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THIS is one of the two ground-breaking papers by Kalman The paper also introduced the notiorobiservability but as a
that appeared in 1960—uwith the other one (discussed next) beere “dual” of controllability. Contemporaneously Kalman pro-
ing the filtering and prediction paper. This first paper, whictided an alternative, more satisfactory definition in [10], where
deals with linear-quadratic feedback control, set the stage fuvservability is defined in a more intrinsic way in terms of the
what came to be known as LQR (Linear-Quadratic-Regulatqssibility of deducing the state trajectory from input/output
control, while the combination of the two papers formed thmeasurements.
basis for LQG (Linear-Quadratic-Gaussian) control. Both LQR Kalman actually states (p. 102, fourth paragraph) that he views
and LQG control had major influence on researchers, teachdhg introduction of the notions of controllability and observ-
and practitioners of control in the decades that followed. ability, and their exploitation in the regulator problem, as the
The idea of designing a feedback controller such that the iprincipal contribution of the present paper. Controllability and
tegral of the square of tracking error is minimized was first pr@bservability are shown in the paper to be of central impor-
posed by Wiener [17] and Hall [8], and further developed in thance in the analysis of the least squares control problem over
influential book by Newton, Gould and Kaiser [12]. Howevern infinite horizon. They are also used to obtain the asymptotic
the problem formulation in this book remained unsatisfactoproperties of the Riccati differential equation [Equation (6.3)
from a mathematical point of view, but, more importantly, thef the paper—henceforth referred to as RDE], and the stability
algorithms obtained allowed application only to rather low ordgroperties of its limiting solution. This paper was in fact the first
systems and were thus of limited value. This is not surprisirig introduce the RDE as an algorithm for computing the state
since it basically took until thél,-interpretation in the 1980s of feedback gain of the optimal controller for a general linear sys-
LQG control before a satisfactory formulation of least squarésm with a quadratic performance criterion. RDE had emerged
feedback control design was obtained. Kalman'’s formulation @arlier in the study of the second variations in the calculus of
terms of finding the least squares control that evolves from ®ariations, but its use in general linear systems, where the opti-
arbitrary initial state is a precise formulation of the optimal leastal trajectory needs to be generated by a control input, was new.
squares transient control problem. The analysis throughout the paper concentrates on time-
The paper introduced the very important notiorcofitrolla-  varying systems, and uses the Hamilton-Jacobi theory to arrive
bility, as the possibility of transfering any initial state to zero bgt RDE and to deduce optimality of the LQ control gain. We
a suitable control action. It includes the necessary and sufficieatv know, however, that an alternative way to prove optimality
condition for controllability in terms of the positive definitenesi least squares is by showing how RDE allows one to “complete
of the Controllability Grammian and the fact that the linearthe square” (see, e.qg., [5], [18]).

time-invariant system with states, Almost immediately after its appearance, the LQ-problem
d was included in influential textbooks [2], [5], [11], [1], and
—X=Fx+Gu extended in a number of directions. For example, the case of
dt indefinite cost is treated in [18], which requires a more del-

is controllable if and only if the matrix@, FG, ..., F""*G] icate analysis, and later had many applications, in particular,

has rankn. As is well known, this concept of controllability, itSin H.,-control; and extensions to zero-sum and nonzero-sum
implications (e.g., in pole placement and stabilization), and gediifferential games are discussed in [9] and [16], where again
eralizations to nonlinear or infinite-dimensional systems becaR®E-based feedback policies arise, albeit with more general
one of the maireitmotivsin control research. Controllability is structures [3]. Kalman’s paper actually also motivated and led
indeed one of the compelling notions that is truly endogenotise way to a great deal of research on RDE, patrticularly on its
to the field of control. algebraic version, and algorithms for solving it appeared very
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soon [13]. Most computer packages that aim at linear systend T.Basar AND G.J. Q.sDER, Dynamic Noncooperative Game ThedBjas-
and control implement today a Riccati equation solver. A wealth sics in Applied Mathematics, SIAM (Philadelphia), 1999.
of information and references on the work on the LQ problenif*] S: BTTANTI, A.J. LAUB, AND J.C. WLLEMS, edits,The Riccati Equation
can be found in [15] and [4]. [5] gwgi;\éigig (FEi)r?irtltlenlgirtiT;ional Linear S i

. W , ystemd/iley (New York),
Kalman’s paper deals only with state feedback. The formula-" 1970
tion of the output feedback version of the LQ problem requiress] J.C. DovLE, “Guaranteed margins for LQG regulatort2?EE Trans. Au-
either introducing, as in LQG, stochastic disturbances, or a for- tomat. Contr AC-23:756-757, 1978.
mulation in terms of thé-lg-norm. It is worth noting, however, [7] J.C. DoYLE, K. GLOVER, P.P. KHARGONEKAR AND B.A. FRANCIS, “State-

, . . space solutions to standakth and H., control problems,1EEE Trans.
that Kalman'’s paper contains (p. 104) an informal, unproven but .- Contr.AC-34:831-847, 1989.

quite precise statement of the separation theorem and the Cf-a.c. HaLL, The Analysis and Synthesis of Linear Servomechanishes

tainty equivalence principle, which are further discussed in this Technology Press, M.I.T. (Cambridge, MA), 1943.
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CONTRIBUTIONS TO THE THEORY OF OPTIMAL CONTROL

By R. E. KarLman

1. Introduction

The purpose of this paper is to give an account of recent research on a classical
problem in the theory of control: the design of linear control systems so as to
minimize the integral of a quadratic function evaluated along motions of the
system. This problem dates back in its modern form to Wiener and Hall at about
1943 ([1], [2]). In spite of its relatively long history, the problem has never been
formulated rigorously from a mathematical point of view. Even the most up-to-
date expositions of the subject (see, e.g., [3]) are inaccessible to the mathema-
tician due to the lack of precisely stated conditions and results.

The problem is quite broad, and there are many unsettled questions. This
paper will be concerned with only the simplest case, the so-called regulator prob-
lem. For other aspects of the problem, the reader may consult [4]-[8] which, while
devoted primarily to questions of theoretical engineering, contain precise mathe-
matical results.

The conventional theory of the regulator problem is based largely on Fourier
and Laplace transforms. By contrast, the approach of this paper is direct and uses
the well-known theory of ordinary differential equations. We have also drawn
on Lyapunov’s theory of stability. While our earlier treatments ([5], [6], [8]) fol-
lowed the point of view of dynamic programing, here we utilize classical tools
of the calculus of variations, in particular the Hamilton-Jacobi equation.

The principal contribution of the paper lies in the introduction and exploita-
tion of the concepts of controllability and observability ([8]), with the aid of which
we give, for the first time, a complete theory of the regulator problem. In par-
ticular, we prove existence and stability theorems for the regulator problem and
study in some detail stability properties of the matrix Riceati equation, which
arises as a special case of the Hamilton-Jacobi equation.

A careful discussion of the conceptual aspects of the control problems has
been included as an aid to persons not familiar with the field of control. Some
mathematical arguments, in particular the review of the caleulus of variations,
are more leisurely than usual in order to render the paper reasonably self-
contained.

2. Notation and terminology

We use standard vector-matrix notation, with the following conventions:
small Greek letters are scalars; small Latin letters ave vectors, capitals are mat-
rices. The unit matrix is /. Exceptions: ¢, j, m, n, p are integers; ¢, /7, L, V are
scalars; ¢, ¥, & are vectors. The inner produect is [z, ¥]. The transpose of a matrix
is denoted by the prime. The norm is || z || = [z, z*. The norm || 4 || of a matrix
Adssup || Az |j over || 2 | = 1. Special conventions: || z ||3 = [z, Px] where P is

Reprinted with permission from Boletin de la Sociedad Matematica Mexicana, R. E. Kalman,
“Contributions to the Theory of Optimal Control,” Vol. 5, 1960, pp. 102-119.
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symmetric, nonnegative definite. If 4, B are symmetric, A > B[4 > B] means
A — B is positive [nonnegative] definite. The letters ¢, o, r are arbitrary real
numbers which always denote the time; we use o < & < f to denote fixed, or-
dered values of . All sealars, vectors, and matrices are real throughout. For a
scalar function L(u) of the vector u, L, is the gradient vector and L, is the
jacobian matrix.

We shall study the system represented by the equations

de/dl = F(t)z + G(B)u(t) (2.1)
y(t) = H(t)z(t) (2.2)

where: « Is an m-vector, z is an n-vector, y is a p-vector; F (1), G(t), as well as
H(t) are rectangular matrices continuous in f, either of which may be singular.

In view of the physieal motivation of our problem, we adopt the following
terminology: Equations (2.1-2) are the plant (or model); x is the state of; w(t)
is the control function or tnput to; and y(t) is the output of the plant. The plant
is constant if F, (¢, H are constants. If u(t) = 0 or G(¢) = 0, the plant is free.

The behavior of the plant is described by the solution of the differential equa-
tion (2.1) which will exist for all £ and be unique if, say, u(¢) is Lebesgue inte-
grable. As is well known ([9]), the general solution has the form'

w(t) = ot ty)x(ty) + ftl’ &(t, 7)G(r)ulr) dr (2.3)

where ®(¢, r), defined for all ¢, 7, is a fundamental matrix ([9]) of solutions of
the free system (2.1), satisfying the additional requirement that

®(,t) = 1 forallt (24)
Tn view of (2.4), we call ® the {ransition mairiz of (2.1)—a terminology bor-
rowed from the theory of Markov processes ([7], [8], [10]).

The solution (2.3) is conveniently regarded as the motion of the state of (2.1);
this leads to the notation

i(t) = QSN(t, £y tl)) (25)

Read: the motion of (2.1) starting at initial state x at time ¢ and observed at
time 7, and influenced by the fized control function u(¢) defined in the interval
[t , t]. Since (2.5) holds for all ¢, {, we have in particular the identity: 2 =
¢.(t; x, t) for all ¢, x, u. Free motions are denoted by ¢; . We observe also that
(2.1) has an equelibrium state 2* at 0, in other words, a state for which z* =
o (L a*, &) for all £, £ .

3. Statement of problem

In the simplest applications, the object of a control system is the following:
Given any state x of the plant (2.1) al any lime iy, “‘generate” a control function

* The function (2.3) will satisfy the differential equation (2.1) almost everywhere.
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u(t), defined for t > ty and depending on x, lo , which causes x to be “transferred’’
to the equilibrium state 0. In other words, u(¢) is chosen so as to assure

lim ¢, (¢ z, o) = 0 (3.1)
i

For technological reasons, the function «(f) must be generated from actual
measurements of the behavior of the plant. To deseribe how the control system
is to be physically realized, one must therefore provide an algorithm for comput-
ing the number «(#) from the knowledge of y(¢) for ¢ < ¢; . This is usually re-
ferred to as the Feedback Principle.

One may separate the problem of physical realization into two stages:

(A) Computation of the ‘“best approximation” £(f;) of the state x(f,) from
knowledge of y(¢) fort < ¢ .

(B) Computation of () given £(4).

In the engineering literature one often makes the simplifying assumption of
treating the two problems separately, i.e., simply regarding £(¢) as though it
were x(1). We are concerned here only with Problem (B) and therefore always
assume that x(¢) is known exactly. Somewhat surprisingly, the theory of Problem
(A), which includes as u special case Wiener’s theory of the filtering and predic-
tion of time series, turns out to be analogous to the theory of Problem (B) de-
veloped in this paper. This assertion follows from the duality theorem discovered
by the author ([7], |8]); this theorem can be used to show also that the separa-
tion of Problems (A) and (B) is indeed legitimate,

Assuming z(1) is known exactly and taking into account the Feedback Prin-
ciple, the problem of generating u(t) reduces to specifying the control law

u(t) = k(x(l), £) (3.2)

From the definition of state it is clear that nothing would be gained by letting
u(t) depend also on values of the state prior to time t. To assure that (2.1) with
(3.2) has a unique solution, it suffices to have & € €% If (3.2) does not depend
explicitly on ¢, we say the control law is constant.

To arrive at the control law “rationally,” we now add the further desideratum
that the integral of a nonnegative function of the state along any motion ¢, should be
manamized by the choice of u(t). Stating this requirement with some care, we shall
see that it uniquely determines u(¢) and hence also the control law (3.2), and
even implies (3.1). We call the resulting control system opizmal.

Let us now state precisely the

(3.3) OprimaL ReEqurnaTOR PROBLEM. Find a control low (3.2) for which
331
V' (@, 1o, 11) = inf {v(m(tx;x,to)) -I-f Lgu(t; 2, b) u(t),1) dt} (3.4)
u () to

is attained for all x, ta, and & , where v, L are nonnegative scalar functions of class
2 .
C* wn all arguments.
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The class of functions w(¢) which are admitted to competition in taking the
infimum in (3.4) are to be of class D° (i.e., continuous except at isolated points
at which «(¢) has finite left- and right-hand limits).

It is well known in the caleulus of variations ([11], p. 196) that the condition
L., > 0or L,, < 0is necessary for the existence of even local extremals. To
avoid complications due to the equality sign, we assume from the outset that

Lyu(z, u, t) > 0 forall z, u, ¢ (3.5)

which is equivalent to assuming that L is strictly convex in u.

In engineering language, one calls 4 the terminal time (it may be infinity!), the
integral is the performance index, and (at least when it does not depend on u) L
is the error criterion or more generally the loss function. The function » is added
for greater generality. We use the notation V(z, &, & ; u) for the value of the
integral in (3.4) for some specified, fixed u(¢). The superscript o identifies
“optimal”.

4. Relations with the calculus of variations

In this section we transcribe some well-known results ([11], Ch. 12) of the
local problem of the calculus of variations into a form best suited to our problem.
Let us first solve (3.3) in a very special case.

(4.1) Lemma (Carathéodory). Let k(zx, t) be an m-vector function of class C* in
z, t. Write w’ = k(z, t). Assume v = 0 and that the function L in (3.4) satisfies
the following conditions for allx and all t < t < § :

(a) L(z,w’,t) =0

(b) L(z, u,t) > 0 forall u = «°
Then the optimal performance index V° s identically zero for all x and is attained
by using the optimal control law given by

w = k(z(t), t) (4.2)

Proof. Let ¢.° denote the motion of the plant under control law (4.2); simi-
larly, let ¢u1 be the motion corresponding to some fixed control function u'(¢).
By (b) above and since the integrand of (3.4) is in class D’ in ¢, it follows that
V(z, to, t: ; u') > 0 unless v'(t) = 4°(t) at every continuity point of w'(¢) in
the interval (&, ). On the other hand, by (a) we see that V°(z, &, #;) vanishes
identically in 2. Q. E. D.

Anticipating the final result (4.14), let V°(z, ¢, &) be an arbitrary scalar funec-
tion of class C* in z, ¢, (¢ being a fixed number) and subject also to

VO(I, tl s tl) = V(x) (43)
Let us replace L by

2 It is clear that two optimal controls u°(¢) and +(¢) can differ only on a set of measure
Zero,
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L*(x,u, t) = L(x, u, t) + Vi, 4, 4) + [Vala, 8, &), F(t)x + G(t)u]
The integral of the last two terms along any motion between the limits &, 4 is
V(d’u(tl 3 Ly to)) - Vo(xa ) ’ tl) (44)

Since the second term in (4.4) does not depend on u(¢), it follows that the two
variational problems,

i1
ir(ltf) L*(¢u(t; 2, 1), u(2), 1) dt (4.5)
u o
and (3.3) are equivalent in that they have the same minimizing function w(t)
(if such exists).
Now we try to find functions V°(«, ¢, #;) and k(z, ¢, ;) for which the hypothe-
ses of the Lemma are satisfied when L is replaced by L*.
In order that L*(x, u, t) have a minimum with respect to « at u = «° =
k(z, t, &), it is necessary that all first partial derivatives of L* with respect to u
vanish at «’. This and the condition L*(z, «°, ¢t) = 0 give

G )V = —Ly(z, v, t) (4.6)

—Vi =Lz, o, t) + [Vs, F(£)z + G(H)u’] (4.7)

These equations are called by Carathéodory the fundamenial equations of the
variational problem (3.3).

From assumption (3.5) it follows at once (by the strict convexity® of L{z, u, t)

in u) that (4.6) can be solved for 4°; more precisely, there exists a function ¥
of class C* such that

W=z, @) Vala, t, t1), t) = k(z, t, t;) (4.8)
which is the desired optimal control law.
To check condition (b) of the Lemma, we write, using (4.6-7),
L*(a,u, t) = Lz, u, t) — Lz, v, 1) — [u — o, L.(z, v, t)] (4.9)
= E(z, u, W, t)

which is the well-known Weierstrass E-function. It is clear by inspection that
E is the quadratic remainder in the Taylor series of I at 4 = u’. Using the well-
known estimate for the remainder, we have

E(x’ U, uo; t) = H U — uo 1‘2Luu(x,u+0(u°—u),t) (0 S ) S ].) (4.10)

which is nonnegative and in view of (3.5) vanishes if and only if u = ’.
Hence if there is a function V° satisfying (4.3, 4.6-7) and in addition (3.5)

3 A scalar function «(z) of a vector z is convex in z if and only if for all z, , 2 the fune-
tion B(N) = a(Az; + (1 — N)z2) is convex in A over the interval 0 < A < 1. This will be the
case if and only if d?8/d\? = [1; — 22, @z (21 — 22)]= 0. Hence «(2) is convex if and only if
azz = 0; similarly, «(z) is strictly convex if and only if az. > 0.
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holds, we can apply the Lemma and find that V° is just the left-hand side of
(3.4). The optimal control law is (4.8).
We now define the so-called conjugate variable £ by

£E=1V; (4.11)
and write ¢ = ¥ (z, G'(¢)¢, t). We define the Hamiltonian as
3z, & 1) = Lz, ¢, t) + [§ F(H)z + G(0)Y] (4.12)

It is easily shown that if L is of class C*, so is also 4C.

Now if V°(=, t, #) is any solution of class C° of (4.6-7), it follows by substitu-
tion that V°is a solution of the Hamilton-Jacobi partial differential equation of
the first order:

Vi 4+ 3z, Ve, ) =0 (4.13)

Conversely, let V°(z, 1, &) (t, = parameter) be any solution of (4.13) of class
(?. Defining +° by means of (4.8), it follows that V° satisfies the fundamental
equations (4.6-7).

In summary, we have

(4.14) TrroreM. If there exists a solution V°(z, t, t,) of class C* of the Hamilton-
Jacobi equation (or, equivalently, of (4.6-7)) which satisfies V'(z, t,, t) = v(x)
and if (3.5) holds, then V° is the optimal performance index for the regulator prob-
lem (3.3), and the corresponding optimal control law is given by (4.8).

6. Controllability

The purpose of this section is to impose conditions on the plant (2.1) to assure
that the problem posed by (3.3) is meaningful in the limit {, = . Guided by
physical intuition, we introduce the

(5.1) DerFmITION. A state z is said to be controllable at time i, if there exists
a control function v'(¢), depending on z and # and defined over some finite
closed interval [ty , &], such that ¢.1(t; ; x, to) = 0. If this is true for every state
x, we say that the plant is completely controllable at time t, ; if this is true for every
to , we say simply that the plant is completely controllable.

The following equivalent characterization of controllability is useful:

(5.2) ProrostrionN. 4 plant is completely controllable at time ¢ (1) if and (ii)
only if the symmetric matrix

31
Wi, ) = [ 810, 0GOE (O (b, 1) de (5.3)
to
18 positive definite for some ty > t;.
Proof. (1) Set
wW(t) = =G (O (b, Wty , t)a (54)
Substitution into (2.3) shows that ¢.1 (¢ ; =, &) = 0.
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(ii) Suppose there exists some z 7 0 such that || | ..) = 0. Define
wW(t) = —F @) (t, t)z

which implies that

12 ey = f 12| dt = 0

Since u’(t) is continuous in #, it is therefore identically zero in the interval
[to, 1]

On the other hand, if the plant is completely controllable at # , there exists a
control function u'(¢) as required by (5.1) which satisfies the relation

x = —fh (L, £)G(t)u' () dt

and therefore

| z[]? = *ftol [w'(t),4" (1)) dt = 0

contradicting the agsumption that x = 0. Q. E. D.
(5.5) CoroLLarY. A constant plant is completely controllable (1) if and (ii)
only if
rank [G, FG, --- , F"'Q] = n (5.6)
(where the square brackets denote a composite malriz of n rows and mn columns)
in which case one may choose t; — 1o > 0 as small as desired.

Proof. Because of stationarity, controllability does not depend on £, . Hence
take t, = 0.

(1) By (5.2), it suffices to prove that W(0, &) is positive definite no matter
how small & > 0. Let ¢', - -+ , g™ be the columns of G. If W (0, #;) is semidefinite,
then proceeding as in part (ii) of the proof of (5.2) we conclude that there is a
vector z # 0 such that

[z,e"g ] =0 forall 0 <t<tandi=1,---,m
Differentiating 7 times with respect to ¢, and then setting ¢ = 0, we get
[z, Figl = 0 forall ¢=1,--- ,mandj=0,---,n— 1 (5.7)

If (5.6) holds, this implies that x is orthogonal to a set of generators of E”, con-
tradicting the assumption that « # 0.

(ii) Assume the plant is completely controllable but (5.6) is false. Then
there is a vector z ¥ 0 which satisfies (5.7). By the Cayley-Hamilton theorem

[x,e"'g'] = I:x, (g,) (Ft)j/j!) g“} = [z, (:201 oq(Fi)’)gi] , i=1,,m
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It follows that || z ||, = O for all # , contradicting the assumption of com-
plete controllability. Q. E. D.

Condition (5.6) has been used as a technical device in several recent papers in
the theory of econtrol ([12]-{14]), without reference to the ‘‘physical’”’ interpre-
tation (5.1).

(5.8) Remark. Let x be the state of the plant at {, and y the “desired” state
at ¢, . It follows easily by a slight extension of the preceding arguments that y is
reachable from x (i.e., there exists a motion ¢,1 which meets x at f, and y at ;) if
and only if the equation

x — By, tyy = Wk, ti)v (5.9)
has a solution, in which case
u'(t) = =G (D) (t, t)v (5.10)
is the appropriate control function.

Moreover, elementary methods of the caleulus of variations show (see also
{15]) that the minimum control energy required to achieve the transfer is

&z, to; y, b)) = f A P de = | e — B, by % 1oy (511)

Clearly, the required “‘energy”’ is zero if and only if the free motion going through
x at ty intersects y at #; .

Equation (5.9) may have a solution for some but not all z, y. Then W ' does
not exist and it is convenient to replace it with the generalized tnverse Wt in the
sense of Penrose ([16], [17]). (See Appendix}. With this convention, (5.11) ¢s
the mingmum energy required for transferring x as close to y as possible.

If Wt , 1) is invertible, then (5.9) always has a solution; we see that a
plant vs completely controllable at time ty if and only f starting from the origin at
ttme to any state x can be reached in a finite length of time by applying an appropriate
control function u(t). In other words, there is a noteworthy “symmetry’’ between
sending x to 0 and sending 0 to z.

(5.12) Remark. Using the generalized inverse, we may replace (5.10) by a
control law defined in [f , ]:

w(t) = =G OWHE, t)le — &(t, 4)y]
Even if the plant is stationary, this control law is not. In fact, a stationary con-
trol law can be obtained in this case only by letting '(¢) be discontinuous ([8]).

The following definition is designed to single out a class of nonstationary
plants which are in a sense “quasi-stationary”. This will play an important role
in the sequel.

(5.13) DerFiNiTION. A plant is uniformly completely controlluble if the following
relations hold for all ¢:
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() 0 < ala)I KWt + o) < aro)]
(i) 0 < Bo(o)] S 2(t + o, YW (L, t + o) (L + 0, 1) < (o)

where ¢ is a fixed constant. In other words; one can always transfer x to 0 and
0 to x in a finite length ¢ of time; moreover, such a transfer can never take place
using an arbitrarily small amount (or requiring an arbitrarily large amount) of
control energy.

Definition (5.13) has surprisingly far-flung consequences. We mention some
of these; the proofs are elementary.

First of all, if (i-i1) bold, then, for all ¢,

VBu(0)/ar(0) < [[®(t 4 o, ]| £ V/Bi(0)/ (o) (5.14)
which is equivalent to
V@) /Bi(e) < (1, t + o)l < Veulo)/Bolo) (5.15)

(5.16) From formulas (5.3) and (5.14-15) we see that (i-ii) hold also for
the constant ¢’ = 2¢; this implies further that (i-ii) hold for any ¢’ > .

(5.17) Using (5.16), we see that (i-ii) actually imply the following stronger
bound on the transition matrix:

[ &, )l < as(|t —+]) foralle s (5.18)

(5.19) It is now clear that if any two of the relations (5.18), (i), and (ii)
hold, the remaining relation is also true.

The bound (5.18) obviously restricts the class of dynamical systems (2.1).
Some such restriction appears to be an unavoidable consequence of any ‘rea-
sonable” definition of uniform complete controllability. For instance, if only (i)
holds, the following peculiar situation may arise. Consider the scalar system:

de/dt = —tx + \/2_(15?1—);“”211(5')
(defined only for ¢ > 1). We find easily that
d)(t T) — 6(72‘32)/2
which does not satisfy (5.18); furthermore,
wt, t + o) = e2<041)t+(a'~1)2 e L

and it is clear that w does not satisfy (1) unless ¢ = 1, while (ii) is never satis-
fied. Tn other words, to transfer x to 0 over an interval of time shorter than 1
may require an arbitrarily large amount of control energy, whereas doing the
same job over an interval of time longer than 1 may require only a vanishingly
small amount of energy as t, — <. Transferring 0 to = will require more and
more energy as fy — <.

Finally, let us note a well-known and readily verifiable condition for (5.18)

(easily proved using the Gronwall-Bellman lemma):
t

[ NFE ldr < vl — 0) forallt, b (5.20)
3
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We now seek to characterize a plant according to its “output’” properties.
This is most conveniently done as follows. Let ¢* = —t and F*(¢*) = F/(¢),
G*(t*) = H'(t), and H*(¢*) = G'(t). Then

da*/dt* = F*(i*)a* + G¥(*)u*(t*)
y*(E*) = H*(")a*(t*)
where o*, u*, y* are n, p, and m vectors respectively, is the dual plant of (2.1-2).
We shall not discuss the significance of this concept in detail (for which see [8]),
except for pointing out that (i) the duality relations are reflexive if t5* = fo;
(ii) the transition matrix of (5.21) satisfies the relation
P, %) = d'(r, 1) for all ¢,7 (5.22)

It is convenient to introduce the:

(5.21)

(5.23) DEriNiTION. A plant (2.1-2) is uniformly completely observable if its
dual is uniformly completely controllable.

It follows easily from (5.23) that the explicit expression for W* corresponding
to (5.3) is

W*(t* ty + o*) = W*(to, 1 — o*)
3 (5.24)
= [ @ewE @) d
to—o*

Using W* defined by (5.24), we ean now state (5.23) explicitly. To avoid any
possibility of confusion, the constants @, 8, ¢ occurring in (i-ii) are to be re-
placed by o*, 8*, o*.

6. Solution of the linear regulator problem

The point of view of the classical calculus of variations outlined in Section 4
is purely “local.” At present, there are few global results and just about none
in the theory of control. In the “local” (linear) case, however, the ideas of the
preceding section lead to (what is hoped to become) a definitive theory of the
regulator problem. This is the subject of the remainder of the paper.

To get the linear case of the regulator problem, it is not enough to have a linear
model (2.1) for the plant but we need also the assumption:

(A) Lz, ut) = I H®z oo + lulrol,  »(@) =3lali

where A is symmetric, nonnegative definite while Q(¢), R(f) are symmetric,
positive definite and of class C* in ¢.
In view of (A;), the Hamiltonian function (4.12) is

se(z, £ 1) = M| H®)z o + 20F (D=, 8] — | G(DE 710} (6.1)
With this choice of 3¢, the function
Vo(xr t7 tl) = %H x H%’(Lh) (62>
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(t; = parameter) is a solution of the Hamilton-Jacobi equation (4.13) if and only
if P(t, &) is a solution of the following ordinary nonlinear differential equation
of the Riccati type:

_dar

a0 F'(t)P + PF(t) — PG)RT' ()G ()P + H'($)QH(t)  (6.3)

It is clear that (6.2) determines P only up to a constant, skew-symmetric
matrix (constancy follows from the fact that dP/dt is symmetric). Henceforth,
to avoid trivia, we always assume that P is symmetric.

Given any symmetric, nonnegative definitive matrix A, (6.3) has a unique
solution TI(¢; A, &) which takes on the value A at ¢t = ¢, . This solution is known
to exist only in some neighborhood of # ; without further analysis we cannot
conclude existence for all {. (Because of the phenomenon of finite escape time, for
which see [10], Example 3.)

Nonetheless, TI(¢; A, ;) does exist for all ¢ < ¢, . We prove this indirectly as
follows:

(6.4) ExisteENcE THEOREM. (1) For all i, and all symmetric, nonnegative definite
A, (6.3) has a unique solution T1(t; A, t,) defined for all t < & . (i) Under Assump-
tion (A1) the optimal performance index for Problem (3.3) is given by

Vo, to, t) = || @ Ircsa,m

Moreover, the optimal performance index ts attained if and only if the control law is
given by

w'(t) = BT (OG (O A4, t)a(t) (6.5)
Proof. If we assume (i), then (ii) follows immediately from (4.14). Therefore,
if TI(¢; A, &) exists, it must necessarily satisfy the relation

I 2llfcqpaen < ]; 1 | H@$)®(t, t0) @ ||y dt + || @ (b, to)x %

< alt,to) |2 |

which follows by setting w(¢) = 0 in (3.4). Since «(# , &) is finite for all pairs
i, to, it is clear that II(¢; A, #;) (if it exists) is contained in a compact region
for all t€ [to, t1]. Including this fact in the standard proof of the existence theorem
for differential equations proves (i). Q. E. D.

In order to study the case {, — =, we first define a particular solution of (6.3)
which is of central significance for the ensuing development.

(6.6) ProrosiTion. If the plant is completely conlrollable, then

lim II(¢; 0, &) = P(¢t)

iy

(1) exists for all t and (il) 1s a solution of (6.3).
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Proof. (1) Suppose the plant is completely controllable at { = # . Then for
every x there exists a control function v'(t), given by (5.4), which transfers z to
0 at or before t = t,(x, t,). We set u'(¢) = 0 for { > £, . Then

|2 [[no.y = V@@, o, b)) S Vi, b, tasu) = Vi, by, ©5u) < alty)] =
which shows that || TI(# ; 0, &) || is bounded for all # > # . On the other hand,

(3.4) shows that | I(t ; 0, #) || is nondecreasing as tl-; . Hence the desired
limit exists for arbitrary { = . Q. E.D.

(ii) Using the continuity of solutions of (6.3) with respect to initial condi-
tions, we have
P(t) = lim II(¢; 0, £,) = lim T0(¢; T(4 5 0, &), )

tg->00 tg>c0

= II(¢; lim T(4; ; 0, ), &) = TI(¢; P(t), &)

to>c0

which shows that P(¢) is a solution of (6.3) which is defined for all . Q. E. D.

(6.7) ExisTENCE THEOREM. Assuming (A1), v(z) = 0,and &y = <« the optimal
performance index for Problem (3.3) is || z |3 and the optimal control law is

w(t) = RIOF@)P()x(t) (6.8)

Proof. Assume throughout the »(z) = 0. First we show: If u(f) 7s determined
by the control law (6.7), the corresponding performance index ts

V(Q?, b, ®; uo) = lim V(’Ey to, b ul)) = H z H%’(to)
t1-00
We see from (6.4) and (6.6) that
Vg, to, ti;%) = & llpay — [ dw(ti; 2, ) 10 < |l 2 3w
On the other hand,
Vi, to, i w) = V(x, to, 6) = || 2 o = | 2 hen — ¢

where e — 0 as {;, — o, which proves (6.9). Hence
Vo(x’ to, OO) S V(:L‘, toy ] uﬂ)

The inequality sign cannot arise. Forif V{(z, o, w;u’) — V{(x, 8, ©) > 7 > 0,
there is some control function «' such that V(z, &, »©;%°) — V(z, b, ©,u") >
n/2. For i sufficiently large, we then have

V(.’)J, tU: 3 uo) = Vo(xa thtl) + "7/4 2 V(ZL, tO: b 5 ul) + 7]/2
which is a contradiction and everything is proved. Q. E. D.

In the engineering literature it is often assumed (tacitly and incorrectly) that
a system with optimal control law (6.8) is necessarily stable. We now give rigor-
ous sufficient conditions insuring uniform asymptotic stability and point out in
the process of proof some trivial but interesting parallels between the caleculus of
variations and the second method of Lyapunov.
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The following definition is standard [10], [18]: The system (2.1) is uniformly
asymptotically stable if (1) || ®(¢, t) | < e and (ii) || (¢, &) || — 0 with t — o
uniformly in # . It can be shown ([10], Theorem 3] that uniform asymptotic sta-
bility in the linear case is equivalent to exponential asymptotic stability, which is
defined by the condition («, 8 > 0)

Nt to) || < aexpl— B(t — t)] forallfpandallt > 4.

(6.10) Stapruiry TaroreMm. Consider a plant with control law (6.8) which is
uniformly completely controllable and uniformly completely observable. In addition
to (Ay), assume also

(Ag) Q) = ad > 0, R(@) 2 ol >0
(As) Q) S al, R() £ aid

Then the controlled plant s uniformly asymptotically stable and V°(x, t, © ) is one
of its Lyapunov functions.

Proof. As is well known, it suffices to prove that (a) V’is bounded from above
and (b) below by increasing functions of || z || independent of ¢, (¢) the deriva-
tive V° of V° along optimal motions of the plant is negative definite [10, 18],
and (d) V° — o« with ||z || — .

(a) By uniform complete controllability, let u'(¢) be the control function,
depending on z, £ and defined in [, & + o] (¢ = positive constant), which
transfers « to 0 at or before ¢ = ¢ + ¢. In accordance with the remarks following
(5.13), there is no loss of generality in taking the constants ¢ and ¢* (occurring
in the definition of uniform complete controllability and uniform complete
observability) to be the same. Having set ¢ = o*, we let t; = £, + o. If w'(¢)
is defined explicitly by means of (5.4}, then

dur(t;z, t) = ®(t, to)[I — Wik, OW (to, )]
= ®(1, t;,)z(t)

From the definition of W (see (5.3)), it follows easily’ that the norm of the
bracketed term above is less than or equal to 1. Using (5.18) then gives

2Ol < aslz |

where «g depends only on ¢ and it is therefore constant. By (6.11) and (Aj;)
we get

(6.11)

Vot ) < [ e[ HOG 00 P+ e O & (612)

4 We need to show only thatif B> 0and B > A = 0,then || AB' | <1. Now | AB™ ||? =
Amax (BT1AT2B™Y) = Auax(42B7%). By the well-known theorem about simultaneous diagonali-
zation of a positive definite and a symmetric matrix, we have the representation A2 = T'AT,
B? = T'T, where T is nonsingular and Ais diagonal. B = A = 0implies1 > A(A) = 0. Hence
)\max (A2B——2) = )\max (A) = 1
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Making use of the foregoing and of the elementary inequality
[z [P < TAP 2l = Nea( A D] 2 | < (tr A’A) | 2 |
(valid for any matrix A and any vector z), (6.12) becomes
Ve(z, to, ©) < agas(tr W*(t, o) 2 I° 4 a7 || 2 |—1cc0t0
and by uniform complete controllability and observability we have finally
V(2 10, ») < Inasasad (o) + aran(o)]] 2 ' = a0 || 2 |["
(b) In view of (6.7), we can define

inf V(x, b0, ©) = an(t)ll 2 |*

We show that ayp(fe) = e > 0. In fact, in the contrary case we can make ¢,
defined by

Lo Pete,t) = [ Nt Pae < ot [ 10f) 3o di < Vb, )
to o
as small as desired by suitable choice of x, t, . We introduce the abbreviation

2(8) = /ttl Bty , HG()u’(t) dt

and note that, by the Schwarz inequality,

1= 1 < ([ et vawira) ([ w1 @)

and by uniform complete controllability,
12" < neaalo) € (2, )]l 2%
Utilizing this estimate, we find with the aid of (A»):

Vs, by, o) > f "o | HO®W )]z + 2(0)] | dt

> f "l HO®, )3 | — | HO®(E, t0)2() |1} dt

> all| @t )z i — noula) € (2, 6)[tr Wk, t0)] || = [I*}
By (5.18) and uniform complete observability, this reduces to
V(e to, ») > ala*(0)as () — n'as(o)ai (o) € (2, )]l & |I”
> fows — au € (x, )] 2 |
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which contradicts the assumption that ez (and hence €) can be made arbitrarily
small by suitable choice of z, ¢, .

(e) Since G and H are allowed to be singular, we cannot prove of course
that V is negative definite. However, inspection of the last step of (b) yields the
further inequality,

Vo(puo(tr 5 2, t), by ©) — V(x, by, ©) < —lang — au € (, )] = I
and we have simultaneously also the further inequality
Vi(puolts;,lo), t, o) — V(x,to, ) < a5 € (2, 8)| 2]
which follows immediately by (4.) and the definition of V°. Setting
a1s = asaw/{as + au) >0
we have finally that
Vi(buo(to + o352, t), to + 0, ©) — V{(z, to, ©) < —ays || 2 |*
which shows that V° is strictly decreasing along any interval of time of length

o2, unless x = 0. Taking account of this fact, the proof of Lyapunov’s theorem
on uniform asymptotic stability ([10]) goes through as usual.

(d) This is trivial in view of V° > ap || z . Q. E. D.

It is of some interest to observe that if we have merely- complete controllabil-
ity, part (a) does not go through but we have nevertheless proved (nonuniform)
asymptotic stability.

7. Stability of the Riccati equation

We now turn again to (6.3) and examine briefly its stability properties. Let
8P(t) = P(i) — P({) denote the deviation of a given motion P(¢) of (6.3) from
P(t). Substituting into (6.3) shows that

d(sP)/dt = —F'(1)6P — sPF(t) — sPG(t)R™ ()& (t)6P (7.1)
where
F(t) = F(t) — GORT ()G ()P (1)
For simplicity, we temporarily drop the argument ¢ in G, H, P, Q, R.
(7.2) StasBiLiry THEOREM. Let
V(8P, 1) = & tr (8PP)°, (7.3)
Then (1) the derivative of O along motions of (7.1) s
V (8P, t)
= tr {(P’GR™'G'P) - (P*'P'P — 1) + (P H'QHP ) (P PP — 1)}
provided P > 0;
(ii) If A > 0, then under the hypotheses of (6.10), all solutions TI(t; A, &) of

(6.3) are uniformly asymplotically stable relative to P(t) as t — — «, and U is an
appropriate Lyapunov funclion.

(7.4)
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Proof. (1) This is established by lengthy, elementary calculations. The square
root of P exists by assumption and that of P by part (b) of (6.10).
(ii) Clearly, U vanishes if and only if 6P = 0. We recall the fact that for
any symmetric, n X n matrices 4, B,
Min(BIN(AY) € M(ABA) < Nmax(BIN:(A?) (t=1,---,n) (7.5)

where the \; are eigenvalues. This is a consequence of the Fischer-Courant varia-
tional description of eigenvalues (for which see [20], p. 115 Theorem 3 and p. 120,
Exercise 9). Using (7.5) and the results of (6.10) it follows easily that

0 < atr (8P)* < VP, ) < Btr (8P) 8P # 0

Moreover, (7.4) being the trace of a nonnegative definite matrix, O is clearly
nonnegative. By arguments analogous to part (¢) of the proof of (6.10), it fol-
lows then also that U is uniformly decreasing along any motion of (6.3) as
as{ — — w0,

(7.6) CororrarY. The motion P(t) is unstable (ast— =).
Proof. Immediate consequence of part (ii) of the proof of (7.2).

(7.7) Remark. If the problem is stationary, i.e., F, G, H, @, R are constants’
P(t, ) = P + h, iy + h) which shows that dP(¢, t,)/dt; = —dP(t, t,)/dt-
Hence in this case one can compute P(i) = const. from (6.3) by replacing ¢ by
—t; for any initial A > 0, this computation is asymptotically stable in the large.

(7.8) Remark. Because of the Corollary, in the nonstationary case (at least one
of F, G, H, @, R not constant), one cannot compute I’({) as ¢ — « from the
knowledge of P(t).

8. General solution of the Riccati equation

Consider the canonic (Hamiltonian) differential equations associated with
(6.1):

de/dt = 3z, £, 1) = F()xz — GUOORT ()G (1)¢ (8.1)
di/dt = —3.(x, & 1) = —H'(HQ)H(t)x — F'(1)¢ (8.2)

Let P(¢) be a solution of (6.3), defined in some interval U = (=, #). In
view of (4.11) and (6.2), we assume that the initial conditions of (8.1-2) at
time ¢; are related by (& < &!)

) = Vole(t), i) = P(t)x(t)

Then the same relation will hold between solutions of (8.1-2) corresponding to
these initial conditions, for all ¢ that P(¢) exists:

£(t) = Va(z(t), t) = P(t)x(t), te U (83)

We can also verify (8.3) directly by substituting (6.3) into (8.1-2).
Now let X (2), E() be a pair of matrix solutions of (8.1-2) satisfying the initial
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conditions X (#,) = I, E({;) = P(4). By (8.3) we have obviously
Z(t)y = P(t)X(¢), t e U (84)
which shows that X (¢) is a solution of the matrix differential equation
dX/dt = [F(t) — GORT ()G (t)P())X, te U

Setting »(2) = || z |bw, in (3.4), we see from (6.4-5) that X (¢) is the transi-
tion matrix ®°(¢, #;) of the optimally controlled plant corresponding to this choice
of ». Since ®°(¢, #;) exists for all ¢ € U, we have

P(t) = B (L, 1), te U (85)

To obtain an explicit expression for P(t), let

_ {Ou(t,t) Onlit)
O, 4) = <@21(t, t) Ot ll))

be the transition matrix of the system (8.1-2). We get the following formula
valid for ¢t € U:

P(t) = [Ou(t, ti) + On(ty, )PE)I[Out, 1) + Oul(t, 1) P(t)]™

This procedure is very well known in the caleulus of variations ([21; 11, Ch.
15]) and is being periodically rediscovered ([22], [23]).

RIAS, BavLTiMoRE, MARYLAND

BIBLIOGRAPHY

[1} N. WieNER, The Extrapolation, Interpolation, and Smoothing of Stationary Time
Series, Wiley, New York, N. Y., 1949.

i2] A. C. HaLy, The Analysis and Synthesis of Linear Servomechanisms, The Technology
Press, M. I. T., Cambridge, Mass., 1943.

[3] G. C. NewroN, Jr., L. A. Gourp, anND J. F. Ka1sER, Analytical Design of Linear Feed-
back Controls, Wiley, New York, N. Y., 1957.

[4] R. E. Katman anp J. E. BErTrAM, General synthests procedure for computer control of
single and multi-loop linear systems, Trans. Am. Inst. Elect. Engr., 77 IT (1958)
602-609.

[5] R. E. Kauman anp R. W. KorrckE, Optimal synthests of linear sampling control systems

using generalized performance indexes, Trans. Am. Soc. Mech. Engr., 80 (1958)

1820-1826.

E. Xarman anp R. W. Korrcks, The role of digital computers in the dynamic op-

timization of chemical reaciions, Proc. Western Joint Comp. Conf., 1959, 107-116.

B. Kauman, A new approach to linear filtering and prediciion problems, J. Basic Engr.,

82 D (1960) 35-45.

[8] R. E. KaLmaN, On the general theory of control systems, Proc. First Internat’l Congress

on Automatic Control, Moscow, 1960.

A. CoppineToN AND N. LevinsoN, Theory of Ordinary Differential Equations, Mec-

Graw-Hill, New York, N. Y., 1955.

E. Karman anp J. E. BErrraM, Conirol system analysis and design via the ‘second
method’ of Lyapunov. I. Continuous-time systems, J. Basic Engr., 82 D (1960).
[11] C. CaraTHEODORY, Variationsrechnung und Partielle Differentialgleichungen Erster

Ordnung, Teubner, Leipzig, 1935.

165



[12] L. 8. PoNTRYAGIN, Optimal conirol processes (in Russian), Uspekh. Mat. Nauk, 14
(1959) 3-20.

{13) N. N. Krasovskit, On a problem of optimal control of nonlinear systems, Prikl. Math.
Mekh., 23 (1959) 209-229 (translation pp. 303-332).

[14] J. P. LaSALLE, Time optimal control systems, Proc. Nat. Academy of Sci. USA, 45 (1959)
573-577.

[15] J. I&. BErTRAM AND P. E. SArRACHIK, On opitmal compuler control, Proc. First Internat’l
Congress on Automatic Control, Moscow, 1960.

[16] R. PENROSE, A generalized inverse for mairices, Proc. Cambridge Phil. Soc., 51 (1955)
406-413.

[17] R. PENROSE, On best approzimate solutions of linear matriz equations, Proc. Cambridge
Phil. Soc., 52 (1956) 17-19.

{18] W. Hanun, Theorie und Anwendung der Direkten Methode von Lyapunov, Ergebnisse
der Mathematik No. 22, Springer, Berlin, 1959.

(19] R. BerLLMman, Stability Theory of Differential Equations, McGraw-Hill, New York,
N. Y., 1953.

[20] R. BeLimaN, Introduction to Matrix Analysis, McGraw-Hill, New York, N. Y., 1960.

[21] J. RapoN, Zum Problem von Lagrange, Abh. Math. Sem. Univ. Hamburg, 6 (1928)
273-299.

221 W. T. REe1n, A matriz differential equation of the Riccali type, Am. J. Math., 68 (1946)
237-246.

[23] J. J. LevIN, On the matriz Riccati equation, Trans. Am. Math. Soc., 10 (1959) 519-524.

Appendix: The generalized inverse of a matrix

Following Penrose ([16]), the generalized inverse of an arbitrary square matrix
A is a matrix At satisfying the relations:

(i) 4414 = A4, (ii) AtAAT = A7,
(iii) (AT4) = AtA4, (iv) (AAT) = AAf
It can be shown that At always exists and is uniquely determined by these rela-
tions. Examples: (1) If D is diagonal, then the elements of its generalized inverse
are
dii = &' i di % 0
= 0 otherwise

(2) If A is symmetrie, there is an orthogonal transformation T such that
A = T'DT. Then At = T'D1T.
Consider now the linear equation Az = y. Penrose proves ([17]) that the
“best approximate solution’”” 2° = ATy of this equation has the properties:
(1) Az —y| 2 [[42° — y || foralle

() U Az —yll = 4 =y, then |z > ||
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