 Hz (vehicular speeds @ 1GHz)
- **<u>Coherence Time</u>**: Tc = 2.5-5ms.
- Implications: A deep fade on a tone can persist for 2.5-5 ms! Closed-loop estimation is valid only for 2.5-5 ms.

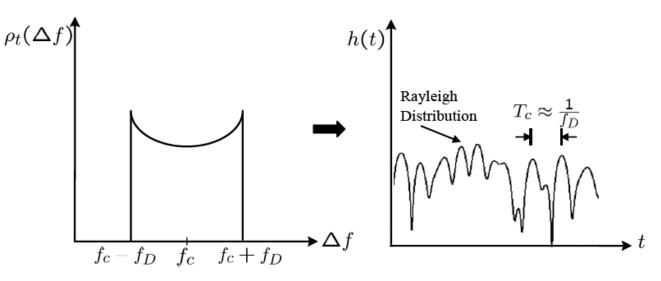


Figure 3.18: The shape of the Doppler power spectrum $\rho_t(\Delta f)$ determines the correlation envelope of the channel in time (top).

Fading Summary: Time-Varying Channel Impulse Response

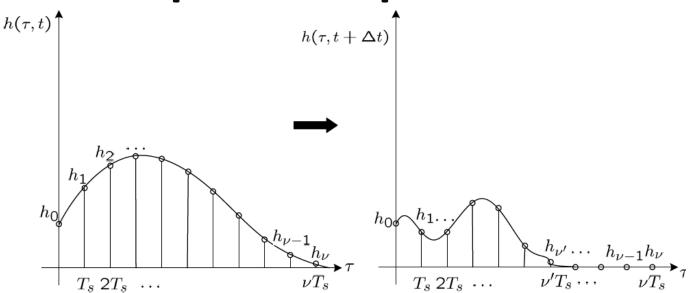


Figure 3.12: The delay τ corresponds to how *long* the channel impulse response lasts. The channel is time varying, so the channel impulse response is also a function of time, i.e. $h(\tau, t)$, and can be quite different at time $t + \Delta t$ than it was at time t.

- **<u>#1</u>**: At each tap, channel gain |h| is a Rayleigh distributed *r.v.*. The random *process* is <u>not</u> IID.
- <u>**#2:</u>** Response spreads out in the time-domain (τ), leading to inter-symbol interference and deep fades in the frequency domain: "*frequency-selectivity*" caused by <u>multi-path fading</u></u>
- <u>#3:</u> Response completely vanish (deep fade) for certain values of t: "*Time-selectivity*" cause by <u>doppler effects</u> (frequency-domain dispersion/spreading)

Dispersion-Selectivity Duality

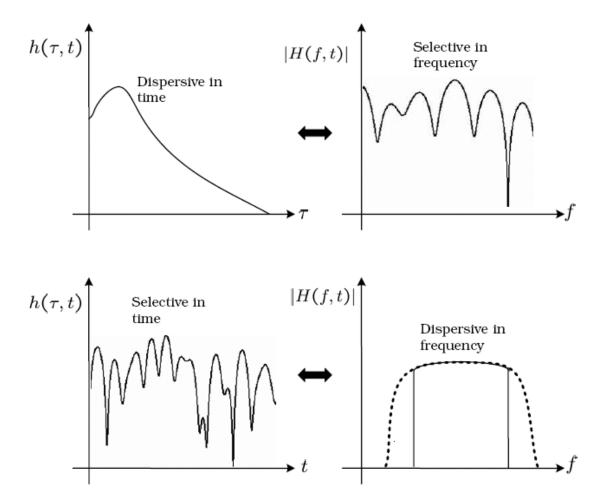
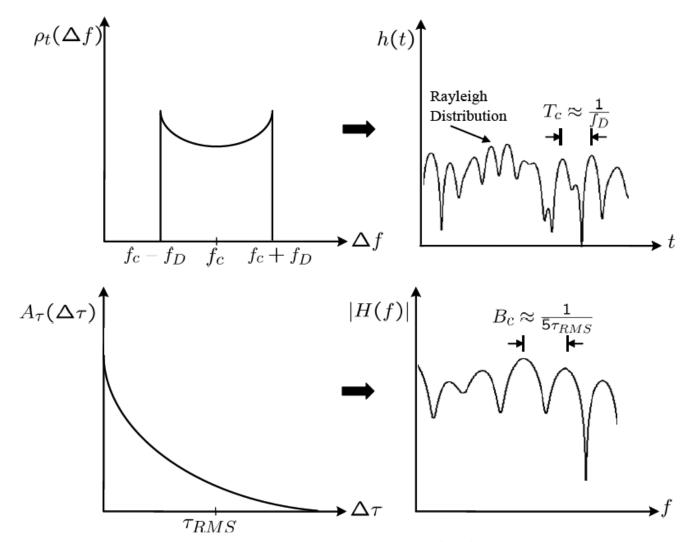
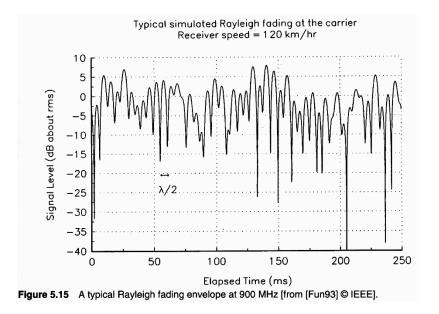


Figure 3.19: The dispersion-selectivity duality: Dispersion in time causes frequency selectivity, while dispersion in frequency causes time selectivity.

Dispersion-Selectivity Duality (Contd)




Figure 3.18: The shape of the Doppler power spectrum $\rho_t(\Delta f)$ determines the correlation envelope of the channel in time (top). Similarly, the shape of the multipath intensity profile $A_\tau(\Delta \tau)$ determines the correlation pattern of the channel frequency response (bottom)

Fading: Jargon

- Flat fading: no multipath ISI effects.
 - Eg: narrowband, indoors
- Frequency-selective fading: multipath ISI effects.
 - Eg: broadband, outdoor.
- **<u>Slow fading:</u>** no doppler effects.
 - Eg: indoor Wifi home networking
- Fast Fading: doppler effects, time-selective channel
 Eg: cellular, vehicular
- Broadband cellular + vehicular => Fast + frequencyselective

Rayleigh, Ricean, Nakagami-m fading

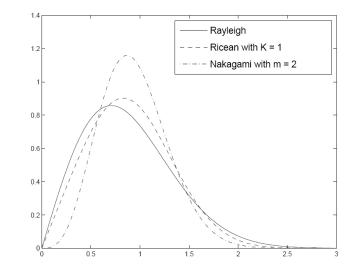


Figure 3.16: Probability distributions $f_{|r|}(x)$ for Rayleigh, Ricean w/ K = 1, and Nakagami with m = 2. All have average received power $P_r = 1$.

<u>Ricean</u> used when there is a dominant LOS path. K parameter: strength of LOS to non-LOS. K = 0 => Rayleigh

<u>Nakagami-m</u> distribution can in many cases be used in tractable analysis of fading channel performance. More general than Rayleigh and Ricean.

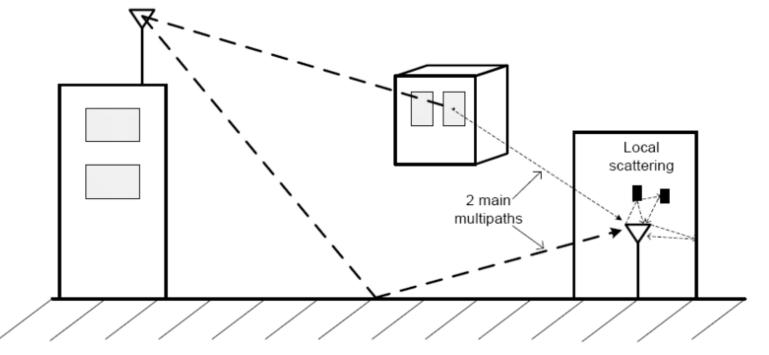
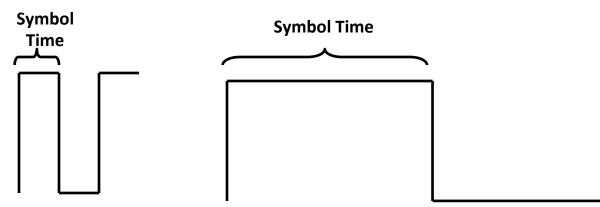
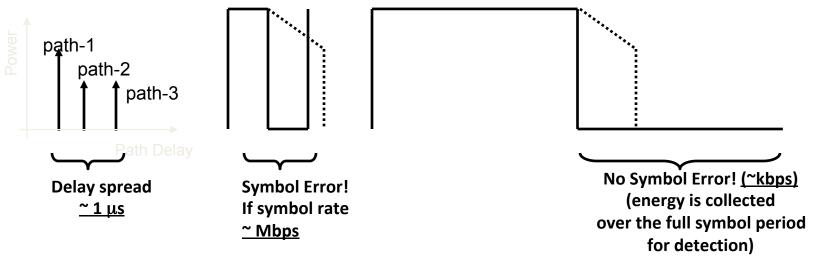
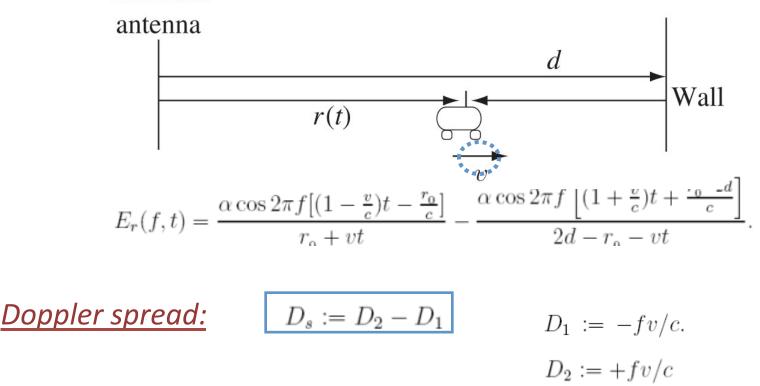

Effect of Rayleigh Fading

Figure 3.22: Flat fading causes a loss of at least 20-30 dB at reasonable BER values.

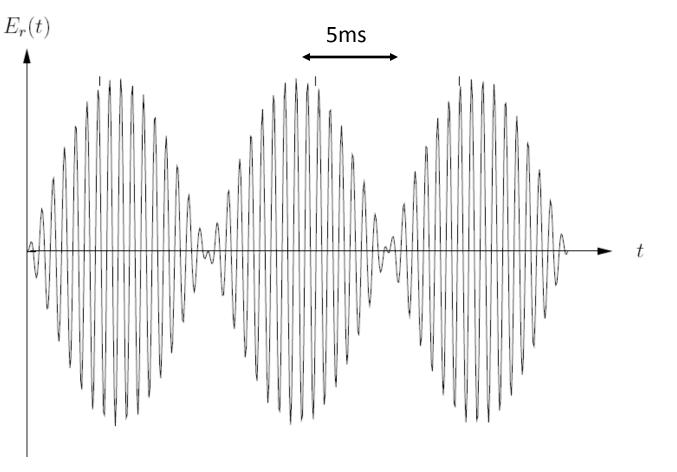

Broadband Fading: Multipath Frequency Selectivity


- A few major multipaths, and lots of local scatterers => each channel sample "tap" can be modeled as Rayleigh
 - Ă "tap" period generally shorter than a symbol time.
- Correlation between tapped values.

Power Delay Profile => Inter-Symbol interference

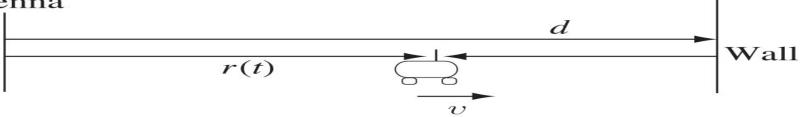


- Higher bandwidth => higher symbol rate, and smaller time per-symbol
- Lower symbol rate, more time, energy per-symbol
- If the delay spread is longer than the symbol-duration, symbols will "smear" onto adjacent symbols and cause symbol errors


Doppler: Reflecting Wall, Moving Antenna Transmit

- Note: opposite sign for doppler shift for the two waves
- Effect is roughly like the *product of two sinusoids*

Doppler Spread: Effect


- Fast oscillations of the order of GHz
- Slow envelope oscillations order of 50 Hz => peak-to-zero every 5 ms
- A.k.a. <u>Channel coherence time (Tc</u>) = c/4fv

Two-path (mobile) Example

- v= 60 km/hr, fc = 900 MHz:
- Direct path has Doppler shift of roughly -50 Hz = fv/c
- Reflected path has shift of +50 Hz
- Doppler spread = 100 Hz

Transmit antenna

Doppler Spread: Effect

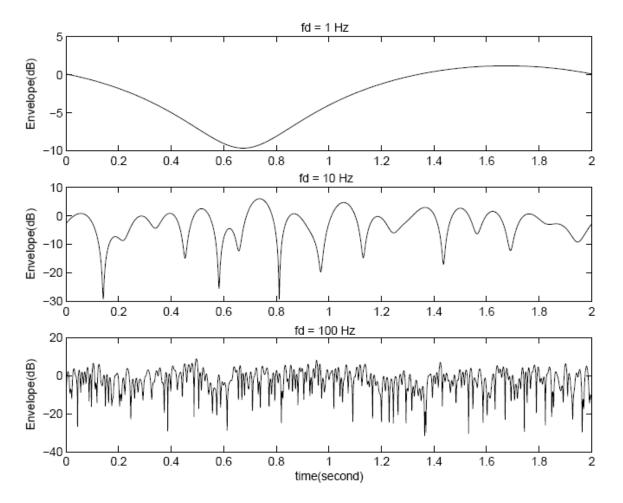


Figure 3.20: A sample output of the provide Rayleigh fading Matlab function for Doppler frequencies of $f_D = 1, 10, \text{ and } 100 \text{ Hz}.$

Angular Spread: Impact on Spatial Diversity Space-time channel models:

- Mean/RMS angular spreads (similar to multipath delay spread)
- The time-varying impulse response model can be extended to incorporate AOA (angle-of-arrival) for the array.
- A(θ): average received signal power as a function of AoA θ .
- Needs appropriate linear transformation to achieve full MIMO gains. $\int_{-\pi}^{\pi} \theta A(\theta) d\theta$

$$\overline{a}(\theta_n(t)) = [e^{-j\psi_{n,1}}, \dots, e^{-j\psi_{n,M}}]^T$$

$$\mu_{\theta} = \frac{\int_{-\pi}^{\pi} \theta A(\theta) d\theta}{\int_{-\pi}^{\pi} A(\theta) d\theta},$$

$$\sigma_{\theta} = \sqrt{\frac{\int_{-\pi}^{\pi} (\theta - \mu_{\theta})^2 A(\theta) d\theta}{\int_{-\pi}^{\pi} A(\theta) d\theta}},$$

Angular Spread and Coherence

Distance

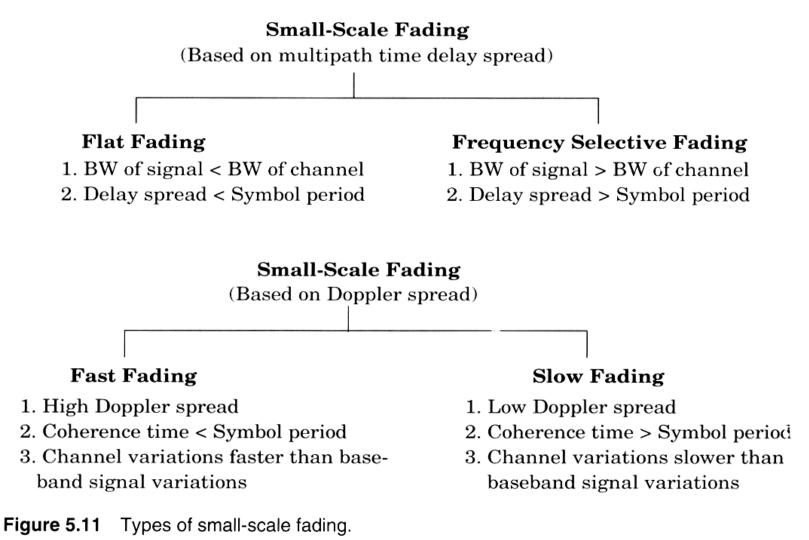
- θ RMS: RMS angular spread of a channel
 - Refers to the statistical distribution of the angle of the arriving energy.
- Large θ RMS => channel energy is coming in from many directions,
 - Lot of local scattering, and this results in more statistical diversity in the channel based upon AoA
- Small θ RMS => received channel energy is more focused.
 - More focused energy arrival results in less statistical diversity.
- The dual of angular spread is coherence distance, Dc.
 - As the angular spread ↑, the coherence distance ↓, and vice versa.
 - A coherence distance of d means that any physical positions separated by d have an essentially uncorrelated received signal amplitude and phase.

个freq => better angular diversity!

Key Wireless Channel Parameters

Table 3.1: Key wireless channel parameters

Symbol	Parameter		
α	path loss exponent		
σ_s	Log normal shadowing standard deviation		
f_D	Doppler spread (maximum Doppler frequency), $f_D = \frac{vf_c}{c}$		
T_c	Channel coherence time, $T_c \approx f_D^{-1}$		
$\tau_{\rm max}$	Channel delay spread (maximum)		
$\tau_{\rm RMS}$	Channel delay spread (RMS)		
B_c	Channel coherence bandwidth, $B_c \approx \tau^{-1}$		
$\theta_{\rm RMS}$	Angular spread (RMS)		



Fading Parameter Values

Key channel parameters and time-scales	Symbol	Representative values
Carrier frequency	$f_{\rm c}$	1 GHz
Communication bandwidth	Ŵ	1 MHz
Distance between transmitter and receiver	d	1 km
Velocity of mobile	v	64 km/h
Doppler shift for a path	$D = f_{\rm c} v/c$	50 Hz
Doppler spread of paths corresponding to		
a tap	D_{s}	100 Hz
Time-scale for change of path amplitude	d/v	1 minute
Time-scale for change of path phase	1/(4D)	5 ms
Time-scale for a path to move over a tap	c/(vW)	20 s
Coherence time	$T_{\rm c} = 1/(4D_{\rm s})$	2.5 ms
- Đelay-spread	$-T_{\rm d}$	-1µ±s
Coherence bandwidth	$\tilde{W}_{\rm c} = 1/(2T_{\rm d})$	500 kHz

Small-Scale Fading Summary

Fading: Design Impacts (Eg: Wimax)

Table 3.3: Summary of Broadband Fading Parameters, with Rules of Thumb						
Quantity	If "Large"?	If "Small" ?	WiMAX Design Impact			
Delay Spread, τ	If $\tau \gg T$, then fre-	If $\tau \ll T$, then fre-	The larger the delay spread rela-			
	quency selective	quency flat	tive to the symbol time, the more			
			severe the ISI.			
Coherence Band-	If $\frac{1}{B_c} \ll T$, then fre-	If $\frac{1}{B_c} \gg T$, then fre-	Provides a guideline to subcarrier.			
width, B_c	quency flat	quency selective	width $B_{\rm sc} \approx B_c/10$, and hence			
****			number of subcarriers needed in			
			OFDM: $L \ge 10B/B_c$.			
Doppler spread,	If $f_c v \gg c$, then fast fad-	If $f_c v \leq c$, then slow	As $f_D/B_{\rm sc}$ becomes nonnegligi-			
$f_D = \frac{f_c v}{c}$	ing	fading	ble, subcarrier orthogonality is			
			compromised			
Coherence Time,	If $T_c \gg T$, then slow	If $T_c \leq T$, then fast fad-	T_c small necessitates frequent			
T_c	fading	ing	channel estimation and limits the			
			OFDM symbol duration, but pro-			
		***************************************	vides greater time diversity.			
Angular Spread,	Non LOS channel, lots	effectively LOS channel,	Multi-antenna array design,			
$\theta_{\rm RMS}$	of diversity	not much diversity	beamforming vs. diversity			
Coherence Dis-	effectively LOS channel,	Non LOS channel, lots	Determines antenna spacing			
tance, D_c	not much diversity	of diversity	ALVERS'IT			

Time-Invariance Assumption: Typical Channels are Underspread

- Coherence time Tc depends on carrier frequency and vehicular speed, of the order of milliseconds or more.
- Delay spread Td depends on distance to scatterers, of the order of nanoseconds (indoor) to microseconds (outdoor).
- Channel can be considered as time-invariant over a long time scale ("underspread").
 - Transfer function & frequency domain methods can still be applied to this approximately LTI model

Doppler Spread

$$D_s := \max_{i,j} |f_c au_i'(t) - f_c au_j'(t)|$$

- Doppler spread is proportional to:
- the carrier frequency fc;
- the angular spread of arriving paths.

$$\tau_i'(t) = \frac{v}{c} \cos \theta_i$$

 where θi is the angle the direction of motion makes with the i th path.

Degrees of Freedom (Complex Dimensions) Discrete symbol x[m] is the mth sample of the transmitted signal;

- there are W samples per second.
- Continuous time signal x(t), $1 \le W$ discrete symbols
- Each discrete symbol is a complex number;
 - It represents one (complex) dimension or degree of freedom.
 - Bandlimited x(t) has W degrees of freedom per second.
 - Signal space of complex continuous time signals of duration T which have most of their energy within the frequency band [-W/2,W/2] has dimension approximately WT.
- Continuous time signal with bandwidth W can be represented by W complex dimensions per second.
- Degrees of freedom of the channel to be the dimension of the received signal space of y[m]

Summary

- We have understood both qualitatively and quantitatively the concepts of path loss, shadowing, fading (multi-path, doppler), and some of their design impacts.
- We have understood how time and frequency selectivity of wireless channels depend on key physical parameters.
- We have come up with linear, LTI and statistical channel models useful for analysis and design.

References

- Mobile Broadband by Ergen
- ECSE6961 Slides of Kalyanaraman
- Wireless Communication by Goldsmith
- Fundamentals of Wireless by Tse

