Name:______Number: 1. Write the definition of a measure on a set X. **Solution:** A measure is a partial function $\mu \colon 2^X \to [0,\infty) \cup \{\infty\}$ which is countably additive, i.e. if $\{E_n\}_{n \in \mathbb{N}}$ is a countable family of sets such that $E_n \cap E_m = \emptyset$ whenever $n \neq m$ then we have $$\mu\left(\bigcup_{n=0}^{\infty} E_n\right) = \sum_{n=0}^{\infty} \mu(E_n)$$ 2. Assume we defined a decreasing chain of subsets $C_n \supset C_{n+1}$ in \mathbb{R} recursively: $$C_0 = [0,1]$$ and $C_{n+1} = \frac{1}{4}C_n \cup \left(\frac{3}{4} + \frac{1}{4}C_n\right)$ (a) Write the first 3 terms: C_0 , C_1 and C_2 . **Solution:** We already have $C_0 = [0,1]$. For C_1 we apply the recursive formula. We have two parts $\frac{1}{4}[0,1] = \left[0,\frac{1}{4}\right]$, and $\frac{3}{4} + \frac{1}{4}[0,1] = \left[\frac{3}{4},1\right]$. Notice that the second part is the first part shifted to the right by $\frac{1}{4}$. So, $$C_1 = \left[0, \frac{1}{4}\right] \cup \left[\frac{3}{4}, 1\right]$$ Applying the recursive formula, we again get two parts. For the first part we have $$\frac{1}{4} \left[0, \frac{1}{4} \right] \cup \frac{1}{4} \left[\frac{3}{4}, 1 \right] = \left[0, \frac{1}{16} \right] \cup \left[\frac{3}{16}, \frac{1}{4} \right]$$ For the second part, we get this first part and shift to right by $\frac{3}{4}$. $$\left(\frac{3}{4} + \left[0, \frac{1}{16}\right]\right) \cup \left(\frac{3}{4} + \left[\frac{3}{16}, \frac{1}{4}\right]\right) = \left[\frac{12}{16}, \frac{13}{16}\right] \cup \left[\frac{15}{16}, 1\right]$$ Combining these parts we get $$C_2 = \left[0, \frac{1}{16}\right] \cup \left[\frac{3}{16}, \frac{1}{4}\right] \cup \left[\frac{12}{16}, \frac{13}{16}\right] \cup \left[\frac{15}{16}, 1\right]$$ (b) Calculate the measure of C_{n+1} in terms of the measure of C_n . **Solution:** The recursive formula indicates $C_{n+1} = \frac{1}{4}C_n \cup \left(\frac{3}{4} + \frac{1}{4}C_n\right)$. We have seen in the class that $\mu(\lambda X) = |\lambda|\mu(X)$ and $\mu(\lambda + X) = \mu(X)$ for every $\lambda \in \mathbb{R}$, and for every subset $X \subseteq \mathbb{R}$ which can be written finite unions of intervals. Then by *Inclusion/Exclusion* principle $$\mu(C_{n+1}) = \frac{1}{4}\mu(C_n) + \frac{1}{4}\mu(C_n) - \mu\left(\frac{1}{4}C_n \cap \left(\frac{3}{4} + \frac{1}{4}C_n\right)\right)$$ But $\frac{1}{4}C_n \cap \left(\frac{3}{4} + \frac{1}{4}C_n\right)$ is the empty set. Then $$\mu(C_{n+1}) = \frac{1}{2}\mu(C_n)$$ (c) Calculate $\mu \left(\bigcap_{n=0}^{\infty} C_n \right)$. **Solution:** The recursive formula above indicates that $\mu(C_n) = \frac{1}{2^n}\mu(C_0) = \frac{1}{2^n}$. Since the standard measure on $\mathbb R$ is continuous and C_n is a monotonously decreasing sequence of sets we get that $$\mu\left(\bigcap_{n=0}^{\infty} C_n\right) = \lim_{n \to \infty} \mu(C_n) = \lim_{n \to \infty} \frac{1}{2^n} = 0$$ - 3. (a) Assume $\mu \colon 2^X \to [0,\infty) \cup \{\infty\}$ is a partial function such that $\mu(\emptyset) = 0$. Show that the following statements are equivalent: - i. (Inclusion/Exclusion Principle) For all $A, B \subseteq X$ we have $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$ whenever all of these numbers are finite. - ii. **(Finite Additivity)** For all $A, B \subseteq X$, if $A \cap B$ is empty then $\mu(A \cup B) = \mu(A) + \mu(B)$. **Solution:** (\Longrightarrow) Assume we have IEP for μ , and assume we have $A, B \subseteq X$ such that $A \cap B = \emptyset$. Then by IEP $$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B) = \mu(A) + \mu(B) - \mu(\emptyset) = \mu(A) + \mu(B)$$ Thus we have FA. (\Leftarrow) Assume we have FA for μ . Assume we have $A,B\subseteq X$ but we don't know if $A\cap B$ is empty. We can write $$A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$$ These sets are mutually disjoint. Then by FA we get $$\mu(A \cup B) = \mu((A \setminus B) \cup (A \cap B)) + \mu(B \setminus A)$$ $$= \mu(A \setminus B) + \mu(A \cap B) + \mu(B \setminus A)$$ We also have disjoint unions of the shape $$A = (A \setminus B) \cup (A \cap B)$$ and $B = (B \setminus A) \cup (A \cap B)$ Then $$\mu(A) = \mu(A \setminus B) + \mu(A \cap B) \quad \text{ and } \quad \mu(B) = \mu(B \setminus A) + \mu(A \cap B)$$ This means $$\mu(A \cup B) = \mu(A \setminus B) + \mu(A \cap B) + \mu(B \setminus A)$$ = \mu(A \backslash B) + \mu(A \cap B) + \mu(B \backslash A) + \mu(A \cap B) - \mu(A \cap B) = \mu(A) + \mu(B) - \mu(A \cap B) Thus we have IEP. (b) Assume $\mu \colon 2^X \to [0,\infty)$ is a partial function which satisfies *Finite Addivity*. Show that $\mu(\emptyset) = 0$. **Solution:** Since $\emptyset \cap \emptyset = \emptyset$, by FA we have $$\mu(\emptyset) = \mu(\emptyset \cup \emptyset) = \mu(\emptyset) + \mu(\emptyset) = 2\mu(\emptyset)$$ By definition of μ , $\mu(\emptyset)$ is not ∞ . Then the only real number λ which is equal to 2λ is 0.