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Learning Goals

• How EM waves are generated.

• How and why the speed of light is related to the

fundamental constants of electricity and magnetism.

• Why there are both electric and magnetic fields in a light

wave.

• How to describe the propagation of a sinusoidal

electromagnetic wave.

• What determines the amount of energy and momentum

carried by an EM wave.

• How to describe standing electromagnetic waves.
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Displacement current



Displacement current

• We have seen that a varying magnetic field gives rise to an

induced E field through Faraday’s law:∮
~E · d~l = − d

dt

∫
~B · d~A

• Maxwell (1865) proposed that a varying E field gives rise

to a B field: ∮
~B · d~l ∝ d

dt

∫
~E · d~A

• There was no experimental evidence, he just hoped there is

such a symmetry in Nature.

• This effect is very important, for it leads to the prediction

of the existence of EM waves.
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Generalizing Ampere’s Law

• Let’s recall to Ampere’s law∮
~B · d~l = µ0Ienc

• The problem with Ampere’s law

in this form is that it is

incomplete.

• Why?
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Generalizing Ampere’s Law

• Consider the process of charging

a capacitor

• Conducting wires lead conduction

current iC into one plate and out

of the other;

• the charge q increases,

• and the electric field ~E between

the plates increases.

Note: We use lowercase i’s and

v’s to denote instantaneous

values of currents and potential

differences, respectively, that

may vary with time.
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Generalizing Ampere’s Law

• Let’s apply Ampere’s law to the

circular path shown.∮
~B · d~l = µ0Ienc

• For the plane circular area

bounded by the circle, Ienc is just

the current iC in the left

conductor.

• But the surface that bulges out

to the right is bounded by the

same circle, and the current

through that surface is zero.

• A clear contradiction!
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Generalizing Ampere’s Law

• However, something else is

happening on the bulged-out

surface.

• As the capacitor charges, the

electric field E = σ/ε0 = q/Aε0

and the electric flux

ΦE =
∫
~E · d~A = EA = q/ε0

through the surface are

increasing. This suggests

q = ε0ΦE .

q: instantaneous charge

C: the capacitance

v: instantaneous

potential
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Generalizing Ampere’s Law

• We obtained q = ε0ΦE

• As iC = dq
dt

iC = ε0
dΦE

dt
(1)

• In order that the magnetic field is

continuous we invent a fictitious

displacement current iD in the

region between the plates

iD ≡ ε0
dΦE

dt
(2)
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Generalizing Ampere’s Law

• We imagine that the changing

flux

iD ≡ ε0
dΦE

dt

through the curved (bulged-out)

surface in the figure is equivalent,

in Ampere’s law, to a conduction

current, iC through that surface.

• We include this fictitious current,

along with the real conduction

current iC , in Ampere’s law:∮
~B·d~l = µ0 (iC + iD)enc (Gen. Ampere’s law)
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Generalizing Ampere’s Law

• Generalized Ampere’s law∮
~B · d~l = µ0 (iC + iD)enc

is obeyed no matter which surface

we use.

• For the flat surface, iD is zero;

• for the curved surface, iC is zero

• and iC for the flat surface equals

iD for the curved surface.
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How can a current go through a capacitor

• Another benefit of generalized

Ampere’s law∮
~B · d~l = µ0 (iC + iD)enc

is that it lets us generalize

Kirchhoff’s junction rule.

• Considering the left plate of the

capacitor, we have iC into it but

none out of it.

• But when we include the iD, we

have iC coming in one side and

an equal iD coming out the other

side.

• With this

generalized meaning

of the term

“current,” we can

speak of current

going through the

capacitor.
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The reality of displacement current

• Does the displacement current have any real physical

significance or is it just a ruse to satisfy Ampere’s law and

Kirchhoff’s junction rule?

• Test: If iD really plays the role in Ampere’s law, then there

ought to be a B in the region between the plates while the

capacitor is charging.
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The reality of displacement current

• For r < R we obtain iD(r) =

ε0
d
dt

∫
~E · d~A = ε0πr

2 dE/dt and

E = σ/ε0 = q/ε0πR
2 and hence

iD(r) =
r2

R2

dq

dt
, r < R

• Hence
∮
B dl = B2πr = µ0iD(r)

implies

B = µ0
r

2πR2

dq

dt
, r < R

• When we measure

the B in this region,

we find that it really

is there and that it

behaves just as the

equation predicts.
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The Reality of Displacement Current

• Outside the region between the

plates it becomes∮
~B · d~l = B2πr = µ0

dq

dt

B =
µ0

2πr

dq

dt
, r > R

• Thus outside the region between

the plates, B is the same as

though the wire were continuous

and the plates not present at all.
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Maxwell’s equations of electromagnetism

• We, finally, are now in a position to wrap up in a single

package all of the relationships between E and B fields and

their sources.

• This package consists of 4 equations, called Maxwell’s

equations.

• Maxwell did not discover all of these equations alone, but

he was the one to put them together, added the

displacement term to make them consistent and predicting

the existence of EM waves.
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Maxwell’s equations of electromagnetism

• The 1st of Maxwell’s equations is Gauss’s law for E fields:

• It involves an integral of E over a closed surface.

• This states that electric charges (Qenc) are the sources of E

fields.
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Maxwell’s equations of electromagnetism

• The 2nd of Maxwell’s equations is Gauss’s law for B fields:

• Involves an integral of B over a closed surface.

• States that there are no magnetic monopoles (single

magnetic charges) to act as sources of B fields.
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Maxwell’s equations of electromagnetism

• The 3rd of Maxwell’s equations is Faraday’s law:

• Involves a line integral of E over a closed path.

• Faraday’s law states that a changing magnetic flux acts as

a source of E field.

• If there is a changing B, the line integral—which must be

carried out over a stationary closed path—is not zero.

• Thus the E produced by a changing B is not conservative.
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Maxwell’s equations of electromagnetism

• The 4th of Maxwell’s eqns is Generalized Ampere’s law:

• Involves a line integral of B over a closed path.

• States that both a conduction current and a changing

electric flux act as sources of B field
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The role of E in Maxwell’s equations

• In general, the total ~E field at a point in space can be the

superposition of an electrostatic field ~Ec caused by a

distribution of charges at rest and a magnetically induced,

nonelectrostatic field ~En. That is,

~E = ~Ec + ~En (3)

• We mentioned that the E produced by a changing B is not

conservative. But still we do not write Fraday’s law as∮
~En · d~l = −dΦB

dt

• because the electrostatic part ~Ec is always conservative:∮
~Ec · d~l = 0

and does not contribute to the integral in Faraday’s law.
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The role of E in Maxwell’s equations

• Similarly, the nonconservative part ~En of the ~E field does

not contribute to the integral in Gauss’s law, because this

part of the field can not contribute to the net flux since the

corresponding field lines do not start from a + charge and

terminate on a − one, but are continuous.

• Hence
∮
~En · d~A is always zero.

• We conclude that in all the Maxwell equations, ~E is the

total electric field; these equations don’t distinguish

between conservative and nonconservative fields.
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Symmetry in Maxwell’s Equations

In empty space there is

no charge Qencl = 0 and

no conduction current,

iC = 0.
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Review: Waves



What is a wave?

• A wave is a disturbance that

travels through a medium from

one location to another location.

• There is always a force acting

upon the particles that restores

them to their original position.

• When a wave travels in a

medium, the individual particles

of the medium do not travel but

only are only displaced

temporarily from their rest

position transfering their energy

to the adjacent particles.
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Transverse and longitudinal waves

Transverse waves oscillate in a

direction perpendicular to the

direction of propagation.

Longitudinal waves oscillate in

the same direction as the

direction of propagation.
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Sound waves

• Vibrating material medium produces sound waves.

• Sound waves are longitudinal.

• Only energy is transfered, not the material of the medium

(air in this case).

• Relatively dilute and dense regions of molecules.
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Wave equation in physics

• The wave equation

1

v2

∂2Ψ

∂t2
=
∂2Ψ

∂x2

relates space and time derivatives of the wave function Ψ.

• v is the speed of the wave

v =

√
restoring property

inertial property
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Waves on a string

• the stretched string as a simple case

• mass per unit length µ.

• tension T and equilibrium position is

along the x-axis.

• Restriction to small deformations:

θ � 1⇒ sin θ ' θ, cos θ ' 1⇒
tan θ ' sin θ.

28



Waves on a string

• Newton’s 2nd law in the vertical

y-direction: Fy = (dm)ay

• The net force in the y direction is

Fy = T sin θ2 − T sin θ1

• dm = µ dx

• ay = ∂2y
/
∂t2
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Waves on a string

• For small angles sin θ ' tan θ ' ∂y
∂x

and so

Fy = T

(
∂y

∂x

)
x2

− T
(
∂y

∂x

)
x1

• Fy = (dm)ay becomes

T

(
∂y

∂x

)
x2

− T
(
∂y

∂x

)
x1

= µdx
∂2y

∂t2
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Waves on a string

•

T

(
∂y

∂x

)
x2

− T
(
∂y

∂x

)
x1

= µdx
∂2y

∂t2

• Noting that
( ∂y
∂x)

x2
−( ∂y

∂x)
x1

dx ' ∂2y
∂x2

we

obtain
∂2y

∂t2
=
T

µ

∂2y

∂x2
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Waves on a string

Comparing

∂2y

∂t2
=
T

µ

∂2y

∂x2

with the generic wave equation

1

v2

∂2y

∂t2
=
∂2y

∂x2

we obtain

v =

√
T

µ
=

√
restoring property

inertial property

The speed of the wave is determined by

the medium.
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Solution of the wave equation

The solution of the generic wave

equation

1

v2

∂2Ψ

∂t2
=
∂2Ψ

∂x2

is

Ψ(x, t) = f+(x− vt) + f−(x+ vt)

f+(x− vt) describes a wave moving in

the +x direction and vice versa.
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Solution of the wave equation

Ex: Show that

Ψ(x, t) = f+(x− vt) + f−(x+ vt)

satisfies the wave equation

1

v2

∂2Ψ

∂t2
=
∂2Ψ

∂x2
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Solution of the wave equation

Ex: Show that

Ψ(x, t) = A sin[α(x− vt)]

where α is a constant (with

dimension 1/L and A is a constant to

be determined by the initial

conditions) satisfies the wave equation

1

v2

∂2Ψ

∂t2
=
∂2Ψ

∂x2
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Nature of light



What is light?

The question of the nature of light is very old, but we can start

it from the 17th century:

Newton (1643 1727)

Light is a stream of particles.

Huygens (1629-1695)

Light is a wave phenomena.
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What is light?

We can not answer this question by analysing light under some

kind of microscope.

We should make hypothesis about the nature of light and check

if we can explain phenomena like reflection, refraction etc.
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Two phenomena

Reflection Refraction
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Reflection

Particle hypothesis Wave hypothesis

Both particle and wave hypothesis can explain the reflection

phenomena. We can not decide the nature of light by analyzing

the reflection of light.
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Refraction

Particle hypothesis Wave hypothesis

Particle hypothesis can explain refraction by assuming light

propagates faster in a dense medium. Wave hypothesis can

explain refraction by assuming light propagates slower in a

dense medium. As the speed of light was not measured then it

is not possible to decide on the nature of light studying this

phenomena as well.
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18th century: Newton won

• Mechanistic world view. Everything explained in terms of

particles.

• If the space is empty, how can light travel from stars to us

without a medium for waves.
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Superposition principle

Waves can get superposed.
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Constructive superposition
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Destructive superposition
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Diffraction

Waves can diffract.
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Interference in double slit

Waves can interfere.
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Light and double slit experiment

Thomas Young

(1773-1829)

Light produces double-slit pattern. Light is a wave

phenomenon!
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EM waves of Maxwell

• Maxwell’s equations

show that a

time-varying ~B field

acts as a source of ~E

field and that a

time-varying ~E field

acts as a source of ~B

field.

• These ~E and ~B

fields can sustain

each other, forming

an EM wave that

propagates through

space.
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EM waves of Maxwell

• Visible light emitted

by the glowing

filament of a light

bulb is one example

of an EM.

• Other kinds of EM

waves are produced

by TV and radio

stations, x-ray

machines, and

radioactive nuclei.
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What we do today

• Maxwell’s equations are the theoretical basis for

understanding EM waves.

• EM waves carry both energy and momentum.

• Visible light, radio, x-rays, and other types of EM waves

differ only in their frequency and wavelength.

• Unlike waves on a string or sound waves in a fluid, EM

waves do not require a material medium; the light that you

see coming from the stars at night has traveled without

difficulty across tens or hundreds of light-years of (nearly)

empty space.

• Nonetheless, EM waves and mechanical waves have much

in common and are described in much the same language.
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Maxwell’s Equations and EM

Waves



Electrodynamics

• In the bulk of the course (i.e. except for Faraday’s law we

considered steady state fields.)

• In the static case ~E and ~B decoupled from each other.

• According to Faraday’s law a changing magnetic field

induces an electric field.

• Maxwell (1864) proposed that a changing electric field

induces a magnetic field.

• Thus, when either an ~E or a ~B field is changing with time,

a field of the other kind is induced in adjacent regions of

space.
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Electromagnetism

Maxwell’s Equations∮
~E · d~A =

Qenc

ε0
Gauss’ Law for E fields∮

~E · d~l = − d

dt

∫
~B · d~A Faraday’s law∮

~B · d~A = 0 Gauss’ Law for B fields∮
~B · d~l = µ0ienc + µ0ε0

d

dt

∫
~E · d~A Generalized Ampèré’s Law

Lorentz force
~F = q(~E + ~v × ~B)
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Electrostatics

Interaction of charges at rest.∮
~E · d~A =

Qenc

ε0∮
~E · d~l = 0

(4)

Electric force
~FE = q~E (5)
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Magnetostatics

Interaction of charges in motion.∮
~B · d~A = 0∮
~B · d~l = µ0iC

(6)

Magnetic force
~FM = q~v × ~B (7)
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The idea of fields

• The electric force arises in two stages: (1) a charge

produces an electric field in the space around it, and (2) a

second charge responds to this field.

• Magnetic forces also arise in two stages: (1) a moving

charge or a collection of moving charges (that is, an electric

current) produces a magnetic field, and (2) current or

moving charge responds to this magnetic field, and so

experiences a magnetic force.
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EM waves

• An electromagnetic disturbance, consisting of time-varying

E and B fields, can propagate through space from one

region to another, even when there is no matter in the

intervening region.

• Such a disturbance have the properties of a wave, and an

appropriate term is EM wave.

• Maxwell showed that EM waves would travel with the

speed

v =
1

√
µ0ε0

' 3× 108 m/s (8)

which is numerically equal to the measured speed of light.

• Maxwell concluded that light is an EM wave.

• Other forms of EM waves are radio and television

transmission, x-rays, microwaves, γ-rays etc.
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Generating EM waves

According to Maxwell’s equations,

• a point charge at rest produces a static ~E field but no ~B

field.

• a point charge moving with a constant velocity produces

both ~E and ~B fields.

• an accelerating point charge produces EM waves.

In every situation where EM energy is radiated, the source is

accelerated charges
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EM waves by an oscillating point charge

• One way in which a point charge can be made to emit EM

waves is by making it oscillate in SHM.

• Oscillating the charge up and down makes waves that

propagate outward from the charge along field lines.

• Emission is not equal in all directions; the EM waves are

strongest at 90◦ to the axis of motion of the charge, while

there are no waves along this axis.

• The magnetic disturbance that spreads outward from the

charge is not shown.
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Discovery of EM waves

• Electromagnetic waves with

macroscopic wavelengths were

first produced in the laboratory

in 1887 by Heinrich Hertz.

• As a source of waves, he used

charges oscillating in L-C circuits.

• Hertz detected the resulting EM

waves with other circuits tuned

to the same frequency.

• Marconi and others made radio

communication a familiar

household experience.
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Youtube link

https://www.youtube.com/watch?v=FWCN_uI5ygY
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EM spectrum

The EM spectrum encompasses EM waves of all frequencies ν

and wavelengths λ related by

c = νλ (9)

where c = 299 792 458 m/s is the speed of light (in vacuum).

Despite vast differences in their uses and means of production,

these are all EM waves with the same propagation speed, c. 57



Visible range

We can detect only a very small segment (λ = 380− 750nm) of

this spectrum directly through our sense of sight. We call this

range visible light.
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Monochromatic light

• Ordinary white light includes all

visible wavelengths.

• Approximately monochromatic

(single-color) light can be

obtained by using special sources

or filters.

• Absolutely mono-chromatic light

with only a single wavelength is

an unattainable idealization.

• Light from a laser is much more

nearly monochromatic than is

light obtainable in any other way.

• Street lights are also

monochromatic to a good extend. 59



Plane EM waves



Plane EM waves

• Assume an electric field ~E that

has only a y-component and a

magnetic field ~B with only a

z-component,

• And assume that both fields

move together in the

+x-direction with a speed c that

is initially unknown.
• Are these consistent

with Maxwell’s

equations?
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Plane EM waves

• We suppose that the boundary

plane, which we call the wave

front, moves in the +x-direction

with a constant speed c.

• Such a wave, in which at any

instant the fields are uniform over

any plane ⊥ to the direction of

propagation, is called a plane

wave.

• Are these consistent

with Maxwell’s

equations?
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Gauss’ laws

• Let us first verify that this wave

satisfies Gauss’ laws for ~E and ~B

fields.

• we take as our Gaussian surface a

rectangular box with sides

parallel to the xy−, xz−, and

yz−coordinate planes.

• The box encloses no q: ΦE and

ΦB through the box are both

zero.
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Gauss’ laws

• This would not be the case if ~E

or ~B had an x-component, ‖ to

the direction of propagation;

• Thus to satisfy Gauss’ laws, ~E

and ~B must be ⊥ to the direction

of propagation: the wave must be

transverse.
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Faraday’s law

• Apply Faraday’s law to a rectangle

efgh that is parallel to the xy−plane

• As shown in Fig. b, a cross section in

the xy−plane, this rectangle has height

a and width ∆x.

• At the time shown, the wave front has

progressed partway through the

rectangle, and ~E = 0 along the side ef .
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Faraday’s law

• In a time dt, the magnetic flux through

the rectangle in the xy−plane increases

by an amount dΦB.

• This increase equals the flux through

the shaded rectangle with area acdt:

dΦB = Bac dt⇒ dΦB

dt
= Bac
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Faraday’s law

• Only side gh contributes to the integral

on the LHS of Faraday’s law:∮
~E · d~l = −Ea

• Thus
∮
~E · d~l = −dΦB

dt becomes

−Ea = Bac⇒ E = cB
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Ampere’s law

• There is no conduction current iC = 0,

so Ampere’s law is∮
~B · d~l = µ0ε0

dΦE

dt

• We move our rectangle so that it lies in

the xz−plane, and we again look at the

situation at a time when the wave front

has traveled partway through the

rectangle.
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Ampere’s law

• The ~B field is zero at every point along

side ef , and at each point on sides fg

and he it is either 0 or ⊥ to d~l. Only

side gh contributes:
∮
~B · d~l = Ba.

• In order that the RHS of Ampere’s law

is also non-zero, ~E must have a

y−component (⊥ to ~B) so that ΦE and

hence its derivative are non-zero.

• We thus conclude that in an EM wave,
~E and ~B must be mutually

perpendicular.
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Ampere’s law

• In a time dt, the electric flux through

the rectangle in the xz−plane increases

by an amount dΦE .

• This increase equals the flux through

the shaded rectangle with area acdt:

dΦE = Eacdt⇒ dΦE

dt
= Eac

• Substituting these into Ampere’s law we

find

B = ε0µ0cE (10)
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Speed of EM waves

We obtained

• E = cB from Faraday’s law

• B = ε0µ0cE from Ampere’s law

These imply

c =
1

√
ε0µ0

(11)

Inserting the numerical values of these quantities, we find

c =
1√

(8.854× 10−12 C2/N ·m)(1.257× 10−6 N/A2)

= 2.998× 108 m/s

Our assumed wave is consistent with all of Maxwell’s equations,

provided that the wave front moves with the speed given above,

which is the speed of light!
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Key Properties of Electromagnetic Waves

We chose a simple wave for our study in order to avoid mathematical

complications, but this special case illustrates several important

features of all EM waves:

• The wave is transverse; both ~E and ~B are ⊥
to the direction of propagation of the wave.

• The ~E and B fields are also ⊥ to each other.

• The direction of propagation is the direction

of ~E× ~B.

• There is a definite ratio between the

magnitudes of ~E and ~B: E = cB.

• The wave travels in vacuum with a definite

and unchanging speed, c.

• Unlike mechanical waves, which need the

particles of a medium such as air to transmit

a wave, EM waves require no medium.
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Polarization of EM waves

We obtained

• Electromagnetic waves have the property of polarization.

• The choice of the y−direction for ~E was arbitrary.

• If we had chosen z for ~E then ~B would be in the

−y-direction.

• A wave in which ~E is always parallel to a certain axis is

said to be linearly polarized along that axis.

• More generally, any wave traveling in the x−direction can

be represented as a superposition of waves linearly

polarized in the y− and z−directions.
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Derivation of the EM Wave Equation

• Recall the wave equation for the

displacement of a string:

1

v2

∂2y

∂t2
=
∂2y

∂x2

describing a mechanical wave traveling

along the x−axis.

• To derive the corresponding equation

for an EM wave, we again consider a

plane wave: Ey and Bz are uniform over

any plane ⊥ to the x−axis, the

direction of propagation.

• But now we let Ey and Bz vary

continuously as we go along the x−axis:

Ey = Ey(x, t) and Bz = Bz(x, t) 69



Derivation of the EM Wave Equation

• For the rectangle∮
~E · d~l = −Ey(x, t)a+ Ey(x+ ∆x, t)a

= a [Ey(x+ ∆x, t)− Ey(x, t)]

• The magnetic flux ΦB through this rectangle

is Bz(x, t)a∆x

dΦB

dt
=
∂Bz
∂t

a∆x

• Applying Faraday’s law and ∆x→ 0

∂Ey
∂x

= −∂Bz
∂t

(12)
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Derivation of the EM Wave Equation

• For the rectangle∮
~B · d~l = −Bz(x+ ∆x, t)a+Bz(x, t)a

= −a [Bz(x+ ∆x, t)−Bz(x, t)]

• The magnetic flux ΦE through this

rectangle is Ey(x, t)a∆x

dΦE

dt
=
∂Ey
∂t

a∆x

• Applying Ampere’s law and ∆x→ 0

∂Bz
∂x

= −µ0ε0
∂Ey
∂t

(13)
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Derivation of the EM Wave Equation

• We obtained
∂Ey
∂x

= −∂Bz
∂t

∂Bz
∂x

= −µ0ε0
∂Ey
∂t

• Take the partial derivative of the upper equation wrt x and

lower eqution wrt t

∂2Ey
∂x2

= −∂
2Bz
∂x∂t

∂2Bz
∂t∂x

= −µ0ε0
∂2Ey
∂t2

• Combining these two equations we get

∂2Ey
∂x2

= µ0ε0
∂2Ey
∂t2

(14)

72



Derivation of the EM Wave Equation

Compairing this equation

∂2Ey
∂x2

= µ0ε0
∂2Ey
∂t2

(15)

with the wave equation

∂2y

∂x2
=

1

v2

∂2y

∂t2

we find
1

v2
= µ0ε0 =⇒ v =

1
√
µ0ε0

(16)
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Derivation of the EM Wave Equation

Similarly, we can show that Bz also must satisfy the same wave

equation
∂2Bz
∂x2

= µ0ε0
∂2Bz
∂t2

(17)
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Sinusoidal EM waves



Sinusoidal EM waves

• In a sinusoidal EM wave, ~E and
~B at any point in space are

sinusoidal functions of time,

• and at any instant of time the

spatial variation of the fields is

also sinusoidal.

• Some sinusoidal EM waves are

plane waves; at any instant the

fields are uniform over any plane

perpendicular to the direction of

propagation.
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Sinusoidal EM waves

• But some EM waves, such as

those in the figure, are not

sinusoidal.

• but if we restrict our observations

to a relatively small region of

space at a sufficiently great

distance from the source, even

these waves are well

approximated by plane waves
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Frequency and wavelength

• The frequency f , the

wavelength λ, and the

speed of propagation c of

any periodic wave are

related by

c = λf (18)

• If f is 108 Hz (100 MHz),

typical of commercial FM

radio broadcasts,

λ =
3× 108 m/s

108 s−1
= 3 m

Note that f ∝ 1/λ
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Fields of a sinusoidal Wave

• Linearly polarized sinusoidal EM

wave traveling in the

+x-direction.

• Fields oscillate in phase:

• ~E is max where ~B is max

• ~E is zero where ~B is zero

• where ~E is in +y-direction ~B is

in +z-direction.

• where ~E is in −y-direction ~B is

in −z-direction.

• At all points ~E × ~B gives the

direction of propagation (the

+x-direction).

One wavelength of the wave is

shown at t = 0. Although the

fields only at points on the

x-axis are shown there are

electric and magnetic fields at all

points in space.
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Wave number and angular frequency

• The relation c = λf can also be written as

c =
ω

k

where

• ω = 2πf is the angular frequency

• and k = 2π/λ is the wave number.

• Accordingly,

y(x, t) = ymax cos(kx− ωt)

describes a wave moving to the +x-directionon the string.

• ymax is the amplitude.
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Fields of a sinusoidal wave

The EM fields in the figure then can

be described as

~E = ̂Ey(x, t) = ̂Emax cos(kx− ωt)
~B = k̂Bz(x, t) = k̂Bmax cos(kx− ωt)

The sine curves in the figure represent

the fields as functions of x at time

t = 0.

Note the two different k’s in the above equation:

the unit vector k̂ in the z-direction and the wave

number k. Don’t get these confused!
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Amplitudes are related

• We have seen E = cB

• For sinusoidal waves

Ey(x, t) = Emax cos(kx− ωt)
Bz(x, t) = Bmax cos(kx− ωt)

• This implies Emax = cBmax

• And at any point the oscillations

of ~E and ~B are in phase.
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EM wave traveling in the −x-direction

• The figure shows the ~E and ~B fields

of a wave traveling in the

−x-direction.

• At points where ~E is in the

+y-direction ~B is in the

−z-direction.

• where ~E is in the −y-direction ~B is

in the +z-direction.
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EM wave traveling in the −x-direction

• At any point the oscillations of ~E

and ~B fields are in phase.

• and ~E × ~B points in the propagation

direction.

• The wave functions for this wave are

~E = +̂Emax cos(kx+ ωt)

~B = −k̂Bmax cos(kx+ ωt)
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Ex: Electric and magnetic fields of a laser beam

Question

A carbon dioxide laser emits a

sinusoidal EM wave that travels in

vacuum in the −x-direction. The

wavelength is 10.6µm (in the

infrared). and the ~E field is parallel to

the z-axis, with Emax = 1.5 MV/m.

Write vector equations for ~E and ~B as

functions of time and position.
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Ex: Electric and magnetic fields of a laser beam

Solution

• the wave in this example is given

to be linearly polarized along the

z-axis.

• Given that the direction is −x, ~B

must be in the +y-direction

where ~E is in the +z-direction so

that ~E× ~B points in the

−x-direction.

• A possible pair of wave functions

~E = k̂Emax cos(kx+ ωt)

~B = ̂Bmax cos(kx+ ωt)
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Ex: Electric and magnetic fields of a laser beam

Solution

Bmax =
Emax

c
=

1.5× 106 V/m

3× 108 m/s

= 5× 10−3 T

k =
2π

λ
=

2π

10.6× 10−6 m

= 5.93× 105 rad/m

ω = ck = (3× 108 m/s) (5.93× 105 rad/m)

= 1.78× 1014 rad/s
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Ex: Electric and magnetic fields of a laser beam

Solution

Hence

~E = k̂Emax cos(kx+ ωt)

~B = ̂Bmax cos(kx+ ωt)

with

Bmax = 5× 10−3 T,

k = 5.93× 105 rad/m,

ω = 1.78× 1014 rad/s become

~E = k̂(1.5× 106 V/m) cos
[
(5.93× 105 rad/m)x+ (1.78× 1014 rad/s)t

]
~B = ̂(5× 10−3 T) cos

[
(5.93× 105 rad/m)x+ (1.78× 1014 rad/s)t

]
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Electromagnetic Waves in Matter

• So far, our discussion of EM waves has

been restricted to waves in vacuum.

• But EM waves can also travel in

matter.
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Electromagnetic Waves in Matter

• Here we extend our analysis to EM

waves in non-conducting

materials—that is, dielectrics.

• E = vB and v = 1√
εµ where ε = Kε0

and µ = Kmµ0.

v =
c√
KKm

and for most dielectric materials

Km ' 1.

• Index of refraction

n ≡ c/v =
√
KKm '

√
K.

The dielectric constant of

water is K ' 1.8 for

visible light, so the speed

of visible light in water is

slower than in vacuum by

a factor of 1/
√
K = 0.75.
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Energy and momentum in EM

waves



Energy in EM waves

• EM waves carry energy; the energy in sunlight is a familiar

example.

• Recall the electric and magnetic energy densities

uE =
1

2
ε0E

2, uB =
1

2µ0
B2

• a region of empty space where E and B fields are present,

the total energy density u is

u = uE + uB =
1

2
ε0E

2 +
1

2µ0
B2
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Energy in EM waves

• Using E = cB

uE =
1

2
ε0E

2 =
1

2
ε0c

2B2

• Using c2 = 1
ε0µ0

uE =
1

2µ0
B2 = uB

• The energy density in ~E field is the same as the energy

density in ~B field: uE = uB

u = uE + uB = 2uE = 2uB = ε0E
2 =

1

µ0
B2
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EM Energy Flow

• EM waves such as those we have described are traveling

waves that transport energy from one region to another.

• We can describe this energy transfer in terms of energy

transferred per unit time per unit cross-sectional area, or

power per unit area, for an area perpendicular to the

direction of wave travel.

• How is the energy flow related to the fields?
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EM Energy Flow

• Consider a stationary plane, ⊥ to

the x-axis, that coincides with the

wave front at a certain time.

• In a time dt after this, the wave

front moves a distance dx = c dt to

the right of the plane.

• The energy in the space to the right

of area A had to pass through the

area to reach the new location.
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EM Energy Flow

• The volume dV = Acdt and the

energy dU are related as:

dU = udV

• The energy passing through A in

time dt is called the instantaneous

intensity

S ≡ 1

A

dU

dt
= uc

88



EM Energy Flow

• Since u = ε0E
2 and S = uc we

obtain

S = ε0E
2c

• Using E = cB & c2 = 1
ε0µ0

we can

also write this as

S =
EB

µ0
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EM Energy Flow

• The units of S are energy per unit

time per unit area, or power per

unit area.

• The SI unit of S is 1 J/s ·m2

• or 1 W/m2.
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Poynting vector

• We can define a vector quantity that describes both the

magnitude and direction of the energy flow rate.

• Poynting vector1 is defined as

~S ≡ 1

µ0

~E × ~B

• ~S points in the direction of propagation of the wave.

• Since ~E ⊥ ~B the magnitude of ~S is EB/µ0.

• Recall that this is the energy flow per unit area and per

unit time through a cross-sectional area ⊥ to the

propagation direction.
1Introduced by the British physicist John Poynting (1852–1914)
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Poynting vector

• The total energy flow per unit time (power, P ) out of any

closed surface is the integral of ~S over the surface:

P =

∮
~S · d~A .
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Example: Joule heating: P = i2R

As you know the conversion of electrical energy into heat in a

resistor is referred to a “Joule-heating” of the resistor.

Sometimes the process is described by saying that electrical

energy is “dissipated” in the resistor as heat. If energy is

dissipated one might wonder about the source of that energy, for

example did it come from the voltage source through the wires?

To answer these questions consider the following problem.
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Example: Joule heating: P = i2R

Question:

The figure shows a cylindrical resistor of

length l, radius a, and resistivity ρ, carrying

current i.

(a) Show that the Poynting vector S at the

surface of the resistor is everywhere directed

normal to the surface, as shown.

(b) Show that the rate P at which energy

flows into the resistor through its cylindrical

surface, calculated by integrating the Poynting

vector over this surface, is equal to the rate at

which thermal energy is produced: integral∮
~S · d~A = i2R, where dA is an element of

area on the cylindrical surface and R is the

resistance.
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Example: Joule heating: P = i2R

Solution:

As ~E = ρ~J and ~J = I
πa2

(−k̂) we obtain

~E = − ρI

πa2
k̂ (19)
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Example: Joule heating: P = i2R

Solution:

As ~E = ρ~J and ~J = I
πa2

(−k̂) we obtain

~E = − ρI

πa2
k̂

The magnetic field (for r < a) on the other

hand is
~B = −µ0I

2π

r

a2
φ̂
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Example: Joule heating: P = i2R

Solution:

With ~E = − ρI
πa2

k̂ and ~B = −µ0I
2π

r
a2
φ̂ we obtain

~S =
~E × ~B

µ0
= − ρI

πa2

I

2π

r

a2
r̂

Thus the energy flowing into a cylinder of

radius r is
∮
~S · d~A = S 2πrl giving

P =
I2lρ

πa4
r2

For r = a this becomes P = I2lρ
πa2

= I2R!!
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Poyting vector for sinusoidal waves

• For the sinusoidal waves that we considered before

~S(x, t) =
1

µ0

~E(x, t) × ~B(x, t)

=
1

µ0
̂Emax cos(kx− ωt) × k̂Bmax cos(kx− ωt)

=
EmaxBmax

µ0
cos2(kx− ωt)̂ı

= Smax cos2(kx− ωt)̂ı

• cos2(kx− ωt) > 0 and so ~S points in the +x-direction.

• Smax = EmaxBmax
µ0
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Intensity

• The Poynting vector at any point is a function of time.

• Because the frequencies of typical electromagnetic waves

are very high, the time variation of the Poynting vector is

so rapid that it’s most appropriate to look at its average

value.

• The magnitude of the average value of ~S at a point is

called the intensity of the radiation at that point.
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Intensity

• The SI unit of intensity is the same as for S, 1 W/m2.

• The average of S = Smax cos2(kx− ωt) is 〈S〉 = Smax/2

since

cos2(kx− ωt) ≡ 1

2
(1 + 2 cos[2(kx− ωt)])

and 〈cos[2(kx− ωt)]〉 = 0 (at any point, it is + during one

half-cycle and − during the other half). Thus

〈S〉 = I =
1

2
Smax =

EmaxBmax

2µ0
=
E2

max

2µ0c
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Ex:

Question

A radio station on the earth’s surface

emits a sinusoidal wave with average

total power 50 kW. Assuming that the

transmitter radiates equally in all

directions above the ground (which is

unlikely in real situations), find the

electric-field and magnetic-field

amplitudes Emax and Bmax detected by

a satellite 100 km from the antenna.
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Ex:

Answer

We are given the transmitter’s average

total power P . The intensity I is the

average power per unit area; to find I at

100 km from the transmitter we divide P

by the surface area of the hemisphere

A = 2πr2. For a sinusoidal wave, I is

also equal to the magnitude of the

average value 〈S〉 of the Poynting vector,

so we can use 〈S〉 = I = E2
max

2µ0c
to find

Emax; then Bmax = Emax/c.

93



Ex:

Answer

• The area of the hemisphere of

radius r = 100 km = 105 m is

A = 2πr2 = 6.28× 1010 m2.

• All the radiated power passes

through this surface, so the average

power per unit area (that is, the

intensity) is

I = P/A = 50× 103 W/6.28× 1010 m2

= 7.96× 10−7 W/m2
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Ex:

Answer

• Using I = E2
max/2µ0c we obtain

Emax =
√

2µ0cI = 2.45× 10−2 V/m.

• Finally,

Bmax = Emax/c = 8.17× 10−11 T.
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EM Momentum Flow and Radiation Pressure

• We’ve shown that EM waves transport energy.

• It can also be shown that EM waves carry momentum p, with

a corresponding momentum density of magnitude

dp

dV
=

EB

µ0c2
=
S

c2

• This momentum is a property of the field; it is not associated

with the mass of a moving particle in the usual sense.

• There is also a corresponding momentum flow rate. Using

dV = Acdt
1

A

dp

dt
=
S

c
=
EB

µ0c

• Average rate of momentum transfer would then be I/c.
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EM Momentum Flow and Radiation Pressure

• This momentum is responsible for radiation pressure.

• When an EM wave is completely absorbed by a surface, the

wave’s momentum is also transferred to the surface.

• For simplicity we’ll consider a surface perpendicular to the

propagation direction.

• Recall that that the rate dp/dt at which momentum is

transferred to the absorbing surface equals the force on the

surface.

• The average force per unit area due to the wave, or radiation

pressure prad, is the average value of dp/dt divided by the

absorbing area A.
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Radiation pressure

The radiation pressure is then

prad =

I/c, wave totally absorbed

2I/c, wave totally reflected
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Radiation pressure

The radiation pressure is then

prad =

I/c, wave totally absorbed

2I/c, wave totally reflected

Why is the pressure doubled when radiation is reflected?
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Radiation pressure

The radiation pressure is then

prad =

I/c, wave totally absorbed

2I/c, wave totally reflected

Why is the pressure doubled when radiation is reflected?

Consider momentum transfer to a wall by particles. The change

in the momentum of the particles would be doubled compared

to the particles sticking to the surface.
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Radiation pressure

The radiation pressure is then

prad =

I/c, wave totally absorbed

2I/c, wave totally reflected

Ex: What is the radiation pressure for a surface which reflects a

fraction r and absorbs the rest.
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Radiation pressure

The radiation pressure is then

prad =

I/c, wave totally absorbed

2I/c, wave totally reflected

Ex: What is the radiation pressure for a surface which reflects a

fraction r and absorbs the rest.

In this case

prad = r
2I

c
+ (1− r)I

c

= (1 + r)
I

c
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Radiation pressure

The radiation pressure is then

prad =

I/c, wave totally absorbed

2I/c, wave totally reflected

Intensity for direct sunlight, before it passes through the earth’s

atmosphere, is approximately I = 1.4 kW/m2. The

corresponding average pressure on a completely absorbing

surface is prad = I/c = 4.4× 10−6 Pa which is ∼ 10−10patm.

Radiation pressure can not be felt !
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Radiation pressure in astronomy

Comet Hale-Bopp
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Radiation pressure in astronomy

Comet tails are “combed” away

from the Sun.
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Radiation pressure in astronomy

Radiation pressure sets the

maximum mass of stars

Eta Carinae: A star trying to

be ‘big’ !
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Example:

Question:

A great amount of dust exists in interplanetary space.

Although in theory these dust particles can vary in size from

molecular size to a much larger size, very little of the dust in

our solar system is smaller than about a = 0.2µm. Why?
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Example:

Answer

• The dust particles are subject to two significant forces: the

gravitational force that draws them toward the Sun and

the radiation-pressure force that pushes them away from

the Sun.

• The gravitational force is proportional to the cube of the

radius of a spherical dust particle because it is proportional

to the mass and therefore to the volume 4πa3/3 of the

particle.

• The radiation pressure is proportional to the planar

cross-section of the particle, πa2.
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Example:

Answer

• For large particles, the gravitational force is greater than

the force from radiation pressure.

• For particles having radii less than about 0.2µm, the

radiation-pressure force is greater than the gravitational

force and they are swept out of our solar system by

sunlight.
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Example:

Question:

Consider a small, spherical particle of radius a located in space

a distance r from the Sun, of mass M�. Assume the particle has

a perfectly absorbing surface and a mass density ρ. The value

of the solar luminosity is L�. Calculate the value of a, in terms

of L�, a and ρ for which the particle is in equilibrium between

the gravitational force and the force exerted by solar radiation.
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Example:

Answer:

• The gravitational force on the particle is

FG =
GM�m

r2
=
GM�

4
3πa

3ρ

r2

• The value of the solar intensity at the particle’s location is

I =
L�

4πr2

• This causes radiation pressure prad = I/c and this applies a

radiative force Frad = pradπa
2

Frad =
L�

4πr2c
πa2
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Example:

Answer:

• Now, FG = Frad implies

a =
3L�

16πcGM�ρ

• Plugging in the constants

a =
3× (4× 1026 W)

16π(3× 108 m/s)(6.67× 10−11 m3/kg s2)(2× 1030 kg)ρ

• Assuming ρ = 3 g/cm3 = 3× 103 kg/m3 we obtain

a = 0.2µm!
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Standing EM waves



Standing waves

• Waves on a string can be

reflected from the edges.

• The superposition of an incident

wave and a reflected wave forms a

standing wave.

• Condition for a standing wave to

form is

L = n
λ

2
, n = 1, 2, · · ·
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Standing waves

• Waves on a string can be

reflected from the edges.

• The superposition of an incident

wave and a reflected wave forms a

standing wave.

• Condition for a standing wave to

form is

L = n
λ

2
, n = 1, 2, · · ·
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Standing waves

• Waves on a string can be

reflected from the edges.

• The superposition of an incident

wave and a reflected wave forms a

standing wave.

• Condition for a standing wave to

form is

L = n
λ

2
, n = 1, 2, · · ·
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Standing EM waves

• EM waves can be reflected by the

surface of a conductor (like a

polished sheet of metal) or of a

dielectric (such as a sheet of

glass).

• The superposition of an incident

EM wave and a reflected wave

forms a standing EM wave.

• The situation is analogous to

standing waves on a stretched

string.
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Standing EM waves

• Suppose a sheet of a perfect

conductor (zero resistivity) is

placed in the yz-plane

• A linearly polarized EM wave,

traveling in the −x-direction,

strikes it.
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Standing EM waves

• ~E cannot have a component

parallel to the surface of a perfect

conductor.

• ~E = 0 everywhere on the

yz-plane as a result of induced

currents cancelling the field of the

incident wave.

• The currents induced on the

surface of the conductor also

produce a reflected wave that

travels out from the plane in the

+x-direction.

101



Standing EM waves

• The superposition principle states

that the total ~E field at any point

is the vector sum of the ~E fields

of the incident and reflected

waves, and similarly for the ~B

field.

• Therefore

Ey(x, t) = Emax[cos(kx+ ωt)− cos(kx− ωt)]
Bz(x, t) = Bmax[− cos(kx+ ωt)− cos(kx− ωt)]

• We can simplify these by

cos(A±B) = cosA cosB∓sinA sinB 102



Standing EM waves

• The results are

Ey(x, t) = −2Emax sin kx sinωt

Bz(x, t) = −2Bmax cos kx cosωt

• Check that at x = 0 the electric

field Ey(x = 0, t) is always zero;

this is required by the nature of

the ideal conductor, which plays

the same role as a fixed point at

the end of a string.
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Standing EM waves

• Furthermore, Ey(x, t) is zero at

all t at points in those planes ⊥
to the x-axis for which sin kx = 0

• that is, kx = 0, π, 2π, . . . .

• since k = 2π/λ, the positions of

these planes are

x = 0,
λ

2
, λ,

3λ

2
, . . . (nodal planes of ~E)

• Midway between any two

adjacent nodal planes is the

anti-nodal plane on which

sin kx = ±1 102



Standing EM waves

• The total ~B is zero at all times at

points in planes on which

cos kx = 0.

• These are the nodal planes of ~B,

and they occur where

x =
λ

4
,
3λ

4
,
5λ

4
, . . . (nodal planes of ~B)

• There is an antinodal plane of ~B

midway between any two

adjacent nodal planes.
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Standing EM waves

• The magnetic field is not zero at

the conducting surface x = 0.

• The surface currents that must

be present to make ~E exactly

zero at the surface cause B at the

surface.

• The nodal planes of each field are

separated by one half-wavelength.

• This is in contrast to

a wave traveling

where E and B at

any particular point

are in phase.
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Standing EM waves

• Hence the nodes of ~E coincide

with the antinodes of~B.

• The total E (B) is a sine (cosine)

function of t.

• the two fields are therefore 90◦

out of phase at each point.

102



Standing Waves in a cavity

• Let’s now insert a second

conducting plane, parallel to the

first and a distance L from it, along

the +x-axis.

• The cavity between the two planes

is analogous to a stretched string

held at the points x = 0 and x = L.

A typical microwave oven sets

up a standing electromagnetic

wave with λ = 12.2 cm, a

wavelength that is strongly

absorbed by the water in

food. The wave has nodes

spaced λ/2 = 6.1 cm apart.

The food must be rotated

while cooking; otherwise the

portion that lies at a node will

remain cold.
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Standing Waves in a cavity

• Both conducting planes must be

nodal planes for ~E.

• A standing wave can exist only

when the second plane is placed at

one of the positions where

E(x, t) = 0, so L must be an

integer multiple of λ/2:

λn = 2L/n, (n = 1, 2, 3, . . .)

A typical microwave oven sets

up a standing electromagnetic

wave with λ = 12.2 cm, a

wavelength that is strongly

absorbed by the water in

food. The wave has nodes

spaced λ/2 = 6.1 cm apart.

The food must be rotated

while cooking; otherwise the

portion that lies at a node will

remain cold.
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Standing Waves in a cavity

• A standing wave can exist only

when the second plane is placed at

one of the positions where

E(x, t) = 0, so L must be an

integer multiple of λ/2:

λn = 2L/n, (n = 1, 2, 3, . . .)

The corresponding frequencies are

fn = c/λn = nc/2L, (n = 1, 2, 3, . . .)

Thus there is a set of normal

modes, each with a characteristic

frequency, wave shape, and node

pattern.

A typical microwave oven sets

up a standing electromagnetic

wave with λ = 12.2 cm, a

wavelength that is strongly

absorbed by the water in

food. The wave has nodes

spaced λ/2 = 6.1 cm apart.

The food must be rotated

while cooking; otherwise the

portion that lies at a node will

remain cold.
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Ex: Intensity in a standing wave

Question

Calculate the intensity of the standing wave represented by

Ey(x, t) = −2Emax sin kx sinωt

Bz(x, t) = −2Bmax cos kx cosωt
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Ex: Intensity in a standing wave

Question

Calculate the intensity of the standing wave represented by

Ey(x, t) = −2Emax sin kx sinωt

Bz(x, t) = −2Bmax cos kx cosωt

Solution

Let us first find the instantaneous value of ~S and then average

it over a whole number of cycles of the wave.
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Ex: Intensity in a standing wave

Solution

•

~S = ~E × ~B/µ0

= [−2̂Emax sin kx sinωt] × [−2k̂Bmax cos kx cosωt]/µ0

= ı̂(EmaxBmax/µ0)2 sin kx cos kx 2 sinωt cosωt

= ı̂(EmaxBmax/µ0) sin 2kx sin 2ωt

• The average value of a sine function over any whole

number of cycles is zero: I = 〈Sx〉 = 0.

• All the energy transferred by one wave is cancelled by an

equal amount transferred in the opposite direction by the

other wave.
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Ex: Standing waves in a cavity

Question

Electromagnetic standing waves are set up in a cavity with two

parallel, highly conducting walls 1.50 cm apart. (a) Calculate

the longest wavelength λ and lowest frequency of these standing

waves. (b) For a standing wave of this wavelength, where in the

cavity does ~E have maximum magnitude? Where is ~E zero?

Where does ~B have maximum magnitude? Where is ~B zero?
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Ex: Standing waves in a cavity

Identify

Only certain normal modes are possible for EM waves in a

cavity The longest possible wavelength and lowest possible

frequency correspond to the n = 1 mode in

λn = 2L/n, fn = c/λn (n = 1, 2, 3, . . .)

After finding λ and f , the locations of the nodal planes of ~E

and ~B

x = 0,
λ

2
, λ,

3λ

2
, . . . (nodal planes of ~E)

and

x =
λ

4
,
3λ

4
,
5λ

4
, . . . (nodal planes of ~B)

The antinodal planes of each field are midway between adjacent

nodal planes.
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Ex: Standing waves in a cavity

Solution

• For n = 1 we have λ1 = 2L/1 = 2× 1.5 cm = 3 cm.

• f1 = c/2L = 1.00× 1010 Hz.

• With n = 1 there is a single half-wavelength between the

walls.

• The electric field has nodal planes (~E = ~0) at the walls and

an anti- nodal plane (where ~E has its maximum

magnitude) midway between them. ~B has antinodal planes

at the walls and a nodal plane midway between them.
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