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Introduction

In no small measure, the great technological progress in
automatic control and communication systems during the past
two decades has depended on advances and refinements in the
mathematical study of such systems. Conversely, the growth
of technology brought forth many new problems (such as those
related to using digital computers in control, etc.) to challenge
the ingenuity and competence of research workers concerned
with theoretical questions.

Despite the appearance and effective resolution of many new
problems, our understanding of fundamental aspects of control
has remained superficial. The only basic advance so far appears
to be the theory of information created by Shannon!. The chief
significance of his work in our present interpretation is the
discovery of general ‘ laws’ underlying the process of information
_transmission, which are quite independent of the particular
models being considered or even the methods used for the des-

cription and analysis of these models. These results could be
" compared with the ‘laws’ of physics, with the crucial difference
that the ‘laws’ governing man-made objects cannot be discovered
by straightforward experimentation but only by a purely abstract
analysis guided by intuition gained in observing present-day
examples of tcchnology and cconomic organization. We may
thus classify Shannon’s result as belonging to the pure theory
of communication and control, while everything else can be
labelled as the applied theory; this terminology reflects the well-
known distinctions between pure and applied physics or
mathematics. For reasons pointed out above, in its methodo-
| logy the pure theory of communication and control closely
- resembles mathematics, rather than physics; however, it is not
-a branch of mathematics because at present we cannot (yet?)
~ disregard questions of physical realizability in the study of
mathematical models.

This paper initiates study of the pure theory of control,
imitating the spirit ot Shannon’s investigations but otherwise
using entirely different techniques. Our ultimate objective is
to answer questions of the following type: What kind and how
~much information is needed to achieve a desired type of control?
What intrinsic properties characterize a given unalterable plant
as far as control is concerned ?

At present only superficial answers are avallable to these
questions, and even then only in special cases.

Initial results presented in this Note are far from the degree
of generality of Shannon’s work. By contrast, however, only
constructive methods are employed here, giving some hope of
being able ta avoid the well-known difficulty of Shannon’s
theory: methods of proof which are impractical for actually
Constructing practical solutions. In fact, this paper arose
from the need for a better understandmg of some recently
discovered computation methods of control-system syn-
thesis2-5, Another by-product of the paper is a new com-
butation method for the solution of the classical Wiener
filtering problem?.

The organization of the paper is as follows:

In Section 3 we introduce the models for which a fairly
complete theory is available: dynamic systems with a finite
dimensional state space and linear transition functions (i.e.
systems obeying linear differential or difference equations).
The class of random processes considered consists of such
dynamic systems excited by an uncorrelated gaussian random
process. Other assumptions, such as stationarity, discretiza-
tion, single input/single output, etc., are made only to facilitate
the presentation and will be absent in detailed future accounts
of the theory.

In Section 4 we define the concept of controllability and show
that this is the ‘natural’ generalization of the so-called ‘dead-
beat’ control scheme discovered by Oldenbourg and Sartorius?2!
and later rederived independently by Tsypkin22 and the author!”,
" We then show in Section 5 that the general problem of optimal
regulation is solvable if and only if the plant is completely
controllable.

In Section 6 we introduce the concept of observability and
solve the problem of reconstructing unmeasurable state variables
from the measurable ones in the minimum possible length of
time.

We formalize the similarities between controllability and
observability in Section 7 by means of the Principle of Duality
and show that the Wiener filtering problem is the natural dual
of the problem of optimal regulation.

Section 8 is a brief discussion of possible generalizations and
currently unsolved problems of the pure theory of control.

Notation and Terminology

The reader is assumed to be familiar with elements of linear
algebra, as discussed, for instance, by Halmos$.

Consider an n-dimensional real vector space X. A basis in
Xis a set of vectorsa, . . ., a, in X such that any vector x in X
can be written uniquely as

(M

the x; being real numbers, the components or coordinates of x.
Vectors will be denoted throughout by small bold-face letters.

The set X* of all real-valued linear functions x* (= covec-
tors) on X, with the ‘natural’ definition of addition and scalar
multiplication, is an n-dimensional vector space. The value of
a covector y* at any vector x is denoted by [y*, x]. We call
this the inner product of y* by x. The vector space X* has a
natural basis a*; ..., a*, associated with a given basis in X;
it is defined by the requirement that

X =xa+ ... +x,a,

[a*;, a;] = 8; @

Using the ‘orthogonality relation’ 2, we may write 1 in the
form

Z [a%;, x]a; ®

i=1

which will be used frequently.
For purposes of numerical computation, a vector may be
considered a matrix with one column and a covector a matrix
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with one row. Then the inner product is expressed by the
product of these two matrices.

By means of the dual basis, one can set up an isomorphism
between X and X*: to each element x in X there corresponds
one and only one element x* in X* such that x* has the same
coordinates with respect to a*;...,a%, as x with respect to
a,...,a, Note, however, that this correspondence is not a
‘natural’ one since it depends on the particular basis chosen.

This having been said, it is clear that [x*, x]* is defined for
every x in X—this is the euclidean norm of x (with respect to
a fixed basis in X).

Linear transformations of X into itself or their matrix repre-
sentations will be denoted by bold-face capitals. A special case
is a positive-definite [positive semi-definite] transformation or
matrix Q, which is defined by requiring that the quadratic form
[x*, Qx] be positive [non-negative] for every x # 0. Itiseasily
seen that if Q is positive-definite [x*, QxJ* is a norm which is
called the generalized euclidean norm of x (again defined with
respect to a fixed basis in X); to remember this fact, we intro-
duce the special notation

[x*, Qx] = [Ixl%q )
it being understood that Q is positive-definite or semi-definite.

Dynamic Models

In any mathematical study of control, it is necessary to
restrict attention to a certain class of models which represent the
dynamic phenomena to be studied. The purpose of this
section is to introduce the requisite terminology on models.

We call the physical object to be controlled the plant. In
practice, this may be (i) an automobile, (ii) an airplane, (iii) a
chemical reactor. To control the plant, we must be able to
change certain physical quantities, called inputs. These may
be (i) the accelerator or steering wheel of an automobile, (ii) the
control surfaces of an airplane, (iii) the material or heat input
to a chemical reactor. Another requirement for control is that
one must be able to measure the behaviour of the plant; the
physical variables of the plant. which can be measured directly
are called outputs. Examples are (i) the speed (measured by a
speedometer) or position (measured by the human eye) of a car;
(ii) the altitude, speed, or acceleration of an airplane; (iii) the
temperature, colour, quantity, etc., of chemicals formed by a
reaction. The following terminology is standard in describing
dynamic systems:

The state of a dynamic system is the smallest collection of
numbers which must be specified at time # = #; in order to be
able to predict the behaviour of the system for any time ¢ > #,.
In other words, the state is the minimal ‘record’ of the past
history needed to predict the future behaviour. The future
states x(7) of the system which was in state x(¢y) at time 7y are
then given by the transition function or motion

x() = $(; x(t), f0) (¢ = 1) 5)
For this definition to be consistent, we stipulate
D(ty; x(20), to) = x(to) (6)

btz (115 x(t0), 1), 1) = Dt xX(to), to), t, = 11 =t (7)
the second condition assuring that ¢ is unique.

By the Principle of Causality, any dynamic system may be
described from the ‘state’ point of view. Moreover, it is clear
that any output of the system must be a function of the state.
The transition function ¢ depends on the inputs to the system
which take place after # = 7y, but as a rule it is not necessary to
indicate this dependence explicitly.

The plants to be studied in this paper are dynamic systemg
subject to two essential (very restrictive but standarg).
assumptions: :

The state space X of the plant is an n-dimensional
vector space )

The transition function ¢ depends linearly on the :
initial state x(ty) and the inputs after t = t, 9)

Less abstractly, these assumptions mean that the plant ig
governed by a linear vector differential equation (continuoys.
time dynamic system):

dx/dt = F(O)x+D()u(r)
y(1) = B(Ox()

or a vector difference equation (discrete time dynamic system):

2t = B(OE(7)+ Altdulte)
vt = BQox(t)

where u(f) resp. u(z,) is an n-dimensional vector (m < n)
denoting the inputs to the plant; y(¢) resp. y(¢,) is a p-dimen-
sional vector (p < 1) denoting the outputs of the plant; the
coordinates x;(f) of the state (with respect to some fixed basis)
are called state variables. E

Although our theory extends to classes of plants of type 10
or 11, in the interest of simplifying conceptual and mathe-
matical technicalities, we make the following, inessential,
further assumptions: -

(10)

an

The plant is stationary. (In other words, F(%),

D(), ®(t,) and A(z;) are constant matrices) (12)
The plant has a single input. (In other words, :

m=1) 13) i
The plant has a single output.

p=1

(In other words,

14
With these assumptions, the equations of the plant become: :

dx/dt = Fx+duy(r) s
yi(t) = [b*, x(9] ‘

or
*((k+DT) = BxKkT)+au (kT)] (T > 0)

(16)
1T = [b*, x(kT)]

It will be useful, though inessential, to assume also that
an.

It is a triviality to reduce 15 to 16 by means of the operation
of sampling or discretization. This step corresponds to finding
the z-transform? of equations 15; however, the ‘state’ point of
view and the use of matrix notation obviates the need for
transform considerations. The principal assumption is that
1,(#) is a piece-wise constant function over the intervals...:

®inll is non-singular

(~T,0), (0, T) ..., where T is positive but otherwise arbitrary- ; ‘

Using this, the explicit solution of equation 15 is2~4 10,11:

G+ 1)T .
x((k+17T) = (exp TE)x(kT)+ J;; [exp (T—7)Flduy(kT) d7
T
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Therefore if
® =exp7TF

T
(f exp 7 dT) d
0

equation 15 reduces to 16-17, since exp TF is non-singular for
any T. The calculations required to find € and a can be con-
veniently performed either by Laplace transform techniques or
by evaluating rapidly converging power series!l. We refer in
particular to references 2, 3 and 11 for pedagogical material
showing how the concepts of this section are related to conven-
tional control engineering terminology.

The vectors d respectively a and b specify how the plant is
constrained with respect to inputs or outputs.- If every state
can be affected directly by the input, the plant is not constrained
with respect to input; if every state variable x;(f) can bc
measured, the plant is not constrained with respect to output. A
plant which has no input is said to be free.

To aid the intuition, it will be convenient to make use of block
diagram notation as is customary in control engineering. See
Figure 1, which represents equation 16. The sole difference

®
I

: X({k+ D)), KT) KT)
u1(kT:) T seconds X L 0
$a delay b
¢
Figure 1

between the present notation and the customary one is that the
‘blocks’ represent, in general, matrix multlphcatlon as indicated
by the fat arrows in Figure 1.

To control a plant of type 15 or 16, it is necessary to express
the input u;(¢) or u,(kT) as a function of the state and of all
present and future desired states x4(). (It is immediate from
the definition of the state that #; need not depend on any other
functions of time, but of course will depend on the constants
P, a characterizing the plant.) If the state cannot be measured
directly, i.e. if 14 is assumed, then u; will depend on all present
and future desired states and all present and past measured
values of the output. We call some particular dependence of
this sort the control law of the plant.

The concept of “desired state’ is a generalization of what is
usually called in the control engineering literature ‘command
input’ or ‘desired output’. Again, in the interests of simplicity,
(for a more detailed treatment, see references 5 and 6) we
assume that

The desired state of the plant is identically zero
for all t (18)
In other words, the object of control will be to transfer any
initial state to the equilibrium state 0. (This terminology is due
to the fact that if x(fp) = 0 and u;(¥) = O for all ¢ > ¢, then
b(; 0, 1) = 0 for all ¢ > ¢y, i.e. the plant remains at 0 for all
t>= 1)

Under these hypotheses, the control law will be expressed in
the continuous time or discrete time case by

w(®) = xx(0, 1) or w(kT) = x(x(kT), kT)

ON THE GENERAL THEORY OF CONTROL SYSTEMS

if the plant is not constrained at the output, and by

() = x(n(s), s < ;0
or
u(kT) = x(»(JT),j < k; kT)

if assumption 14 holds. In these relations, x is an arbitrary
function; if y is linear in x or y,, we say the control law is linear;
if x does not depend explicitly on ¢ or kT, the control law is
Stationary.

It will be convenient to refer to u;(f) or u(kT) as the control
signal; the values kT of time are called sampling points.

Controllability

In this section, we shall assume (except in 29) that the plant
in question is always linear, stationary, single input.

Our first objective is to find an intrinsic characterization of
the manner in which a plant is constrained in regard to control.
This leads to:

A state x of a plant is said to be ‘ controllable’ if
there exists a control signal u,(t) defined over a
finite interval 0 < t < t; such that $(t1;x,0) = 0.
In general, the time t, will depend on x. If every
state is controllable, the plant is said to be ‘ com-

pletely controllable’ (19

This concept originated as follows. In a discussion of a now
well known paper by Bergen and Ragazzini!2, it was pointed
out in 1954 that it is possible to design a sampled-data controller
for any single input/single output linear stationary plant in
such a way that the error in response to a step input is identically
zero after a finite length of time. (This is nowadays usually
called a dead-beat system.) While this observation is certainly
correct in the ‘usual’ cases encountered in practice, no rigorous
proof was possible at that time. In 1957 essential improve-
ments were obtained in the original arguments by means of the
‘state’ method; an engineering exposition of this (without
complete proofs) has appeared2. Now we witness an illus-
tration of the dictum that ‘a good theorem eventually becomes
a definition’.

A necessary and sufficient condition for complete controli-
ability in the discrete time case is the following25.6:13;

a discrete time plant is completely controllable (i)
if and (ii) only if the vectors a, ®~la ..., @ ntla

are linearly independent 20)

Before proving this theorem, we introduce some termin_ology.
For every positive integer ; we denote ®-i+1a by e; It is easy
to show by induction, using the fact that ® is non-singular13:

The set I'(q) of all initial states which can be trans-
ferred to the origin in at most q steps by the
application aof appropriate contral signals is

given by 21

') = {x; X = é:l f,-e,};

the &; being arbitrary real numbers.
We need also the easily proven fact:

If ex+y is linearly dependent on ey . .., ey, then so
is ey for every m > k. Hence, in particular, if
'y = I'k+ 1), then T(K) = I'(m) for allm > k. * (22)

Proof of 20. (i) Ifthesete; ..., e,islinearly independent, it
is a basis for X. Hence every state can be transferred to the
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origin in at most g = n steps, and so the plant is completely
controllable.

(ii) Conversely, suppose that only k& < n of the vectors
€{...,e, are linearly independent but the plant is completely
controllable. By 22, it follows that actually the first k of these
vectors are linearly independent and therefore I'(k) = I'(m)
for all m = k. Hence I'(k) is the set of all controllable states.
But dim I'(k) = k < n so that I'(k) # X which contradicts
the fact that the plant is completely controllable.

Clearly I'(k) in the preceding paragraph is the linear space
generated by the infinite set of vectors (a, ®~!a . ..); from this,
it is obvious that I'(k) is invariant under the transformation
®-1, ie. that @-1I'(k) = I'(k) or ®I'(k) = I'(k). Hence 20
can also be expressed by saying

A discrete time plant is completely controllable if
and only if the only ®-invariant subspace of X con-
taining a is X itself. (23)

In an entirely similar fashion, we can also obtain conditions
for controllability in the continuous time case, or, more
precisely, directly from the differential equations 15:

In the case of a continuous time plant the following
propositions are equivalent: (i) the plant is com-
pletely controllable; (ii) the vectors d, Fd ...,
Fo-1d are linearly independent; (iii) the only
F-invariant subspace of X containing & is X itself. (24)

This condition has also been used, independently and in a
different context, by Pontryaginl>. However, in his case the
required independence appears as a purely technical mathe-
matical requirement, unaccompanied by the intuitive justifica-
tion contained in definition 19 of controllability.

From 23 and 24 it follows immediately:

A discrete time [continuous time] plant is com-
pletely controllable for soME a [soME d] if and
only if in the Jordan canonical form of ® [F]no two
blocks are associated with the same eigenvalue. (25)

Proof of 25. This is an immediate consequence of the defini-
tion of the Jordan canonical form, for which see Coddington
and Levinson, reference 10, Chapter 3, Section 1. A sufficient
condition for 25 is that all eigenvalues be distinct.

Example. The following plant is not completely
controllable for any d. Take two transfer func-
tions in parallel, each being 1/(s+1). Then
~F = unit matrix, and I'(1) = I'(2) is the one-
dimensional linear space generated by the vector d.

Now assume that the output y; of the plant is
the sum x; + x, of the outputs of the two transfer
functions. The total transfer function is then
(dy+ dy)(s+ 1D/(s+1)2. Inthe usual semi-rigorous
engineering treatment, one would naturally say
that this is the ‘same’ as the transfer function
(d1+d>)/(s+1), i.e. the factor (s+ 1) can be can-
celled. What is really involved here is replacing
X1, X, by y1; control can then be exerted on y; but
surely not on y, = dox;—dyx;. Thusif cancella-
tion is possible, the effect of the control signal on

some of the state variables is lost. (26)

Combining this observation with 25, we may state, in engineer-
ing language:
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A single input|single output plant (continuous time
or discrete time) is completely controllable if and
only if the input excites all natural frequencies of
the plant; in other words, if no cancellation of poles =
is possible in the transfer function. 7
The very elegance of signal-flow-graph and other similay
methods for obtaining transfer functions of, say, networks
often obscures the cancellation of terms. In cases of doubt,
conditions 20 or 24 must be employed. :
It may happen in particular that the forbidden cancellation
takes place in passing from the continuous time to the discrete
time case. In general, this can happen only if the plant containg
complex poles and then only in the following two ways. = Con-
sider the (continuous time) transfer function L

(@) " G(s) = b2s/(s2+2as+b?)
The Z transform (discrete time transfer function) is given by$: i
Z[G(5)] = [e?Tz(e?Tz—cos bT)]/[e?2Tz2—2(e?T cos bT)z+1]

Unless T # rm (r = integer), the factor (e?Tz—cosrm)
appears in both the numerator and the denominator.

The other type of forbidden cancellation is the following,
Consider the continuous time transfer function :

(b) G =3/(s2+ 1)(2+ 4
The corresponding discrete time transfer function is

CZIGE)] = (zsin T)/(z2 — 2zcos T + 1)
~ (zsin 2T)/2(z2 — 2z cos 2T + 1)

Now if the sampling period is 7 = 2#/3, we find that
ZIG()] = 3V2 zjA(z2 = V2 z + 1)

and if T = 2w, then Z[G(s)] = 0, so that with these sampling
periods the plant is surely not completely controllable. :
We therefore conclude (a direct, rigorous proof is not difficult):

. A plant which is completely controllable in the
absence of sampling remains completely controll-
able after the introduction of sampling if and only
if, for every eigenvalue AF) of F Re A; (F) = Re
A; (B) implies

Im [M(F) — N(B)] # 2rm/T  (r = positive integer)

This result provides the rigorous basis for the developments
in reference 2. The characterization of the set of all controll-
able states may be regarded as a fundamental problem in the
pure theory of control. While in the linear case the problem
is now completely solved!4, omly fragmentary results are .
available in the stochastic or non-linear cases. One well known.
fact is 13,15,16:

Consider a plant which is linear and completely
controllable. Introduce ideal saturation, i.e. re-
quire that |u,(t)] < 1. Let X be the direct sum
of two ®-invariant [F invariant] subspaces Y+ Z,
such that the eigenvalues of ® restricted to Y are
less than or equal to one in absolute value [the
eigenvalues of F restricted to Y have non-positive
real parts].

The set of all controllable states under saturation
is the Cartesian product Y x W, where W is a con-
vex, compact subset of Z containing the origin.

@8)

@

The principal consequence of complete controllability is the
following:



I. FUNDAMENTAL THEOREM FOR LINEAR
CONTROL SYSTEMS—Consider a discrete time,
completely controllable plant.  Every state is trans-
ferred to the origin in a minimal number (< n) of
sampling periods if and only if the control law is

given by:
uy(kT) = —[e*y, x(kT)] 30)
Here e*| is the first vector in the dual basis
e*; ...,e*,of the basis ey . .., e,. 3D

A ‘vector’ block diagram of the closed loop system is shown in
Figure 2. We see that the control law 30 satisfies the principle
of feedback, since the control signal is computed from the
measurements of the output, i.e. of the state. The feedback
nature of the control law is not an a priori assumption but is
forced on us by the requirement that every state be transferred
to the origin in minimum time. This control law may not be

Controlter |
|

Plant
Control| x((k+))T)
o signal, . Ga 5 Tseconds| K1)
1 i - delay [ ]
l
|
| L
| — & K
I
l
8
Feedback |
signals [
|
Figure 2

physically realizable, however, since constraints may prevent
the instantaneous measurement of ail state variables.

If a linear continuous time plant is discretized by sampling,
the choice of the sampling period is arbitrary. Hence we see
from 31 that:

In a continuous time, completely controllable plant
any initial state may be returned to the origin in an
arbitrarily short length of time T by taking T = =/n,

sampling, and using the control law 30. 32)

It is also possible to achieve this without discretizing!4, but
then the control law becomes non-stationary (time-varying
feedback coefficients), which usually makes physical realization
impractical.

Proof of Theorem I. .At any time kT, any vector in I'(m)
(where | < m < n) can be represented in the form:

XUT) = 3 ter= 3 %, x(kT)le;
i=1 i=1

Hence, using the control law 30,

L x@son= @ s xtene
i=2

= > [e*.y, x(kT)le; since Pe;vy.= ¢;
i= .
m—1 .

= 2 [(e*;, x(k+DDey

i=1
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Suppose now that &, # 0, i.e. that x(kT) is in I'(77) but not
in I'(m—1). From the preceding calculation, we see that 30
is the only control law assuring that x((k-+1)T) will be in
I'(m—1), so that everything is proved.

A short reflection on this proof shows that 31 could have
been phrased also in the following fashion:

A plant is completely controllable if and only if
there exists a sampled-data controller which has

‘dead-beat’ response. (33)

In various discussions of the dead-beat scheme which have
appeared in the literature, usually without acknowledgement of
the original contributions2!: 22, 17 (for example in reference 18,
pp. 195-198), the possibility of dead-beat response is confused
with extraneous matters, such as requiring the plant to be stable
in the absence of control.

By relaxing the ‘ minimality’ condition in 31, and demanding
only that every state be transferred to the origin in at most
p = n steps, the control law can be made to satisfy other
desiderata, for instance, minimizing the energy required for
control 3. . .

In order to justify the title ‘fundamental theorem’ for 31,
we now show that this result implies and considerably improves
the conventional Wiener—Hall theory of optimization of control
systems in the absence of noise.

Optimization of Regulators

In this section, the plant will always be linear, stationary,
single input, and discrete rime.

To optimize a regulating system, it is necessary to introduce
the concept of a performance index. This is usually taken as
the integrated (or, in the case of discrete time systems, summed)
error along the motions of the system. It is inesseatial but
convenient to define the error as a positive definite quadratic
form pk{ix(kT)|2q (see Section 2), where Q is a positive definite
matrix and g is a positive number. Then the performance
index is a function of the initial state x given by :

Vix) = i pHIpkT; x, 0)l%Q (34
k=1

We can now define

OPTIMAL REGULATOR PROBLEM—Find a
control such that 34 is minimized for every initial
state X (35)

At first sight, it is doubtful whether such a problem is
meaningful at all, since V(x) might turn out to be infinite, at
least for some initial states. It is therefore remarkable that
we have :

-II. GENERAL EXISTENCE AND UNIQUENESS
THEOREM—If Q in 34 is positive definite, the
solution of the optimal regulator problem exists for
any p > 0 (i) if and (ii) only if the plant is com-
pletely controllable. Moreover, the resulting con-
trol system has the properties: (iii) its control law
is unique, stationary, and lincar; (iv) if p = 1 the
closed loop system is asymptotically stable and
V°(x) is one of its Liapunov functions (V°(x) is
defined by 34, where ¢ is the transition function
of the optimized closed loop system). (36)

Proof. Let Vy(x) denote the value of V(x) when the sum-
mation indicated in 34 is between the limits (I, N). Clearly

then :
V+1(x) = p{Vn($(T; x, 0)) +1xl12Q} (37N
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Let ¥°y(x) be the value of Vy(x) minimized with respect to
the possible control signals at the sampling points 0.
(N—-1T. The existence of V°N is proved by induction, see
below.

It is now convenient to invoke the intuitively obvious

PRINCIPLE OF OPTIMALITY (Bellman19)—In
order that the control signals defined at the sampling
points 0 ..., N+1)T be optimal. it is necessary,
whatever the state resulting from the first control
signal, that the control signals defined at the
sampling points T . . ., N+ 1)T be optimal. 38)

This principle leads to the step-by-step determination of the
optimal control law and of V°.

The plant being assumed stationary, the optimal control law
does not depend on the time at which the initial state x occurs;
so that if V°xn(x) is optimal for the interval (0, NT), then

V°n(db(T; x, 0)) is optimal for the interval [T, (N+1)T]. Thus
from 37 we get, by the Principle of Optimality:
Vonn®) = I\%r)l w{V°n((T; x, 0)) + |Ixl12Q} (39
Uyl

Using this key recursive formula and the linear nature of ¢,
it is now easy to show by induction3:4:6. that ¥°y(x) is given
by a quadratic form ||x]|%p(x); moreover, if Q in 34 is positive
definite, so is also P(N). The existence of V°y is a trivial
consequence of these calculations.

The essential remaining part of the proof is to show that the
sequence P(0), P(1) ... converges. To do this we topologize
the space of all positive-detinite matrices in the usual way3, by
defining the norm [[P]| of a positive-definite matrix by

|P||2 = trace P2 (40)

(As is well known 8, |[P}|? is the sum of the squared eigenvalues
of P.) It remains to prove the convergence of the sequence of
numbers

PO, PO .. 1)

(i) Suppose the plant is completely controllable. Then there
is a control law, given by 31, such that motions of the closed
loop system satisfy $(kT,x,0) = 0 for all x and all £k = n.
For this particular control law, 34 is the sum of a finitc number
of terms and so V exists; V is obviously a positive-definite
quadratic form which we denote by V(x) = [[x|2pl. Now
Von(x) £ V(x) for all x and all N, since otherwise V°y would
not be optimal; this lmphes at once that [P(V)] < [[PY] < wo,
so that the sequence 41 is bounded.

Also, by 34 and the fact that Q is positive-definite, P(N+1) —
P(N) is positive definite for all N, so that |[P(NV)|| < [P(V+1)||
which shows that the sequence 41 is non-decreasing.

A non-decreasing and bounded sequence converges; we write

hm [P(N)|| = p°. By optimality, the matrix PO satisfying

Hence lim P(N)
N—>w

I

I|P°|| =plis umque P°. A trivial argu-

ment shows that actually

lim Voxn(x) = |Ixli%p°
N—+co

Ve®);

in- other words, the passage to the limit in N and the minimiza-
tion can be interchanged. This proves (i).

(ii) If the plant is not completely controllable, we can write
X as the direct sum Y+ I'(n) where dim Y # Osince I'(n) # X.
To this direct-sum decomposition of X corresponds the
partition of the matrix

42)
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where @y = 0 because I'(n) is ®-invariant. Now let

v= i}l:lf I@yyyliivi;

v > 0 since otherwise ®yy would be singular, implying by 4
that & is singular, which contradicts the assumptions ip
Section 3.

Let Y be the projection of X on Y. Clearly, if yisin ¥,

vElyll < [[Ryrhyll < IYPKT; y, O < l9(T, y, O)l;

and if v > 1, the sum 34 will surely diverge for every x whose
projection on Y is non-zero, which proves (ii).

(iif) From (i), we see at once that

Vo) = IZ/[},I,I p{V°(®(T; x, 0) +|x]1%Q} 43)
which shows that the optimal control law is stationary. A
direct calculation based on 43, as in references 3, 4, and 6
shows that the control law is linear; this is, of course, a conse-
quence of the fact that the error criterion [[x/[2q is a quadratic
form. This proves (iii). .
(iv) We note that the difference in ¥°(x) along any motion of
the optimized system is given by

Vox) = T-H{V($(T, x, 0) - V°(x)}
= =T H(p—DV(P(T; x, 0) + plixl%a},

which is surely negative-definite if = 1 and Q is posmve
definite. Hence the usual stability theory of Liapunov is
applicable 20, which completes the proof of 36.

We again have a feedback as in Figure 2; but of course now
the linear functional defining the control law is not e*; but is -
obtained after calculations based on 393.46, :
" This result can be easily generalized in numerous ways: :

(a) In terminal control the upper limit of summation in 34
may be finite. In this case the control law is always non--
stationary. Stability still follows in most cases®.

(b) The performance criterion can be generalized

[=¢] R
V(x) = kzll-t"[lldz'(kT; x, 0)|2q+ [[u(kT)|%r] COE
to include the cost of the ‘control energy’3:5:6,

(¢) Several control variables may be considered 4:6: 14,

(d) Non-stationary systems can be treated analogously®
This includes also the case where Q(k1°) is some more compli-
cated function of time than p*Q. Non-stationarity greatly
increases the computations required to find the optimal control‘ :
law®,

(e) Non-quadratic error criteria may be considered 14. This
leads to nothing new theoretically, but the optimal control law
will be almost always non-linear and its explicit calculation may
be completely impractical. :

(f) The requirement that Q be positive-definite may be
weakened.

We cannot forego an important remark concernlng )]
above?0. Suppose that ixI’q = [q* x]2. If [q*, ®a] # 0,
then the optimal control minimizing V(x) defined by 34 ‘5
obviously -

6,14

(1) = —[q*, ®x]/la%, ®a] @)
since then [q*, $(kT; x,0)] = 0 for all £ > 0.
Formula 45 is the essence of the well-known paper of Bergeﬂ k
and Ragazzinil2. As pointed out already by these authors, the.
optimal control law 45 does not necessarily result in a stable
closed loop system. In fact, if [q*, ®(1)a(T)] is zero for some.



T = Ty, then for values of T very close but not equal to Ty the
control law 45 will require very high loop gain so that we
would intuitively expect to have instability. This can be
readily shown by numerical examples. It is much less easy to
find similar cases in continuous time control.

. Tt is not yet known what necessary and sufficient conditions
& on Q assure the conclusions of Theorem 36.

. Observability

Imitating the methods of Section 4, we now seek an intrinsic
characterization of plants constrained at the output. In this
~ section and the next, the plant will always be linear, stationary,
discrete time, free, and single output.

Let X* be the dual vector space of the state space X, i.e. the
space of all linear functions on X. An element z* or x* of X*
“is called a costate.

A costatez* of a plant is said to be * observable’ if its
exact value [z*, X] at any state X at time 0 can be
determined from measurements of the output signal
y1i(t) = [b*, $(t; x,0)] over the finite interval
0>t >ty The timety will depend in general on
z*. If every costate is observable, we say that

the plant is ‘ completely observable’. (46)

If a plant is completely observable, then its state variables
with regard to any basis a; . . ., a, can be determined in a finite
length of time; the state variable x; with respect to this basis is
[a*;, x], (where a*; is the ith member of the dual basis), which
is observable by assumption. However, we cannot label states
per se as observable because there is no natural correspondence
_(i.e. independent of the particular basis used) between states

and costates. Ifa* ; is not an observable costate, then the stafe

variable x; cannot be determined; in other words, this aspect
of the plant’s behaviour cannot be inferred from the
measurements.

In analogy with Section 4, we have:

A plant is completely observable (i) if and (ii) only
if the set of covectors (B*)-1b* ..., (®*)np* js
. linearly independent. 47)

For every positive integer i, let f*; denote the covector
(®*)7b*. If a costate z* can be determined from the past ¢
observations of the output, we can write:

q
[Z*, X] = Z f*i[b*: ¢‘('—1T: X, 0)]
i=1
Since the plant is free,

= 3 e, @oix]

i=1
q
= 2 &lf*, x]
i=1
Since this must hold for every X,
q

7% = Z £x fx

i=1
From this, it follows by easy induction

The set T*(q) of costates whose exact value at any
state can be determined by operating on at most
the last q measurements of the output is given by

I'*(g) = {Z*; z* = % f*if*i}
i=1

the £%, being arbitrary real numbers.

43)
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Moreover, it follows easily:

Iff*y+y is linearly dependent on £*, . .. f *y then so
ist*y forallm > k. Hence if T*(k) = T'*(k +1),
then I'*(k) = I'*(m) for allk = m.

The proot of 47 now follows exactly as the proof of 20.

The form and method of proof of Theorem 47 immediately
suggests the problem: Does there exist some analogue of
Theorem I? The suspected analogy can be phrased in
numerous ways. It turns out, however, that all such analogies,
save one, lead to unnatural answers.

The correct analogy is the answer to the following question:
If z* is in I"*(g), does there exist a ‘scheme’ which assures that
the value of z* at any state x(f) becomes (and remains) known
exactly after at most g measurements of the output of the plant?

In order to answer this question, it is necessary first to give an
explicit prescription for computing the actual value of [2X, x(1)]
at any time ¢ from the knowledge of the past measurements of
the output of the plant. It does not seem possible to deduce
such a scheme at the present state of the theory; however, the
following assumptions provide a very natural framework for
future developments.

Let %(¢) denote the estimate of the state of the plant at time 7.
This quantity will be determined by agreeing to use [z*, X(1)]
as the estimate of the actual value of the costate z* at time .
We call (1) = x(#)— %(¢) the estimation error; this is motivated
by noting that, by linearity, the estimation error in the value of
the costate is [z*, x(£)]—[z*, (1)] = [z*, &(N]. With these
conventions and considcring the discrete time case only, the
answer to the problem posed in the preceding paragraph
amounts to specifying how %((k+1)T) should be computed
from past measurements y,(0) . . . , y,(kT) of the output of the
plant.

Now we have an analogue of 30:

UI. FUNDAMENTAL THEOREM FOR LINEAR
OBSERVATION SYSTEMS—Consider a dis-
crete time, completely observable plant. The fastest
observation scheme (in the sense that the exact
value of every costate z* at any state x(t) is found
after the smallest number (< n) of measurements)

(49)

is uniquely determined by the relations (50)
X((k+1)T) = S{X(kT)—b.[b*, Xk} (51)
where
b= ®-1f,, b* = DH*,
f| being the first element of the dual basis of
f* ..., 1%,

The optimal observation scheme is implemented by means of
a feedback system, as shown in Figure 3. The ‘dynamics’ in
the open loop is the exact copy of the dynamics of the system
whose state we wish to observe. The scalar error signal

[b*, X(kT)] = [b%, x(kT)] - [b*, X(T)] (52

can be measured directly. The scheme is physically realizable
(for instance, by an analogue or digital computer) since there
is one whole sampling period available for the computation of
the next estimate. ‘

Proof of 50.  Let the measurement of the output of the plant
start at ¢+ = 0. It is evidently sufficient to show that 51 is the
only scheme which guarantees the following for all k = 1,
2...: i

[z*, %(kT)] = [z*, x(kT)] for all z* in I"*(k)

53
[£*, XKT)] = 0 foralli > k 63
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We proceed by induction. The first estimate is
(T) = @blb*, x(0)] = £i[f*;, x(7)]

and 53 follows trivially.
Now assume that for k = ¢

[z*, X(qT)] = [2*, x(¢T)]
for every costate z* in I'*(g).

[w*, @%(q7)] = [w*, x((g+1)T)]
where
W = (P*)-1zx

Now if z* is in I"*(g), then w* is a costate in I'*(g+ 1) such that
its first coordinate vanishes: £&*; = [w*, f;] = 0. Therefore w*
is orthogonal to the second term on the right-hand side of 51
and we have

w*, X((g+ DT)] = [w*, x((g+ DT)]

By the same reasoning, if [f*;, ®(g7)] = 0 for all { > g, then
[£*1, (g + DT)] = [f*, PX(GT)] = [f*;+1,x(qT)] = 0 for all
I>g+1.

It remains to prove that relation 54 holds for any covector
in I'*(1). ’

By direct calculation,

[f*), %((g + DT)] = [£*,, @R(@T) +11[f*1, x((g+ DT) - 2x(¢T)]]
- By linearity, »
= [f*;, ®X(gD)]+ [f*1, x((g+ DT) — PX(¢T)]
= [f*, X((¢+ DT)]

which proves the induction. The fact that the proof goes
through only when the estimation scheme is given by 51 is
evident from the calculations. Q.E.D.

An immediate consequence of this result is the following,
perhaps even more natural, analogue of 30:

FASTEST CONTROL OF PLANT WITH OUT-
PUT CONSTRAINT—Consider a completely ob-
servable plant which is constrained at its input.
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(54)

Given any unknown initial state Xy, every state vari-
able $(kT; x,, 0) is reduced to zero in the mini-
mum number (< n) of sampling periods if and only
‘if the closed loop system is governed by

x(tk+ D7) = S{x(T)—b.[b*, x(kT)]}

(55)
(56)

Replacing e; by b and e*; by b*, this is just the system in
Figure 2. However, the initial constraints on the plant which
led to this system were, of course, different.

To prove 55, we observe by subtracting 51 from 15 that the
error X(kT) in the optimal observation scheme is also governed
by a free dynamic system of type 56:

X(k+ DT) = ®EET)—b.[b*, Xk}

Identifying x with X, the desired conclusion followsl
immediately. :

G

The Principle of Duality

The analogies already apparent between controllability and
observability can be expressed cogently by what we shall call .
the Principle of Duality. L

Consider a discrete time, n-input, single output plant. The
most general form of the transition equations of any feedback
system with linear (but not necessarily stationary) control law -
built around this plant is .

x((k+DT) = S{xKT)+a(k+HDIB*, x(D} 68

where a((k+3)7) is an arbitrary vector; the notation is .iﬂ"
tended to indicate that its value is fixed for the sampling
interval kT < ¢t < (k+1T. :
Let &(kT; x, 0) denote the motions of 58. Given an
arbitrary statc x and an arbitia.ry costate z*, we define by induc-k ~

tion for every k = 0, 1. .. the unique function ¢* satisfying

[2*, $(T; x, 0)] = [$*(0; 2%, kT), x] 9

It is easily seen that ¢* represents the motions of the follow-
ing dynamic system defined in X*: .

x*((k—1)T) = ®*x*KT)

1 (@*)1b*[x*(kT), a((k- DT (60




Since b* is fixed and a((k+4)7T) is arbitrary, we see that 60
defines in X'* a single input, n-output plant which we call the
dual plant. 'We have arrived at the

PRINCIPLE OF DUALITY—Considering the
class of feed-back systems with linear control law,
the dual plant defined in X* is obtained by the
JSollowing steps: (i) Replace & by its dual &*; (ii)
interchange input and output constraints, (iii)
reverse the direction of time.

(61)

See Figure 4.

A number of remarks are in order to place this idea in proper
perspective:

(A) The dual or adjoint of a free linear dynamic system is well
known in the theory of linear differential equations?, The
adjoint of the free system 10 is

dx*/dt = —F*()x*

gﬁ

;

(B) In the present context, the duality principle was dis-
- covered by the author? in the course of an investigation of the
. Wiener-Kolmogorov filtering and prediction problem. The

Plant Dual plant
il ® Iy Y1 & Uy
time fime

Figure 4

important point is that by the duality principle a plant con-
strained at the output can be converted into a plant constrained
at the input so that the theories of optimal regulation and
- Wiener filtering can be compared directly. See below.

Two immediate consequences of the Principle of Duality
are the following:

A plant is completely controllable if. and only if; its

dual is completely observable, and conversely. (62)
To prove 62, it suffices to observe that if a; ..., a, is any
- basis in X and #,/(0) ..., ui(kT)...is a sequence of control

 signals which transfers a; to the origin in finite time, then the
| control signal defined by

n
w(kT) = 3 ui(kT)x;(kT)
X j=
will transfer every state to the origin in finite time. Hence in
questions of controllability and observability it suffices to
consider linear feedback systems. -
Similarly,

the solution of the minimal time observation
problem is identical with the solution of the

minimal time control problem for the dual plant. (63)

' We examine now the implications of ‘dualization’ of results
. of Section 5. Concerning the dual plant, consider the mini-
mization of
0 .
V*(@*) = > |Ib*(kT; z*, 0)2q+ (64)
k=1

where Q¥ is positive-definite.
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This is, of course, an abstract problem in X*. To see what
this actually means in X, note first that any positive semi-
definite quadratic form in X* may be represented as

P = 5 15 aF (m<n) (65

where the g; are a set of orthogonal vectors
le*,ql=38; ij=1...,m
and m = n if and only if Q* is positive-definite. By 65,

=] m
VX@*) = 3 3 [&*(kT;z%,0), q;]2
k=1 i=1
By 59 and time reversal,
= 3 2 [ 60 q, —kDP

At this point, we make a crucial observation concerning the
interpretation of the terms of the last equation. -

Let v be a vector-valued random variable with zero mean and
gaussian distribution. As is well known, such a random
variable is uniquely specified by the knowledge of its co-
variance matrix W = cov v, which in turn is characterized by
the following identity:

Elz*, v = 2] 00 v (66)

Since a covariance matrix is always positive semi-definite, we
can use the representation 65. Thus

Elz*, V]2 = 3‘ [z*, w;?
i=1 )

(the w; being eigenvectors of cov v). The content of formula 66
can also be expressed as follows:

If v is a vector-valued gaussian random variable in
X with zero mean, and covariance matrix W, it can
be expressed as the sum of independent random
variables v;

v=vi+...4v, (m<hn

(67

where Vi = Wi.«, the o; being scalar-valued, in-
dependent gaussian random variables with zero
mean and unit variance.

Since the v; are independent, their covariances add so that it
suffices to prove that cov > v; = S cov v; = cov v. But
i i .

1

Efev] = [¥Py = 3 [, wit

i=

M3

m
1 FElx*, vi2 = 3 ¥ v; = IX*]%% cov vi
i= i

f
—_

and since this relation must hold for any costate X*, the asser-
tion 67 follows.

Fiually, let v(kT) be a random process such that its values
occurring at different instants of time are independent and at
each instant v(k7") has the same covariance matrix W,

Identifying the q; with the w; and using the assumptions of
independence and zero mean

o 2
e =E[, 3 40 D), k1)) ©®)
k=-1

Now consider, independently of the immediately preceding
discussion, a linear, discrete time, single output dynamic system
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subject to random perturbations

x((k+1)T) = ®x(kT)+V(KT)
y1(kT) = [b%, x(kT)]

This system may be regarded as a model of a stochastic
process, with »;(kT) being signal plus noise”. We wish to
obtain an optimal estimate of every costate z* in such a way
that E[z*, X(kT)}? is a minimum.

If we assume that the optimal estimation process is a linear
dynamic system (this assumption in the gaussian case is proved
in reference 7), then the estimate X(k7") will be computed, as in
Section 6, by means of an ‘artificial’ plant which is not con-
strained at either the input or the output. Subtracting the
transition equations of % from that of x, we get for the estima-
tion error the transition equation -

K((k+1)T) = B{EEKT)+a((k+HT)b*, Xk} +v(kT) (70)

Since the motions ¢ on the right-hand side of 68 are those of
a plant constrained at the output, ¢ can be identified with
motions of the free system 70. By linearity, it follows further
that the summation on the right-hand side of 68 gives the
present state of 70 due to the superposition of the effects of all
the random disturbances in the past. .In short,

V*(z*) = Elz*, 2(0)]?
= 1\_/{(:51 E{[z*, x(0)— O y1(— 1), »:1(=2T) .. .} (71)

(69)

ie. V* is the minimized conditional expectation of error in
predicting the state by %(0), where %(0) is based on all past
measurements of the sum y; of ‘signal and noise’. The
rigorous proof of the second equality is given in reference 7.
Summing up, )

the optimal regulator problem in X* is the Wiener

filtering problem in X. (72)

In particular, the methods of Section 5 for determining the
control law for the optimal regulator can be applied im-
mediately by the Principle of Duality to obtain the defining
equations of the optimal Wiener filier. The detailed formulae
for doing this are worked out in reference 7.

This important discovery gives rise to many new problems
as well as results, of which we cite only one.

The optimal prediction system 70 which solves the
Wiener filtering problem is asymptotically stable if
and only if the model 69 representing the COM-
BINED random processes of signal and noise is

completely observable. (73)

We must bear in mind that the model 69 is mathematical
fiction: it is merely a representation of (presumably empirically
obtained) auto- and cross-correlation functions of signal and
noise. This representation is standard in the engineering
theory of filtering and prediction. The hypothesis in theorem
73 can also bc cxpressed as follows: If the fictitious random
excitation v(XT) is ‘turned off’, then the exact state of the
system can be determined from a finite number of measurements
of signal plus noise.

To prove 73, we merely observe that if the (free) dual plant
is stable in X*, the (free) plant itself is stable in X.

Generalizations and Open Problems
By putting together the results of Sections 4-6, we have the
obvious conclusions:
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IV. MAIN EXISTENCE THEOREM—Consider a
discrete time single input/single output plant. - The
optimal regulator problem has a solution with
properties as stated in 36 if and only if the plant is
completely controllable and completely observable.

4
This theorem may be regarded as the central result so farjy
the pure theory of control. It follows trivially from 36 and
the definition of observability. For if we have observabiiity,
all state variables can be determined exactly in a finite number
of steps, after which we have the situation covered by 3,
Conversely, if some state variable is not observable, the per- =
formance index ¥ (x) will surely diverge for some p sufficiently
large if the unobservable codrdinate of theinitial state isnot zero,
It is easy to relax the conditions of (i) ‘discrete time’, (ii)‘ -
‘single input’, (iii) ‘single output’ in Theorem 74.
The first generalization tequires only assuming that the
performance criterion is given by 44 with R positive-definite; k
for otherwise V(x) can be made arbitrarily small for any fixed o
x by taking T small while at the same time uy(#) will be arbi- -
trarily large. 3
The abstract definitions of controllability and observability -
need not be changed in the general case of multi-input, multi-
output systems; of course the explicit conditions 20 and 47
have to be appropriately modified. The main new factor
arising is that now the properties of complete controllability or
observability are by no means obvious by inspection of-the
dynamic equations, particularly when these are obtained by
linearization of non-lincar cquations. It is curious to note that
the importance of these matters has remained undiscovered until . .
now in the large, but superficial, literature of multiloop systems. -
To what extent can the duality principle be divorced from
the case of a linear control law?  In the solution of the optimal
regulator problem outlined in Section 5, no a priori assumption 3
about linear control law is made, but this follows from-using a
quadratic performance index. Similarly in the direct solution
of the Wiener filtering problem, no assumption is made that the .
control law is linear (or even that the optimal predictor is a
dynamic system), but this follows from gaussianness as in
reference 7. The Principle of Duality then connects these
results; is it possible to do so a priori? Bl 5
It can be shown that the properties of the optimal Wiener-
filters discussed in Section 7 and in reference 7 can be related
to the information rate (in the sense of Shannon) conveyed by
the measurements y,(kT) about the unknown state X(kT). By
the duality principle. one would expect that the concept of
information, too, has a dual. But what is it? :
. Going a step further, one should study the information
requirements in controlling a plant subject to random dis-
turbances. In particular, the ‘quality of control’ will depend
on both the input and the output constraints. A measure of the
latter is the information rate; a measure of the former may
exist dually, as conjectured in the preceding paragraph. Can
one then make precise quantitative statements about the per-
formance of a control system from such quantitative measures
of the input/output constraints? In other words, is it possible
to regard controllability and observability as numeric quan-
tities rather than just abstract properties? :
The investigation of these and similar questions should
provide powerful incentive and encouragement in the further
development of the pure theory of control.

Conclusions
Guided by recent developments in the theory of optimizatioﬂ
of control systems, the framework of a pure theory of contro.



has been outlined providing a rigorous foundation for some
past and many future investigations. An important achieve-
ment of this new point of view is the Principle of Duality
relating the control and filtering problems. Further, at the
present status of development of the theory, it has been possible
to solve abstract problems side-by-side with effective compu-
tational methods superior to those currently in vogue in the
so-called applied theory of control.

Force through the Air Force Office of Scientific Research of the
Air Research and Development Command, under Contract
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permitted for any purpose of the United States Government.
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Summary

The connection between observability and controllability is form-~
alized by the Duality Principle, which shows that the Wiener filtering
and prediction problem is a special case of the author’s theory of
optimization of deterministic control systems, as has been shown
earlier by less direct methods.

Sommaire

La relation entre observabilité et contrdlabilité est formalisée par
le Principe de Dualité, qui montre que le probléme de filtrage et de
prédiction de Wiener est un cas particulier de la théorie de I'auteur
sur I'optimisation des systémes de commande déterministes, comme il
a été montré antérieurement par des méthodes moins directes.

Zusammenfassung

regelbar und erfaf3bar ist. Die Verkniipfung zwischen ErfaBbarkeit
und Regelbarkeit ist durch das Dualitatsprinzip gegeben, aus dem
hervorgeht, da3 das Filter- und Vorhersageproblem nach Wiener ein
Spezialfall der Theorie des Verfassers zur Optimierung determin-
istischer Regelungsanordnungen ist, wie sich auch schon frither nach
weniger unmittelbaren Verfahren zeigte.

DISCUSSION

theory of information. We find that for the type of systems described
in the paper, when the order of the system or the dimension of the
vector of state is between the limits 40-100, the difficulty consists in
working out experiments on the plant for the purpose of determining
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the coefficients in equation 16. Selection of the modulus, obtaining of
the coefficients, prediction, optimization—all these are problems
which are internal computational problems, on which experiments
can be carried out over a long period without disturbing the operation
of the object. However, if the experiments are carried out on an
expensive plant it is essential that the time during which the experi-
ment is carried out should be utilized as fully as possible. It appears
that the classical statistics of experiments does not provide sufficient
indication on the experimental work in recurrent relations. A
reliable, although not the most effective, method which we used was
to make a random selection based on an experimental calculation in
the steady-state regime. I believe, however, that this problem can be
solved more satisfactorily.

Most of the elements which we used in describing systems of higher
order are, in reality, non-linear to some extent, and I believe that Mr.
Kalman should extend his ideas to give at least a topological descrip-
tion of such systems although then we would like to know what we
are talking about.

L. I. RozoNoER (U.S.S.R.)

Mir. Kalman’s paper is interesting. The conception of controllability
and observability is very natural and useful, particularly in conjunc-
tion with the ‘duality principle’, the essence of which is reflected in the
theorem to the effect that if a plant is controllable, a related plant is
observable and vice versa.

However, I believe that it is so far impossible to speak, in conjunction .

with the work of Mr. Kalman, of a general theory or even of its basic
principles. First, even according to the purely formal characteristics,
the paper does not contain any ideas on formulating problems and on
results in non-linear cases, without which there is obviously no
general theory. However, I believe that the conception of ‘duality’,
which is closely linked with the canonic conjugation in the sense of
analytical mechanics, can be extended also to arbitrary systems,
including non-linear ones. Secondly, and this is the main point, it will
only be possible to talk of a ‘pure’ control theory when at least the
basic outlines of the mathematical apparatus become clear, which will
enable describing by means of precise and general terms the concepts

.
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which at present are intuitive and unclear. This relates particularly o k
the concepts of controllability and observability which, are precise

only when applied to systems of a specific type, and which lose their

clarity completely (although they remain intuitively conceivable) in -
the case of using control systems more generally.

R. E. KaLMAN, in reply. The comments of Dr. Bray on the tasky
which have to be studied deserve serious attention. An effective
solution of these problems will represent. progress in the field of
automatic control. ’

It is a good idea to remind ourselves periodically that the accepted
formulation of the control theory does not satisfy practical require-
ments. Obviously, Dr. Bray realizes this more clearly than many
other people. However, I believe that even he agrees that verification
of the bases of the control theory has some justification. The concepts
of controllability and observability were introduced and emphasized
particularly in view of the fact that our present knowledge of the
theory of automatic control proved unsuitable in view of the require-
ments to be met for the problems of present-day investigation. It is
possiblc that Dr. Bray did not consider this fact and it is also possible
that he is convinced that new problems to which he referred can be
solved by ordinary means. In fact, if it is possible to develop investi-
gations of the control theory without the conception of controllability
and observability, my paper will become, to some extent, an erroneous
sophistication. However, present-day investigations lead to a different
conclusion, namely: before dealing successfully with solving new
problems it is necessary to have a wider justification for the accepted
control theory.

The remarks of Dr. Rozonoer, that the paper is of importance only
for linear systems, are, in the final analysis, correct. However, I
should like to add that the paper does not pretend to represent the
development of a general theory of control systems, as is underlined
in the headings of Paragraph 4. In the very general approach in which
the paper has been written, basically nothing is known on non-linear
systems. .However, as was mentioned in the paper, the conditions of
observability and controllability have already played an important
role in the investigations of L. S. Pontryagin and others relating to
non-linear systems.




