
1

Advanced Digital Circuit Design
- Test Benches

for Combinational Circuits
Prof. Dr. Berna Örs Yalçın

Istanbul Technical University

Faculty of Electrical and Electronics Engineering

Department of Electronics and Communication
Engineering

siddika.ors@itu.edu.tr

2

Test Benches

• A test bench is an HDL program for applying stimulus to an HDL
model and observe its response.

• A good test bench should be written to exercise as many
functional features of a circuit as possible.

• process begin ... end process; phrase is used to provide
stimulus to a circuit to be tested.

• An process begin ... end process; phrase is executed only once,
starting at time 0.

• An process begin ... end process; block includes operations
that are delayed by a given number of time units.

3

The process Block

process

begin

A = 0; B=0;

wait for 10 ns;

A=1;

wait for 20 ns;

A=0; B=1;

end process;

4

Stimulus for Generation for
Combinational Circuits

process

begin

D = 000;

for i in 1 to 7 loop

wait for 10 ns;

D = D + 001;

end loop;

end process;

The above code can be used to generate stimulus for a 3 input

combinational circuit and obtain its truth table.

5

Writing a Test Bench for an Entity under Test
• A test bench entity is written as

any other VHDL entity but it has
no inputs or outputs.

• The signals that are applied as
inputs to the entity under test are
declared as signal data type.

• The outputs of the entity under
test are declared in the test
module as signal data type.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.ALL;

use ieee.std_logic_arith.all;

...

ENTITY entity_name_tb IS

END entity_name_tb;

ARCHITECTURE behavioral OF entity_name_tb IS

// Declare the design entity under test.

COMPONENT entity_name PORT(...);

END COMPONENT;

// Declare local signals

SIGNAL input ports

SIGNAL output ports

CONSTANT period : time := 10 ns;

BEGIN

// Instantiate the design module under test.

UUT: entity_name PORT MAP(...);

// Generate stimulus

stim_proc: process BEGIN

input signal <= value;

WAIT FOR period;

....

WAIT;

end process;

END;

Interaction Between Stimulus and Design Entities
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity ripple_carry_adder is

generic (n : integer := 8);

Port (A : in std_logic_vector (n-1 downto 0);

B : in std_logic_vector (n-1 downto 0);

C0 : in std_logic;

S : out std_logic_vector (n downto 0));

end ripple_carry_adder;

architecture Gate_Level of ripple_carry_adder is

component full_adder is

Port (x : in std_logıc;

y : in std_logic;

z : in std_logic;

S : out std_logic;

C : out std_logic);

end component;

signal C : std_logic_vector (n downto 0);

begin

C(0) <= C0;

GEN_FA: for i in 0 to n-1 generate

FA: full_adder Port map(A(i),B(i),C(i),S(i),C(i+1));

end generate GEN_FA;

S(n) <= C(n);

end Gate_Level;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ripple_carry_adder_tb is

generic (n : integer := 8);

end ripple_carry_adder_tb;

architecture Behavioral of ripple_carry_adder_tb is

component ripple_carry_adder is

generic (n : integer := 8);

Port (A : in std_logic_vector (n-1 downto 0);

B : in std_logic_vector (n-1 downto 0);

C0 : in std_logic;

S : out std_logic_vector (n downto 0));

end component;

signal A_t,B_t : std_logic_vector (n-1 downto 0);

signal C0_t : std_logic;

signal S_t : std_logic_vector (n downto 0);

constant one : std_logic_vector (n-1 downto 0) := "00000001";

begin

DUT: ripple_carry_adder generic map(n)

Port map (A_t,B_t,C0_t,S_t);

process begin

A_t <= "00000000"; B_t <= "00000000";

C0_t <= '0';

for i in 0 to n-1 loop

wait for 4 ns; A_t <= A_t + one;

for j in 0 to n-1 loop

wait for 4 ns; B_t <= B_t + one;

end loop;

end loop;

end process;

end Behavioral;

7

Simulation Results for the 4-bit Adder Entity

8

Check results with “assertions”
process

begin

A_t <= "00000000"; B_t <= "00000000"; C0_t <= '0';

for i in 0 to n-1 loop

wait for 4 ns; A_t <= A_t + one;

for j in 0 to n-1 loop

wait for 4 ns; B_t <= B_t + one;

assert (S_t = A_t + B_t) report "Error message" severity NOTE;

end loop;

end loop;

end process;

• Match data types for S_t, A_t, B_t

• Print “Error message” if assert condition FALSE

• (condition is not what we expected)

• Specify one of four severity levels:

• NOTE, WARNING, ERROR, FAILURE

• Simulator allows selection of severity level to halt simulation

• ERROR generally should stop simulation

• NOTE generally should not stop simulation

9

Test Bench with Text-IO

• Stimulus for DUT is read from an input file and modified in the source component

• The response modified is in the sink and written to the output file

Arto Perttula, Tampere University of

Technology

Libraries, remember to declare the textio-library!

library IEEE;

use IEEE.std_logic_1164.all;

use std.textio.all;

use IEEE.std_logic_textio.all;

10

Test Bench with Text-IO

Arto Perttula, Tampere University of

Technology

• Create process and declare the input and

output files (VHDL’87)

FILE file_in : TEXT IS IN "datain.txt";

FILE file_out : TEXT IS OUT "dataout.txt";

• File paths are relative to simulation

directory

• Variables for one line of the input and output

files

VARIABLE line_in : LINE;

VARIABLE line_out : LINE;

• Value of variable is updated

immediately. Hence, the new value is

visible on the same execution of the

process (already on the next line)

• Variables for the value in one line

VARIABLE input_tmp : INTEGER;

VARIABLE output_tmp : INTEGER;

process

FILE file_in : TEXT IS IN "datain.txt";

FILE file_out : TEXT IS OUT "dataout.txt";

VARIABLE line_in : LINE;

VARIABLE line_out : LINE;

VARIABLE input_tmp : std_logic_vector(7 downto 0);

VARIABLE output_tmp : std_logic_vector(8 downto 0);

begin

while not endfile(file_in) loop

readline(file_in, line_in);

read(line_in, input_tmp);

A_t<= input_tmp;

read(line_in, input_tmp);

B_t<= input_tmp;

wait for 4 ns;

write(line_out, S_t);

writeline(file_out,line_out);

writeline(OUTPUT,line_out);

end loop;

wait;

end process;

end Behavioral;
00000000 00000000

00000000 00000001

00000000 00000010

00000000 00000011

00000000 00000100

000000000

000000001

000000010

000000011

000000100

datain.txt dataout.txt

