Advanced Digital Circuit Design - State Reduction and Assignment

Prof. Dr. Berna Örs Yalçın
Istanbul Technical University
Faculty of Electrical and Electronics Engineering
Department of Electronics and Communication Engineering
siddika.ors@itu.edu.tr

State Reduction and Assignment

- In the design process of sequential circuits certain techniques are useful in reducing the circuit complexity
- state reduction
- state assignment
- State reduction
- Fewer states \rightarrow fewer number of flip-flops
- m flip-flops $\rightarrow 2^{m}$ states
- Example: $m=5 \rightarrow 2^{m}=32$
- If we reduce the number of states to 21 do we reduce the number of flip-flops?

Example: State Reduction

Example: State Reduction

state	a	a	b	c	f	g	f	f	g	a	a		
input	0	1	0	1	0	1	1	0	0	0	0		
output	0	0	0	0	0	1	1	0	0	0			

- What is important
- not the states
- but the output values the circuit generates
- Therefore, the problem is to find a circuit
- with fewer number of states,
- but that produces the same output pattern for any given input pattern, starting with the same initial state

State Reduction Technique 1/7 - Step 1: get the state table

present state	next state		Output		
	$x=0$	$x=1$	$x=0$	$x=1$	
a	a	b	0	0	
b	c	d	0	0	
c	c	f	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	9	f	0	1	
9	a	f	0	1	5

State Reduction Technique 2/7

Step 2: Inspect the state table for equivalent states

- Equivalent states: Two states,

1. that produce exactly the same output

- for each input combination

2. whose next states are identical

- for each input combination

State Reduction Technique 3/7

present state	next state		Output	
	$x=0$	$x=1$	$x=0$	$x=1$
a	a	b	0	0
b	c	d	0	0
c	c	f	0	0
d	e	f	0	1
e	a	f	0	1
f	9	f	0	1
g	a	f	0	1

- States " e " and " g " are equivalent
- One of them can be removed

State Reduction Technique 4/7

present state	next state		Output	
	$x=0$	$x=1$	$x=0$	$x=1$
a	a	b	0	0
b	c	d	0	0
c	C	f	0	0
d	e	f	0	1
e	a	f	0	1
f	e	f	0	1

- We keep looking for equivalent states

State Reduction Technique 5/7

present state	next state		Output	
	$x=0$	$x=1$	$x=0$	$x=1$
a	a	b	0	0
b	c	d	0	0
c	c	d	0	0
d	e	d	0	1
e	a	d	0	1

- We keep looking for equivalent states

State Reduction Technique 6/7

present state	next state		Output	
	$x=0$	$x=1$	$x=0$	$x=1$
a	a	b	0	0
b	b	d	0	0
d	e	d	0	1
e	a	d	0	1

- We stop when there are no equivalent states

State Reduction Technique 7/7

present state	next state		Output	
	$x=0$	$x=1$	$x=0$	$x=1$
a	a	b	0	0
b	b	d	0	0
d	e	d	0	1
e	a	d	0	1

We need two flip-flops

state	a	a	b	b	d	e	d	d	e	a	a		
input	0	1	0	1	0	1	1	0	0	0	0		
output	0	0	0	0	0	1	1	0	0	0			11

Implication Tables

- A procedure for finding all the equivalent states in a state table.
- Use an implication table - a chart that has a square for each pair of states.

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Step 1

- Use a X in the square to eliminate output incompatible states.
- $1^{\text {st }}$ output of a differes from c, e, f, and h

Present State	Next State		Present
$a=0$	1	Output	
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Step 1 continued

- Continue to remove output incompatible states

Now what?

- Implied pair are now entered into each non X square.
- Here $a \equiv b$ iff $d \equiv f$ and $c \equiv h$

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

9/2/2012-ECE 3561
Copyright 2012 Joanne DeGroat,

Self redundant pairs

- Self redundant pairs are removed, i.e., in square a-d it contains a-d.

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Next pass

- X all squares with implied pairs that are not compatible.
- Such as in a-b have d-f which has an X in it.

- Run through the chart until no further X's are found.

Final step

- Note that a-d is not Xed - can conclude that $a=d$. The same for $c-e$, i.e., $c=e$.

Reduced table

- Removing equivalent states.

Present	Next State		Present
State	$X=0$	1	Output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Present State	Next State $x=0 \quad 1$	Output
a		0
b	f h	0
c		1
1	$f \quad b$	1
9	$b h$	0
h	c g	1

Summary of method

1. Construct a chart with a square for each pair of states.
2. Compare each pair of rows in the state table. X a square if the outputs are different. If the output is the same enter the implied pairs.
3. Remove redundant pairs. If the implied pair is the same place a check mark as $i \equiv j$.
4. Go through the implied pairs and X the square when an implied pair is incompatible.
5. Repeat until no more Xs are added.
6. For any remaining squares not $X e d, i \equiv j$.

Another example

9/2/2012-ECE 3561
Copyright 2012 - Joanne DeGroat,

Set up Implication Chart

- And remove output incompatible states

	NEXT STATE		OUTPUT	
Present State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathbf{X}=0$	$\mathrm{X}=1$
S0	S1	S4	0	0
S1	S1	S2	0	0
S2	S3	S4	1	0
S3	S5	S2	0	0
S4	S3	S4	0	0
S5	S1	S2	0	1

- Also indicate implied pairs

Step 2

- Check implied pairs and X
- $1^{\text {st }}$ pass
and
$2^{\text {nd }}$ pass

What does it tell you?

- In this case, the state table is minimal as no state reduction can be done.

State Reduction: Multiple Input State Diagram Example (1/)

Present	Next State				
State	00	01	10	11	
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	1
$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{5}$	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{4}$	1
$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	0
$\mathrm{~S}_{4}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	1
$\mathrm{~S}_{5}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{5}$	0

State Table

State Diagram

O R.H. Katz Transparency No. $9-22$

State Reduction: Multiple Input State Diagram Example (2/)

Present	Next State				Output
State	00	01	10	11	
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	1
$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{5}$	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{4}$	1
$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	0
$\mathrm{~S}_{4}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	1
$\mathrm{~S}_{5}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{5}$	0

Present	Next State				Output
State	00	01	10	11	
$\mathrm{~S}_{0}^{\prime}$	$\mathrm{S}_{0}{ }^{\prime}$	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}^{\prime}$	1
$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}^{\prime}$	S_{3}^{\prime}	S_{1}	$\mathrm{~S}_{3^{\prime}}^{\prime}$	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}^{\prime}$	S_{2}	$\mathrm{~S}_{0^{\prime}}^{\prime}$	1
$\mathrm{~S}_{3}^{\prime}$	S_{1}	$\mathrm{~S}_{0}^{\prime}$	S_{0}^{\prime}	S_{3}^{\prime}	0

Minimised State Table, 26

State Assignments

- We have to assign binary values to each state
- If we have m states, then we need codes of n bits, where $n=\left\lceil\log _{2} m\right\rceil$
- There are different ways of encoding
- Example: Five states: $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$

state	binary	gray	one-hot
S_{0}	000	000	00001
S_{1}	001	001	00010
S_{2}	010	011	00100
S_{3}	011	010	01000
S_{4}	100	110	10000

Binary State Encoding

y_{1}	y_{2}	x	y_{1}	y_{2}	J_{1}	K_{1}	J_{2}	K_{2}	2
0	0	0	0	0	0	X	0	\times	0
0	0	1	0	1	0	X	1	X	0
0	1	0	0	1	0	X	x	0	0
0	1	1	1	0	1	X	X	1	0
1	0	0	1	1	X	0	1	x	0
1	0	1	1	0	X	0	0	X	1
1	1	0	0	0	X	1	X	1	0
1	1	1	1	0	X	0	X	1	0

Simplified flip-flop input equations

22 -input AND, 23 -input AND, 12 -input OR, 13 -input OR gates

\times -	00	01	11	10
0	0	0	X	X
1	0	1	X	X

$$
J_{1}=x+y_{2}
$$

$J_{2}=\left(y_{1}+x\right)\left(y_{1}^{\prime}+x^{\prime}\right)$

42 -input OR, 12 -input AND gates

Gray State Encoding

y_{1}	y_{2}	x	y_{1}	y_{2}	J_{1}	K_{1}	J_{2}	K_{2}	z
0	0	0	0	0	0	X	0	X	0
0	0	1	0	1	0	\times	1	\times	0
0	1	0	0	1	0	x	x	0	0
0	1	1	1	1	1	X	x	0	0
1	0	0	0	0	\times	1	0	\times	0
1	0	1	1	1	\times	0	1	\times	0
1	1	0	1	0	\times	0	x	1	0
1	1	1	1	1	\times	0	x	0	1

Simplified flip-flop input equations

$\times 1$	00	01	11	10
0	0	0	1	0
1	0	1	1	1

42 -input AND, 13 -input $O R, 12$-input $O R$ gates

$\times 1$	00	01	11	10
0	0	0	X	X
1	0	1	X	X

$\times 1$	00	01	11	10
0	0	x	\times	0
1	1	\times	x	1

$$
J_{2}=x
$$

32 -input AND

One-Hot State Encoding

| y_{1} | y_{2} | y_{3} | y_{4} | x | y_{1} | y_{2} | y_{3} | y_{4} | $\mathrm{~J}_{1}$ | k_{1} | $\mathrm{~J}_{2}$ | k_{2} | $\mathrm{~J}_{3}$ | $\mathrm{~K}_{3}$ | $\mathrm{~J}_{4}$ | k_{4} | z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | x | 0 | x | 0 | x | x | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | x | 0 | x | 1 | x | x | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | x | 0 | x | x | 0 | 0 | x | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | x | 1 | x | 0 | 1 | 0 | x | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | x | x | 1 | 0 | x | 0 | x | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | x | x | 0 | 0 | x | 0 | x | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | x | 1 | 0 | x | 0 | x | 1 | x | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | x | 1 | 1 | x | 0 | x | 0 | x | 0 |

Simplified flip-flop input equations
$D_{1}=y_{2} x^{\prime}$
$D_{2}=y_{3} x$
$D_{3}=y_{4} x+y_{3} x^{\prime}$
$D_{4}=y_{4} x^{\prime}+y_{1} x^{\prime}$

62 -input AND, 22 -input OR gates

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{y}_{2} \mathrm{x}^{\prime}, \quad, \quad, \quad \mathrm{K}_{1}=1 \\
& J_{2}=y_{3} x+y_{1} x, \quad K_{2}=y_{2} x^{\prime} \\
& \mathrm{J}_{3}=y_{4} x, \quad, \quad k_{3}=y_{3} x \\
& J_{4}=y_{1} x^{\prime}, \quad k_{4}=y_{4} x
\end{aligned}
$$

52 -input AND, 12 -input OR gates

Paper \& Pencil Methods

Alternative heuristics based on input and output behavior as well as transitions:

Adjacent assignments to:
states that share a common next state (group 1's in next state map)

Highest Priority

Medium Priority

states that have common output behavior (group 1's in output map)

Lowest Priority (group 1's in next state map)

State Assignment

Pencil and Paper Methods

Example: 3-bit Sequence Detector

Highest Priority: (S3', S4')
Medium Priority: (S3', S4')
Lowest Priority:
0/0: (S0, S1', S3')
1/0: (S0, S1', S3', S4')

Example 1: State Assignment

- Reset State: SO
- Highest Priority: S3, S4
- Medium Priority: S3, S4
- Lowest Priority:
- S0, S1
- S1, S3
- S1, S4
- S3, S0
- S4, S0

S0: 00 S0: 00
S3: 01 S3: 11
S4: 11 S4: 10
S1: 10 S1: 01

Paper \& Pencil Methods

Another Example: 4 bit String Recognizer

Highest Priority: (S3', S4'), (S7', S10')
Medium Priority:
(S1, S2), 2x(S3', S4'), (S7', S10')
Lowest Priority:
0/0: (S0, S1, S2, S3', S4', S7') 1/0: (S0, S1, S2, S3', S4', S7')

Example 2: State Assignment

Reset State: S0
Highest Priority:

- S1, S2
- S3, S4
- S7, S10

Medium Priority:

- S1, S2
- S3, S4
- S7, S10
- Lowest Priority:
- S0, S1
- S0, S2
- S1,S3
- S1,S4
- S2, S3
- S2,S4
- S7,S0
- S10,S0

S0: 000
S1: 001
S2: 011
S3: 010
S4: 110
S7: 100
S10: 101

Example 2: State Assignment

y_{1}	y_{2}	y_{3}	x	y_{1}	y_{2}	y_{3}	$\mathrm{~J}_{1}$	k_{1}	$\mathrm{~J}_{2}$	k_{2}	$\mathrm{~J}_{3}$	k_{3}	z
0	0	0	0	0	0	1	0	x	0	x	1	x	0
0	0	0	1	0	1	1	0	x	1	x	1	x	0
0	0	1	0	0	1	0	0	x	1	x	x	1	0
0	0	1	1	1	1	0	1	x	1	x	x	1	0
0	1	0	0	1	0	0	1	x	x	1	0	x	0
0	1	0	1	1	0	0	1	x	x	1	0	x	0
0	1	1	0	1	1	0	1	x	x	0	x	1	0
0	1	1	1	0	1	0	0	x	x	0	x	1	0
1	0	0	0	0	0	0	x	1	0	x	0	x	0
1	0	0	1	0	0	0	x	1	0	x	0	x	0
1	0	1	0	0	0	0	x	1	0	x	x	1	1
1	0	1	1	0	0	0	x	1	0	x	x	1	0
1	1	0	0	1	0	0	x	0	x	1	0	x	0
1	1	0	1	1	0	1	x	0	x	1	1	x	0
1	1	1	0	x	x	x	x	x	x	x	x	x	x
1	1	1	1	x	x	x	x	x	x	x	x	x	x

Simplified flip-flop input equations

Simplified flip-flop input equations

