
1

Advanced Digital Circuit
Design

- Synchronous Sequential
Logic

Prof. Dr. Berna Örs Yalçın

Istanbul Technical University

Faculty of Electrical and Electronics Engineering

Department of Electronics and Communication
Engineering

siddika.ors@itu.edu.tr

2

Sequential Logic

• Digital circuits we have learned, so far, have
been combinational

– no memory,

– outputs are entirely defined by the “current” inputs

• However, many digital systems encountered
everyday life are sequential (i.e. they have
memory)

– the memory elements remember past inputs

– outputs of sequential circuits are not only dependent
on the current input but also the state of the memory
elements.

3

Sequential Circuits Model

Combinational
Circuit

inputs outputs

Memory
Elements

current
state

next
state

current state is a function of past inputs and initial
state

4

Classification 1/2
• Two types of sequential circuits

1. Synchronous
– Signals affect the memory elements at discrete

instants of time.

– Discrete instants of time requires synchronization.

– Synchronization is usually achieved through the use
of a common clock.

– A “clock generator” is a device that generates a
periodic train of pulses.

5

Classification 2/2

1. Synchronous
• The state of the memory elements are updated with

the arrival of each pulse

• This type of logical circuit is also known as clocked
sequential circuits.

2. Asynchronous
• No clock

• behavior of an asynchronous sequential circuits
depends upon the input signals at any instant of time
and the order in which the inputs change.

• Memory elements in asynchronous circuits are
regarded as time-delay elements

6

Clocked Sequential Circuits

• Memory elements are flip-flops which are logic
devices capable of storing one bit of information
each.

Combinational
Circuit

Flip-Flops

inputs outputs

current
state

next
state

clock

7

Clocked Sequential Circuits

• The outputs of a clocked sequential circuit can
come from the combinational circuit, from the
outputs of the flip-flops or both.

• The state of the flip-flops can change only
during a clock pulse transition
– i.e. low-to-high and high-to-low

– clock edge

• When the clock maintains its value, the flip-flop
output does not change

• The transition from one state to the next occurs
at the clock edge.

8

Latches

• The most basic types of memory elements are
not flip-flops, but latches.

• A latch is a memory device that can maintain a
binary state indefinitely.

• Latches are, in fact, asynchronous devices and
they usually do not require a clock to operate.

• Therefore, they are not directly used in clocked
synchronous sequential circuits.

• They are rather used to construct flip-flops.

9

SR-Latch
• made of cross-coupled NOR (or NAND) gates

R
Q1

S
Q2

S R Q1 Q2

1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

1 1 0 0 Undefined

Q2 = Q1’

VHDL Entity of SR Latch and Testbench
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity SR_Latch_NOR is

Port (S : in STD_LOGIC;

R : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end SR_Latch_NOR;

architecture Behavioral of SR_Latch_NOR is

begin

Q1 <= not (R or Q2);

Q2 <= not (S or Q1);

end Behavioral;

10

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity SR_Latch_NOR_tb is

end SR_Latch_NOR_tb;

architecture Behavioral of SR_Latch_NOR_tb is

component SR_Latch_NOR is

Port (S : in STD_LOGIC;

R : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end component;

signal S,R,Q1,Q2 : STD_LOGIC;

begin

DUT: SR_Latch_NOR Port map(S,R,Q1,Q2);

process begin

R<='0'; S<='0'; wait for 5 ns;

R<='0'; S<='1'; wait for 5 ns;

R<='0'; S<='0'; wait for 5 ns;

R<='1'; S<='0'; wait for 5 ns;

R<='0'; S<='0'; wait for 5 ns;

R<='1'; S<='1'; wait;

end process;

end Behavioral;

Simulation Waveform

11

12

Undefined State of SR-Latch

• S = R = 1 may result in an undefined state
– the next state is unpredictable when both S and R

goes to 0 at the same time.

– It may oscillate

– Or the outcome state depend on which of S and R goes
to 0 first.

R
Q

S
Q’

0

0

1

0

1

1

0

0

0

0

1

1

0

0

It oscillates

13

SR-Latches with NAND Gates

S
Q

R
Q’

S R Q Q’

1 0 0 1

1 1 0 1

0 1 1 0

1 1 1 0

0 0 1 1

After S = 1, R = 0

After S = 0, R = 1

Undefined

Also known as S’R’-latch

VHDL Entity of SR Latch with NAND and Testbench

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity SR_Latch_NAND is

Port (S : in STD_LOGIC;

R : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end SR_Latch_NAND;

architecture Behavioral of SR_Latch_NAND is

begin

Q1 <= not (S and Q2);

Q2 <= not (R and Q1);

end Behavioral;

14

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity SR_Latch_NAND_tb is

end SR_Latch_NAND_tb;

architecture Behavioral of SR_Latch_NAND_tb is

component SR_Latch_NAND

Port (S : in STD_LOGIC;

R : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end component;

signal S, R, Q1, Q2 : STD_LOGIC;

begin

DUT : SR_Latch_NAND Port map(S,R,Q1,Q2);

tb: process begin

wait for 10 ns; R <= '0'; S <= '0';

wait for 10 ns; R <= '0'; S <= '1';

wait for 10 ns; R <= '0'; S <= '0';

wait for 10 ns; R <= '0'; S <= '0';

wait for 10 ns; R <= '1'; S <= '0';

wait for 10 ns; R <= '0'; S <= '0';

wait for 10 ns; R <= '1'; S <= '1';

end process;

end Behavioral;

Simulation Waveform

15

16

SR-Latch with Control Input
• Control inputs allow the changes at S and R to change the

state of the latch.

Q

Q’
R

S

C

C S R Q Q’

0 X X No change

1 0 0 No change

1 0 1 Q = 0 Reset state

1 1 0 Q = 1 Set state

1 1 1 Indeterminate

VHDL Entity of SR Latch and Testbench
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity SR_Latch_NAND is

Port(S : in STD_LOGIC;

R : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end SR_Latch_NAND;

architecture Behavioral of SR_Latch_NAND is

begin

Q1 <= not (S and Q2);

Q2 <= not (R and Q1);

end Behavioral;

17

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity SR_Latch_with_Control is

Port(S : in STD_LOGIC;

R : in STD_LOGIC;

C : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end SR_Latch_with_Control;

architecture Behavioral of SR_Latch_with_Control is

component SR_Latch_NAND is

Port(S : in STD_LOGIC;

R : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end component;

signal S_tmp,R_tmp : STD_LOGIC;

begin

S_tmp <= not (S and C);

R_tmp <= not (R and C);

SR_Latch: SR_Latch_NAND port
map(R_tmp,S_tmp,Q1,Q2);

end Behavioral;

Simulation Waveform

18

19

D-Latch

• SR latches are seldom used in practice because
the indeterminate state may cause instability

• Remedy: D-latches

R

Q
S

Q’

This circuit guarantees that the inputs to the SR-latch
is always complement of each other when C = 1.

C

D

VHDL Entity of D Latch
entity D_Latch is

Port(D : in STD_LOGIC;

C : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end D_Latch;

architecture Behavioral of D_Latch is

component SR_Latch_with_Control is

Port(S : in STD_LOGIC;

R : in STD_LOGIC;

C : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end component;

signal D_not : STD_LOGIC;

begin

D_not <= not D;

SR_Latch: SR_Latch_with_Control Port
map(D,D_not,C,Q1,Q2);

end Behavioral;

20

Simulation Waveform

21

22

D-Latch

• We say that the D input is sampled when C = 1

C D Next state of Q

0 X No change

1 0 Q = 0; reset state

1 1 Q = 1; set state

S

R

Q

Q’

SR-latch

S

R

Q

Q’

S’R’-latch

D

C

Q

Q’

D-latch

23

D-Latch as a Storage Unit

• D–latches can be used as temporary storage

• The input of D-latch is transferred to the Q
output when C = 1

• When C = 0 the binary information is retained.

• We call latches level-sensitive devices.
– So long as C remains at logic-1 level, any change in data

input will change the state and the output of the latch.

– Level sensitive latches may suffer from a serious
problem.

• Memory devices that are sensitive to the rising
or falling edge of control input is called flip-
flops.

24

Need for Flip-Flops 1/2
• Outputs may keep changing so long as C = 1

Combinational
Circuit

Latches

inputs outputs

current
state

next
state

C

25

Need for Flip-Flops 2/2

• Another issue (related to the first one)
– The states of the memory elements to change

synchronously

– memory elements should respond to the changes in
input at certain points in time.

– This is the very characteristics of synchronous
circuits.

– To this end, we use flip-flops that change states
during a signal transition of control input (clock)

26

Edge-Triggered D Flip-Flop
• An edge-triggered D flip-flop can be constructed

using two D latches

D latch
(master)

D

C

Q
D latch
(slave)

D

C

Q

clk

D Q
Y

clk’

Q = Y = D

Y = D

clk

Negative edge-triggered
D flip-flop

clk’

clk

D

Y

Q

VHDL Module of Negative Edge Triggered D FF
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity D_FF_Neg_Edge is

Port(D : in STD_LOGIC;

clk : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end D_FF_Neg_Edge;

architecture Behavioral of D_FF_Neg_Edge is

component D_Latch is

Port(D : in STD_LOGIC;

C : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end component;

signal Y, not_Y,not_clk : STD_LOGIC;

begin

not_clk <= not clk;

Master: D_Latch Port map(D,clk,Y,not_Y);

Slave: D_Latch Port map(Y,not_clk,Q1,Q2);

end Behavioral;

27

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity D_FF_Neg_Edge_tb is

end D_FF_Neg_Edge_tb;

architecture Behavioral of D_FF_Neg_Edge_tb is

component D_FF_Neg_Edge is

Port(D : in STD_LOGIC;

clk : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end component;

signal D,clk,Q1,Q2 : STD_LOGIC := '0';

begin

DUT: D_FF_Neg_Edge Port map (D,clk,Q1,Q2);

process begin

wait for 5 ns; clk <= not clk;

end process;

process begin

wait for 10 ns; D<='0’; wait for 10 ns; D<='1';

wait for 10 ns; D<='1’; wait for 10 ns; D<='1';

wait for 10 ns; D<='0’; wait for 10 ns; D<='1';

wait for 10 ns; D<='0’; wait for 10 ns; D<='1';

end process;

end Behavioral;
28

Testbench for Negative Edge Triggered D FF

Simulation Waveform

29

30

Positive Edge-Triggered D Flip-Flop

D latch
(master)

D

C

Q
D latch
(slave)

D

C

QD

clk

Q
Y

clk

clk’

Y= D

clk’ Y does not change

clk

Q = Y = D

VHDL Entity of Positive Edge Triggered D FF and Testbench

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity D_FF_Pos_Edge is

Port (D : in STD_LOGIC;

Clk : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end D_FF_Pos_Edge;

architecture Behavioral of D_FF_Pos_Edge is

component D_latch

Port (D : in STD_LOGIC;

C : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end component;

signal Y,Clk_signal,Q2_signal : STD_LOGIC;

begin

Master : D_latch Port map(D,Clk_signal,Y,Q2_signal);

Slave : D_latch Port map(Y,Clk,Q1,Q2);

Clk_signal <= not Clk;

end Behavioral; 31

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity D_FF_Pos_Edge_tb is

end D_FF_Pos_Edge_tb;

architecture Behavioral of D_FF_Pos_Edge_tb is

component D_FF_Pos_Edge

Port (D : in STD_LOGIC;

Clk : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Q2 : inout STD_LOGIC);

end component;

signal D,Clk,Q1,Q2 : STD_LOGIC;

begin

DUT : D_FF_Pos_Edge Port map(D,Clk,Q1,Q2);

process begin

wait for 10 ns; Clk <= '0';

for i in 1 to 1000 loop

wait for 20 ns; Clk <= not Clk;

end loop;

wait;

end process;

process begin

wait for 30 ns; D <= '0';

wait for 30 ns; D <= '1';

wait for 30 ns; D <= '0';

wait for 30 ns; D <= '1';

wait;

end process;

end Behavioral;

Simulation Waveform

32

33

Symbols for D Flip-Flops

D FF

D Q

clk C

Positive edge-triggered
D Flip-Flop

D FF

D Q

clk C

Negative edge-triggered
D Flip-Flop

34

Setup & Hold Times 1/2

• Timing parameters are associated with the
operation of flip-flops

• Recall Q gets the value of D in clock transition

clk

D

Q

ts th

tp, FF

35

Setup & Hold Times 2/2
• Setup time, ts

– The change in the input D must be made before the
clock transition.

– Input D must maintain this new value for a certain
minimum amount time.

– If a change occurs at D less than ts second before the
clock transition, then the output may not acquire this
new value.

– It may even demonstrate unstable behavior.

• Hold time, th,
– Similarly the value at D must be maintained for a

minimum amount of time (i.e. th) after the clock
transition.

36

Propagation Time

• Even if setup and hold times are achieved, it
takes some time the circuit to propagate the
input value to the output.

• This is because of the fact that flip-flops are
made of logic gates that have certain
propagation times.

D Flip-Flop

• Characteristic equation
– Q(t+1) = D

D FF

D Q

clk C

Positive edge-triggered
D Flip-Flop

D Q(t+1)

0 0

1 1

Characteristic Table
37

38

Other Flip-Flops

• D flip-flop is the most common
– since it requires the fewest number of gates to

construct.

• Two other widely used flip-flops
– JK flip-flops

– T flip-flops

JK Flip-Flop

• Characteristic Equation
– Q(t+1) = JQ’(t) + K’Q(t)

– Y = Jy’ + K’y

39

J Q

C

K

J K Q(t+1) Next State

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement

Characteristic Table

J K Y Next State

0 0 y No change

0 1 0 Reset

1 0 1 Set

1 1 y’ Complement

T (Toggle) Flip-Flop

40

T Q

C

T Q(t+1) next state

0 Q(t) no change

1 Q’(t) Complement

Characteristic Equation
• Q(t+1) = T Q(t) = TQ’(t) + T’Q(t)

• Y = T y = Ty’ + T’y

•
J Q

C

K

T
D Q

C

T

Characteristic Table

T Y next state

0 y no change

1 y’ Complement

41

Asynchronous Inputs of Flip-Flops

• They are used to force the flip-flop to a

particular state independent of clock

– “Preset” (direct set) set FF state to 1

– “Clear” (direct reset) set FF state to 0

• They are especially useful at startup.

– In digital circuits when the power is turned on, the

state of flip-flops are unknown.

– Asynchronous inputs are used to bring all flip-flops to

a known “starting” state prior to clock operation.

42

Asynchronous Inputs

reset C D Q Q’

1 X X 0 1

0 0 0 1

0 1 1 0

Starting State

D Q

C

data

reset

R

clk

D

Q

reset

Design Process

1. Verbal description of desired operation
2. Draw the state diagram
3. Reduce the number of states if necessary and

possible: s = number of states
4. Determine the number of flip-flops:
5. State assignment:
6. Obtaine the encoded state table
7. Choose the type of the flip-flops
8. Derive the simplified flip-flop input equations
9. Derive the simplified output equations
10.Draw the logic diagram

43

n = log 2 s
 ,1000,100,000

bitsnbitsnbitsn −−−

Example: Design of a Synchronous
Sequential Circuit

• Verbal description
– 1st Step: we want a circuit that detects three or

more consecutive 1’s in a string of bits.
• Input: string of bits of any length
• Output:

– “1” if the circuit detects such a pattern in the string
– “0” otherwise

44

Example: State Diagram

45

Initial
1

came

0/0

1/0

11
came

0/0 1/0

0/0111
came 1/1

0/0

1/1

2nd Step: Draw the state diagram

Synthesis with D Flip-Flops 1/5

• 3rd Step: State
reduction

• 4th Step: Number
of flip-flops

– 4 states

– ? flip-flop

• 5th Step: State
assignment

46

Initial
1

came

0/0

1/0

11
came

0/0 1/0

0/0111
came 1/1

0/0

1/1

00 01

1011

Synthesis with D Flip-Flops 2/5
• 6th Step: Obtain the state table

47

111

100

011

000

001

000

010

000

111

011

101

001

110

010

100

000

zY2Y1xy2y1

OutputNext StateInputPresent State

Synthesis with D Flip-Flops 3/5
• 7th Step: Choose the type of the flip-flops

– D type flip-flops

• 8th Step: : Derive the simplified flip-flop input
equations

– Boolean expressions for D1 and D2

48

y2x

y1 00 01 11 10

0 0 0 1 0
1 0 1 1 0

D1 = y1x + y2x

y2x

y1 00 01 11 10

0 0 1 0 0
1 0 1 1 0

D2 = y1x + y2’x

Synthesis with D Flip-Flops 4/5

• 9th Step: : Derive the simplified output equations
– Boolean expressions for z

49

y2x

y1 00 01 11 10

0 0 0 0 0
1 0 0 1 1

z = y1y2

Synthesis with D Flip-Flops 5/5
• 10th Step: Draw the logic diagram

50

D1 = y1x + y2x D2 = y1x + y2’x z = y1y2

D Q

C
R

D Q

C
R

y1

y2

z

D1

D2

x

clock reset

Synthesis with JK Flip-Flops and
MUXs

51

•6 shifting lights

••= lojik-1
•O= lojik-0

Number of states= 6

Number of state variables= 3

Number of Outputs= 6

Number of flip-flops= 3

Number of Inputs= 0

State Diagram & Table

52

D0 D1 D2

D3D5 D4

000
001

010

011
100

101

Y = Jy’ + K’y
J K Y

0 0 y

0 1 0

1 0 1

1 1 Q’

Y1Y2
y1y2

Flip-flop inputsNext StatePresent State

y0 Y0 K1J1K2J2 J0 K0

Outputs

z2z3z4z5 z1 z0

0 0 0
0 0 1
0 1 0

0 1 1
1 0 0

1 0 1

0 0 1
0 1 0
0 1 1

1 0 0
1 0 1

0 0 0

0 k 0
0 k 1
0 k k

1 k k
k 0 0

k 1 0

k 1 k
k k 1
0 1 k

1 k 1
k 1 k

k k 1

1 1 1
0 1 1
0 0 1

0 0 0
0 0 1

0 1 1

0 0 0
1 0 0
1 1 0

1 1 1
1 1 0

1 0 0

Inplementation of Flip-Flop Input Equations

y1y0

y2 00 01 11 10

0 0 0 0 1
1 k k k k

J2 = y1y0’

y1y0

y2 00 01 11 10

0 k k k k
1 0 1 k k

K2 = y0y1y0

y2 00 01 11 10

0 0 1 k k
1 0 0 k k

J1 = y2’y0

y1y0

y2 00 01 11 10

0 k k 1 0
1 k k k k

K1 = y0y1y0

y2 00 01 11 10

0 1 k k 1
1 1 k k k

J0 = 1

y1y0

y2 00 01 11 10

0 k 1 1 k
1 k 1 k k

K1 =1

Inplementation of Output Equations

54

y2 y1

z5=y2y1y0+k(y2y1y0+y2y1y0)

y0

0
0
0

y2 y1

z4=y2y1y0+y2y1y0+y2y1y0+k(y2y1y0+y2y1y0)

1
0
y0

0

y2 y1

z3=y2y1y0+y2y1y0+y2y1y0+y2y1y0+y2y1y0+k(y2y1y0+y2y1y0)

1
y0
1
0

Inplementation of Output Equations

55

y2 y1

z2=y2y1y0+y2y1y0+y2y1y0+y2y1y0+y2y1y0+k(y2y1y0+y2y1y0)

y0

1
1
0

y2 y1

z1=y2y1y0+y2y1y0+y2y1y0+k(y2y1y0+y2y1y0)

0
1
y0
0

Inplementation of Output Equations

56

y2 y1

z0=y2y1y0+k(y2y1y0+y2y1y0)

0
y0
0
0

Logic Diagram

57

J2 = y1y0’ K2 = y0 J1 = y2’y0 K1 = y0 J0 = 1 K1 =1

Q

D Q

C

J Q

C

K

D Q

C

J Q

C

K

J Q

C

K Q

1

1

clk

Synthesis with T Flip-Flops 1/4
• Example: 3-bit binary counter
0→1→2→ ... → 7 → 0 → 1 → 2

58

D0

D1 D7

D2 D6

D3 D5

D4

How many flip-flops?

State assignments

•D0 → 000

•D1 → 001

•D2 → 010

•...

•D7 → 111

State Diagram

Synthesis with T Flip-Flops 2/4

• State Table

59000

111

011

101

001

110

010

100

111

011

101

001

110

010

100

000

T0T1T2Y0Y1Y2y0y1y2

FF inputsnext statepresent state

0
0

0

0

0

0

1

1

0

0

1

1

0

1

0
1

1
1

1

1

1

1

1
1

Synthesis with T Flip-Flops 3/4

• Flip-Flop input equations

60

y1 y0

y2 00 01 11 10

0 0 0 1 0
1 0 0 1 0

T2 = y1y0

y1 y0

y2 00 01 11 10

0 0 1 1 0
1 0 1 1 0

T1 = y0

T0 = 1

Synthesis with T Flip-Flops 4/4

• Circuit

61

T2 = y1y0

T1 = y0

T0 = 1

y0
T Q

C
R

T Q

C
R

T Q

C
R

y1

y2

lojik-1 T0

T1

T2

clock

reset

Unused States

62

D0

D1

D2 D3

D4

Modulo-5 counter

Present State Next State

y2 y1 y0 Y2 Y1 Y0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 0 0

Example: Unused States 1/4

63

y1y0

y2 00 01 11 10

0 0 0 1 0

1 0 X X X

Y2 = y1y0

y1y0

y2 00 01 11 10

0 0 1 0 1

1 0 X X X

Y1 = y1’ y0 + y1y0’
= y1 y0

y1y0

y2 00 01 11 10

0 1 0 0 1

1 0 X X X

Y0 = y2’ y0’

Present State Next State

y2 y1 y0 Y2 Y1 Y0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 0 0

Example: Unused States 2/4

64

000

001

010 011

100

101 110

111

Present State Next State

y2 y1 y0 Y2 Y1 Y0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 0 0

1 0 1 0 1 0

1 1 0 0 1 0

1 1 1 1 0 0

Y2 = y1y0

Y1 = y1 y0

Y0 = y2’ y0’
The circuit is not locked type.

65

Example: Unused States 3/4
• Not using don’t care conditions

Present State Next State

A B C A B C

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 0 0

BC

A 00 01 11 10

0 0 0 1 0

1 0 0 0 0

A(t+1) = A’BC

BC

A 00 01 11 10

0 0 1 0 1

1 0 0 0 0

B(t+1) = A’B’C + A’BC’
= A’(B C)

BC

A 00 01 11 10

0 1 0 0 1

1 0 0 0 0

C(t+1) = A’C’

66

Example: Unused States 4/4

Present State Next State

A B C A B C

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 0 0

A(t+1) = A’BC

B(t+1) = A’(B C)

C(t+1) = A’C’

000

001

010 011

100

101 110 111

67

Sequential Circuit Timing 1/3

clk

D

Q

ts th

tp, FF

• It is important to analyze the timing behavior of
a sequential circuit
– Ultimate goal is to determine the maximum clock

frequency

68
clock

inputs outputs

current
state Flip-flop

inputs

Combinational Circuit

Flip-flops

DQ

C

Sequential Circuit Timing 2/3

ts

tp,COMB

tp,FF

tp,FF + tp,COMB >> th

69

Sequential Circuit Timing 3/3

• Minimum clock period (or maximum clock
frequency)

tp

tp,FF tp,COMB ts

clk

tp,FF tp,COMB ts

tp

clk

70

Example: Sequential Circuit Timing

Find the longest path delay from
external input to the output

tp,XOR + tp,XOR = 2.0 + 2.0 = 4.0 ns

tp,NOT = 0.5 ns

tp,XOR = 2.0 ns

tp,AND = ts = 1.0 ns

th = 0.25 ns

tp,FF = 2.0 ns

D Q

C

B

x
y

A

B’

clk

71

Example: Sequential Circuit Timing

Find the longest path delay in the
circuit from external input to
positive clock edge

tp,XOR + tp,NOT = 2.0 + 0.5 = 2.5 ns

tp,NOT = 0.5 ns

tp,XOR = 2.0 ns

tp,AND = ts = 1.0 ns

th = 0.25 ns

tp,FF = 2.0 ns

D Q

C

B

x
y

A

B’

clk

72

Example: Sequential Circuit Timing

Find the longest path delay from positive
clock edge to output

tp,FF + tp,XOR = 2.0 + 2.0 = 4.0 ns

tp,NOT = 0.5 ns

tp,XOR = 2.0 ns

tp,AND = ts = 1.0 ns

th = 0.25 ns

tp,FF = 2.0 ns

D Q

C

B

x
y

A

B’

clk

73

Example: Sequential Circuit Timing

Find the longest path delay from positive
clock edge to positive clock edge

tp,FF + tp,AND + tp,XOR + tp,NOT

= 2.0 + 1.0 + 2.0 + 0.5 = 5.5 ns

tp,NOT = 0.5 ns

tp,XOR = 2.0 ns

tp,AND = ts = 1.0 ns

th = 0.25 ns

tp,FF = 2.0 ns

D Q

C

B

x
y

A

B’

clk

74

Example: Sequential Circuit Timing

Determine the maximum frequency of
operation of the circuit in megahertz

tp = tp,FF + tp,AND + tp,XOR + tp,NOT + ts

= 2.0 + 1.0 + 2.0 + 0.5 + 1.0 = 6.5 ns

fmax = 1/tp = 1/(6.5×10-9) 154 MHz

tp,NOT = 0.5 ns

tp,XOR = 2.0 ns

tp,AND = ts = 1.0 ns

th = 0.25 ns

tp,FF = 2.0 ns

D Q

C

B

x
y

A

B’

clk

Design Example
• Design the synchronous sequential circuit which gives “1” as

output when the last 4 values from the 1-bit input are 1010.
• Example: x= 1010 1011 ise z= 0001 0000

75

Initial
State

1
came

0/0

1/0

10
came

1/0

0/0
0/0

101
came 1/0

0/1

Mealy Machine

00 01

10
11

1/0

VHDL Code
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity FSM_Mealy_1010 is

Port (clk : in STD_LOGIC;

rst : in STD_LOGIC;

x : in STD_LOGIC;

z : out STD_LOGIC);

end FSM_Mealy_1010;

architecture Behavioral of FSM_Mealy_1010 is

type state_type is
(Initial,One_Came,One_Zero_Came,One_Z
ero_One_Came);

signal state : state_type;

begin

state_transition: process(clk) begin

if(clk'event and clk='1') then

if(rst='1') then

state <= Initial;

else

case state is

when Initial =>

if(x='1') then

state <= One_Came;
else

state <= Initial; end if;

when One_Came =>
if(x='1') then state <= One_Came;
else state <= One_Zero_Came;
end if;

when One_Zero_Came =>
if(x='1') then state <= One_Zero_One_Came;
else state <= Initial;
end if;

when One_Zero_One_Came =>
if(x='1') then state <= One_Came;
else state <= Initial;
end if;

end case;
end if;
end if;
end process;
output: process(state,x)

begin
case state is

when One_Zero_One_Came =>
if(x='1') then z <= '0';
else z <= '1';
end if;

when others => z <= '0';
end case;

end process;
end Behavioral;

Mealy Machine RTL Schematic

77

Testbench and Benaviour Simulation
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity FSM_Mealy_1010_tb is

end FSM_Mealy_1010_tb;

architecture Behavioral of
FSM_Mealy_1010_tb is

component FSM_Mealy_1010 is

Port (clk : in STD_LOGIC;

rst : in STD_LOGIC;

x : in STD_LOGIC;

z : out STD_LOGIC);

end component;

signal clk : STD_LOGIC :='0';

signal rst,x,z : STD_LOGIC;

begin

DUT: FSM_Mealy_1010 Port map(clk,rst,x,z);
process

begin
wait for 5 ns;
clk <= not clk;

end process;
process begin

rst <= '1’;
wait for 10 ns; rst<='0';
wait for 10 ns; x<='0’;
wait for 10 ns; x<='1’;
wait for 10 ns; x<='1’;
wait for 10 ns; x<='0’;
wait for 10 ns; x<='1’;
wait for 10 ns; x<='0’;
wait for 10 ns; x<='1’;
wait for 10 ns; x<='0’;
wait for 10 ns; x<='1’;
wait for 10 ns; x<='1’;

end process;
end Behavioral;

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Moore Machine

93

Initial
State
y=0

1 came
y=0

0

1

10
came
y=0

1

0
0

101
came
y=0 1

0
1010
came
y=1

0

000 001

010

011100

11

VHDL Code
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity FSM_Mealy_1010 is

Port (clk : in STD_LOGIC;

rst : in STD_LOGIC;

x : in STD_LOGIC;

z : out STD_LOGIC);

end FSM_Mealy_1010;

architecture Behavioral of FSM_Mealy_1010 is

type state_type is
(Initial,One_Came,One_Zero_Came,One_Ze
ro_One_Came,One_Zero_One_Zero_Came);

signal state : state_type;

begin

state_transition: process(clk) begin

if(clk'event and clk='1') then

if(rst='1') then

state <= Initial;

else

case state is

when Initial =>

if(x='1') then

state <= One_Came;
else

state <= Initial; end if;

when One_Came =>
if(x='1') then state <= One_Came;
else state <= One_Zero_Came;
end if;

when One_Zero_Came =>
if(x='1') then state <= One_Zero_One_Came;
else state <= Initial;
end if;

when One_Zero_One_Came =>
if(x='1') then state <= One_Came;
else state <= One_Zero_One_Zero_Came;
end if;

when One_Zero_One_Zero_Came =>
if(x='1') then state <= One_Came;
else state <= Initial;
end if;

end case;
end if; end if;
end process;
output: process(state)

begin
case state is

when One_Zero_One_Zero_Came =>
z <= '1';

when others =>
z <= '0’;

end case;
end process;

end Behavioral;

Moore Machine RTL Schematic

95

Timing Diagram

96

