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Learning outcomes

• The meaning of electric current, and how charges move in a

conductor.

• What is meant by the resistivity and conductivity of a

substance.

• How to calculate the resistance of a conductor from its

dimensions and its resistivity.

• How an electromotive force (emf) makes it possible for

current to flow in a circuit.

• How to do calculations involving energy and power in

circuits.

• How to use a simple model to understand the flow of

current in metals.
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Introduction - 1

• Up to now we studied the interactions of electric charges at

rest; now we’re ready to study charges in motion.

• An electric current consists of charges in motion from one

region to another.

• If the charges follow a conducting path that forms a closed

loop, the path is called an electric circuit.
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Introduction - 2

• Electric circuits convey energy from one place to another.

• As charged particles move within a circuit, electric

potential energy is transferred from a source (such as a

battery or generator) to a device in which that energy is

either stored or converted to another form: e.g. into sound

in a stereo system or into heat and light in a toaster or

light bulb.

• Electric circuits are useful because they allow energy to be

transported without any moving parts (other than the

moving charged particles themselves).
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Introduction - 3

Electric circuits are at the heart of

• computers,

• television transmitters and receivers, and

• household and industrial power distribution systems.

• Your nervous system is a specialized electric circuit that

carries vital signals from one part of your body to another.

To prepare for the study of electric circuits in the next chapter,

we’ll examine the basic properties of electric currents here.
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Electrons in a conductor in electrostatics

• In an ordinary metal such as

copper or aluminum, some of the

electrons, e−, are free to move.

• The e− do not escape from the

conducting material, because

they are attracted to the + ions

of the material.

• In electrostatic conditions ~E = 0

everywhere within the conductor.

• However, this does not mean that

e− are at rest; they move

randomly in all directions with

speeds, of the order of 106 m/s.

• The motion of the

e− is random, so

there is no net flow

of charge in any

direction.
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Current

• A current is any motion of charge

from one region to another:

• In electrostatic situations

(~E = 0), the random motion of

the electrons produces no net

flow of charge and so there is no

current.

• If a constant, steady electric field
~E is established inside a

conductor, then there is a net

flow of charge and a current is

produced.
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Drift velocity

• if a constant, steady ~E is

established inside a conductor, a

free e− inside the conductor is

then subjected to a steady force
~F = q~E.

• If the charged particle were

moving in vacuum, this steady

force would cause a steady

acceleration ~a = ~F/m.
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Drift velocity

• But an e− moving in a conductor

undergoes frequent collisions with

the massive, nearly stationary ions.

In each such collision the particle’s

direction of motion undergoes a

random change.

• The net effect of ~E is that in

addition to the random motion of

e−s within the conductor, there is

also a very slow net motion of the

e−s opposite to the direction of ~E.

• This motion is described in terms of

the drift velocity ~vd of e−s. As a

result, there is a net current in the

conductor. 9



Drift velocity

• While the random motion of the

e−s has a very fast average speed

of about 106 m/s, the drift speed

is very slow, often on the order of

10−4 m/s.

• Given that the e− move so slowly,

you may wonder why the light

comes on immediately when you

turn on the switch of a flashlight!
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Drift velocity

Analogy :

A group of soldiers standing at

attention when the sergeant orders

them to start marching; the order

reaches the soldiers’ ears at the speed

of sound, which is much faster than

their marching speed, so all the

soldiers start to march essentially in

unison.
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Drift velocity

Analogy :

Consider a garden hose connected to a

tap. If the hose is filled with water in

the beginning, water will flow from

the end as soon as the tap is opened.
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Direction of current

• In metals charge-carrying

particles are the e−s.

• In other conducting materials,

the charges of the moving

particles may be + or −.
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Direction of current

• In an ionized gas (plasma) or an

ionic solution the moving charges

may include both e−s and +

charged ions.

• In a semiconductor material such

as germanium or silicon,

conduction is partly by e−s and

partly by motion of vacancies,

also known as holes; these are

sites of missing electrons and act

like + charges.
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Direction of current

• If the charge carriers are +, ~F is

in the same direction with ~E and

the ~vd.

• If the charge carriers are negative
~F is opposite to ~E, and the drift

velocity ~vd is from right to left.
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Direction of current

• In both cases there is a net flow

of + charge from left to right,

and + charges end up to the right

of − ones.

• We define the current, denoted by

I, to be in the direction in which

there is a flow of + charge.

• Thus we describe currents as

though they consisted entirely of

+ charge flow, even in cases in

which we know that the actual

current is due to e−s.
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Current

• Here we consider the moving

charges to be positive, so they are

moving in the same direction as

the current.

• We define the current through

the cross-sectional area A to be

the net charge flowing through

the area per unit time:

electric current:

I ≡ dQ

dt
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Current is not a vector!

• Although we refer to the direction of a current, current is

not a vector quantity.

• In a current-carrying wire, the current is always along the

length of the wire, regardless of whether the wire is straight

or curved.

• No single vector could describe motion along a curved path.
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The unit of current

The SI unit of current is the ampere1; one ampere is defined to

be one coulomb per second:

1 A = 1 C/s

• Ordinary flashlight: I = (0.5− 1) A;

• A car engine’s starter motor I = 200 A.

• Radio/television circuits: 1 mA = 10−3 A or 1µA = 10−6 A

• Computer circuits: 1 nA = 10−9 A or 1 pA = 10−12 A.

1This unit is named in honor of the French scientist André Marie Ampère

(1775-1836).
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Current & Drift velocity

• Here we assume the charge carriers

to be +, so they move in the same

direction as I.

• n: charge carrier particles per unit

volume (m−3).

• Assume that all the particles move

with the same drift velocity with

magnitude vd. In a time interval dt,

each particle moves a distance vd dt.

• The particles that flow out of the

right end of the shaded cylinder with

length vd dt during dt are the

particles that were within this

cylinder at the beginning of the

interval dt. 14



Current & Drift velocity

• The volume of the cylinder is

dV = Avd dt,

• the number of particles within it

is dN = nAvd dt.

• If each particle has a charge q,

the charge dQ that flows out of

the end of the cylinder during

time dt is

dQ = qdN = qnAvd dt

Dividing both sides with dt

I = qnAvd
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Current density

Recall: I = qnAvd

• The current per unit cross-sectional area is called the

current density J :

J = I/A = qnvd

• The SI unit of J is A/m2.

• We can also define a vector current density ~J that includes

the direction of the drift velocity:

~J = qn~vd

• Current density ~J is a vector, but current I is not. ~J

describes how charges flow at a certain point (local),

whereas I describes how charges flow through an extended

object such as a wire.
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Example: current density and drift velocity

Question

A copper wire of diameter 1 mm carries a constant current of

0.30 A to a 60 W bulb. The free-electron density in the wire is

n = 8.5× 1028 m−3. Find (a) J and (b) vd.
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Example: current density and drift velocity

Question

A copper wire of diameter 1 mm carries a constant current of

0.30 A to a 60 W bulb. The free-electron density in the wire is

n = 8.5× 1028 m−3. Find (a) J and (b) vd.

Solution

• Crosssectinal area of the wire:

A = πr2 = 3.14×
(

1×10−3 m
2

)2
= 7.85× 10−7 m2.

• The magnitude of the current density:

J = I
A = 0.30 A

7.85×10−7 m2 = 3.82× 107 A/m2.

• Drift velocity: vd = J
|q|n = 3.82×107 A/m2

|−1.6×10−19 C|×8.5×1028 m−3 =

2.8× 10−3 m/s = 2.8 mm/s
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Example: current density and drift velocity

Question

A copper wire of diameter 1 mm carries a constant current of

0.30 A to a 60 W bulb. The free-electron density in the wire is

n = 8.5× 1028 m−3. Find (a) J and (b) vd.

Solution

• Crosssectinal area of the wire:

A = πr2 = 3.14×
(

1×10−3 m
2

)2
= 7.85× 10−7 m2.

• The magnitude of the current density:

J = I
A = 0.30 A

7.85×10−7 m2 = 3.82× 107 A/m2.

• Drift velocity: vd = J
|q|n = 3.82×107 A/m2

|−1.6×10−19 C|×8.5×1028 m−3 =

2.8× 10−3 m/s = 2.8 mm/s

At this speed an e− would require ∼ 6 min to travel 1 m along

this wire! vrandom ∼ 1011vd. Electrons indeed drift !
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Example: drift velocity

Question

How would the drift velocity change if we doubled the diameter

of the copper wire in the previous problem while keeping the

current the same.

a) None–vd would be unchanged;

b) vd would be twice as great;

c) vd would be four times greater;

d) vd would be half as great;

e) vd would be one-fourth as great.
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Example: charge carrier density

Question

The mass density of silver at room temperature is

ρm = 10.5× 103 kg m−3 and its atomic mass is A = 108 g/mol.

If we assume there is s = 1 free electron per silver atom, what is

the free-electron density for silver (n), in electrons/m3?

Solution

• A = 0.108 kg/mol. ρm
A has unit mol/m3.

• 1 mol = N0 = 6.02× 1023

• N0ρm
A Ag atoms per m3

• n = sN0ρm
A electrons per m3

• nAg = 1× 6.02× 1023× 10.5× 103/0.108 = 5.85× 1028 m−3.

• Recall nCu = 8.5× 1028 m−3.
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Resistivity

The resistivity ρ of a material is defined as the ratio of the

electric field applied to the current density:

ρ ≡ E

J

The greater the resistivity ρ, the greater the field E needed to

cause a given current density, or the smaller the current density

J caused by a given field.

Note that we have used ρ also for the volume charge density.

What is meant by ρ should be evident from the context.
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The unit of resistivity

Recall that

• the unit of E is V/m

• the unit of J is A/m2

Thus ρ = E/J implies that the unit of ρ is

V ·m
A

As we will soon see 1 V/A = 1 Ω (Ohm). We thus obtain the

unit of ρ as

Ω ·m
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Resistivities of materials

Note that resistivity is temperature dependent.

Ratio of the resistivity of quartz to silver is ∼ 1025!
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Conductivity

The reciprocal of resistivity is conductivity:

σ ≡ J

E
=

1

ρ

Its unit is

(Ω ·m)−1 = S ·m−1 = siemens per meter

Note that we have used σ also for the surface charge density.

What is meant by σ should be evident from the context.
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Ohm’s “law”

The relation between ~E and ~J can be very complex, but for

some materials, especially metals it can be simply linear as

shown by Georg Simon Ohm (1787-1854):

~E = ρ~J, ~J = σ~E Ohm’s “law”

The materials that obey Ohm’s law are called ‘Ohmic’. For such

materials, at a given temperature, ρ is a constant that does not

depend on the value of E. Many materials show substantial

departures from Ohm’s-‘law’; they are nonohmic, or nonlinear.

Note: We put the word “law” in quotation marks, since Ohm’s “law”, like the

ideal-gas equation and Hooke’s law, is an idealized model of an emprical relation

that describes the behavior of some materials quite well but is not a general

description of all matter. 23



Resistivity & Temperature: metals

The resistivity of a metallic conductor

increases with increasing temperature

T.
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Resistivity & Temperature: metals

As T increases, the ions of the

conductor vibrate with greater

amplitude, making it more likely that

a moving e− will collide with an ion;

this impedes the drift of e− through

the conductor and hence reduces the

current.
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Resistivity & Temperature: metals

Over a small temperature range (up

to 100◦C or so), the resistivity of a

metal can be represented

approximately by the equation

ρ = ρ0 [1 + α(T − T0)]

where the factor α is called the

temperature coefficient of resistivity,

and ρ0 and T0 are the reference

values.
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Temperature coefficients of resistivity
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Resistivity & Temperature: semiconductors

• The resistivity ρ of

semiconductors decreases with

increasing temperature T .

• This is because at higher temperatures, more electrons

become free from the atoms and become mobile; hence the

temperature coefficient of resistivity (α) is negative.

• Measuring the resistivity of a small semiconductor crystal

is therefore a sensitive measure of temperature; this is the

principle of a type of thermometer called a thermistor.

26



Resistivity& Temperature: superconductors

• Some materials, including several

metallic alloys and oxides, show a

phenomenon called

superconductivity (SC) below a

critical temperature, Tc.

• As the T decreases, ρ at first decreases smoothly, like that

of any metal. But then at a certain Tc a phase transition

occurs and ρ suddenly drops to zero.

• Once a current has been established in a SC ring, it

continues indefinitely without the presence of any driving

field.

27



Resistivity& Temperature: superconductors

• Superconductivity was discovered

in 1911 by the Dutch physicist

Heike Kamerlingh Onnes

(1853-1926).

• At very low temperatures, below 4.2 K, the resistivity of

mercury suddenly drops to zero.

• For the next 75 years, the highest Tc attained was ∼ 20 K.

• In 1986 Karl Müller and Johannes Bednorz discovered an

oxide of barium, lanthanum, and copper with a Tc of nearly

40 K: “high-Tc” SC materials.
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Resistivity& Temperature: superconductors

• By 1987 a complex oxide of

yttrium, copper, and barium had

been found that has a value of Tc

well above the 77 K.

• By 2018 the record for Tc is 203.5 K, and it may soon be

possible to fabricate materials that are SCs at room T .

• The implications for power-distribution systems, computer

design, and transportation!

• Nowadays, SC electromagnets are used in particle

accelerators and experimental magnetic-levitation railroads.

• SCs have other properties that require an understanding of

magnetism to explore. 27
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Resistance

For a conductor with resistivity ρ, the current density ~J and the

electric field ~E at a point are related by the Ohm’s ‘law’

~E = ρ~J,

Often, however, we are more interested in the total current I in

a conductor than in J and more interested in the potential

difference V between the ends of the conductor than in E.

This is so, largely because I and V are much easier to measure

than are J and E.
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Resistance

Consider a conducting

wire with uniform

cross-sectional area A

and length L.

• Let V be the potential difference

between the higher-potential and

lower-potential ends of the

conductor, so that V > 0.

• The direction of I is always from the

higher-V end to the lower-V end.

That’s because I in a conductor

flows in the direction of ~E, no

matter what the sign of q, and

because ~E points in the direction of

decreasing V .

• As the current flows through the

potential difference, electric potential

energy is transferred to the ions of

the conducting material by collisions. 29



Resistance

• V = −
∫
~E · d~l = EL

• J = I
A

• E = ρJ

⇒ V

L
= ρ

I

A

⇒ V = ρ
L

A
I

29



Resistance

• We have found

V = ρ
L

A
I

When ρ is constant I ∝ V
• Define the resistence R as

R ≡ V

I

• Comparison gives

R = ρ
L

A
, for uniform wire
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Exercise: dependence of resistivity on length and area

Question

A ductile metal wire has resistance R. What will be the

resistance of this wire in terms of R if it is stretched to three

times its original length, assuming that the density and

resistivity of the material do not change when the wire is

stretched?

30



Exercise: dependence of resistivity on length and area

Question

A ductile metal wire has resistance R. What will be the

resistance of this wire in terms of R if it is stretched to three

times its original length, assuming that the density and

resistivity of the material do not change when the wire is

stretched?

Answer

The volume will remain the same during stretching:

V = LA = L′A′. Thus A′ = A/3

R′ = ρ
L′

A′
= ρ

3L

A/3
= 9ρ

L

A
= 9R
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Exercise: resistivity of a conical wire

Question

A material of resistivity ρ is formed into a

solid, truncated cone of height h and radii r1

and r2 at either end. Calculate the

resistance of the cone between the two flat

end faces.
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Exercise: resistivity of a conical wire

Imagine slicing the

cone into very

many thin disks of

thickness dz.

• Calculate the resistance of one such

disk: dR = ρ dz
πr2(z)

.

• Note that r(z) is a linear function:

r(z) = az + b where a and b are to be

found by r(z = 0) = r2 and

r(z = h) = r1. These imply b = r2 and

a = r1−r2
h :

r(z) =
r1 − r2

h
z+r2, dr =

r1 − r2

h
dz

Thus dz = h
r1−r2 dr
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Exercise: resistivity of a conical wire

Imagine slicing the

cone into very

many thin disks of

thickness dz.

•
R =

∫
dR = ρ

∫ h

0

dz

πr2(z)

• dz = h
r1−r2 dr

R =
ρh

π(r1 − r2)

(
−1

r

)r1
r2

• Finally,

R = ρ
h

πr1r2
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Exercise: resistivity of a conical wire

Imagine slicing the

cone into very

many thin disks of

thickness dz.
• Special case: Let us check that the

result, R = ρ h
πr1r2

agrees with

R = ρL/A at the appropriate limit, i.e.

for a uniform-cross section wire.

• For a uniform-cross section wire r1 = r2

and hence

R = ρ
h

πr1r2
= ρ

h

πr2
1

= ρ
h

A

as expected.
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Exercise: resistivity of a spherical shell

E

F V

HV

Question

The region between two concentric conducting

spheres with radii a and b is filled with a

conducting material with resistivity ρ.

(a) Show that the resistance between the spheres

is given by

R =
ρ

4π

(
1

a
− 1

b

)

32



Exercise: resistivity of a spherical shell

E

F V

HV

Question

The region between two concentric conducting

spheres with radii a and b is filled with a

conducting material with resistivity ρ.

(a) Show that the resistance between the spheres

is given by

R =
ρ

4π

(
1

a
− 1

b

)

(b) Derive an expression for the current density

as a function of radius, in terms of the potential

difference Vab between the spheres.

32



Exercise: resistivity of a spherical shell

E

F V

HV

Question

The region between two concentric conducting

spheres with radii a and b is filled with a

conducting material with resistivity ρ.

(a) Show that the resistance between the spheres

is given by

R =
ρ

4π

(
1

a
− 1

b

)

(b) Derive an expression for the current density

as a function of radius, in terms of the potential

difference Vab between the spheres.

(c) Show that the result in part (a) reduces to

R = ρL/A when the separation L = b− a
between the spheres is small.

32



Exercise: resistivity of a spherical shell

E

F V

HV

Question

Solution - (a)

Start by writing dR = ρ dr
4πr2

Integrate over r

from a to b

R = ρ

∫ b

a

dr

4πr2
=

ρ

4π

(
1

a
− 1

b

)
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Exercise: resistivity of a spherical shell

E

F V

HV

Question

Solution - (b)

Start by writing J = I/A where I = V/R

and A = 4πr2. Recall R = ρ
4π

(
1
a −

1
b

)
as

well.
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Exercise: resistivity of a spherical shell

E

F V

HV

Question

Solution - (c)

Start by rewriting R

R =
ρ

4π

(
1

a
− 1

b

)
=

ρ

4π

b− a
ab

For a small radius difference a ' b you see

that 4πab ' 4πa2 = A and let us call

L = b− a. Thus the result is of the form

R = ρ
L

A
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Exercise: two resistances of a cylindrical shell

Question

Consider a hollow cylinder of length L, inner

radius of a and outer radius b has resistivity

ρ. Treat each surface (inner, outer, and the

two end faces) as an equipotential surface.

What is the resistence between

(a) the opposite faces and

(b) the inner and outer surfaces?

33



Exercise: two resistances of a cylindrical shell

Question - (a)

What is the resistence between the opposite

faces?

Solution (a)

In this case A = π(b2 − a2) and so

R = ρ
L

π(b2 − a2)
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Exercise: two resistances of a cylindrical shell

Question - (b)

What is the resistence between the inner

and outer surfaces?

Solution (b)

In this case A = 2πrL (adjacent area of a

cylinder of radius r) and so

dR = ρ
dr

2πrL

R =
ρ

2πL

∫ b

a

dr

r
=

ρ

2πL
ln
b

a

33



Mechanical analogue of resistence

• In understanding R = ρL/A we can think of a narrow

water hose.

• a narrow water hose offers more resistance to flow than a

fat one

• a long hose has more resistance than a short one

• We can increase the resistance to flow by stuffing the hose

with cotton or sand; this corresponds to increasing the

resistivity.

• Flow rate is analogous to current.

• Potential difference is similar to the pressure difference

between the tips.

34



Temperature dependence of resistence

• Because the resistivity of a material varies with T , the

resistance of a specific conductor also varies with T .

• For temperature ranges that are not too great, this

variation is approximately linear, analogous to

ρ = ρ0 [1 + α(T − T0)]

• It is thus

R(T ) = R0 [1 + α(T − T0)]

• R(T ) is the resistance at T and R0 is the resistance at T0,

often taken to be 0◦C or 20◦C.

• The temperature coefficient of resistance α is the same in

both eqns if L and A do not change appreciably with T .
35



Exercise:

Question:

Suppose the resistance of a copper wire is 1.05 Ω at 20◦C. Find

the resistance at 0◦C and 100◦C.

36



Exercise:

Question:

Suppose the resistance of a copper wire is 1.05 Ω at 20◦C. Find

the resistance at 0◦C and 100◦C.

Solution:T = 0◦C

From Table, α = 0.00393 (C◦)−1 for copper. Then Then by

using

R(T ) = R0 [1 + α(T − T0)]

= 1.05 Ω
[
1 + (0.00393 (C◦)−1) (0◦C− 20◦C)

]
= 0.97 Ω
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Exercise:

Question:

Suppose the resistance of a copper wire is 1.05 Ω at 20◦C. Find

the resistance at 0◦C and 100◦C.

Solution:T = 100◦C

From Table, α = 0.00393 (C◦)−1 for copper. Then Then by

using

R(T ) = R0 [1 + α(T − T0)]

= 1.05 Ω
[
1 + (0.00393 (C◦)−1) (100◦C− 20◦C)

]
= 1.38 Ω
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Color codes for resistors

• A circuit device made to have a

specific value of resistance

between its ends is called a

resistor.

• R may be marked with a

standard code that uses three or

four color bands near one end.

• The 4th band, if present,

indicates the accuracy (tolerance)

of the value;

no band means 20%,

a silver band 10%,

a gold band 5%.
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Wire gauges & resistivity

We rank wire diameter by “Gauge”
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Ohm’s law–again

• For a resistor that obeys Ohm’s

law, a graph of current as a

function of potential difference

(voltage) is a straight line.

• The slope of the line is 1/R.

(recall V = RI)

• If the sign of the potential

difference changes, so does the

sign of the current produced;

• This corresponds to interchanging

the higher- and lower-potential

ends of the conductor, so the

electric field, current density, and

current all reverse direction. 39



Exercise

Question:

An 18 gauge copper wire has a cross-sectional area of

8.17× 10−7 m2. It carries a current of 1.67 A. Find (a) the

electricfield magnitude in the wire; (b) the potential difference

between two points in the wire 50.0 m apart; (c) the resistance

of a 50.0 m length of this wire.
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Exercise

Question:

An 18 gauge copper wire has a cross-sectional area of

8.17× 10−7 m2. It carries a current of 1.67 A. Find (a) the

electricfield magnitude in the wire; (b) the potential difference

between two points in the wire 50.0 m apart; (c) the resistance

of a 50.0 m length of this wire.

Solution (a):

From Table ρ = 1.72× 10−8 Ω ·m. Hence

E = ρJ = ρI/A = 0.0352V/m

40



Exercise

Question:

An 18 gauge copper wire has a cross-sectional area of

8.17× 10−7 m2. It carries a current of 1.67 A. Find (a) the

electricfield magnitude in the wire; (b) the potential difference

between two points in the wire 50.0 m apart; (c) the resistance

of a 50.0 m length of this wire.

Solution (b):

Potential difference is

V = El = (0.0352V/m)(50 m) = 1.76 V

40



Exercise

Question:

An 18 gauge copper wire has a cross-sectional area of

8.17× 10−7 m2. It carries a current of 1.67 A. Find (a) the

electricfield magnitude in the wire; (b) the potential difference

between two points in the wire 50.0 m apart; (c) the resistance

of a 50.0 m length of this wire.

Solution (c):

R = ρ l
A = 1.05 Ω

Alternatively, we can find R from R = V/I.

40



Non-Ohmic devices

• In devices do not obey Ohm’s law,

I-V relation is not linear.

• Semiconductor diode is a device used

to convert alternating current to

direct current and to perform a wide

variety of logic functions in

computer circuitry.

• For V > 0, I increases exponentially

with increasing V ; I is extremely

small for V < 0.

• Thus V > 0 causes a current to flow

in the + direction, but V < 0 causes

little or no current. Hence a diode

acts like a one-way valve in a circuit. 41



Electromotive force and circuits



Why circuits?

For a conductor to have a steady

current, it must be part of a path that

forms a closed loop or complete

circuit. Why?
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Why circuits?

If you establish an electric field ~E1

inside an isolated conductor with

resistivity ρ that is not part of a

complete circuit, a current begins to

flow with current density ~J = ~E1/ρ.

42



Why circuits?

As a result a net positive charge

quickly accumulates at one end of the

conductor and a net negative charge

accumulates at the other end.

42



Why circuits?

These charges themselves produce

an electric field ~E2 in the direction

opposite to ~E1, causing the total

electric field and hence the current to

decrease. Within a very small fraction

of a second, enough charge builds up

on the conductor ends that the total

electric field

~E = ~E1 + ~E2 = 0

inside the conductor. Then
~J = ~E/ρ = 0 as well, and the current

stops altogether.
42



Why circuits?

So there can be no steady

motion of charge in such

an incomplete circuit.

These charges themselves produce

an electric field ~E2 in the direction

opposite to ~E1, causing the total

electric field and hence the current to

decrease. Within a very small fraction

of a second, enough charge builds up

on the conductor ends that the total

electric field

~E = ~E1 + ~E2 = 0

inside the conductor. Then
~J = ~E/ρ = 0 as well, and the current

stops altogether.
42



Why circuits?

So there can be no steady

motion of charge in such

an incomplete circuit.

We thus conclude that a

complete circuit must be

established in order to

obtain a steady current.

These charges themselves produce

an electric field ~E2 in the direction

opposite to ~E1, causing the total

electric field and hence the current to

decrease. Within a very small fraction

of a second, enough charge builds up

on the conductor ends that the total

electric field

~E = ~E1 + ~E2 = 0

inside the conductor. Then
~J = ~E/ρ = 0 as well, and the current

stops altogether.
42



“Pumping” charges up!

• But we know that if a charge q goes

around a complete circuit and returns

to its starting point, the potential

energy U must be the same at the end

of the round trip as at the beginning.

• We also know that there is always a

decrease in U when charges move

through an ordinary conducting

material with resistance.

• So we conclude that in order to

maintain a steady current in a complete

circuit there must be an element of the

circuit through which U increases!
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“Pumping” charges up!

• The problem is analogous to an

ornamental water fountain that recycles

its water.

• Water moves in the direction of

decreasing gravitational potential

energy, and collects in a basin in the

bottom. So how can it be recycled

continuously?

• A pump keeps lifting the water up!
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What drives a circuit?

• In an electric circuit there must be a

device somewhere in the loop that acts

like the water pump in a water fountain.

• In this device a charge would travel

“uphill,” i.e. from lower to higher

potential energy, even though the

electrostatic force is trying to push it

from higher to lower potential energy.

• The direction of current in such a

device is from lower to higher potential,

just the opposite of what happens in an

ordinary conductor.
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Electromotive force (emf) - 1

• The influence that makes current flow from lower to higher

potential is called electromotive force (emf, E)

• A circuit device that provides emf is called a source of emf.

• Note that “electromotive force” is a poor term because emf

is not a force but an energy-per-unit-charge quantity, like

potential.

• The SI unit of emf is the same as that for potential, the

volt 1 V = 1 J/C.

• A typical flashlight battery has an emf of 1.5 V; this means

that the battery does 1.5 J of work on every coulomb of

charge that passes through it.
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Electromotive force (emf) - 2

• Every complete circuit with a steady current must include

a source of emf.

• Batteries, electric generators, solar cells, thermocouples,

and fuel cells are all examples of sources of emf.

• All such devices convert energy of some form (mechanical,

chemical, thermal, and so on) into electric potential energy

and transfer it into the circuit to which the device is

connected.

• An ideal source of emf maintains a constant potential

difference between its terminals, independent of the current

through it.

• Real-life sources of emf has internal resistence.
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Ideal emf

• A charge q within

the source

experiences ~Fe = q~E.

• An ideal source of emf maintains

a potential difference between

conductors a and b, called the

terminals of the device.

• Terminal a, marked +, is

maintained at higher potential

than terminal b, marked −.

• Associated with this potential

difference is an electric field ~E in

the region around the terminals,

both inside and outside the

source.

• The electric field inside the device

is directed from a to b. 47



Ideal emf

• But the emf source also provides

an additional influence, which we

represent as a non-electrostatic

force ~Fn.

• This force, operating inside the

device, pushes charge from b to a

in an “uphill” direction against
~Fe.

• Thus ~Fn maintains the potential

difference between terminals.

• If ~Fn were not present, charge

would flow between the terminals

until potential difference was

zero. 47



Origin of non-electrostatic force

The origin of the additional influence ~Fn depends on the kind of

source:

• In a generator it results from

magnetic-field forces on moving

charges.

• In a battery or fuel cell it is

associated with diffusion

processes and varying electrolyte

concentrations resulting from

chemical reactions.

• In an electrostatic machine such

as a Van de Graaff generator, an

actual mechanical force is applied

by a moving belt or wheel. 48
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Origin of non-electrostatic force

The origin of the additional influence ~Fn depends on the kind of

source:

• In a generator it results from

magnetic-field forces on moving

charges.

• In a battery or fuel cell it is

associated with diffusion

processes and varying electrolyte

concentrations resulting from

chemical reactions.

• In an electrostatic machine such

as a Van de Graaff generator, an

actual mechanical force is applied

by a moving belt or wheel. 48



Ideal emf

• If a positive charge q is moved

from b to a inside the source, ~Fn

does a positive amount of work

Wn = qE on the charge.

• This displacement is opposite to
~Fe, so the U associated with q

increases by an amount equal to

qVab, where Vab = Va − Vb is the

(positive) potential of point a

with respect to point b.
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Ideal emf

• For the ideal source of emf that

we’ve described, ~Fe and ~Fn are

equal in magnitude but opposite

in direction, so the total work

done on the charge q is zero;

there is an increase in U but no

change in the kinetic energy of

the charge.

• It’s like lifting a book from the

floor to a high shelf at constant

speed.

• The increase in U is just equal to

the nonelectrostatic work Wn, so

qE = qVab , or

Vab = E
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Ideal emf

• Now let’s make a complete circuit

by connecting a wire with R to

the terminals of a source.

• The ∆V between terminals a and

b sets up an E within the wire;

• This causes I to flow around the

loop from a toward b, from higher

to lower V .

• Where the wire bends, equal

amounts of + and − charges

persist on the “inside” and

“outside” of the bend.
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Ideal emf

• These charges exert the forces

that cause I to follow the bends

in the wire.

• From V = RI the potential

difference between the ends of the

wire is given by Vab = IR.

Combining with Vab = E , we have

E = Vab = IR (ideal source of emf)
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Ideal emf

• That is, when a positive charge q

flows around the circuit, the

potential rise E as it passes

through the ideal source is

numerically equal to the potential

drop Vab = IR as it passes

through the remainder of the

circuit.

• Once E and R are known, this

relationship determines the

current in the circuit.
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Ideal emf

• A common misconception is to

think that I is “used up”

(consumed) in a circuit by the

time it reaches the negative

terminal. In fact I is the same at

every point in a simple loop

circuit. (Even if the wire

thickness is not constant

throughout the circuit)

• This is a result of Charge

conservation!
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Internal resistence

• ∆V across a real source of emf in

a circuit is not equal to the emf.

• q moving through the source of

emf encounters resistance which

we call the internal resistance of

the source, and denote by r.

• Accordingly there is an

associated drop in V equal to Ir

• Thus, when I is flowing through

a source from the − terminal b to

the + terminal a, Vab between the

terminals is

Vab = E − Ir
50



Internal resistence

• The terminal voltage

Vab = E − Ir

is less than the emf E because of

the term Ir representing V drop

across the internal resistance r.

• Hence the increase in potential

energy qVab as a charge q moves

from b to a within the source is

less than the work qE done by
~Fn, since some U is lost in

traversing r.
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Internal resistence

0

E

0 1 2

V
a
b

I (A)

• A 1.5 V battery has an emf of

1.5 V, but the terminal voltage

Vab of the battery is equal to

1.5 V only if no current is flowing

through it so that I = 0

• If the battery is part of a

complete circuit through which

current is flowing, the terminal

voltage will be less than 1.5 V.

• For a real source of emf, the

terminal voltage equals the emf

only if no current is flowing

through the source.
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Symbols for Circuit Diagrams

Internal resistance is an intrinsic part of a source of emf

51



Voltmeter

• A voltmeter measures the

potential difference between its

terminals;

• An idealized voltmeter has

infinitely large resistance and

measures potential difference

without having any current

diverted through it.

• A voltmeter is connected in

parallel to the circuit.
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Ammeter

• A ammeter measures the current

passing through it.

• An idealized ammeter has zero

resistance and has no potential

difference between its terminals.

• A ammeter is connected in series

to the circuit.
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Example: current and voltage across a resistor

Figure shows a source (a battery) with

emf E = 12 V and internal resistance

r = 2 Ω. The wires to the left of a and

to the right of the ammeter A are not

connected to anything. Determine the

respective readings Vab and I of the

idealized voltmeter V and the

idealized ammeter A.
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Example: current and voltage across a resistor

Figure shows a source (a battery) with

emf E = 12 V and internal resistance

r = 2 Ω. The wires to the left of a and

to the right of the ammeter A are not

connected to anything. Determine the

respective readings Vab and I of the

idealized voltmeter V and the

idealized ammeter A.

There is zero current because there is no complete circuit.

(Idealized voltmeter: r →∞, so no current flows through it.)

Hence the ammeter reads I = 0. Because I = 0 through the

battery, there is no potential difference across its internal

resistance. Vab across the battery terminals is equal to the emf.

So the voltmeter reads Vab = E = 12 V.
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Example: current and voltage across a resistor

Figure shows a source (a battery) with

emf E = 12 V and internal resistance

r = 2 Ω. We add a 4 Ω resistor to the

battery, forming a complete circuit.

What are the voltmeter and ammeter

readings Vab and I now?
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Example: current and voltage across a resistor

Figure shows a source (a battery) with

emf E = 12 V and internal resistance

r = 2 Ω. We add a 4 Ω resistor to the

battery, forming a complete circuit.

What are the voltmeter and ammeter

readings Vab and I now?

Total resistance R+ r and so I = E
R+r = 12 V

4 Ω+2 Ω = 2 A
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Example: current and voltage across a resistor

Figure shows a source (a battery) with

emf E = 12 V and internal resistance

r = 2 Ω. We add a 4 Ω resistor to the

battery, forming a complete circuit.

What are the voltmeter and ammeter

readings Vab and I now?

Total resistance R+ r and so I = E
R+r = 12 V

4 Ω+2 Ω = 2 A

Va′b′ = Vab = RI = (4 Ω) (2 A) = 8 V
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Example: current and voltage across a resistor

Figure shows a source (a battery) with

emf E = 12 V and internal resistance

r = 2 Ω. We add a 4 Ω resistor to the

battery, forming a complete circuit.

What are the voltmeter and ammeter

readings Vab and I now?

Total resistance R+ r and so I = E
R+r = 12 V

4 Ω+2 Ω = 2 A

Va′b′ = Vab = RI = (4 Ω) (2 A) = 8 V

Similarly, Vab = E − rI = 12 V − (2 Ω) (2 A) = 8 V

55



Charging a battery

• If a battery is acting as a source that produces the current

in the circuit, current flows through the battery from its −
terminal toward its + terminal, and Vab < E .

• But if a battery is being recharged, current flows through it

in the opposite direction, from its positive terminal toward

its negative terminal. In such a case I < 0 in Vab = E − rI,

so Vab > E .

• No matter which way current flows through the battery,

the smaller the internal resistance r, the less the difference

between Vab and E .
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Potential Changes Around a Circuit

E − rI −RI = 0
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Potential Changes Around a Circuit

The net change in potential energy for a charge q making a

round trip around a complete circuit must be zero.
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Exercise: Capacitor circuit
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Exercise: Capacitor circuit

Solution

• No current on the capacitors. The current through the

resistors is I = E
R1+R2

, but we don’t know R1!

• ∆V on R2 is ∆V = R2I is the same as ∆V on capacitors.

• Q1 = C1∆V ⇒ ∆V = Q1

C1
= 4.5 V, Q2 = C2∆V = 22.5µC.

• I = ∆V/R2 = 1.5 A

• R1 +R2 = E
I = 34.7 Ω⇒ R1 = 31.7 Ω.
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Exercise
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Exercise

Solution

• No current on the capacitor. The current through the

resistors is I = E
R1+R2

, but we don’t know E !

• ∆V on R1 is ∆V = R1I is the same as ∆V on C.

• ∆V = Q
C = 5.83 V.

• I = ∆V/R1 = 0.83 A

• E = (R1 +R2)I = 9.17 V.
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Energy and power in electric

circuits



Energy and power delivered to an circuit element

• a circuit element (a resistor, battery etc.)

with potential difference Va − Vb = Vab

between its terminals and current I

passing through it in the direction from a

toward b.

• As charge passes through the circuit

element, the electric field does work on

the charge.

• As charge dQ passes through the circuit

element, there is a change in potential

energy dU = dQVab.

• Power is energy per unit time: P = dU
dt

(unit J/s = W

• Thus P = IVab as dQ/dt = I. 60



Power Input to a Pure Resistance

• For a resistor Vab = RI

• P = IVab = RI2 =
V 2
ab
R

• In this case the potential at a (where I

enters the resistor) is always higher than

that at b (where the current exits).

Current enters the higher-potential

terminal of the device, and P represents

the rate of transfer of electric potential

energy into the circuit element.
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Power Input to a Pure Resistance

• What happens to this energy?

• The moving charges collide with atoms in

the resistor and transfer some of their

energy to these atoms, increasing the

internal energy of the material.

• The temperature of the resistor increases.

• We say that energy is dissipated in the

resistor at a rate RI2.

• Power rating of a resisters gives the

maximum power that may be delivered

to the element without ‘burning’ it.
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Power Output of a Source

• P = VabI, Vab = E − rI
• P = EI − rI2

• The term rI2 is the rate at which

electrical energy is dissipated in the

internal resistance of the source. The

difference P = EI − rI2 is the net

electrical power output of the source
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Power Input of a Source

• P = VabI, Vab = E + rI

• P = EI + rI2

• Work is being done on, rather than by,

the agent that causes the nonelectrostatic

force in the upper source.

• There is a conversion of electrical energy

into nonelectrical energy in the upper

source at a rate EI.
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Theory of metallic conduction



Metallic conduction

• What is the microscopic origin of Ohm’s law, ~J = σ~E, in

metals:

• We will consider a very simple model that treats the

electrons as classical particles and ignores their QM

behavior in solids.

• Using this model, we’ll derive an expression for the

resistivity, ρ = E/J of a metal.

• ~J = qn~vd and q = −e
• We need to relate the drift velocity ~vd to the electric field ~E
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Mean free time, drift velocity and resistivity

The average time between collisions is called

the mean free time, denoted by τ .
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Mean free time, drift velocity and resistivity

• The field exerts ~F = q~E, and this causes

~a =
q

m
~E

where m is the electron mass. Every

electron has this acceleration.

• The velocity of an electron at time τ is

~v = ~v0 + ~aτ

• For an average electron ~v0 = 0. Thus

~vave =
qτ

m
~E
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Mean free time, drift velocity and resistivity

• After time t = τ , the tendency of the

collisions to decrease the velocity of an

average electron (by means of

randomizing collisions) just balances the

tendency of the ~E field to increase this

velocity

~vd =
qτ

m
~E
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Mean free time, drift velocity and resistivity

• Substituting this into ~J = qn~vd we get

~J =
q2nτ

m
~E

• Thus, ρ = E/J gives

ρ =
m

q2nτ

• If n and τ are independent of E, then ρ is

independent of E and the conducting

material obeys Ohm’s law.
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