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1o the memory of Andrija Mohorovicic

[.esson 2:

The Earth As A Planet

Part II: The structure of the
earth —the contribution of
seismology



To summarize: When the twentieth century opened, we still
had only a very vague i1dea of the internal structure of the
globe. It was 1n the first three decades of the twentieth century
that the picture was greatly clarified owing to the
developments 1n seismology.

Seismology 1s the science of earthquakes (and similar
phenomena). Today we can perhaps define it as the science of
elastic waves 1n rocky planets (as we now also do seismology
on the Moon!)

How has seismology helped us to understand the interior of
the earth?
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Earth interior as understood on the basis of the paths and travel
times of earthquake waves.

What are these waves? How do we recognise them? How do we
know what they encounter on their parths?



In 1849 Sir George Gabriel Stokes (1819-1903) showed that
sudden disturbance of a solid creates two kinds of body waves (In
gases and liquids only one kind is generated).

Longitudinal waves are
created thus

Transverse waves are
created thus

EARTHQUAKE FOCUS

(From Ering, 1968, after Strahler, 1965)
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Focus (=hypocentre) and epicentre and how siesmic waves travel away

from the focus (from Press and Siever, 1974). The point at the antipodes
from the epicentre 1s called the anticentre by the British astronomer and

seismologist H. H. Turner (1861-1930) of Oxford.



Centroid: Center of a polygon defined as its centre of gravity (see
Appendix I for the calculation of the centroid of any surface)
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The concepts of centroid, isoseismal lines (or simply
1soseismals) and angle of emergence 1llustrated on the

example of the great Messina earthquake of 28™ December
1908 (from Sieberg, 1927, Fig. 213)



From Smith 1981

BODY WAVES

Longitudinal waves cause transient
changes in volume and in shape

Transverse waves cause transient
changes only in shape

SURFACE WAVES

Earthquakes also cause surface
waves that are of two distinct kinds:
Love waves are transverse, whereas
Rayleigh waves are of longitudinal
type. Love waves are only possible
in an iInhomogeneous medium, in the
layers of which the velocity of S
waves are different.



The British geologist Richard Dixon Oldham (1858-1936) first
emphasised in 1900 that there were three distinct wave phases
corresponding with the P, the S and the L waves (he simply
termed them as the first, second and the third phases). The first
phase he interpreted an “compressional” waves and the second
phase as “distortional” waves, interpretations that remain valid
today.

However, already in von Reuber-Paschwitz’s 1889 report on the
18™ April 1889 Tokyo earthquake, one can discern the three
distinct phases. Appendix II to this lesson reproduces the
historical 1889 paper by von Reuber-Paschwitz.



What determines the velocity of a wave?

For waves in general, the velocity increases as the restoring force
from a given deformation increases (as the medium is elastic, so
there has to be restoration), but it decreases as the mass increases.
So the velocity 1s proportional to the restoring force and inversely
proportional to the mass displaced.

voc Foand v oc 1/m, but force per unit area is stress and mass per
unit volume is density, so we can generate an equation:

= \/G—/p (here the square root operation simply stands for
a constant to replace the oc sign with = sign)

4 wave

The S-waves only change shape, so they only depend on what 1s
called the shear modulus (u), which is simply force per area
times change of shear angle; by contrast the longitudinal waves
also involve a compressibility modulus ( k), which 1s
density/decrease of volume, 1.€. p/(dV/V) (from Musset and
Khan, 2000)



The longitudinal bodywaves travel faster than the transverse
bodywaves, because the velocity of longitudinal body waves
depends both on the shear modulus (that determines the degree of
change of shape) and the modulus of incompressibility (that
determines the degree of change of volume).

Thus, the velocity (v)) of a longitudinal body wave is calculated
as follows:

v=V(k+1.330)/p

Where k 1s the modulus of incompressibility, u 1s the shear
modulus and p 1s density



By contrast, the velocity of the transverse waves, v,
depends only on the density and on the shear modulus:

Vi— \/PTP

Thus, when an earthquake happens, the
longitudinal and the transverse waves travel
with different velocities. This has wonderful
consequences for locating earthquakes.
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When an earthquake happens somewhere on earth,
waves radiate radially from it and reach seismometers
on various parts of the earth.



Horizontal (above)
and vertical (below)
seismometers
(from Smith, 1981)

Earthquake waves are sensed and recorded
by instruments called seismometers.

Ernst von Rebeur-Paschwitz first noted in
18™ April 1889 that certain disturbances of
horizontal seismometers at the
Telegrafenberg in Podtsdam near Berlin
could be explained by the occurrence of
an earthquake 1n Tokyo 9000 km away.
This was the birth moment of tele-
seismology!

Von Rebeur-Paschwitz, E., 1889, The
carthquake of Tokio, April 18, 1889:
Nature, v. 40, pp. 294-295.
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A modern seismometer recording an earthquake of magnitude 4.6
near Potenza, Italy recorded in the Ettore Majorana, Erice, Italy
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This 1s what a seismogram looks like. There 1s always some
disturbance recorded. This is called “noise.” When an earthquake
happens somewhere on earth, first the longitudinal body waves
arrive and that 1s why they are called the primae undae (primary
waves or just P-waves). After a time of quiescence, the secundae
undae (secondary waves or S-waves) arrive. Then the surface waves
with large amplitudes and periods come, which are collectively called
longae undae (long waves or L-waves). Finally the cauda (=tail in
Latin) or coda (=tail 1n Italian) waves terminate the seismogram (first

used by Sir Harold Jeffreys in 1929).



First, let us look at the nature of the “noise”
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Far-away steep shores—wave breaking

From Sieberg, 1927, Fig. 214



During his doctoral studies, for example, Beno
Gutenberg found that the surf in Norway,
caused the microseisms 1n Gottingen!
Microseisms are also important in measuring
gravity. In Holland, 1in the reclaimed areas, it
was not possible to measure the gravity because
of the microseisms until Vening Meinesz
developed a suitable gravimeter with two
pendulums swinging at 90° to one another.

So don’t think that the “noise” you see in
seismographs is unimportant! It carries a
great deal of information.
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Because of their different velocities, the P and the S waves
arrive on our seismographs at different times. The farther
away our seismometer 1s from the epicentral area, the greater
1s the time gap between the P and S wave arrivals. If we knew
the velocity of the waves, we can calculate exactly how far the
earthquake was or, conversely, if knew how far the
earthquake was, we can calculate the velocity of the waves.



To begin with seismologists
certainly did not know the
velocities of the seismic
waves. So they started with
very well-located earthquakes
and tried to construct travel
time curves (or “transit time”
curves) for various wave
groups.
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They started with an assumed
source and an assumed time and
checked the records of
seiIsmometers at known distances
and computed travel times. Then
using these they located other
sources and went back and forth
until the travel time curves did not

change much.
Travel time curves for surface focus by

Jeffreys and Bullen (from Bath, 1979, Fig. 39)
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After reading the seismogram and
identifying our wave trains, we fit
them to the travel-time curves to
obtain the distance to the focus.

time after start of earthquake (min)

travel

timeof P

wave from
| earthquake
| tostationC

4000 6000

distance from earthquake (km)
Three seismograms fitted to travel-time
curves and the distance read off from them.

From Richter, 1958 and Smith, 1981



Knowing how far an earthquake 1s, 1s not sufficient to localise it. All
we can say 1s that it 1s located on the periphery of a circle, at the
centre of which our seismometer 1s located. It is thus clear that to
know the point location of an earthquake we need at least three
seismometer stations:
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From Skinner and Porter 1987




Local

There 1s no difference between locating
earthquakes globally and locally
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In the earth, density and elasticity (the constants u, the shear modulus, and k the
modulus of incompressibility or bulk modulus) both increase with depth. As
elasticity increases faster than density, the wave velocities increase also and they
curve upwards (this is known as Scimidt’s Law after the German seismologist
August Schmidt). This gives them a ‘convex-down’ aspect as seen above. If the
earth had no concentric layers of different density and elasticity, all seismic ray
paths would have been like the ones depicted above. (H=hypocentre)



According to Schmidt, the earthquake area 1s divided into two zones. In the zone
near the epicentre the apparent surface speed decreases, while in the zone away
from it the speed infinitely increases, but the intensity decreases next to zero.
According to Schmidt’s Law, the lowest surface speed occurring at the borderline
between the two zones should be a "benchmark for measuring the propagation
speed of the earthquake waves in the dark depth of the epicentre". The turning
points on both sides of the conchoidal earthquake “hodographs” converge in the
same degree as the earthquake centre 1s near to the surface and the smaller the inner
zone of the earthquake area

From
Sieberg,
1927

SCHMIDT, A., 1888, Wellenbewegung und Erdbeben. Ein Beitrag zur Dynamik
der Erdbeben: Jahresheft 1888 des Vereins fiir vaterlindische Naturkunde in
Wiirttemberg, pp. 249-270



In 1906 the British geologist Richard Dixon Oldham (1858-1936)
noticed that what he interpreted as both P- and S-waves arriving
near the anticentre of earthquakes invariably arrived substantially
later than expected from the velocities 1n travel-time tables that he
first generated. He thus concluded that the waves must be slowed
down during transit. He interpreted this in terms of a core. He
noticed that the waves emerging 120° away from the epicentre do
not touch 1t and those emerging at 150° penetrate 1t deeply. So he
fixed the radius of the core at 0.4 of the earth’s radius (which
comes to 2548.4 km) But his 1dea of the core was no more precise
than that of Wiechert as he could not locate a sharp boundary
(although he repeatedly emphasised that the transition occurred
quickly). He simply knew that “something” substantially slowed
down the waves and he thought that that “something” had a ratio
of uw/x 1/3 of that of the outer layer (which we now call the
mantle).



Oldham did not think
this was a sharp
boundary, but he
thought that the
transition across 1t was
quick.

Neither did he
speculate as to its
nature and composition
(at the time 1deas
ranged from a gas core
to an 1ron core!)

Oldham’s core. From Oldham, R. D., 1906, The constitution of

the interior of the earth, as revealed by earthquakes: Quarterly
Journal of the Geological Society of London, v. 62, pp. 456-475.



The first sharp boundary 1n the earth was identified by the
Croatian meteorologist and seismologist Andrija Mohorovicic
(1857-1936) an almost exact contemporary of Oldham.

Andrija Mohorovicic
(1857-1936)



P and iP (now also written as
Pg) as observed by
Mohorovicic after the 8™

October 1909 Kupa Valley
carthquake.

Here we see clearly two P-
wave arrivals in the
seismograph. Yet we know that
only one wave front left the
focus. How should the two P-
wave signatures be interpreted?



If there are sharp density
and elasticity boundaries in
the earth, we expect sharp
refraction of seismic waves.
So Mohorovicic thought that
a part of the wave front
propagating into the earth’s
interior must have hit a
boundary and got refracted
in such a way that a little
further it got refracted again
and came back to the
surface. The velocity below
the refracting boundary
being higher, one P phase
arrived earlier than the other
thus giving the impression
of having two P waves.

The discontinuity postulated by Mohorovicic prevents the iP’s
arriving beyond station 3 and also enables us to know exactly how
deep the discontinuity must be.



In 1910, Wiechert and Geiger developed a formulation to give the
velocity of seismic waves simply as a function of depth. This 1s
called the Wiechert-Herglotz Theorem given in Appendix III to this
lesson from Sir Harold Jeffreys’ The Earth (6™ edition, 1976).
Using it, Beno Gutenberg, one of the founders of modern
seismology, found in 1912 that just below the Mohorovicic
discontinuity (also called the Moho discontinuity or simply the M-
discontinuity) the velocity of a P-wave 1s 7.7 km/sec. This increases
to 13 km/sec. at a depth of 2900 km. Below that depth the velocity
sharply drops to 8 km/sec. and then gradually increases again to 11
km/sec. towards the centre of the earth. It was also found that the
distortional waves of Oldham (1.e.the S-waves) did not appear
around the anticentre, indicating that somehow they did ot
propagate through the core suggesting that it 1s liquid. The sharp
boundary of the core is now named the Gutenberg discontinuity or
the CMB (1.e. core-mantle bondary).
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Beno Gutenberg (1889 1960)

a student of Emil Wiechert in Go6ttingen and one of the
founders of modern seismology. He is said to be
perhaps the greatest observational seismologist of all
times.




The 1interior of the earth according to Gutenberg in 1912 (without the crust; the
numbers show the travel times of the P-waves in minutes) (after Daly, 1926)




However, one still did not know the physical state of the core. That
the S-waves did not propagate through 1t suggested that it might be
liquid, but 1t was also possible that it was only imperfectly elastic
and thus absorbed the S-waves. In 1926, Sir Harold Jeffreys
showed, using the earth tides, that the core that Oldham had
discovered and Gutenberg had placed at a depth of 2900 km, had
to be liquid.

The argument was simple and was taken from an earlier one by
Emil Wiechert. Wiechert had shown that the earth tides and the
Chandler Wobble showed that the earth could not be as rigid as
the S-wave velocities through the mantle suggested. Jeffreys took
Weichert’s 1897 model with a core with density 8.2 and a radius of
about 4970 km and a mantle with a density of 3.2. When he
combined these densities with the velocity of the seismic waves he
could deduce the rigidiy. He found 5.12x10'% Pa for the surface

and 15.6x10!° Pa for the base of the rocky envelope and 40x101!°
Pa for the supposed upper part of the metallic core.



These numbers were clearly too high to be reconciled
with the deformation of the earth during the tides and
the Chandler Wobble (see Appendix 1V). He suggested
that the core identified by Oldham and Gutenberg had
to have a much lower rigidity and that its elastic
properties seemed dependent on the periods of the
disturbing effects. This in turn agreed with the 1dea
that 1t must be liquid 1in view of the nability of the S-
waves to go through 1t!

Jeffreys, H. (Sir), 1926, The rigidity of the earth’s central core:
Monthly Notices of the Royal Astronomical Society, Geophysical
Supplement, no.1, pp. 371-383.



With the picture of Gutenberg we
are reminded of a whole family of
new kinds of seismic body waves,
namely the reflected and the
refracted waves. They have
characteristics and terminologies of
their own that we need to know to
be able to discuss further the
internal constitution of our planet.
When we begin to consider the
reflected and refracted waves,
seismology becomes extremely
complicated and very difficult for
the observational seismologist.




When P-Waves are reflected and refracted, they generate also S-
waves! (From Mussett and Khan, 2000, Fig. 4-18)




When S-waves are reflected
at a boundary, they may also
generate P-waves. This
naturally complicates the
picture further.



Terminology of seismic waves in the earth:

P
S
K

LR
LQ

a P-wave 1n the mantle

an S-wave 1n the mantle

a P-wave through the outer core (K comes from the German word for the core: Kern)

a P-wave through the inner core

an S-wave through the inner core

a reflexion from the mantle/outer core boundary (c from the English word for the core)
a reflexion from the outer core/inner core boundary (i from inner core)

a P-wave reflected from the surface of the earth close to the
earthquake focus

an P-wave reflected from the surface of the earth close to the
earthquake focus

a Raleigh wave

a Love wave

From Coulomb and Jobert 1971 and Fowler 1990



Some examples of how to read the terminology:

PKP (or P’)

PKIKP

PKiKP

sSP

a P-wave that passed down through the mantle and the
outer core and then up through the mantle again

a P-wave that passed down through the mantle and
outer core and then through the inner core and up
through the outer core and mantle

a P-wave which travelled down through the mantle
and outer core, was reflected at the outer core/inner
core boundary and travelled back up through the outer
core and mantle

a wave which travelled from the focus as an S-wave,
was reflected at the earth’s surface close to the focus,
then travelled through the mantle as an S-wave,was
reflected for a second time at the earth’s surface,
converted to a P-wave and travelled as a P-wave
through the mantle



Moreover, when an S-wave encounters the liquid core 1t gets
converted into a P-wave. Combinations of all kinds of multiple
refractions and reflections create a vast family of seismic waves.

SKSSKS

Paths of bodywaves with letter symbols. Longitudinal wave ray

segments are shown as full lines; transverse wave ray segments as
dashed. (From Richter, 1958, Fig. 17-5)



Because the core functions like a lens for the seismic waves, there occurs
a “shadow zone” for the longitudinal waves between about 103°and 143°
away from the epicentre of any earthquake. What would you do 1f yo do
find longitudinal waves in this shadow zone, as did Dr Inge Lehmann in
1936 when studying the seismograms from an earthquake near Buller on
the South Alpine Fault in New Zealand?

Irkuatsk, TI0*R
June 16, 1925 PO records




June 16, 1929, P records

Inge Lehmann inner and outer cores.
(1888-1993) s g
Inge Lehmann pointed out that the arrivals in the “shadow” or
“forbidden” zone of P-waves could not be due to diffraction. She
thought that one plausible explanation was to assume an inner,
reflecting core of 1400 km radius and a P-Wave velocity of 10 km/sec
withing the core itself. The waves showing up in the shadow zone

(no.5 1n the fig. above) would be bouncing off it.
Lehmann, L., 1936, P’:Publ. Bur. Cent. Seism. Int. v. A 14, pp. 87-115.




In 1938, Beno Gutenberg and Charles Richter showed that the
earthquake data could be better satisfied if one assumed an inner core
of 1200 km radius and an average P-wave velocity of 11.2 km/sec.
They thought that the inner/outer core boundary was not sharp and
that there were no reflective waves. A year later Sir Harold Jeffreys
pointed out that Lehmann’s sharp boundary idea was essentially
correct. In his biography of Lehmann Bruce Bolt wrote
“Subsequently, independent arguments by Birch (1940) and Bullen
(1946) established that the rapid increase in P velocity at the inner
core boundary entailed a transition from liquid to solid conditions,
with a jump 1n shear wave velocity from zero to about 3.1 km/sec., if
the pressure-induced gradient in incompressibility was to be
plausible. It was not until 1962 (Bolt 1962) that direct new evidence
supporting Lehmann's sharp boundary was advanced, and not until
1970 that high-angle reflections (PKiKP) of seismic P waves incident
on the inner core were observed unequivocally on seismograms
(Engdahl ef al. 1970).” The inner/outer core boundary is today
known as the Lehmann discontinuity.



The next important step in understanding the geometry of the
interior of the earth came from a New Zealand seismologist, Keith
Edward Bullen.
Bullen started his geophysical work with Sir
Harold Jeffreys in Cambridge, which consisted in
generating travel-time curves (that became the
famous Jeffreys-Bullen curves). To generate
these curves, Bullen needed to know the density
of the earth’s interior. For this purpose he used an
equation generated by two American
Keith Edward ~ geophysicists, E. D.Williamson and Leason H.
Bullen Adams:

(1906-1976)
dp/dr = -Gmp/r’(a’-{4/3} B?),

where r 1s the distance of a point from the earth’s centre, p is the density
at r, G 1s the universal gravitational constant, m 1s the mass of the earth
within the radius r, and a and B are the velocities of P and S waves
respectively at the level r.



Using the Williamson-Adams formula, Bullen calculated the
density of the interior at 100-km 1intervals. He then checked his
findings against the moment of inertia of the core. This showed him
that the inner core ought to be less dense than the outer core.
Thinking this absurd, he readjusted his results for a mantle in which
density did not increase uniformly (does this not remind you of
Euler almost 200 years earlier than Bullen?) In 1940, Bullen divided
up the earth as follows:

A - crust

B - upper mantle

C - middle mantle in which density jump occurred
D - lower mantle

E - outer core
F - transition between outer and inner core

G - 1nner core Bullen, K. E., 1940, The Problem of the earth’s density variation:
Bulletin of the Seismological Society of America, v. 30, pp. 235-250



Having come this far, how do we know what 1s 1n the
carth? What 1s our planet made up of? How can all that
we have learnt of its physical properties help us find out
what 1t consists of?

Since all we really know are pressures and seismic
velocities, one way to find out 1s to compare the seismic
velocities of various rocky and metallic substances with
the velocities inferred from the earth’s interior. We can
do this 1n a laboratory (although 1t 1s not always easy, as
some of the requisite pressures are obtained by firing a
canon in the laboratory!)

This 1s the subject of the next lesson.



APPENDIX I: How to find the centroid of any surface

The centroid of a lamina with the surface density function c(X,y)

1s located at the coordinates

lr v lx, nd A
M |

From: http://mathworld.wolfram.com/GeometricCentroid.html

The graphic method of finding the centroid of any lamina is
to hang the lamina from three different points on its periphery
and draw the straight lines following a plumb line from those
points. Where thepoints meet is the centroid of that lamina.



The Earthquake of Tokio, April 18, 188g.

RFEADING the report on this earthquake in NATURE (June 13,
p. 162), T was struck by its coincidence in time with a very
singular perturbation registered by two delicate horizontal pen-
dulums at the Observatories of Potsdam and \Wilhelmshaven.
These instruments, which represent, with some modification,
Prof. Zillner's horizontal pendulum, were established in March
1889, for studying the slight movements of the ground.
The motion of the pendulum, which is left to oscillate freely
whenever its equilibrium is disturbed, is registered by the same
photographic method as that employed for magnelic observa-
tions. T'he pendulum is in the plane of the meridian, so that
any shock, the direction of which is not in this plane, will pro-
duce oscillations of the pendulum, diminishing gradually, 1f it
is left undisturbed after l#lc shock. The pillars supporting the
instruments are fixed in a depth of 1 metre below the ground of
the cellar which was chosen as a suitable place for the erection
of the instrument.

During the three months from April to June, the disturbance
of April 17, 18h. G.M.T., was the most remarkable which oc-
curred  ‘The following readings of Greenwich mean time, which
are best explained by the accompanying figures, are taken from

the original photographs ; it must, however, be mentioned that®

the small scale of 11 millimetres per hour does not allow a very
accurate determination of time, and that an error of one minute
or two is quite probable.
(1) Lotsdam.—1889, April 17. From sh. until 17h. 21m.,
great steadiness of image.
h. m.
17 21t IFirst traces of disturbance.
17 39 leginning of small oscillations. )
17 54°3 Motion suddenly increases and reaches its maximum
at
18 1 Amplitude of oscillation 154 willimetres.  The
amplitude then suddenly diminishes.
18 43 )
18 58 » Maxima of oscillation.
19 45 g
20 o Perfect steadiness of image.
(2) Wilhelmshaven.—Here, also, the image is perfectly steady
until 17h. 30m.

h. m

17 30 Beginning of small oscillations.

17 48 =17 51 A short interval of perfect steadiness.

17 51 The movement suddenly increased, and as the ligl\t
is not strong enough to mark the single oscilla-
tions, the image disappears until

18 38 when the principal disturbance reaches its end.

Maxima of small oscillations,

Perfect steadiness,

If we compare these dates, it seems most probable that the
momer t which shows a sudden increase of motion, and is best
marked on the curves, may be considered as the beginning of
the principal disturbance. We thus have—

For Potsdam ... ... 17h. 54'3m. )

For Wilhelmshaven... 17h. §1m. |
which, considering the error of the readings, may be taken as
one and the same moment.

The beginning of the earthquake of Tokio was observed at
2h. 7°7m. Tokio M.T. The difference of longitude (taken from
a map) being gh. 19°3m. L., we find that the shock occurred at
16h. 48°4m. G.M.'T. on April 17, and thus it took 1h. 4'3m.
to travel across the body of the earth.

Mean, 17h. §2°7m.,

Fuly 25, 1889]

Taking the fullo wing longitudes and latitudes—
Tokio . . . s 139 SOE., 35 44N

Potsdam P o, 33 “dian 52 24 ,,
Wilhelmshaven ... ... 8 9, 53 32,

181
1889 APRIL 17. GR.MT.
POTSDAM.

- "

WILHELMSHAVEN 1889 APRIL 17

st s
GR. MEAMN | TIME

and neglecting the ellipticity of the earth, we find the following
distances :—

Tokio to Potsdam ... ... .. 8221 kilometres.
Tokio to Wilhelmshaven... ... 8307

NATURE

295

Dividing the mean 8264 by 3858s., we find a velocity of 2142
metres of propagation on the straight line connecting Tokio
and a place between Potsdam and. Wilhelmshaven, and con-
sequently the shock ought to have been observed at Wilhelms-
haven 40s. later than at Potsdam.

The ahove value of velocity is between the values found by

| Milne from seismic experiments, viz. 900- 1400 metres for

different kinds of rock, and by Abbot from the effect of
dynamite explosions, viz. 2800 metres. We may therefore safely
conclude that the disturbances noticed in Germany were really
due to the volcanic action which caused the earthquake of Tokio.
Potsdam, July 5. E. vOoN REBEUR-PASCHWITZ,

P.S.—I add a list of the most remarkable disturbances noticed
during the course of the observations. Unfortunately, the work-
ing of the instrument at Wilhelmshaven was often disturbed by
the effects of an excessive dampaess in the cellar,  The time is
G.MLT. as above.

, April 5.—A day of great steadiness. A small perturb-
ation bepins at gh. (Potsdam) and oh. 5:4m. (Wilhelmshaven).
It is divided by a short time of steadiness, gh. 11°4m. (Potsdam)
and gh. 16°8m., (Wilhelmshaven).

April 8.—A fine disturbance begins at 16h. 45°6m. (Potsdam)
and 16h. 47°gm. (Wilhelmshaven).

April 15.—A day of remarkable unsteadiness ; the principal
perturbation at both. places lasts three hour 1 lies between
7h. and 10h. It is impossible to determine a certain phase.

April 25.—A perturbation from 16h. 48m. to 18h. 12m. at
Potsdam. No photograph obtained at Wilhelmshaven,

April 28,—An earthquake, consisting of one principal shock,
apparently took place at 213h. ; the times noted are 21h. 34°8m.
(Potsdam) and 21h, 36°6m. (\Vilhelmshaven).

May 21.—A pretty large disturbance at Potsdam, lasting from
toh. 33m. to 1rh. 6m,, interrupted by a moment of rest at
10h. 42m. No photograph at Wilhelmshaven.

wo very remarkable disturbances at Potsdam—
7h. gm. and roh. 42m.—each lasting th. No photograph at

| Wilbelmshaven,

May 26.—A disturbance noticed at Potsdam, at gh. 24m.
No photograph at \Wilhelmshaven.
May 30.—At Wilhelmshaven, two shocks are noticed—
Sh. 18°6m. and gh. 24m.—which are probably connected with
inglish carthquake of this day, Perfect steadiness at

31.—A distwbance of earthquake-like appearance.

“Time of beginning, at Potsdam, 8h. 48m, ; at Wilhelmshaven,
8h. 44°4m. ; the latter time being rather uncertain, on account
of the faintness of the curve,

I hope that one or other of these facts may prove to be of
interest Lo seismologists.
On the Phenomena of the Lightning Discharge, as

INustrated by the Striking of a House in Cossipore,

Calcutta,

DURING a heavy thunderstorm which passed over Caleutta
about 5.30 p.m. on Saturday, June 8 last, the house of Conductor
W. Viney, at Cossipore (a suburb of the city), was struck by
lightning, and 1 ¢ thought that a description of the pheno-
mena connected with it might perbaps be worth placing on
record in the columns of NATURE.

I was mysell watching the storm from the veranda of my
residence about 300 yards distant, and ‘observed that the discharge
in question was one of extreme violence. I visited the scene of
the accident within a few hours, with Mr. Viney's permission
taking the notes from which this account is prepared ; and, owing
to the exceptional opportunities for observation which obtained
in this case, have been able to secure trustworthy statements as
to the appearance of the discharge, and further, by inquiry, (o

| satisfy myself upon one or two points which 1 believe to possess

considerable scientific interest,

The house which was str is large, square, and flat-roofed,
and is occupied by three foremen employed in the Government
Shell Factory adjacent ; it is providedwith a lightning-conductor
projecting 8 or 9 feet above the roof-level, and situated near to
one end of the building, but apparently unconnected with any
o her portion of the roof. It is possible that a portion of the
discharge passed harmlessly away by the conductor, but of this
1 liave no evidence, positive or negative. The lightning entered
Mr. Viney's portion of the house by a corrugated ison covered
hatchway standing 6 feet high at the corner d




APPENDIX III: Jeftreys’ formulation of the Wiechert-Herglotz Theorem

Bodily waves in a sphere 49

2-05. Bodily waves in a sphere. We suppose that the velocity ¢ of
a pulse, or of a wave of short period, depends only on the distance » from the
centre of the sphere. The pulse is supposed at present to originate at the
surface, at a point 4, and the radius is R. Take polar coordinates r, 6, the
initial line being the radius OA. The wave front will at every instant be
symmetrical about OA. The time taken to reach a given point P (Fig. 1) is
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Fig. 1.

where ds is an element of length along the path. The actual path is such that
this integral is stationary for small variations of the path. Putting for
a moment V for the integrand in (1) and p for dr/df, we know from the
calculus of variations that this is true if » satisfies the differential equation

oy _8 @),
or a0 ap) =4 2)
a first integral of which is known to be

ov
V=p$+p, (3)

where 7 is constant for a given ray. Substituting for V and simplifying

we find dr\2 3
= S 2
{(dU) *’}'

whence

o= BT .
rr(r2fc:—p?)}
If 0 begins by increasing, then as r begins by decreasing we must take the

negative sign. But dr/df vanishes when the ray reaches its deepest point,
and if x is the corresponding value of ¢

& J‘ S et 7
X o r(rz/cz_pz)y (7)
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After passing this point the ray bends upwards, remaining symmetrical
about the line joining the deepest point to the centre, and reaches the surface
again at the point (R, 2x). We also write 2y = A and call A the epicentral
distance of a point on the surface. Then if we know ¢ as a function of r we
can calculate the time of travel of the pulse to any distance A that it reaches;
and conversely, if the time of travel is known from observation as a function
of A one of our problems is to find what distribution of ¢ is consistent with it.
If the ray makes an angle i with the radius we have for small displace-
ments along the ray :
rdf = sinids = sini{(§2)2+r2; deo, (8)
whence from (4) e Esini; (9)

and if e is the angle made by the ray with the outer surface, and ¢, is the
value of ¢ there,

p:c}—?cose. (10)
0

Now if the ray emerges at P at time 7', e will also be the angle of emergence
at P. Let P’ (Fig. 2) be a neighbouring point (R, A +dA) in the same plane,

A

Fig. 2.

T +dT the time needed by the wave to reach P’. Draw P@ perpendicular
to the ray that reaches P’. Then PQ is nearly a part of a wave front and the
times to P and @ differ by a quantity of order PQ*. Hence, to the first order

QP' = c,dT, PP' = RdA, QP'= PP'cose, (11)

h _daT
whence C—OCOSC = H‘_A.
Thus the ray parameter p is identified as d7'/dA.

More than this is true; for we can apply the same argument to the rays
to a pair of neighbouring points at the same distance r from the centre and
use (9); then if ¢ is given as a function of 7, 6

ot

5 =p. (13)
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If we also compare a pair of neighbouring points on the same radius we get

(14)

; ot\? (ot)\?
whence r’(é;) +(éb) - (15)
which is a differential equation satisfied by the time to a general point
(r,0).
If T' = {(R, A) is a known function of A, p is also found in terms of A by
differentiation, by (10) and (12). Then we put

rlc =1, (18)
gl d
NP —p?)dy
The left side is a known function of the parameter p; the right contains log r,
which is so far an unknown function of . Hence (17) can be regarded asan
integral equation to determine log r as a function of 7. It has been solved
by G. Herglotz (1907) and H. Bateman (1910). An elementary solution has
been given by G. Rasch (during a joint work with I. Lehmann) and was
communicated to me privately. Take a quantity x such that (17) holds for
u<p<Rlc,. Multiply (17) by dp/,/(p*—#?*) and integrate from p = x to
R/c,. Then

1 (Bl Adp Rles  pdp Rics d dy

3 ——— = T —(1 s

), Jo- ") Jo-m)y @' Jw—p Y
Change the order of integration; the limits for » become x to 7, and those
for 7 from x to Rjc,. Butif > p

and (7) becomes Rle
.

(logr)dy. (17)

VR DD e -
w V(2= 1) (* — p*)
Hence the integral is equal to

(19)

Rle, R
%nJ; ‘T(logr)dy = %nlogm;), (20)

and logf—z = - s Aa-l-P— (21)
r w)p J@E-p2)’

where 7 has the value that corresponds to 7/c = x. This gives r as a function

of r/c and hence ¢ as a function of r.

The solution can be simplified by a transformation due to Wiechert and
L. Geiger (1910). In (13) 7 and r vary along the ray considered, » remaining
constant. But in (21) we are considering a set of rays, p = x corresponding
to that which makes 7 = x at the deepest point, and p = R/c, to one that
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grazes the surface. p itself is a function of the angle of emergence of a ray
that descends at an intermediate angle. Then with a change of notation we
write A for the value of A corresponding to p = x, and A, for a general p
between z and R/c,. Put 9 g coaliq. (22)
(dT'[dA), cose,

(@TJdA) ~ cose’ ¢2)

Then coshg =
and g ranges from 0 to the value ¢, found by taking the limiting value for
short distances, R/c,, for the numerator in the second expression. Then

1

R @
log; 5 A,dg

=| lA IA —1 g dA 2
o = 5 4
m 1 Ay=0 ".’.Aq x )

But ¢ vanishes at one limit and A, at the other; hence the integrated part

is 0 and
R 1748 2
log; = ;TJ-O gdA,. (25)

The advantage of this form over (21) is that if 7 is given in terms of A by
a table, it will usually be at equal intervals of A over large parts of the table;
but it will not be at equal intervals of p. Numerical formulae of integration
are much more manageable for equal intervals.

C. G. Knott (1919) used (21); but (25) had already been applied to an
empirical table by S. Mohorovi¢ié (1914, 1916).

As g behaves like (A — A,)? at one terminus the usual Gregory and central-
difference formulae of integration are unsatisfactory; but formulae suited
to this case are known and can be applied to a few intervals at the end, while
the usual ones are used for the rest of the range (Jeffreys, 1939¢, p. 597;
H. and B. S. Jeffreys, 1972, §9:092). Other formulae of the same type

are available for fz f(x)dz, where f(x) behaves like % for z small.
0

If the velocity distribution is known we may still want to calculate times
for parts of rays, especially for foci not on the surface. From (5), (6) and (1)

we deduce f r|dr|

R o

The procedure is to adopt a set of values of p and to work out 6, ¢ for each
by integration. In (8) and (26) the integrand behaves like (9 —p)~?t if the
ray is nearly horizontal at some point, and therefore needs considerable
accuracy in the computation. But

t—p0=J‘(g—p”)*lﬁ—l. (27)

r
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and its calculation is more manageable. In some cases, especially for rays
that have not penetrated deeply, the right side of (27) varies slowly with p,
and then even if there is a small error in the calculated § we can use (27)
to calculate ¢, which will be nearly correct for the calculated 6. This device
often avoids the need for specially close intervals.

Hitherto, when the adopted travel times have been altered, the velocities
have been completely recalculated. This can be avoided as follows. Suppose
that a trial solution gives dt/dA = p and that the modification gives
dt/dA = p+ 8p; then to the first order in the changes

P1+0py

0g = ¢ sh—1
q+oq cosn P+6P .

o _DOpi—Py0p

We find ppt— Mt °

In most intervals this will vary smoothly, and as A;—A, dg behaves like
(A—A,)} so long as dp is differentiable. Thus the integration presents no
difficulty. It is of course necessary that the calculation for the trial solution
shall have been done sufficiently accurately for accumulation of rounding
off errors not to matter. This is not true for the J.B. solution of 1940; when
the times of PcP were calculated, the time of P at grazing incidence on the
core (where it coalesces with PcP) differed by 0-6% from the original P time.
This exceeds the standard errors now attained in some studies. It was
probably due to insufficient accuracy in integration formulae used in the
early part of the work. No similar discrepancy was found for S.

Bullen (1960a) has suggested the use of his power law (2:082) as a first
approximation, but as it makes d%c|dr® positive and the actual values are
mostly negative the above method is probably easier.

From: Jeffreys, H., 1976,
The Earth, 6th ed.,
Cambridge University
Press, Cambridge



APPENDIX IV: The Chandler Wobble

(modified from: http://en.wikipedia.org/wiki/Chandler wobble)

The Chandler wobble is a small variation in Earth's axis of rotation, discovered by
American astronomer Seth Carlo Chandler in 1891. It amounts to 0.7 arcseconds
over a period of 435 days. In other words, Earth's poles move 1n an irregular circle of
3 to 15 metres in diameter, 1n an oscillation.

The wobble's diameter has varied since discovery, reaching its most extreme range
recorded to date in 1910. The cause 1s unknown: barring any external force, the
wobble should have eventually subsided. Originally it was believed that the wobble
was caused by weather fluctuations from season to season causing shifts in
atmospheric mass distribution, or possible geophysical movement beneath Earth's
crust. On 18 July 2000, however, the Jet Propulsion Laboratory announced that "the
principal cause of the Chandler wobble is fluctuating pressure on the bottom of the
ocean, caused by temperature and salinity changes and wind-driven changes in the
circulation of the oceans.” This brings about a change in the shape of the earth.

The Chandler wobble is a factor considered by satellite navigation systems
(especially military systems). It is also theorised as the cause of some tectonic
activity, including earthquakes, which further shows its effects on the shape of the
earth.



