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Lesson 2: 

The Earth As A Planet

Part I: The structure of 

the earth before 

seismology

To the memory of Sir Isaac Newton





Colours show heights. Notice a peculiarity of our planet: 

the green and the navy blue dominate the map. In other 

words the flat continental plains and the flat abyssal plains 

are the most dominant landforms of our planet.



Alfred Wegener 

(1880-1930)

The great German earth 

scientist Alfred Wegener was 

the first to underline the 

importance of the double 

peaked nature of the earth’s 

hypsometric curve.

Wegener’s (1912) 

hypsometric curve



Abyssal  plains

Continental plains

Upper limit of growing crops
Upper limit of human dwellings

Upper limit of most plants
Upper limit of most land animals

Sunlight extends 

down to about 

here (=photic 

zone)

Most of the 

biosphere lives 

between these two 

limits

Oceanic trenches

ALPINE MEADOWS

Forests, woodlands, 

grasslands, deserts

Scattered bottom-living animals have 

been seen at the greatest depths 

reached by underwater cameras

Airborne bacteria, stray birds and 

other organisms have been found at 

great heights

Redrawn from Skinner 

and Porter (1987)

THE HYPSOMETRIC CURVE OF THE LITHOSPHERE AND ITS INFLUENCE ON THE BIOSPHERE



Comparison of the hypsometries of Mars, earth and 

Venus (from Cattermole 1994)

Notice how different is the  hypsometry of the earth!



Limestone (ρ=2.23), marl (ρ=2.26) and shales (ρ=2.06-2.42) 

cut by  normal faults around Kapaklı, Western Turkey.



Various 

speleothems 

(ρ≈2.44), in the 

Insuyu Cave 

Burdur.



The Grand Canyon, Arizona, USA.                                                  

In view are limestones (ρ=2.37-2.66), shales (ρ= 2.17-2.59), 

sandstones (ρ=2.41-2.50) and metamorphic rocks (ρ= 2.88-2.99)



Pseudotachylite dykes cutting Archaean gneisses (ρ=2.61-

269), Vredefort Dome, Transvaal, South Africa.



Exfoliating jointed granites (ρ=2.656-2.630), Krkonose Mts., 

Czech Republic.



Pahoehoe-type basaltic  (ρ= 2.85) lava flow, Serpovidnoe 

Lake, Russian Federation (SW of Lake Baykal)



Traprain Law, a phonolitic trachyte (ρ= 2.45-2.48) laccolith in 

southern Scotland.



A dolerite (ρ= 2.76-2.8) dyke in the Barberton mountains, 

Transvaal, South Africa.



The composition 

of the earth’s crust 

(after Ronov and 

Yaroshevsky, 

1969; from Klein, 

2002)

The crust makes 

up about 0.03839 

of the total earth 

mass
ρ= 2.65

ρ= 3.2-3.7

ρ= 2.85-3.4

ρ= 2.8-3.2

ρ= 2.8-2.9

ρ= 2.62-2.76

ρ= 2.54-2.57



So far we have talked about rocks. But what are rocks? We think we 

all know what they are, but do we? Is a fragment of a concrete wall 

or part of a brick a rock? Before we proceed any farther, it is useful 

to give a formal definition of a rock:

A rock is any naturally formed, firm and coherent aggregate or mass 

of mineral matter that constitutes a part of the universe.

But what is a mineral?

A mineral is a naturally occurring inorganic crystalline solid of a 

definite (variable within fixed limits) chemical composition.

For instance, although we speak of coal as a part of “mineral 

resources,” of our planet it is not a mineral (why not?)



The rocks that we see at the surface of our planet are 

of the most diverse types. The overwhelming majority 

of them have densities ranging from 2 to 3. Rarely do 

their densities go beyond 3 (for example eclogites can 

have densities up to 3.45!).

The question now is, since the crust makes up only 

about 0.03839 of the total earth mass, what does the 

rest consist of? What do we know about that rest, and 

how?



One way to answer this question is to calculate the average 

density of the earth and then to compare it with those of the 

surface rocks.

How do we calculate the average density of the earth?

Since density (ρ) is simply mass (m) divided by volume (v), all 

we need to know is the earth’s mass and volume. But to calculate 

its volume, we need to know its dimensions. 

How do we calculate the dimensions of the earth? What must we 

know?

First of all we need to have a general idea of its shape.



The Pythagoreans (already in the earliest published 

Pythagorean account by  Philolaus of Tarentum, 

now Taranto, S. Italy), of later half of the 5th century 

BC, thought that the earth was spherical, not, 

however, on the basis of any observations, but 

because Pythagoras considered the sphere the most 

perfect object.

The Greek 

philosopher 

Pythagoras of Samos 

(569-475 BC)

Philolaus wrote: “The bodies of the Sphere are five: the fire in the 

sphere and the Water, and Earth, and Air, and fifth, the Hull of the 

Sphere”

This gives the picture of a spherical hull supporting water, earth and air and 

containing inside the fire. This also accords well with Simplicius’ (490-560 

AD) testimony in his commentary on Aristotle’s On the Heavens: “Those 

however who have a better information place the fire into the interior of the 

earth as a creative power to vivify thence the whole earth, and to replace the 

cooling new heat.”



moon takes on all varieties of shape—straight-edged, gibbous or 

concave—but in eclipses the boundary is always convex. Thus if the 

eclipses are due to the interposition of the earth, the shape must be 

caused by its circumference, and the earth must be spherical.”  

Aristotle, On the Heavens 297b25

“If the earth were not 

spherical, eclipses of the moon 

would not exhibit segments of 

the shape which they do. As it 

is, in its monthly phases the

Aristotle of Stagira 

(384-322 BC)



Aristotle also had a theoretical argument for the 

sphericity of the earth: 

“Its shape must be spherical. For every one of its 

parts has weight until it reaches the centre,  and 

thus when a smaller part is pressed on by a larger, 

it cannot surge round it, but each is packed close 

to, and combines with, the other until they reach 

the centre.” On the Heavens 297a10

(This argument is still valid. Why? Hint: consider whether a planet 

of the size of the earth can exist in a cubic shape)



Aristotle also thought that the size of the earth could not be very 

large. Here is his argument:

“Observation of the stars also shows not only that the earth is 

spherical but that it is of no great size, since a small change of 

position on our part of the horizon, so that the stars above our heads 

change their position considerably, and we do not see the same 

stars as we move to the North or South. Certain stars are seen in 

Egypt and the neighbourhood of Cyprus, which are invisible in 

more northerly lands, and stars which are continuously visible in 

the northern countries are observed to set in the others. This proves 

both that the earth is spherical and that its periphery is not large, for 

otherwise such a small change of position could not have had such 

an immediate effect.” On the Heavens, 297b-298a5



During the last years of Aristotle’s life (between 325 and 320 BC), 

a Greek merchant from Massalia (now Marseilles), named 

Pytheas,  made a memorable journey to Scotand and beyond to the 

Orkney Islands and possibly even farther to Iceland (which he 

called “Thule”). It was during this journey that Pytheas became the 

first person to relate systematically the latitude of a place to the 

length of the longest day, or to the height of the sun at the winter 

solstice (Harley, Woodward and Aujac, 1987). This too showed 

clearly that the earth is spherical  and not very large.

Pytheas’ observation of the  

latitude of Marseilles (from 

Harley, Woodward and 

Aujac, 1987, fig. 9.1)



Eratosthenes of Cyrene 

(274-194 BC)

Towards the end of the third 

century BC, Eratosthenes of 

Cyrene, possibly the greatest 

geographer of antiquity after 

Anaximander, calculated the 

circumference of the earth. For his 

calculation, he assumed that the 

Sun-earth distance was large 

enough to assume that the Sun’s 

rays were everywhere parallel 

with one another along a distance 

between the cities of Alexandria 

and Syene in Egypt and that these 

two cities lay on a great circle  on 

the earth’s surface.



Alexandria

Syene

Distance=5040 stadia

a

a’

a’= a = 7˚12’

360˚/7˚12’≈ 50

5040x50=252,000 stadia

This is about 39,690 km

The method of Eratosthenes (with this method he also calculated 

that the Sun-earth distance to be  about 40,000 stadia, but he 

disliked it! 

Centre of 

the earth

How 

could he 

do it?)

Sun’s 

rays

Zenith at Alexandria

Zenith at Syene



If the circumference of the earth is roughly 40,000 

km, then its radius must be 40,000/2p=6369.4 km 

(the presently accepted value is 6371 km)

From this it is easy to calculate its volume:

Volume of a sphere is 4/3 πr3

So: 4/3 x 3.14 x (6369.4)3 = 108.184 x 1010 km3

The presently accepted value is 108.321 x 1010km3

To get the average density of the earth, 

we now need to calculate its total mass!



Sir Isaac Newton (1643-

1727) in the years when 

he formulated the law of 

gravitation

To calculate the total mass of the earth, we  can 

use Newton’s law of gravitation:

F=G(me x mo)/d
2 (1)

Here F is the force of attraction due to gravity, 

me the mass of the earth, mo the mass of any 

object near the earth, d is the distance between 

the two and G is the universal gravitational 

constant.

But force F is mass times acceleration.  So, the force with which the 

earth attracts an object of 1 kg mass on its surface  is 1 kg x 9.81 

m/sec2 = 9. 81 newtons (remember that 9.81 m/sec2 is the standard acceleration due 

to gravity at the surface of the earth). If we now solve the equation (1) for me:

me = Fd2/Gmo 

The universal gravitational constant is 6.67 x 10–11 nt-m2/kg2

me = 9.81 newtons x (6371000 m)2 /6.67 x 10–11 nt-m2/kg2 x 1 kg = 59.67 x 1023 kg



From what we have so far learnt, we can easily calculate the 

average density of the earth:

ρe = me/ve

= 59.67 x 1023 kg/ 108.184 x 1013 m3 = 5518 kg/m3 or  5.518 g/cm3

At first sight this is a surprising result, because the densities of the 

surface rocks generally range between 2 and 3 g/cm3! 

The inevitable conclusion is that in the depths of the earth there 

must be denser materials.

Whether that is really so,we can approach from two different 

directions: 1) From a deductive direction and 2) from an empirical

direction. Let us first go the deductive way, because that does not 

require us to leave our desk, so we can do it right here:



The syringe experiment to show 

how the volume of a gas decreases 

with increasing pressure on it (from 

Haber-Schaim et al. 1971). Thus 

with increasing pressure its density 

increases.



Variations of pressure in the atmosphere and in the oceans 

(from Resnick and Halliday, 1966, fig. 17-4)

Note that density of air changes with altitude and the 

density of water is assumed to be constant



The condition of unchanging density under pressure  is also 

known as incompressibility, i.e. the inability of a substance to 

change its volume despite increasing pressure. However, all 

substances are made up of atoms and molecules which consist 

mostly of empty space!
Phase changes are 

accompanied by volume 

changes because they 

change the inter-molecular 

distances and thus the 

entropy of a system. The 

figure here shows phase 

changes due to temperature 

changes. But we can also 

bring about phase changes 

by altering the pressure.
From Toon et al. (1968)



When high enough pressures apply, no substance can remain 

incompressible. In some stars, for example the pressures get so 

high that even the atoms themselves shrink (once the critical 

mass passes what is known as the Chandrasekhar’s limit) to 

create matter so dense that the heavenly objects formed from it 

consist only of neutrons (because they can have no electrons 

orbiting a nucleus). If further compression occurs, the star would  

not allow even light to escape from it. That is why such 

theoretical objects  are known as “black holes”. Any body can be 

compressed to a size that would increase its density so much that 

no light can escape from it. This is known as the Schwarzschild 

radius.

Karl Schwarzschild     

(1873-1916)

For our Sun, the Schwarzschild radius is 3 km 

(its present equatorial radius is 695,000 km!).

For a human being, the Schwarzschild radius is 

1.7 x 10–23m

(From Kippenhahn,  1980)

Thus with increasing pressure, density 

must also increase in any material

Subrahmanyan 

Chandrasekhar          

(1910-1995)



In 1799 Marquis Pierre Simon de Laplace (1749-1827) pointed out 

that according to the principles of hydrostatics, in the earth 

pressure, and therefore density, must increase with depth. (Why did 

Laplace use principles of hydrostatics for a solid earth?)

Hydrostatic pressure 

for any depth h is   

Ph= P0+rgh



a

b

A homogeneous earth 

would have been an 

ellipsoid of revolution about 

its axis of rotation (a)

Sir Isaac Newton (1643-1727) 

calculated the flattening (b-a/a) to 

be 1/230.

Present satellite observations help 

us estimate it to be 1/298,257 with 

an accuracy of 1 part in 200.000 

(Bott, 1982)



Extreme positions of 

the orbital  plane of 

the Moon

Sun

Irregularities due to 

nutation

Axis normal                             

to the ecliptic
Axis of the 

rotation of 

the earth

Circle of 

precession

Plane of the ecliptic

From Deparis and Legros 

(2002, fig. III.12)

The equatorial bulge of the earth and the 

attraction on it by the Sun and the Moon 

cause its axis to precess and to nutate



The flattening of the earth due to rotation  (hydrostatic equilibrium, he) 

is calculated by the following relation:

fhe = (5/2) (w2Re/ge)[1+{5/2—(15/4)(I33/MR3)}2]-1 + O (f2)

The terms that enter this equation are the following:

I33 = moment of inertia with respect to the x3 , i.e., rotational, axis                                  

=  ∫
M 

(x3+1
2+x3+2

2) dM

w = angular velocity of the earth = 7292115 x 10-11 rad/sec

Re = mean equatorial radius = 6378136±1 m

ge = gravitational acceleration at the equator = 9.78032±1 m/sec2

f= polar flattening of the reference ellipsoid                                            

= (Re—Rp)/Re = (1/298.275) ± 0.001

O = order of magnitude



fhe = (5/2) (w2Re/ge)[1+{5/2—(15/4)(I33/MR3)}2]-1 + O

(f2)
Notice that in this equation we use 

the moment of inertia with respect 

to the x3 axis, which requires the 

integration of the mass (M) of the 

earth along this axis.  Therefore 

the hydrostatic flattening  contains 

terms that give information about 

the distribution of mass within the 

earth. This was first used by the 

Swiss mathematician Leonhard 

Euler in 1749 to propose a layered 

density distribution within the 

earth.

Leonhard Euler 
(1707-1783)



Leonhard Euler (1707-1783) pointed 

out in 1749 that in a homogeneous earth 

the quantity C-A/A would be  equal to 

b-a/a,where C is the moment of inertia 

around the axis of rotation and A is the 

moment of inertia around an equatorial 

axis.

(Moment of inertia is ∫ r2rdv, where r is 

the radius, r is density and v is volume)

He found instead that C-A/A was 1/336, i.e. much smaller than 

1/230. This is only possible if there is a “core” of sorts that has an 

appreciably  higher density than the surronding shell.

3840km

rs

ρc=10ρs

Euler assumed a two-layer earth,  with a “core” density 10 times 

the “shell” density and a core radius of 3840 km



Now let us compare Euler’s earth with an almost exactly 

contemporary concept derived entirely on the basis of geological 

observations made on the surface of the earth:

rs

ρc=10ρs

3840 

km

Euler’s earth (1749)
Antonio Lazzaro Moro’s 

earth (1740) with Euler’s 

dimensions superimposed



The agreement between the thicknesses of Euler’s “shell” and 

Moro’s “crust” is entirely coincidental and both are wrong. 

There is no discontinuity known today at a depth of 2531 km. 

Moro’s “crust” was based both on what Moro had thought to be 

Empedocles’ model and, via Thomas Burnet (1635?-1715) and 

John Woodward (1665-1728), on René Descartes’ (1596-1650) 

layered earth.

Descartes’ earth in his Principes de Philosophie (1644)



Joseph Fourier (1768-1830)

In 1822, Fourier’s studies of the 

physics of heat flow and heat 

transfer have resulted in an 

equation establishing the 

temperature history of a body:

dT/dt = (k/rCp) (d
2T/dx2)

Where T is temperature, t is time, 

(k/ρCp) thermal diffusivity, with ρ

being density  and Cp specific heat.

In 1824 he applied his results to 

the earth. This showed that neither 

the solar nor the interstellar heat were capable of sustaining the 

geothermal gradient observed on earth, which Fourier showed to 

be 1˚C for every 32 metres.



To get a rough idea of how much solar heat can heat up 

the earth, consider that every year, a cm2 of surface 

receives 225.000 calories of heat from the sun. If applied 

continuously, this is enough to raise the temperature of 

225 tons of water by one degree centigrade! If we 

consider a container with a base of 1 m2 and a height of 

225 metres, we see that for a whole year, the solar energy, 

if applied continuously (i.e. if we don’t count the nights 

and the cloudy days)  is only sufficient to raise the 

temperature of the photic zone (including the euphotic and 

the disphotic zones) in the seas (which is about 200-250 

metres deep) by one degree centigrade, if all the energy 

transferred were preserved! Therefore the energy 

transferred from the Sun contributes essentially nothing to 

the earth’s internal heat budget.



Now let us return to Fourier’s geothermal gradient:

If we take the surface temperature to be 0˚c, then at a depth of

32 m the temperature of the rocks reaches 1˚C

320 m                                                           10˚C

3200 m 100˚C

32000 m = 32 km 1000˚C

At 32 km depth we have already passed the melting temperature 

of even dry  granite, which is about 800˚C.

At 40 km, we reach a temperature of 1250 ˚C,which surpasses the 

melting point of basalt, which is 1200˚C.

At about 53 km, we surpass 1700˚C,which is the hottest any 

known mineral can stand without melting.



On the basis of such considerations, 

the French mining engineer Cordier 

studied the geothermal gradient in 

40 mines in France measuring about 

300 temperatures. He concluded 

that the gradient was steeper than 

Fourier had thought, being 1˚C for 

every 15 to 25 metres. He 

extrapolated that and concluded that 

temperatures exceeding 100˚ of 

Wedgwood’s pyrometer (>7200 ˚C), 

which Cordier thought would melt 

all lavas and most rocks, would be 

reached at a depth of less that 270 

km  in Carneaux,  150 km at Littry 

and 115 km at Decise.Pierre-Louis-Antoine Cordier 

(1777-1861)



In his epoch-making book “Essai sur la température de 

l’intérieur de la Terre” (Mémoire de l’Académie des 

Sciences,1827), republished in the same year in the Mémoires du 

Muséum d’Histoire Naturelle, v.15, pp. 161-244), Cordier argued 

that the earth’s crust was a product of solidification resulting 

from cooling and that its thickness was at most 55 leagues 

(100km), but probably much less.

He also argued, following Edmond 

Halley’s extraordinarily perceptive 

earlier view, that in the molten 

interior there may be an 

independently rotating iron core 

capable of causing the magnetic field 

of the earth!

The great British astronomer Edmond Halley 

(1656-1742)



He thought that at a time when there was already life on earth, sufficient temperatures 

may have obtained at depths of 1000 m or so from the surface of the earth to keep most 

rocks at those depths in a liquid state. In other words, the thickness of the earth's crust at 

those times may have been only about a km. Now, Élie de Beaumont further believed 

that the accumulation of coal beds, corals and mussel-banks showed that most 

Palaeozoic seas had had a small depth. Yet the entire thickness of the Palaeozoic strata 

reaches several thousand m. The weight of even a small basin would thus have been 

enough to 'fold in' its basement. Every newly laid down bed would push the basin 

bottom closer to the red-hot interior. Élie de Beaumont thought that this would heat up 

the lower parts of the basin sufficiently to change the texture, even the structure, of the 

original sediments. The thicker the sediment package in a basin, the greater would be 

the effects of metamorphism.

These arguments led, within the first half of the 

nineteenth century, to the conception of a crust 

underlain by a liquid interior of unknown 

thickness.  One thought that if this crust were 

somehow loaded, it would subside into the 

underlying liquid interior. This was first 

expressed by the great French geologist Élie de 

Beaumont in 1828.

Élie de 

Beaumont 
(1798-1874)



The great British 

astronomer Sir John 

Frederick Herschel 

(1792-1871)

The views of both Charles Babbage and Sir John

Herschel are found in appendices to the former's Ninth

Bridgewater Treatise (Babbage, 1838, notes F through

I, pp. 204-247) and are concerned primarily with the

means of generating uplifts and depressions through the

internal heat of the earth. Both contend that the lines of

equal temperature must mimic the topography grossly,

subaerial or subaqueous. While erosion depresses (with

respect to the centre of the earth) the geotherm below a

given point near the original surface, deposition raises

it. This may cause metamorphism or even melting

under thick sedimentary piles and might liberate water

vapour and other gases, causing volcanic eruptions.

Herschel, in his letter to Lyell (in Babbage, 1838, pp.

225-236), pointed out, that since a fluid substratum

must exist beneath the crust, sedimentation would load

any basin floor and depress the crust underneath into

the substratum. By contrast, erosion would occasion

uplift.
British polymath and inventor 

Charles Babbage (1792-1871)



Independent evidence that the crust must “float” on a denser 

substratum came from the plumb line observations during the 

geodetic work of the Great Trigonometrical Survey of India at the 

time headed by Colonel

Sir George Everest 

(1790-1866)

The 

triangulation 

along the 

“Great Arc” of 

meridian in 

India

Sir George 

Everest, one 

of the greatest 

geodesists of 

all times.



A plumb line is a simple 

device used to establish the 

vertical on the surface of the 

earth. If the earth were a 

perfect ellipsoid, the 

plumbline would everywhere 

show the true vertical to the 

surface.  If, however, there 

are topographic irregularities, 

they would add additional 

material with power to attract 

and the plumbline would 

deviate towards them from 

the vertical (to the geoid).



Kaliana

Kalianpur

Himalaya 

Mountains

Tibet

Distance 

measured

Distance between Kaliana and Kalianpur 

by triangulation = 5˚23’42”.294

Same distance by astronomical fixing = 

5˚23’37”.058

There is thus an “error” of 5”.236, which is 

about 154 m (over a distance of 603.75 

km!) reported by Everest in 1847

Plumb line

Plumb line



Colonel Everest thought that the error lay in establishing the 

vertical at every trianglation station between Kaliana and 

Kalianpur and he distributed the error of 5”.236 among the 

triangles. However, in 1855 Archdeacon John Henry Pratt (1809-

1871) showed that this could not be, because the error in 

triangulation is dependent on the second order of the value of the 

deviation of the plumb line:

Pratt’s figure to show that 

the error in triangulation is 

dependent on the second 

order of the deviation of the 

plumbline

The error due to deviation is AM-AM’ =

AM[1-{cos(<BAM+<zAz’)}/cos<BAM]=

AM(tan <BAM . sin <zAz’+ 1- cos zAz’)=

BM <zAz’+1/2 AM (<zAz’)2

Thus the geodetic error is a function of the square of 

the deviation angle. But the astronomical error is 

directly dependent on the difference between the two 

plumbline directions.



Pratt calculated the attraction of the entire mountainous mass, 

which he called the “enclosed region,”  north of the measuring 

stations.

Pratt’s “Enclosed Region”



He found that the calculated difference between the stations was 

15”.885 or nearly three times the observed difference of 5”. 236. 

This meant that Pratt had assumed that the mountainous mass 

within the enclosed region had too much of an attraction. For his 

calculation he had assumed a density of 2.75 g/cm3 for the 

average density of the Enclosed region. To account for the “too 

much attraction” he tried to reduce it, but he found that even if he 

reduced it to the absurd value of 2.25 g/cm3, the enclosed region 

still had too much attraction to account for the anomaly.

In his 1855 paper, Pratt could not resolve the anomaly. He 

resorted to changing the curvature of the surface, but this was 

clearly an ad hoc solution.

The solution of the problem came from the Astronomer Royal 

George Airy.



The Astronomer Royal 

George B. Airy   

(1801-1892)

Airy pointed out that Pratt’s assumption 

of considering the enclosed region as an 

additional load on the outer shell of the 

earth was unreasonable, because the shell 

could not be strong enough to support it.

If the enclosed region 

had a geometry as 

shown here, the 

cohesion across the 

vertical lines indicated 

would be such as to 

hang a rock column 

twenty miles long, if

the shell was only 16 km thick. If the shell were assumed 160 km 

thick, the cohesion necessary would have been one to hang a rock 

column 322 m long, which Airy thought was still excessive.



Airy instead suggested to “float” the enclosed region on a denser substratum. He then wrote “In all 

cases, the real disturbances [of the plumb line] will be less than that found by computing the effect of 

the mountains, on the law of gravitation. Near to the elevated country, the part which is to be 

subtracted from the computed effect is a small proportion of the whole. At a distance from the elevated 

country, the part which is to be subtracted is so neary equal to the whole, that the remainder may be 

neglected  as insignificant, even in cases where the attraction of the elevated country itself would be 

considerable. But in our ignorance of the depth at which the downward immersion of the projecting 

crust into the lava takes place, we cannot give greater precision to the statement.” (Airy, 1855, p. 104)



In an 1859 paper, Pratt objected to Airy’s idea because 

1) he believed Hopkins’ idea that the curst was 1280 to 

1600 km  thick; 2) he thought it absurd to have a liquid 

more dense than a solid of the same material; and 3) he 

saw that Airy’s idea would lead to a variable topography 

of the lower boundary of the crust and the crust would 

have to be thin under depressions and thick under 

elevations. He did not believe any sort of cooling could 

produce such a crust. 

He instead suggested that the differences in elevation 

may result from the attenuation of the mass below them 

(so as to lower their density) and all columns supporting 

different heights would be found to be equally heavy at 

an imaginary level at depth.



Pratt type crustal geometry 

to account for topography 

and gravity

Airy type crustal 

geometry to account for 

topography and gravity

All columns above the red line have the same weight



By the middle of the nineteenth century 

different kinds of evidence had converged 

to indicate that the earth indeed had a 

concentrically layered internal geometry 

and that as one descended, both 

temperature and pressure increased. It was 

also thought by many that the density 

increase was not gradual, but 

discontinuous.

Additional evidence for this latter view 

came from meteorites!



Auguste Daubrée 

(1814-1896)

In a series of papers between 1866 

and 1885, the great French geologist 

Auguste Daubrée classified the 

meteorites into four great classes of 

1) Meteorites composed almost 

entirely of iron alloyed with nickel 

and some other metals

Iron meteorite with Widmannstätten 

figures composed of kamacite (ρ=7.3-

7.9) and taenite (ρ=7.8-8.2) lamellae



2) Meteorites with silicate grains 

in an iron matrix (e.g. Pallasites)

3) Meteorites consisting of 

silicates with some grains of 

iron (achondrites). These are the 

most common meteorites. Their 

compositions range from 

basaltic to ultramafic.

Olivine grains (ρ=3.27-4.37) in 

an iron mass

The Rosebud stony meteorite 

consisting of an olivine (ρ=3.27-4.37) -

hypersthene (ρ=3.4-3.5) ultramafic 

rock (from King, 1976)



4) Meteorites with no iron at all and some of them with 

carbonaceous chondrites (e.g. the Allende meteorite)

In those days tektites were also 

thought to be of meteoric origin 

(we now know them to be just 

glass ejecta from the earth that 

form when meteorites hit the 

surface and melt it). Their silicic 

composition and low density 

(anywhere between 2.3-2.8) 

suggested to Daubrée that 

meteorites had a natural density 

sequence. He thought they  

probably came from a now-

disrupted planet.

A fragment  of the 

Allende meteorite



Finally, in 1909, Eduard Suess, an Austrian geologist and 

possibly the greatest geologist who ever lived, proposed, in the 

fourth volume of his great classic Das Antlitz der Erde (=The 

Face of the Earth)  the following internal geometry of the earth 

on the basis of all the available evidence then:

Eduard Suess 

(1831-1914)
AfricaAmerica

Suess’ earth (equatorial cross-section)



Among the evidence used were:

1) Shape of the earth

2) Geology of the surface

3) Geophysical considerations on the movements of the earth 

and their implications for the internal density distribution

4) Meteorites

For his geophysical basis Suess used 

the great Göttingen geophysicist 

Emil Wiechert’s model of 1897. 

Wiechert’s model was wrong mainly  

because he neglected the influence 

of pressure on density. He simply 

used the density of the iron 

meteorites, whereas we today think 

that the density of the core may be 

more that 12 g/cm3!

Emil Wiechert     

(1861-1928)



To summarize: When the twentieth century  opened, we still 

had only a very  vague idea of the internal structure of the 

globe. It was in the first three decades of the twentieth century 

that the picture was greatly clarified owing to the 

developments in seismology.

Seismology is the science of earthquakes (and similar 

phenomena). Today we can perhaps define it as the science of 

elastic waves in rocky planets (as we now also do seismology  

on the Moon!)

How has seismology helped us  to understand the interior of 

the earth?


