Advanced Digital Circuit Design - State Reduction and Assignment

Prof. Dr. Berna Örs Yalçın

Istanbul Technical University Faculty of Electrical and Electronics Engineering Department of Electronics and Communication Engineering siddika.ors@itu.edu.tr

State Reduction and Assignment

- In the design process of sequential circuits certain techniques are useful in reducing the circuit complexity
 - state reduction
 - state assignment
- State reduction
 - Fewer states -> fewer number of flip-flops
 - m flip-flops -> 2^m states
 - Example: $m = 5 \rightarrow 2^m = 32$
 - If we reduce the number of states to 21 do we reduce the number of flip-flops?

Example: State Reduction

state	a a b	c f	g f f	g a a	
input	0 1 0	1 0	1 1 0	0 0 0	
output	0 0 0	0 0	1 1 0	0 0	

- What is important
 - not the states
 - but the output values the circuit generates
- Therefore, the problem is to find a circuit
 - with fewer number of states,
 - but that produces the same output pattern for any given input pattern, starting with the same initial state

State Reduction Technique 1/7 0/0

a

h

1/0

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
a	a	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
e	۵	f	0	1	
f	9	f	0	1	
9	۵	f	0	1 5	

State Reduction Technique 2/7

- <u>Step 2</u>: Inspect the state table for equivalent states
- Equivalent states: Two states,
 - 1. that produce exactly the same output
 - for each input combination
 - 2. whose next states are identical
 - for each input combination

State Reduction Technique 3/7

present state	next	state	Output		
	x = 0	× = 1	x = 0	× = 1	
a	a	Ь	0	0	
Ь	C	d	0	0	
C	С	f	0	0	
d	е	f	0	1	
e	۵	f	0	1	
f	9	f	0	1	
9	a	f	0	1	

- States "e" and "g" are equivalent
- One of them can be removed

State Reduction Technique 4/7

present state	next	state	Output			
	x = 0	× = 1	x = 0	× = 1		
a	a	b	0	0		
Ь	С	d	0	0		
C	С	f	0	0		
d	е	f	0	1		
e	a	f	0	1		
f	е	f	0	1		

We keep looking for equivalent states

State Reduction Technique 5/7

pres	ent state	next	state	Output			
		x = 0	× = 1	x = 0	× = 1		
	a	۵	b	0	0		
	b	С	d	0	0		
	С	С	d	0	0		
	d	е	d	0	1		
	e	۵	d	0	1		

We keep looking for equivalent states

State Reduction Technique 6/7

present state	next:	state	Output			
	x = 0	x = 1	x = 0	× = 1		
a	۵	b	0	0		
b	b	d	0	0		
d	е	d	0	1		
e	۵	d	0	1		

We stop when there are no equivalent states

State Reduction Technique 7/7

state	۵	۵	b	b	d	e	d	d	e	a	۵	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		11

Implication Tables

- A procedure for finding all the equivalent states in a state table.
- Use an implication table a chart that has a square for each pair of states.

Step 1

- Use a X in the square to eliminate output incompatible states.
- 1st output of a differes from c, e, f, and h

9/2/2012 - ECE 3561 Lect 7 Copyright 2012 - Joanne DeGroat, ECE, OSU

Step 1 continued

Continue to remove output incompatible states

ECE, OSU

Now what?

- Implied pair are now entered into each non X square.
- Here a=b iff d=f and c=h

9/2/2012 - ECE 3561 Lect 7

Self redundant pairs

 Self redundant pairs are removed, i.e., in square a-d it contains a-d.

Present State	Next St $X = 0$	ate 1	Present Output	
а	d	с	0	-
b	f	h	0	
с	e	d	1	
d	a	е	0	
е	С	а	1	
f	f	b	1	
g	b	h	0	
h	с	g	1	

9/2/2012 – ECE 3561 Lect 7

Next pass

- X all squares with implied pairs that are not compatible.
- Such as in a-b have d-f which has an X in it.
- Run through the chart until no further X's are found.

9/2/2012 – ECE 3561 Lect 7 Copyright 2012 - Joanne DeGroat, ECE, OSU

Final step

Note that a-d is not Xed - can conclude that a=d. The same for c-e, i.e., c=e.

9/2/2012 - ECE 3561 Lect 7 Copyright 2012 - Joanne DeGroat, ECE, OSU

Reduced table

Removing equivalent states.

Present	Next St	ate	Present	
State	<i>X</i> = 0	1	Output	
а	d	с	0	
b	f	h	0	
с	e	d	1	
d	а	е	0	
е	С	а	1	
f	f	b	1	
g	b	h	0	
h	с	g	1	

Present State	Next State $X = 0$ 1	Output
a	a c	0
b	f h	0
C	са	1
1	f b	1
g	b h	0
h	c g	1 1

9/2/2012 – ECE 3561 Lect 7 Copyright 2012 - Joanne DeGroat, ECE, OSU

Summary of method

- 1. Construct a chart with a square for each pair of states.
- 2. Compare each pair of rows in the state table. X a square if the outputs are different. If the output is the same enter the implied pairs.
- Remove redundant pairs. If the implied pair is the same place a check mark as i≡j.
- 4. Go through the implied pairs and X the square when an implied pair is incompatible.
- 5. Repeat until no more Xs are added.
- 6. For any remaining squares not Xed, i=j.

9/2/2012 – ECE 3561 Lect 7

Another example

9/2/2012 – ECE 3561 Lect 7

Set up Implication Chart

And remove output incompatible states

	NEXI	NEXT STATE				
Present State	X=0	X=1	X=0 X=1			
S0	S1	S4	0			
S 1	S 1	S2	0 0			
S2	S3	S4	1 0			
S3	S5	S2	0			
S4	S3	S4	0 0			
S5	S 1	S2	0 1			

Also indicate implied pairs

9/2/2012 – ECE 3561 Lect 7

Step 2

9/2/2012 - ECE 3561 Lect 7 Copyright 2012 - Joanne DeGroat, ECE, OSU

What does it tell you?

 In this case, the state table is minimal as no state reduction can be done.

9/2/2012 – ECE 3561 Lect 7

State Reduction: Multiple Input State Diagram Example (1/)

Present		Next	State	;	Output
State	00	01	10	11	-
S ₀ S ₁ S ₂ S ₃ S ₄ S ₅	$S_0 \\ S_0 \\ S_1 \\ S_1 \\ S_0 \\ S_1 \\ S_1$	S_{1} S_{3} S_{0} S_{1} S_{4}	$S_{2} \\ S_{1} \\ S_{2} \\ S_{4} \\ S_{2} \\ S_{0}$	S ₃ S ₅ S ₅ S ₅ S ₅ S ₅	1 0 1 0 1 0
St	tate	Та	ble		

State Diagram

State Reduction: Multiple Input State Diagram Example (2/)

State Assignments

- We have to assign binary values to each state
- If we have m states, then we need codes of n bits, where n = [log₂m]
- There are different ways of encoding
- Example: Five states: S_0 , S_1 , S_2 , S_3 , S_4

state	binary	gray	one-hot
S ₀	000	000	00001
S ₁	001	001	00010
S ₂	010	011	00100
S ₃	011	010	01000
S ₄	100	110	10000

X

Х

X

X

X

X

Х

Х

\sim			<u> . </u>	
0	0	0	0	1
-1-1-1				
1	0	1	1	1
			· · · · · · · · · · · · · · · · · · ·	

 $D_1 = y_1 y_2' + y_2 x$

0 0 1 0 1 1 1 0 0 1

 $D_2 = y_1y_2' + y_1'y_2x' + y_1'y_2'x$

2 2-input AND, 2 3-input AND, 1 2-input OR, 1 3-input OR gates

4 2-input OR, 1 2-input AND gates

0	0	1	0	1	0	X	1	X	0
0	1	0	0	1	0	X	X	0	0
0	1	1	1	1	1	X	Х	0	0
1	0	0	0	0	X	1	0	X	0
1	0	1	1	1	X	0	1	X	0
1	1	0	1	0	X	0	X	1	0
1	1	1	1	1	X	0	X	0	1

Simplified flip-flop input equations

 $\mathsf{D}_1 = \mathsf{y}_1 \mathsf{y}_2 + \mathsf{y}_2 \mathsf{x} + \mathsf{y}_1 \mathsf{x}$

 $D_2 = y_1'y_2 + x$

4 2-input AND, 1 3-input OR, 1 2-input OR gates

3 2-input AND

One-Hot State Encoding 0/0 a 0/0 _0/0 0010 1/0 0/0 Cb 1/0 0/0 e 1/0 У₄ \mathbf{J}_1 J_2 \mathbf{Y}_{1} Y_2 Y_3 **K**₁ K_2 J_3 K₃ J₄ **K**₄ Ζ **Y**₁ **Y**₂ **Y**3 **Y**4 X X X X X X X X X X Х Х Х X X X X Х Х X

Х

X

Х

X

X

X

Х

Х

Х

Х

X

Х

Simplified flip-flop input equations

 $D_1 = y_2 x'$ $D_2 = y_3 x$ $D_3 = y_4 x + y_3 x'$ $D_4 = y_4 x' + y_1 x'$

6 2-input AND, 2 2-input OR gates

J ₁ = γ ₂ χ'	K ₁ = 1
$\mathbf{J}_2 = \mathbf{y}_3 \mathbf{x} + \mathbf{y}_1 \mathbf{x}$	K ₂ = y ₂ x'
$J_3 = \gamma_4 x$	$K_3 = \gamma_3 x$
J₄ = y₁×'	$K_4 = y_4 x$

5 2-input AND, 1 2-input OR gates

State Assignment

Contemporary Logic Design FSM Optimization

Paper & Pencil Methods

Alternative heuristics based on input and output behavior as well as transitions:

Highest Priority

Adjacent assignments to:

states that share a common next state (group 1's in next state map)

states that share a common ancestor state (group 1's in next state map)

Medium Priority

Lowest Priority

states that have common output behavior (group 1's in output map)

State Assignment

Pencil and Paper Methods

Example: 3-bit Sequence Detector

Highest Priority: (S3', S4')

Medium Priority: (S3', S4')

Lowest Priority: 0/0: (S0, S1', S3') 1/0: (S0, S1', S3', S4')

Contemporary Logic Design FSM Optimization

© R.H. Katz Transparency No. 9-30 🚘

Example 1: State Assignment

- Reset State: SO
- Highest Priority: S3, S4
- Medium Priority: S3, S4
- Lowest Priority:
 - S0, S1
 - 51, 53
 - 51, 54
 - 53, 50
 - 54, 50

S0: 00S0: 00S3: 01S3: 11S4: 11S4: 10S1: 10S1: 01

State Assignment

Contemporary Logic Design FSM Optimization

Paper & Pencil Methods

Another Example: 4 bit String Recognizer

Highest Priority: (S3', S4'), (S7', S10')

Medium Priority: (S1, S2), 2x(S3', S4'), (S7', S10')

Lowest Priority: 0/0: (S0, S1, S2, S3', S4', S7') 1/0: (S0, S1, S2, S3', S4', S7')

Example 2: State Assignment

- Reset State: SO
- Highest Priority:
 - 51, 52
 - 53,54
 - 57, 510
- Medium Priority:
 - 51, 52
 - 53,54
 - 57, 510
- Lowest Priority:
 - S0, S1 - S0, S2
 - 51, 53
 - 51, 54 - 52, 53
 - 52, 54
 - 57, 50
 - 510,50

S0: 000 S1: 001 S2: 011 S3: 010 S4: 110 S7: 100 S10: 101

Example 2: State Assignment

y 1	Y ₂	y 3	X	У ₁	Y ₂	У ₃	J_1	K ₁	J_2	K ₂	J_3	K ₃	Ζ
0	0	0	0	0	0	1	0	X	0	×	1	X	0
0	0	0	1	0	1	1	0	X	1	X	1	X	0
0	0	1	0	0	1	0	0	Х	1	X	X	1	0
0	0	1	1	1	1	0	1	X	1	X	X	1	0
0	1	0	0	1	0	0	1	X	X	1	0	X	0
0	1	0	1	1	0	0	1	X	X	1	0	X	0
0	1	1	0	1	1	0	1	Х	X	0	X	1	0
0	1	1	1	0	1	0	0	Х	X	0	X	1	0
1	0	0	0	0	0	0	X	1	0	X	0	X	0
1	0	0	1	0	0	0	X	1	0	X	0	X	0
1	0	1	0	0	0	0	X	1	0	X	X	1	1
1	0	1	1	0	0	0	Х	1	0	Х	X	1	0
1	1	0	0	1	0	0	X	0	X	1	0	Х	0
1	1	0	1	1	0	1	X	0	X	1	1	X	0
1	1	1	0	X	X	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X	X	X

Simplified flip-flop input equations

y_1y_2 y_3x	00	01	11	10	
00	0	1	1	0	-
01	0	1	1	0	
11	1	0	X	0	
10	0	1	X	0	

 $\mathsf{D}_1 = \mathsf{y}_2 \mathsf{y}_3' + \mathsf{y}_1' \mathsf{y}_2' \mathsf{y}_3 \mathsf{x} + \mathsf{y}_2 \mathsf{y}_3 \mathsf{x}'$

Y 1 Y 2 Y 3 X	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	X	0
10	1	1	X	0

 $\mathsf{D}_2 = \mathsf{y}_1 ' \mathsf{y}_2 ' \mathsf{x} \mathsf{+} \mathsf{y}_1 ' \mathsf{y}_3$

 $D_2 = y_1' y_2' y_3' + y_1 y_2 x$

Simplified flip-flop input equations

y ₁ y ₂				•	y ₁ y ₂				
y ₃ x	00	01	11	10	y ₃ x	00	01	11	10
00	0	1	X	X	00	X	X	0	1
01	0	1	X	X	01	X	X	0	1
11	1	0	X	X	11	X	Х	X	1
10	0	1	X	X	10	X	X	X	1
y 1 y 2	J	$_{1} = y_{2}y_{3}' +$	γ ₂ 'γ ₃ x+γ ₂	, x '	y 1 y 2		K ₁ =	γ ₂ '	
y ₃ x	00	01	11	10	y ₃ x	00	01	11	10
00	0	X	X	0	00	X	1	1	X
01	1	X	×	0	01	X	1	1	X
11	1	X	×	0	11	X	0	X	X
10	1	X	X	0	10	X	0	X	X
y ₁ y ₂		J ₂ = y	ν ₁ '(γ ₃ +x)		- y ₁ y ₂		K ₂	= γ ₃ '	
y ₃ x	00	01	11	10	y ₃ x	00	01	11	10
00	1	0	0	0	00	X	Х	X	X
01	1	0	1	0	01	X	X	X	X
11	Х	X	X	Х	11	1	1	X	1
10	X	X	X	X	10	1	1	X	1
		J ₃ = γ ₁	'y ₂ '+y ₁ y ₂ x					K ₃ = 1	