Introduction to Topology Quiz 2, March 15th, 2016

Name: \qquad
Number: \qquad

1. (a) Calculate the union $\bigcup_{n \in \mathbb{N}}\left[-1, \frac{n}{1+n}\right]$. Briefly explain your answer.

Solution: The sequence $\frac{n}{n+1}$ can also be written as $1-\frac{1}{n+1}$. So the elements $\frac{n}{n+1}$ go to 1 increasingly as n goes to ∞. Our claim is that $\bigcup_{n \in \mathbb{N}}\left[-1, \frac{n}{n+1}\right)$ is $[-1,1)$. It is clear that 1 is not in the union since it is not in any of the sets $[-1, n /(n+1))$. On the other hand, if we take any $-1 \leq \alpha<1$, since $\frac{n}{n+1}$ approaches to 1 on the left, there is going to be a $N \in \mathbb{N}$ such that for every $n \geq N$ we would have $\alpha \leq \frac{n}{n+1}<1$. In other words $\alpha \in[-1, N /(N+1)$), i.e.

$$
\bigcup_{n=0}^{\infty}\left[-1, \frac{n}{n+1}\right)=[-1,1)
$$

(b) Calculate the intersection $\bigcap_{\epsilon \in[0, \infty]}[-1,1+\epsilon)$. Briefly explain your answer.

Solution: We claim that the answer is

$$
\bigcap_{\epsilon \in[0, \infty)}[-1,1+\epsilon)=[-1,1]
$$

The fact that 1 is in this set is obvious since $1 \in[-1,1+\epsilon)$ for every $\epsilon \in[0, \infty)$. On the other hand if we take any $1<\alpha$ we see that $\alpha \notin\left[-1,1+\frac{\alpha-1}{2}\right)$.

Introduction to Topology Quiz 2, March 15th, 2016

2. Let $f(x, y)$ be any real-valued function of two variables such that $f(x, y) \neq 0$ for every $(x, y) \in \mathbb{R}^{2}$. Define a relation $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by letting

$$
S=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid f(x, y) f\left(x^{\prime}, y^{\prime}\right) \geq 0\right\}
$$

Show that S is an equivalence relation.

Solution: In the version I gave I forgot to add $f(x, y) \neq 0$. So, if you got the reflexivity and symmetricity right, you'll get full points.
i) Reflexivity: for every $(x, y) \in \mathbb{R}^{2}$, we have $f(x, y) f(x, y)=f(x, y)^{2}>0$ since every square real number is either 0 or positive.
ii) Symmetricity: for every $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$, we have $f(x, y) f\left(x^{\prime}, y^{\prime}\right) \geq 0$ if and only if $f\left(x^{\prime}, y^{\prime}\right) f(x, y) \geq 0$ since the multiplication in \mathbb{R} is commutative.
iii) Transitivity: for every $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbb{R}^{2}$, if $f(x, y) f\left(x^{\prime}, y^{\prime}\right) \geq 0$ and $f\left(x^{\prime}, y^{\prime}\right) f\left(x^{\prime \prime}, y^{\prime \prime}\right) \geq 0$ then $f(x, y) f\left(x^{\prime}, y^{\prime}\right)^{2} f\left(x^{\prime \prime}, y^{\prime \prime}\right) \geq 0$. Since $f\left(x^{\prime} y^{\prime}\right)^{2} \neq 0$, we see that $f(x, y) f\left(x^{\prime \prime}, y^{\prime \prime}\right) \geq 0$.

