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ap = §)(5) (5 67) (6.70)

where d = 2R is the diameter of the circular tube. The first term on the
right hand side of the above equation is the friction factor and may be
given by

f =‘%§" {6.71)

Then Equation (6.70) takes the following form
ap = F(5)(F o72) (6.72)

Now, defining the Reynolds number, which is based on the diameter of the
circular tube as

<|§l

Re, =

q" (6.73)

the friction factor in a circular tube is
f = -RE— (6.74)

The second term on the right hand side of Equation (6.72) indicates that
the pressure drop is proportional to the length of the circular tube,
which is expressed in terms of the diameter of the circular tube.Finally,
the last term on the right hand side of Equation (6.72) is the dynamic
pressure,

6.3.4 Viscous Flow Between Two Concentric Cylinders Due to the Rotation
of the Inner Cylinder

Consider the steady flow of an incompressible fluid with constant
viscosity in the absence of body forces between two infinitely long
concentric cylinderst which is caused by the rotation of the inner
cylinder at a constant angular velocity of w, as shown in Figure 6.6. In
this case, the continuity equation {(4.11a) and the Navier-Stokes equa-
tions (6.14)} in the r,  and z-directions may be given as follows:

™M .
e §




290 FLUID MECHANICS
NAVIER-STOKES EQUATION 291

dyy Ly 1 w2 1
ap = €35} 072 (6.78)3 golrv) eV eV, (6.75)
F~ar *t7e tez -0
where d = 2R is the diameter of the circular tube. The first term on the §
right hand side of the above equation is the friction factor and may 5;; av aV av v
iven b 3 r _r r__o__18p
J y Veor *VYe3s Vs cF o
3 3
re (6.71) » )
: +\,[1°_(ra_vr)+.1_ _ai'*.avr_i_g i‘.{.?..] (6.76)
Then Equation (6.70) takes the following form rar er r2 562 . az2 2 208
Ly,! <2 3
= f(H)(Z pVe) {6.72): ava v ave aVe e 1 op
\ Vear *T @ tVemz YT OC T3 e
Now, defining the Reynolds number, which is based on the diameter of th_
circular tube as 2 2
s 2r By 1 2 +—9-av --v—°-+gavr] (6.77)
- “ Virar' Br 22 2 z2" 208 .
vd r< ae az r
Rced = — (6.7
v
the friction factor in a circular tube is " aVz +_ﬂg avz sV avz _.1ap
roar r ae z a8z p 8z
£ = gi_
e
d av a2V, 8%y
: : PV AR I e S B e . &) (6.78)
, . . o 158 = r ar' ar 2 .2 2 :
The second term on the right hand side of Equation (6.72) indicates t%ju rToee 0z
the pressure drop is proportional to the length of the circular t

A careful investigation of Figure 6.6 indicates that the fluid is flowing
+in circular paths about the center, so that the velocity component in
|- the r and z-directions are zero. Then Equation (6.75) reduces to

which is expressed in terms of the diameter of the circular tube.Finallys
the last term on the right hand side of Equation (6.72) is the dynanh:
pressure.

E
E

3“9 : (6.79)

6.3.4 Viscous Flow Between Two Concentric Cylinders Due to the Rotatid 5

of the Inner Cylinder

3 ‘5 Since the flow in the annular space may assumed to be axisymmetric, then

Consider the steady flow of an incompressible fluid with constﬁr ?;the other components of the velocity are also zero. One might also note
viscosity in the absence of body forces between two  infinitely fﬁﬂ’ . that the cylinders have infinite length in the z-direction, so that the
concentric cylinders, which is caused by the rotation of the fi ghflow patterns are similar at all planes which are parallel to the re-
cylinder at a constant angular velocity of w, as shown in Figure 6. 5' ¢ Plane. For this reason, the derivatives of the properties with respect
this case, the continuity equation {4.11a) and the Navier-Stokes 'j“ f to z may taken to be zero. Then Equations (6.76), (6.77) and (6.78)
tions (6.14) in the r, ® and z-directions may be given as follows: § reduce to

T
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yl
/f

Figure 6.6 Viscous flow between two concentric cylinders due to the

rotation of the inner cylinder

% _p ye
ar = r Vs
1 9—(r-3!9) -.!.., 0
r ar' ar 2
r
op _
a0

6.3.4.1 Velocity Distribution

(6.80)

(6.81)

(6.82)

As laong as the velocity component in the e-direction is not func-
tions of e and z, then it must only be a function of r. Therefore, the
partial derivatives with respect to r in Equation (6.81) may be replaced

with the total derivatives, so that
.
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dv v
d ) e _
‘a;(r &) T C 0
3y be rearranged 1o give
T
a2V v LI
2 ) ] _— o
rée——=4+r -V =0 // {6.83)
ar® o e 3'\ LN
point, one might introduce a new variable, g, such that
g=1Inr (6.84)

he partial derivatives of the tangential velocity with respect to

ne

2 2
Py 1 Pog 1 Ve 1 o e
a2 T dgl [ e " 2 g2 de

Equation'(G.BB) takes the following form:

2
a2y
e
——2 _y=0
g2 °

may be solved for the tangential velocity component as

. pok -£
Ve = Ae® + Be
onstants to be determined from the boundary

y A and B are the ¢
it is possible to obtain

tions. Now, using equation (6.84),

"™~ (6.85)
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Ve =0 at r = R0

mR?
A= 1
RZ . g2
i
208
B e mRiRo
2 o2
Ri-RO

Hence the tangential component of the velocity is

wR? R2
¥ :....._._..1_..-_ {r - __Q.)
8 g2 _ R2‘ r

i o

6.3.4.2 Pressure Distribution

Also, it is found that the pre--

then it must only be a function ¢ r. Therafore, tLi. . 'l

of the pressure in the r-direct:: TR (6.8
by a total derivative. Then

dp _ 2
dr ‘{;Ve

and with the aid of Equation (6.87} 1t :. pos<ii.e to obto.

6 PR " 2R Rg)
e
dr (R% - R%)2 roo3

i [

The above equation may now be integrated to give

{&.586a)

{6.86D)

£ nrtions of & and z,
derivative
be replaced
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2,4 4
R 2 R
i r 2 o
ek (T RN r-—2) 4 A (6.88)
P (Rf _ Rg)z 7 0 op2

where A is a constant of integration. For the complete determination of
the pressure field, one has to know a boundary condition for the
pressure.

6.3.4.3 Shear Stress Distribution

The shear stress distribution within the incompressible fluid in
the annular space between the two concentric cylinders may be obtained
by using Equation (6.15a) and {6.87)

2 p2
Vo,  2weRy Ry (6.89)

=3 7, 2
(Rl - Ro)r
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or for uniform flow throu.gh the exit area

8
(p¥Y) + p ¥ dA = 0
;T P ’ee_IA.

As long as the volume of the air in the control volume is constant, then
the time rate of change of the density of the air in the tank Is

PeVere  (4.73kg/m>)(3008/5)(130x10°8 n?) 3
.- . = -0.37 kg/n] }
_':E v (0.5 m3) =037 hafecy |

The minus sign indicates that there is a- decrease in the density of the
air in the tank. |

i 4.4 THE STREAM FUNCTION (

]

It is convenient to have a tool to describe the form of any |
particular pattern of fluid flow. An adequate description shquld portray
- the shape of the streamlines and the magnitude of the velocity at all
points of the flow field. A mathematical tool that serves this purpose
1' is the stream function, and it is a relation between the principle of
- _ conservation of mass and the streamlines, 1t is possible to define a
stream function either for a two-dimensional and incompressible flow or
‘ _ for a two-dimensional and steady flow,

4.4.1 The Stream Function.for a Two-Dimensional Flow of an
i Incompressible Fluid

For a two-dimensional flow §n the xy plane of the Cartesian _
coordinate systems, the continuity equation (4.11b) for an incompressible |
Tluid reduces to |

ox tay "

1f a continuous function ¢ = ¢{x,y,t), which is known as the stream

r,

li u 8.9 (4.21)
\

! function, is defined suc!n that

1

|

and v =-2¢% (4.22)

u = X

8¢
ay
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hen the continuity equation (4.21) will exactly be satisfied, since

(- %) -0 .

Bu 0 a ¢
ay ( )’a X

ax tay " ax 3y
The equation of 2 streamline for a two-dimensional flow may be
btained from Equation (3.24) as

udy - vdx = 0

;ubstituilng for the velocity components in terms of the stream function
rom Equation (4.22) ylelds

adxos—dyno

\1though the streamfunction is ¢ = ¢(x,y.,t}, at a certain instant of
ime, t,, it may be expressed as ¢ = ¢(x,y,t ) At this instant, the
tream function may be treated as though ¢ = ¢(x y), so that the above
quation becomes an exact or total differential, that is along an
nstantaneous streamline. Therefore, the stream function is constant
long an instantaneous streamline for a two-dimensional flow of an
incompressible fluid,

one should note that although the streamlines can be three-dimen-
;ional, the streamfunction can only be defined for two-dimensional flow
Fields. '

d¢=9'-tdx+ "dyso
If the flow is also steady, the stream function may be expressed as

, = ¢(x,y) and it is constant along a streamline at all times, since the
streaml ines do not change their position with time.
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¥
i! 2ol § i
!
L
|- Figure 4.12 Instantaneous streamlines in a two-dimensional flow of
1" an incompressible fluid ;
|

Q- JA V.h dA = L. (ui + vj).(1)dA = IA udA

But u = ay/ay and dA = bdy with b being the depth of the flow field,
| then the volumetric flow rate per unit depth is :

y
g [

Along line AB, x is constant, so that d¢ = (a¢/ay)dy. Therefore

f; similarly over area CD, V = ul + vj and @ = 3, then the volumetric flow
& rate is

l Q- [A V.7 dA < JA (ui + vi)(3)dA = JA vdA

! The volumetric flow rate per unit depth may be expressed in the following
form, since v = -g¢/ax and dA = bdx
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X
2
a
- o
X1

* along line CD y is constant, so that d¢ = {8¢/08x)dx. Therefore,

s the volumetric flow rate per unit depth between any two streamlines,
~and ¢, can be expressed as the numerical difference between the
nstant values of the stream function defining these two streamlines,
at is

=4, -4, (4.23)

In the re plane of the cylindrical coordinate system, the in-
mpressible continuity equation (4.11¢) reduces to

a(rvr) aV

e_
v *38 - 0 (4.24)

enit is yossible to define a stream funciiun,¢ = ¢{r.s,t), such that

V. =

3¢ )
r 3% and V= - 2% ‘ (4.25)

=5j -

ich satisfies the continuity equation (4.24) exactly. The flow in the
plane of the cylindrical coordinate system, which is also referred as
> axisymmetric flow, is characterized with identical flow patterns on
ry constant e plane. In this case, the incompressible continuity
iation (4.11¢) reduces to

1 a(rvr) av

Zz
-T +—32- =0 (4.26)
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4.4.2 The Stream Function for a Two-Dimensional and Steady Flow

For a two-dimensional and steady flow in the xy plane of the
Cartesian coordinate system, the continuity equation {4.10b) reduces to

2leu) , olev) . (4.28)

Then it is possible to define a continuous stream function, ¢ =4 (x,y),
such that

pu = —gﬁf and pv = - %? (4.29)

which satisfies the continuity equation (4.28) exactly as

afpu) , alpv) _ 8 (8¢ , B ,_ 3¢ _
ax t Ty cm ) tay ) 70

For a two-dimensional flow, the equation of a streamline, Equa -
tion (3.24}), reduces to

udy - vdx = 0

If the velocity components in the above equation are expressed in terms
of the stream function with the aid of Equation (4.29}, then the equation
of a streamline becomes

84 84 4y -
i dx + 3y dy = 0

Since ¢ = ¢(x,y), the above equation is an exact differential, that
is d¢ = 0 along a streamline. Therefore, the stream function is constant
along a streamline for two-dimensional and steady flow.

By using the analysis, which is presented in the previous section,
one may prove that the mass flow rate per unit depth between any twc
streamlines, ¢, and ¢ can be expressed as the numerical difference
between the constant values of the stream function defining these two
streamlines, that is

[
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Do, (4.30)

k. the re plane of the cylindrical coordinate system, the continuity
fon (#.10c) for a steady flow reduces to

a(prv,) a(pVy) o

T (4.31)

Rt it is possible to define a stream function, ¢ = ¢ (r,0), such that

aj _ . %
FT) and pVe = - 3r (4.32)

3|
=Y

PV, =
B catisfies the continuity equation (4.31) exactly. However, in the
bof the axisymmetric flow in the rz plane of the cylindrical
¥nate system the continuity equation (4.10c) for a steady flow may
Bressed as

alprv.}  alpVy)
lpr+pz=0

TS 3z (4.33)
B stream function, ¢ = ¢(r.z) may be defined as
13 __1a
V=g and BV, = 7o (4.34)

) Determine the stream function that will describe this flow field
e CLaten tha ctraamlines for & = 0. & = +2 and ¢ = + 8, and
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r Solution

a) The wvelocity field in the Cartesian coordinate system is
: specified as V = axi - ayj, so that the components of the velocity
| vector are u = ax, v = -ay and w = 0. In this case, the components of
! ' the velocity are functions of two space coordinates, x and y, and also
% the velocity component in the z-direction is zero. Therefore the flow
|
l

field is two-dimensional. Before proceeding further, one has to check
whether the continuity equation (4.21} is satisfied by the given flow
* field or not. Then |

\
i |
au  av _ o{ax) 8(-ay) _ . . _ \
‘is. oy T Tox tTay -2l “
|
|

i As long as the given two-dimensional flow of an incompressible fluid
‘ satisfies the continuity equation, then it 1is possible to define a
‘ : stream function. Hence, using Equation (4.22)
|

= ax

=
"
gle

Integration with respect to y yields !
_ | 8¢ _ -

H ¢ = I By dy = I axdy = axy + f(x)

Né where f(x) is a function of x due to the partial integration in the y-

direction. The velocity component in the y-direction may now be obtained
via Equation (4.22) as

I 8¢ _ df{x)
I Ve T Wt T

1}1 But the velocity component in the y-direction is v = -ay, then

I df(x) _ 0
il N

and integration with respect to x yields

]
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Bsten is
fyalocity
Bents of
Bnd also
ﬁfe flow
B check
M. £ Low

Figure 4.13 Sketch of the streaml ines for Example 4.10

f(x) =C
with C being the constant of integration. Then the stream function is
¢ = axy + C

setting this arbitrary integration constant, C, does not change the
shape of the streamlines, but only changes the constants which define
these streamlines. Hence

¢ = axy = 2xy

b) Equation of streamlines ¢ = 0, ¢ = 2 and ¢ = 8 are xy = 0,
Xy =+1and xy = +4 respactively. They represent inverted hyperbolas in
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the xy plane as shown in Figure 4.13. The direction of the fluid flow on
these streamlines may now be found by considering the first quadrant in
the xy plane where x and y are greater than zero. Therefore,u is positive
and v is negative, ‘and the direction of the fluid flow on these stream-
lines are shown in Figure 4.13.

¢) In order to determine the volumetric flow rate per unit depth
between the streamlines passing through points A and B, the constant
numerical values of the stream function on these streamlines must be
evaluated. Then

(25" 1) (=1 (-1 m) = 2 m¥/s

bp = BpYp

and

vp = axg¥p (25" ") (-2 m)(-2 m) = 8 m*/s

The volumetric flow rate per unit depth may be obtained by using Equation
(4.23) as

q=dg -9y = 8 m¥fs - 2 m?/s = 6 mzls

Example 4.11

The velocity field for the steady flow of an incompressible fluid
‘is given as Vr =0 and Ve = ar with a = -2 s'1

a) Determine the stream function that will describe this flow field

b) Sketch the streamlines, ¢ = 1 and ¢ = 4,and determine the direc-
tion of fluid flow on these streamlines.

¢} Determine the magnitude of the volumetric. flow rate per unit
depth between streamlines passing through points A{1,9/4) and B(2,n/4).

Solution

a) For a steady and two-dimensional flow of an incompressible
fluid, Equation (4.25) may be used as

]
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V. o= -2 4
sgration with respect to r yields
? ar?
¢,=J.a-;!dr=-lardr=--2- + f(eo)

e f{g) is a function of @ due to the partial integration in the r
action. The velocity component in the r direction may now be obtained
Equation (4.25) as 2

v =18y _ dfle)
r-Toee de

as long as the velocity component in the r-direction is zero, then

df{e) _
de 0

integration with respect to r yields
f(e) = C
h C being the constant of integration. Then the stream function is
¢ = - ar?/2 + ¢

ting this arbitrary integration constant, C,does not change the shape
the streamlines, but only changes the constants which define these

eamiines. Hence
¢=-ard2=r?

b) Equations of streamlines, ¢ = 1 and ¢ = 4 may then be given as
1 and r = 2 respectively. They represent circles of radii 1 and Z in
. rg plane, as shown in - Figure 4.14, The direction of the fluid flow
these streamlines is clockwise since Ve assumes a negative value for

values of r, which is always positive.
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Figure 4.14 Sketch of the streamlines for Example 4.11%

values of the stream function on these streamlines must be known. Then

“(-2s"(1 m)3/2 = 1 m¥/s

2
7 -arAlz

and

g -aré/Z -(-25'1)(2 m)2/2 4 m?/s

The volumetric flow rate per unit depth may now be evaluated via Equation
(4.23) as

q:@B'¢A=4m2/5-1m2/5=__L_3m25

RE




