CAD/CAM THEORY
AND PRACTICE

Tbrahim Zeid

Department of Mechanical Engineering
Northeastern University

McGraw-Hill, Inc.

New York St.Louis San Francisco Auckland Bogotd Caracas
Hamburg Lisbon London Madrid Mexico Milan Montreal New Delhi
Paris San Juan S3o Paulo Singapore Sydney Tokyo Toronto

334 GEOMETRIC MODELING

Forrest, A. R.: “Curves and Surfaces for Computer-Aided Design,” Ph.D. Thesis, University of

Cambridge, 1968.

Giloi, W. K.: Interactive Computer Graphics; Data Structures, Algorithms, Languages, Prentice-Hall, CH APTER
Englewood Cliffs, N.J,, 1978.

Miller, J. R.: “Sculptured Surfaces in Solid Models: Issues and Alternative Approaches,” IEEE
CG&A, pp- 37-48, December 1986.

Mortenson, M. E.: Geometric Modeling, John Wiley, New York, 1985.

Newman, W. A., and R. F. Sproull: Principles of Interactive Computer Graphics, 2d ed., McGraw-Hill,
New York, 1979.

Piegl, L.: “Representation of Qua&ratic Primitives by Rational Polynomials,” CAGD J., vol. 2, pp.
151-155, 1985.
Piegl, L.: “The Sphere as a Rational Bezier Surface,” CAGD J., vol. 3, pp. 45-52, 1986. TYPES AND

Pratt, M. I.: “Smooth Parametric Surface Approximation to Discrete Data,” CAGD J., vol. 2, pp. M ATHEM ATIC AL

165-171, 1985.

Rogers, D. F., and J. A. Adams: Mathematical Elements for Corﬁputer Graphics, McGraw-Hill, New REPRESENT ATIONS

York, 1976.

Rogers, D. F., S. G. Satterfield, and F. Rodriguez: “Ship Hulls, B-Spline Surfaces, and CAD/CAM,” OF SOLIDS
IEEE CGé&A, pp. 3743, December 1983. '

Satterfield, S. G., and D. F. Rogers: “A Procedure for Generating Contour Lines from a B-Spline
Surface,” IEEE CG&A, pp. 71-75, April 1985. .

Sederberg, T. W.: “Piecewise Algebraic Surface Patches,” CAGD J., vol. 2, pp. 5359, 1985.

Worsey, A. J.: “A Modified C2 Coon’s Patch,” CAGD J., vol. 1, pp. 357-360, 1984.

7.1 INTRODUCTION

Wireframe and surface geometric modeling techniques have been presented in
Chaps. 5 and 6 respectively. This chapter presents the third modeling technique
available to designers on a CAD/CAM system, that is, solid modeling. The use of
solid modeling in design and manufacturing is increasing rapidly because of the
reduced computing costs, fast computing hardware, improved user interfaces,
increased capabilities of solid modeling itself, and software improvements. Some
twenty modelers are commercially available in the United States, and a body of
theory and technology continues to develop. It is forecast! that the total solid
modeling market will grow steadily over the next few years reaching $2.9 billion
by 1991 in comparison to $0.73 billion in 1985. This constitutes a growth in the
solid software revenues from $45 million in 1985 to $892 million in 1991. Hard-
ware running solid modeling software is projected to grow from $284 million in
1985 to $2 billion in 1991.

Solid modeling has been acknowledged as the technological solution to
automating and integrating design and manufacturing functions. Indeed, the
complete definition of part shape (geometry and topology) through solids models
has been called a key to CIM. Programmable or flexible automation could very
well be achieved via developing application algorithms that operate directly on

! Solid modeling market forecast is based on The Merrit Company’s Solid Modeling Today, vol. 1,
no. 1, May 1986.

335

336 GEOMETRIC MODELING

solid modeling databases. Most of the solid modeling systems in the design/
manufacturing environment were installed to test the feasibility of integrating
these two functions. However, recent use of these systems has started shifting
toward the design and manufacturing of actual parts and assemblies. It is
expected, though, that the original goal of automation and integration set for
solid modeling will eventually be achieved.

Solid modeling techniques are based on informationally complete, valid,
and unambiguous representations of objects. Simply stated, a complete geometric
data representation of an object is one that enables points in space to be classi-
fied relative to the object, if it is inside, outside, or on the object. This classi-
fication is sometimes called spatial addressability. If completeness, validity, and
unambiguity are not achieved formally by the geometric modeling technique, the
technique has no other option but to depend on users to verify the creations of
models interactively. Therefore, automation and integration of tasks such as
interference analysis, mass property calculations, finite element modeling, com-
puter aided process planning (CAPP), machine vision, and NC machining are not
possible to achieve. .

Solid modelers store more information (geometry and topology) than wire-
frame or surface modelers (geometry only). Both wireframe and surface models
are incapable of handling spatial addressability as well as verifying that the
model is well formed, the latter meaning that these models cannot verify whether
two objects occupy the same space.

Other disadvantages of wireframe modeling have been discussed in Chap. 5.
While surface models provide a precise definition of surfaces and can handle
complex geometries, they are slow to render, are computationally intensive, and
do not further CAD/CAM automation and integration goals. A shaded surface
model is by no means considered a solid model.- On the other hand, solid model-
ing produces accurate designs, provides complete three-dimensional definition,
improves the quality of design, improves visualization, and has potential for func-
tional automation and integration. However, solid modeling has some limi-
tations. For example, it cannot automatically create other models from the solid
definition and neither can it automatically use data created in other models to
create a solid. In addition, solid modeling has not been proven for large-scale
production applications. Other limitations such as slow rendering and computa-
tions as well as poor user interface are fading away with the rapid enhancement
of both hardware and software.

Solid modeling (sometimes called volumetric modeling) techniques began to
develop in the late 1960s and early 1970s. Early solid modeling projects appeared
at this period of time in Europe, Japan, and the United States. Build-1 system,
and later Build-2, was developed by Braid’s CAD group in Cambridge, England,
in 1973. TIPS-1 from Hakkaido University was publicized in 1973. In the mid
1970s, GLIDE-1 was developed by Eastman’s group at Carnegie-Mellon Uni-
versity. Baumgart, from Stanford University, introduced Euler operators and a
winged-edge polyhedron structure for boundary representation. The Production
Automation Project (PAP) was founded at the University of Rochester in 1972.
The PAP group headed by Voelcker and Requicha launched the research that led
to the PADL-1 and PADL-2 systems. By the late 1970s, solid modeling had

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS | 337

gained enough credibility to penetrate the commercial market. In 1980, Evans
and Sutherland began to market Romulus; in 1981 Applicon and Computer-
vision announced their SynthaVision-based and Solidesign systems respectively.

Until recently, solid modeling has been confined to mainframes and large
minicomputers (early runs were in batch mode) primarily because of the extensive
computations necessary to produce and render solids. By improving solid model-
ing algorithms, and with the design of frame buffers especially for solid modeling,
microcomputer-based solid modeling systems are now available and expected to
grow. These buffers are capable of storing enough information for two complete
screen images (for animation) and can support 512 x 512 resolution with 16 bits
per pixel. These bits can be partitioned as four bits for cursor and text and 12 bits
of colors, thus allowing 4096(212) colors to be displayed concurrently from a
palette of 16.8 million, assuming 256 intensities for each primary color (refer to
Chap. 2). In addition, the buffers do not have processors for computations which
can, instead, be performed by the host microcomputer to keep hardware costs
down.

User input required to create solid models on existing CAD/CAM systems
depends on both the internal representation scheme used by each system as well
as the user interface. It is crucial to distinguish between the user interface and the
internal data representation of a given CAD/CAM system. The two are quite
separate aspects of the systems and can be linked together by software that is
transparent to the user. For example, a system that has a B-rep (boundary
representation) internal data representation may use a CSG (constructive solid
geometry)-oriented user interface; that is, input a solid model by its primitives.
Most systems use the building-block approach (CSG oriented) and sweep oper-
ations as the basis for user interface. Some early user interfaces were based on the
boundary representation scheme and used commands such as “make edge/face,”
“kill edge/face,” etc. Stch interfaces are not efficient. Object-oriented user inter-
faces (input a solid by its features) are more acceptable by users. For example, a
user can create a hole in a block using a command such as “create hole” instead
of the “subtract cylinder” command. In order to best visualize solids on a
graphics display, a shaded image is usually displayed. Some systems, especially
those based on the boundary representation, are also available to display a mesh
on the solid as in the case of surface models.

This chapter covers the theoretical and practical aspects of solids. Through-
out the chapter, related issues to constructing solids on CAD/CAM systems are
covered. Sections 7.2 to 7.5 are directly related to practicing solid modeling
theory. Sections 7.6 to 7.14 discuss the mathematical representations of solids and
other important topics. Section 7.15 applies the chapter material to design and
engineering applications.

7.2 SOLID MODELS

A solid model of an object is a more complete representation than its surface
model. It is unique from the latter in the topological information it stores which
potentially permits functional automation and integration. For example, the mass

338 GEOMETRIC MODELING

property calculations or finite element mesh generation of an object can be per-
formed fully automatically, at least in theory, without any user intervention.
Typically, a solids model consists of both the topological and geometrical data of
its corresponding object.

Defining an object with a solid model is the easiest of the available three
modeling techniques (curves, surfaces, and solids). Solid models can be quickly
created without having to define individual locations as with wireframes. In many
cases, solid models are easier to build than wireframe or surface‘models. For
example, representing the intersection of two cylinders using wireframe modeling
is not possible unless points on the intersection curve are evaluated in order to be
input to a CAD/CAM system and connected with a B-spline curve. Another
example is shown in Fig. 7-1. Using solid modeling, the object shown can be
created as a block with six cylinders subtracted from it. It is a cumbersome and
lengthy process to create the surface model of the same object although only
ruled surfaces are needed (refer to Prob. 6.16).

The completeness and unambiguity- of solid models are attributed to the
information that the related databases of these models store. Unlike wireframe
and surface models, which contain only geometric data, solid models contain
both geometric data and topological information of the corresponding objects.
The difference between geometry and topology is illustrated in Fig. 7-2.
Geometry (sometimes called metric information) is the actual dimensions that
define the entities of the object. The geometry that defines the object shown in
Fig. 7-2 is the lengths of lines Ly, L,, andL3 , the angles between the lines, and
the radius R and the center P, of the half-circle. Topology (sometimes called
combinatorial structure), on the other hand, is the connectivity and associativity
of the object entities. It has to do with the notion of neighborhood; that is, it
determines the relational information between object entities. The topology of the
object shown in Fig. 7-2b can be stated as follows: L, shares a vertex (point) with
L, and Cy, L, shares a vertex with L, and L,, L, shares a vertex with L, and C,,
L, and L; do not overlap, and P, lies outside the object. Based on these defini-
tions, neither geometry nor topology alone can completely model objects. Wire-
frame and surface models deal only with geometrical information of objects, and
are therefore considered incomplete and ambiguous. From a user point of view,
geometry is visible and topology is considered to be nongraphical relational
information that is stored in solid model databases and are not visible to users.

FIGURE 7-1
A typical solid model.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLIDS 339

L, Ly
R R
L Cy P, L, P; (o
L; Ls

(a) Same geometry but different topology

L,
R
L C, P,
L
(b) Same topology but different geometry
FIGURE 7-2

Difference between geometry and topology of an object.

For automation and integration purposes, solid models must be accurate.
Although accurate models are not a necessity during conceptual design, they are
needed for analysis and application algorithms that work off the solid model.
Accuracy and speed of creation of a solid model depend directly on the represen-
tation scheme, and consequently the data stored in the database of the model.
The various available schemes are discussed later in this chapter. Each of those
schemes has its own advantages and disadvantages, depending on the applica-
tion. For example, B-rep modelers can better represent general shapes but psually
require more processing time. In contrast, CSG models are easier to build and
better suited for display purposes. However, it may be difficult to define a
complex shape.

In constructing a solid model on a CAD/CAM system, the user should
follow the modeling guidelines discussed in Chap. 3. All the design tools provided
by these systems and covered in Part IV of the book, excluding the geomc}ric
modifiers, are applicable to solid models. Practically, it might be more convenient
to construct solid models in isometric views to enable clear display and visual-
ization of the solid as it is being constructed. It is also recommended that solid
entities (primitives) as well as intermediate solids be placed on different layers to
allow convenient reference to them during the construction process. A mesh
similar to that used with surface models can be added to B-rep-based solid
models after they are created. However, solid models are better visualized via
shading. Finally, it should be noted that most user interfaces available to input
solids have compatibility for CSG input. Such compatibility does not reflect the
internal core representation scheme implemented in a particular solid moFleling
package, and users must consult with the package developers if they wish to
know that information.

340 GEOMETRIC MODELING

@) -8

(b) Possible solid model of the solid

(c) Alternative solid model of the object ‘

FIGURE 7-3
Nonuniqueness of solid model of an object.

(a) Object

‘While solid models are complete and unambiguous, they are not unique. An
object may be constructed in various ways. Consider the solid shown in Fig. 7-3.
One can construct the solid model of the object shown by extending the horizon-
tal block to point A4, add two blocks, and subtract a cylinder as shown in Fig.
7-3b. Another alternative is shown in Fig. 7-3¢c, where the subtraction is per-
formed first followed by the addition. Other possibilities exist including extending
the vertical block to point B instead and repeating the same two alternatives.
Regardless of the order and method of construction as well as the representation
scheme utilized, the resulting solid model of the object is always complete and
unambiguous. However, there will always be a more efficient way than others to
construct the solid models as in the case with wireframe and surface models.

Users are now more aware of the potential benefits of solid models. Conse-
quently CAD/CAM vendors are investing more resources into developing solid
modeling. However, most existing CAD/CAM systems offer solid modeling as
packages that are not linked to wireframe or surface capabilities offered by these
systems. It is expected, though, that the next generation of these systems will be
based on solid modeling if it matures and proves useful in the production
environment.

73 SOLID ENTITIES

Most commercially available solid modeling packages have a CSG-compatible
user input and therefore provide users with a certain set of building blocks, often
called primitives. Primitives are simple basic shapes and are considered the solid
modeling entities which can be combined by a mathematical set of boolean oper-

TYPES AND MATHEMATICAL REPRESEMTATIONS GF SOLIDS 341

ations to create the soiid. Primitives themselves are considered valid “off-the-
shelf” solids. In addition, some packages, especially those that support sweeping
operations, permit users to utilize wireframe entities to create faces that are swept
later to create solids. The user usually positions primitives as required before
applying boolean operations to construct the final solid.

There is a wide variety of primitives available commercially to users.
However, the four most commonly used are the block, cylinder, cone, and sphere.
These are based on the four natural quadrics: planes, cylinders, cones, and
spheres. For example, the block is formed by intersecting six planes. These quad-
rics are considered natural because they represent the most commonly occurring
surfaces in mechanical design which can be produced by rolling, turning, milling,
cutting, drilling, and other machining operations used in industry. Planar sur-
faces result from rolling, chamfering, and milling; cylindrical surfaces from
turning or filleting; spherical surfaces from cutting with a ball-end cutting tool;
conical surfaces from turning as well as from drill tips and countersinks. Natural
quadrics are distinguished by the fact that they are combinations of linear motion
and rotation. Other surfaces, except the torus, require at least dual axis control.

From a user-input point of view and regardless of a specific system syntax,
a primitive requires a set of location data, a set of geometric data, and a set of
orientation data to define it completely. Location data entails a primitive local
coordinate system and an input point defining its origin. Geometrical data differs
from one primitive to another and are user-input. Orientation data is typically
used to orient primitives properly relative to the MCS or WCS of the solid model
under construction. Primitives are usually translated and/or rotated to position
and orient them properly before applying boolean operations. Following are
descriptions of the most commonly used primitives (refer to Fig. 7-4):

1. Block. This is a box whose geometrical data is its width, height, and depth. Its
local coordinate system X, Y; Z, is shown in Fig. 7-4. Point P defines the
origin of the X, ¥; Z, system. The signs of W, H, and D determine the posi-
tion of the block relative to its coordinate system. For example, a block with a
negative value of W is displayed as if the block shown in Fig. 7-4 is mirrored
about the Y7 Z; plane.

2. Cylinder. This primitive is a right circular cylinder whose geometry is defined
by its radius (or diameter) R and length H. The length H is usually taken
along the direction of the Z; axis. H can be positive or negative.

3. Cone. This is a right circular cone or a frustum of a right circular cone whose
base radius R, top radius (for truncated cone), and height H are user-defined.

4. Sphere. This is defined by its radius or diameter and is centered about the
origin of its local coordinate system.

5. Wedge. This is a right-angled wedge whose height H, width W, and base
depth D form its geometric data. ’

6. Torus. This primitive is generated by the revolution of a circle about an axis
lying in its plane (Z, axis in Fig. 7-4). The torus geometry can be defined by
the radius (or diameter) of its body R, and the radius (or diameter) of the
centerline of the torus body R,, or the geometry can be defined by the inner
radius (or diameter) R, and outer radius (or diameter) R, .

342 GEOMETRIC MODELING

Y. YL
H
Xe
Ze w X
Block A Z, 4
Cylinder
Y, Y,
P X
Xp
. H
z: Z .
Cone Sphere
Z
Y,
ks /
o s R
P ! XL
R
Ro !
Wedge Torus

FIGURE 7-4
Most common primitives.

For all the above primitives, there are default values for the data defining
their geometries. Most packages use default values of 1. In addition, the local
coordinate systems for the various primitives shown in Fig. 7-4 may change from
one package to another. Some packages assume that the origin, P, of the local
coordinate system is coincident with that of the MCS or WCS and require the
user to translate the primitive to the desired location, thus eliminating the input
of point P by the user. ‘

Two or more primitives can be combined to form the desired solid. To
ensure the validity of the resulting solid, the allowed combinatorial relationships
between primitives are achieved via boolean (or set) operations. The available
boolean operators are union (U or +), intersection (n or I), and difference (—).
The union operator is used to combine or add together two objects or primitives.
Intersecting two primitives gives a shape equal to their common volume. The
difference operator is used to subtract one object from the other and results in a
shape equal to the difference in their volumes. Figure 7-5 shows boolean oper-
ations of a block 4 and a cylinder B.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 343

A
\;
Primitives
AUB ANB A-B B-A

(a) Two dimensional

A B
Primitives
AUB ANB A-B B-A

(b) Three dimensional

FIGURE 7-5
Boolean operations of a block 4 and cylinder B.

Example 7.1. Create the solid model of the guide bracket shown in Fig. 5-2.

Solution. The creation of the solid model of the guide bracket is much simpler than
its wireframe and surface models created in Examples 5.1 and 6.1 respectively. In
fact, combinations of blocks and cylinders are all that is needed to create the solid
model. While translational sweep can be used to create the solid model, it is not
discussed in this example and is left to the reader as an exercise. The following steps
may be followed to construct the solid model:

1. Follow the setup procedure discussed in Chap. 3.

2. To create the upper part of the object, create a block of size 2 x 1 x 0.25, and
two cylinders of sizes R = 1.0, H = 0.25 and R = 0.5, H = 0.25. Create another
block of size 0.5 x 0.5 x 0.25 and rotate it 45° about the Z axis (assuming the
MCS shown in Fig. 5-2 is used here). These primitives are combined to produce
the upper part as shown by branch 1 of the tree shown in Fig. 7-6a. The loca-
tions and orientations of these primitives can be easily done and are not dis-
cussed here.

3. In a similar fashion, branches 2, 3, and 4 of the tree show how to create the lower
part of the object, the left flange, and the right flange respectively.

4. The union of all the four branches produces the final solid model.

344 GEOMETRIC MODELING

Branch 4

Branch 3

| S]
Branch 2 % @

. Branch 1
(a) Construction tree

0.5315389
{— Block edge

L 1.424769
Wedge edge

(b) Determining wedge dimensions via wireframe modeling
FIGURE 7-6
Solid model of the guide bracket of Example 5.1.

In the above steps, the dimensions of the horizontal wedges used to create the flange
are obtained using a wireframe construction, as shown in, Fig. 7-6b. Figure 7-6¢
and d shows the primitives used to create the model and the final solid model re-
spectively. N

It is useful in practice to place primitives, intermediate solids, and the final
solid in the above example on separate layers. This makes management of creating
the solid model easier. For example, if two blocks are added and the result is placed

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 345

(c) Primitives in their proper locations and orientations (d) Final solid model

FIGURE 7-6 (continued)

on the same layer, distinguishing between the three solids becomes difficult and
requires some of them to be blanked. A need to reuse a primitive after repositioning
it might arise, in which case having it on a different layer is very helpful.

The above example illustrates most of the experiences encountered in cre-
ating solid models that do not have sculptured surfaces. If the reader were to
create the guide bracket on a CAD/CAM system and keep track of the amount
of time and effort needed to create the wireframe, surface, and solid models of the
object, the latter would cleatly require the minimum of both time and effort. This
results from the richness of information embedded in defining the primitives and
boolean operations. Consequently, solid models appeal strongly to engineering,
design, and manufacturing applications.

7.4 SOLID REPRESENTATION

Solid representation of an object can support reliably and automatically, at least
in theory, related design and manufacturing applications due to its informational
completeness. Such representation is based fundamentally on the notion that a
physical object divides an n-dimensional space, E", into two regions: interior and
exterior separated by the object boundaries. A region is defined as a portion of
space E" and the boundary of a region is a closed surface, as in the case of a
sphere, or a collection of open surfaces connected at proper edges, as in the case
of-a box.

In terms of the above notion, a solid model of an object is defined mathe-
matically as a point set S in three-dimensional euclidean space (E?). If we denote

346 GEOMETRIC MODELING

the interior and boundary of the set by iS and bS respectively, we can write

S=iS U bS 7.1
and if we let the exterior be defined by ¢S (complement of S), then
W=iSubSucS (7.2

where W is the universal set, which in the case of E? is all possible three-
dimensional points. s

The solid definition given by Eq. (7.1) introduces the concept of geometric
closure which implies that the interior of the solid is geometrically closed by its
boundaries. Thus, Eq. (7.1) can be rewritten as

§=kS (7.3)

where kS is the closure of the solid or point set S, and is given by the right-hand
side of Eq. (7.1); that is, kS = iS U bS.

Figure 7-7 shows the geometric explanation of Egs. (7.1) to (7.3). It should
be noted here that both wireframe and surface models lack geometric closure
which is the main reason for their incompleteness and ambiguity. Based on Eq.
(7.1), an object is represented by bS (its boundary) only in both modeling tech-
niques. In the wireframe technique, bS represents E* curves that occupy ome-
dimensional parametric regions while it represents E* surfaces that occupy
two-dimensional regions in surface modeling.

The foundations of formalizing the solid modeling theory have been well
established by the Requicha and Voelcker research group (PADL-1 and PADL-2
authors and developers) and others. The successful representation of solid models
in computers and their utilization in engineering applications depend on their
properties as well as the properties of the schemes representing them. In the
context of the solid modeling theory, the solid model (sometimes called the

FIGURE 7-7
Solid and geometric closure definitions.

L

bS

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLDs 347

abstract solid) is considered the mathematical model of the real object (sometimes
called the physical solid). The properties of this mathematical model determine its
behavior when geometric algorithms manipulate its related data structure. The
importance of these properties can perhaps be realized if we relate to other clas-
sical engineering fields. As a dynamic model of a car dictates the relevance of the
associated equilibrium equation and ijts results, a mathematical model of an
object decides the class of algorithms that can be applied to it and the level of
their automation.

The properties that a solid model or an abstract solid should capture math-
ematically can be stated as follows:

1. Rigidity. This implies that the shape of a solid model is invariant and does not
depend on the model location or orientation in space.

2. Homogeneous three-dimensionality. Solid boundaries must be in contact
with the interior. No isolated or dangling boundaries (see Fig. 7-8) should be
permitted.

3. Finiteness and finite describability. The former property means that the size of
the solid is not infinite while the latter ensures that a limited amount of infor-
mation can describe the solid. The latter property is needed in order to be able
to store solid models into computers whose storage space is always limited. It
should be noted that the former property does not include the latter and vice
versa. For example, a cylinder which may have a finite radius and length may
be described by an infinite number of planar faces.

Closure under rigid motion and regularized boolean operations. This property

ensures that manipulation of solids by moving them in space or changing

them via boolean operations must produce other valid solids.

5. Boundary determinism. The boundary of a solid must contain the solid and
hence must determine distinctively the interior of the solid.

4

b

The mathematical implication of the above properties suggests that valid
solid models are bounded, closed, regular, and semi-analytic subsets of E3. These
subsets are called r-sets (regularized sets). Intuitively, r-sets are “curved

Dangling face

Dangling
edge FIGURE 7-8

‘Box Example of isolated boundaries.

348 GEOMETRIC MODELING

polyhedra” with “well-behaved” boundaries. The point set S that defines a solid
model and is given by Eq. (7.1) is always an r-set. Intuitively, a “closed regular
set” means that the set is closed and has no dangling portions, as shown in
Fig. 7-8, and a “semi-analytic set” means that the set does not oscillate infinitely
fast anywhere within the set. The concept of “semi-analytic set” is important in
choosing equations to describe surfaces or primitives of solid models. For
example, the point set that satisfies sin (x) < 0 is a 'semi-analytic set while the set
that satisfies sin (1/x) < 0 is not because the function sin (1/x) oscillates fast when
x approaches zero.

Having discussed the desired properties of solid models, let us discuss the
properties of representation schemes that usually operate on point sets or 1-sets
to produce valid solid models. A representation scheme is defined as a relation
that maps a valid point set into a valid model. For example, a CSG scheme maps
valid primitives into valid solids via boolean operations. Informally, a representa-
tion scheme is unambiguous or complete, and unique if one model produced by
the scheme represents one and only one object, that is, one-to-one mapping. A
scheme is unambiguous or complete, but not unique, if more than one model can
represent the object (refer to Fig. 7-3). On the other hand, a scheme is ambiguous
or incomplete if one model can represent more than one object, as in the case of
wireframe models. Figure 7-9 shows these various schemes.

The formal properties of representation schemes which determine their use-
fulness in geometric modeling can be stated as follows:

1. Domain. The domain of a representation scheme is the class of objects that
the scheme can represent or it is the geometric coverage of the scheme.

2. Validity. The validity of a representation scheme is determined by its range,
that is, the set of valid representations or models it can produce. If a scheme
produces an invalid model, the CAD/CAM system in use may crash or the
model database may be lost or corrupted if an algorithm is invoked on the
model database. Validity checks can be achieved in three ways: test the
resulting databases via a given algorithm, build checks into the scheme gener-
ator itself, or design scheme elements (such as primitives) that can be manipu-
lated via a given syntax.

3. Completeness or unambiguousness. This property determines the ability of
the scheme to support analysis and other engineering applications. A complete
scheme must provide models with sufficient data for any geometric calculation
to be performed on them.

Uniqueness. This property is useful to determine object equality. It is a
custom in algebra to check for uniqueness but it is rare to do so in geometry.
This is because it is difficult to develop algorithms to detect the equivalence of
two objects and it is computationally expensive to implement these algorithms
if they exist. Positional and permutational nonuniqueness are two simple cases
shown in Fig. 7-10. Figure 7-10a shows a two-dimensional rectangular solid
(of side lengths a and b) in two different positions and orientations. The two-
dimensional solid S shown in Fig. 7-10b is divided into three blocks A4, B, and
C that can be unioned in a different order.

&

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 349

Object (modeling) Representation
space {model) space
Representation

scheme

(a) Unambiguous. complete, unique scheme

(b) Unambiguous. complete. nonunique scheme

g\ | \

FIGURE 7-9
(c) Ambiguous and incomplete scheme Classification of representation schemes.

There are other properties of representation schemes such as conciseness,
ease of creation, and efficacy in the context of applications. These properties
cannot be formalized and therefore are comsidered informal. Conciseness is a
measure of the size of data a scheme requires to describe an object. Concise
representation schemes generate compact databases that contain few redundant
data, are convenient to store, and are efficient to transmit over data links
(networks) from one system to another. Selectively imposed redundancy may save
computational time and may increase the number of application algorithms that
can utilize the stored data. Ease of creation of a representation is important to
users and determines the user-friendliness of a scheme to a great extent. This is
why most existing solid modelers have a CSG-compatible user input because it is

b
b AUBUC AUCUB
S§=< BUCUA S=<BUAUC
a CUAUB CUBUA
(a) Positional nonuniqueness (b) Permutational nonuniqueness

FIGURE 7-10
Positional and permutational nonuniqueness.

350 GEOMETRIC MODELING

concise and easy to create. Efficacy in the context of applications measures how
accessible a representation is by downstream applications. Representations of
objects in themselves are useless and should be viewed as sources of data for
algorithms. Good representation schemes should permit the use of a wide variety
of application algorithms for evaluating various functions.

Various representation schemes have been designed and developed, with the
above properties in mind, to create solid models of real objects. Nine schemes can
be identified. Somé of them are more popular than the others. Thése are half-
spaces, boundary representation (B-rep), constructive solid geometry (CSG),
sweeping, analytic solid modeling, cell decomposition, spatial enumeration, octree
encoding, and primitive instancing. Fach of these schemes has its properties,
advantages, and disadvantages that are discussed later in the chapter. The three
most popular schemes are B-rep, CSG, and sweeping. Most existing solid model-
ing packages or systems use one or more of the known schemes. Table 7.1 lists
some of the existing solid modelers with their core representation scheme. In
most packages or systems, one scheme is considered the primary representation

TABLE 7.1
Some available solid modelers

Primary User modeling
representation input based
scheme on
Modeler Vendor B-rep CSG B-rep CSG
BMOD Auto-trol b3 b3
CATIA IBM X X X
CMOD Auto-trol x x
DDM SOLIDS GE Calma x x x
EUCLID Matra Datavision X x x
GEMSMITH Vulcan X X x
GEOMED SDRC X X X
GEOMETRIC
MODELING SYSTEM Graftek x X
ICEM CDC X x
ICM GMS ICM X X X
INSIGHT Phoenix Data Systems X X X
MEDUSA Prime Computer . X x x
PADL-2 Cornell University X X
PATRAN-G PDA Engineering ASMt Hyper-
patches X
ROMULUS Evans and Sutherland x X
SOLIDESIGN Computervision X x x
SOLIDS MODELING II Applicon” x x X
SOLID MODELING
SYSTEM Intergraph x x X
SYNTHVISION MAGI X X X
TIPS-1] CAM-I x X
UNIS-CAD Sperry Univac x X
X X x

UNISOLIDS McDonell Douglas

1 Analytic solid modeling (see Sec. 7.10 for details).

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 351

scheme that can be converted to others or other schemes can be converted to it.
For example, a CSG-based system utilizes the CSG scheme as the core of its
geometric modeling engine which, in turn, can be converted into a B-rep for
application purposes, or sweeping can be converted into a B-rep or CSG by a
package whose core representation is one of these two. Conversion between
various schemes is not always possible and depends primarily on how data is
stored. Conversion from CSG to B-rep, octree, or spatial enumeration is possible.
However, converting B-rep to CSG is not well known (conversion in two dimen-
sions is known). Simple sweep can be converted to B-rep, CSG, or cell decompo-
sition.

The major geometric procedures needed for solid modeling, regardless of
any representation scheme, are curve/curve, curve/surface, and surface/surface
intersection calculations. Conceptually, any geometric entity (a primitive or a
surface) could be added to any representation scheme to increase its modeling
domain. However, unless such a scheme can support these intersections of the
entity, its use in modeling and applications becomes useless. Support of sculp-
tured surface geometries by solid modeling depends on developing efficient
methods to perform the intersection calculations for these geometries. Once these
methods are available, solid modeling systems would cater to both solid and
surface modeling within the same conceptual and algorithmic framework.

Representations of solids are built and invoked via algorithms (sometimes
called processors). Informally, an algorithm is a procedure that takes certain
input and produces a desired output. Algorithms should be developed carefully
and tested for a wide variety of input to ensure their generality, reliability, and
consistency. Algorithms can be classified into three types according to their input
and output. Some algorithms take data and produce representations; that is,
a:data —rep (reads as algorithm a is defined as taking data and producing
representation). These algorithms build, maintain, and manage representations.
Representation schemes mentioned above fall into this type. The other type of
algorithms compute property values by taking a representation and producing
data; that is, a: rep — data. All application algorithms belong to this type. For
example, a mass property algorithm takes a solid model representation and pro-
duces volume, mass, and inertial properties. Algorithms of the third type take
representations and produce representations; that is, a: rep — rep. For example,
an algorithm that converts CSG to B-rep or one that simulates (models) pro-
cesses (such as motion or machining) on objects belongs to this type. An algo-
rithm might take a piece of stock and end up with a machined part. Figure 7-11
illustrates the three types of algorithms.

Conversion of solid models into wireframe models or an edge representa-
tion is well understood and is used to generate orthographic views for display
and drafting purposes. While the views are generated automatically, they are not
dimensioned automatically, and a manual or semi-automatic dimensioning is
required. However, the opposite problem of creating solid models from wireframe
models or from existing orthographic views or drawings is largely unsolved.
Mathematically, this is a problem of converting an edge representation into a
solid representation. This problem is not complete or well defined due to two
reasons. First, edges of curved solids (curved polyhedra) may not be easily found

352 GEOMETRIC MODELING

D

Data Algorithm Rep

(

(a) a: data — rep

)

Rep Algorithm Data

(

(b) a: rep — data

D

Rep - @ Rep
FIGURE 7-11
(¢) a: rep — rep Types of solid modeling algorithms.

from a finite number of projections. Second, the edge representation itself is
ambiguous and can correspond to more than ome object. Algorithms for dis-
ambiguating wireframe models exist. These algorithms find all possible objects
that correspond to one drawing. The main thrust to convert drawings to solid
models stems from the large existing industrial base of wireframe models.

7.5 FUNDAMENTALS OF SOLID
MODELING

Before covering the details of the various representation schemes, it is appropri-
?te to discuss the details of some of the underlying fundamentals of solid model-
ing theory. These are geometry, topology, geometric closure, set theo‘ry,
regularization of set operations, set membership classification, and neighborhood.
F}eometry and topology have been covered in Sec. 7.2 and geometric closure is
introduced in Sec. 7.4. This section covers set theory, regularization, classi-
fication, and neighborhood. The significance of these topics to solid modeling
stems from the definition of a solid model as a point set in E® as given in

Egq. (7.1). They provide good rigorous mathematical foundations for developing
and analyzing solids.

7.5.1 Set Theory

We begin the review of set theory by introducing some definitions followed by set
algebra (operations on sets) and laws (properties) of the algebra of sets. At the
end, the concept of ordered pairs and cartesian product is introduced. A set is
defined as a collection or aggregate of objects. The objects that belong to the set
are called the elements or members of the set. For example, the digits 0, 1, ..., 9
form a set (set of digits) D whose elements are 0, 1, ..., 9. While the concept is
relatively simple, the elements of a set must satisfy certain requiréxhenté. First, the
elements must be well defined to determine unequivocally whether or not any

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 353

object belongs to the set; that is, fuzzy sets are excluded. Second, the elements of
a set must be distinct and no element may appear twice. Third, the order of the
elements within the set must be immaterial. To realize the importance of these
requirements in geometric modeling, the reader can apply them to a point set of
eight elements which are the corner points of a block.

The elements of a set can be designated by one of two methods: the roster
method or the descriptive method. The former involves listing within braces all
the elements of the set and the latter involves describing the condition(s) that
every element in the set must meet. The set of digits D can be written using the
roster and the descriptive methods respectively as

D={0,1,23,4,56789} (1.4)
and D={x:x=0,1,2,34,567389} (1.5)

Equation (7.4) reads as “D is equal to the set of elements 0, 1, 2,3,4,56,7,8,9.”
Equation (7.5) reads as “D is equal to the set of elements x such that x equals 0,
1,2,3,4,5,6,7,8,9.” The colon in Eq. (7.5) is sometimes replaced by a vertical
bar, that is, D = {x|x =0, 1, ..., 9}. Regardless of set designation, set member-
ship and nonmembership is customarily indicated by € and ¢ respectively. If we
write 9 € D, we mean 9 is an element (or member) of the set of digits D or 9
belongs to D. Similarly, —2 ¢ D means that —2 is not an element of D.

Two sets P and Q are equal, written P = @, if the two sets contain exactly
the same elements. For example, the two sets P = {1,3,5,7} and Q = {1, 5,7, 3}
are equal, since every element in P is in Q-and every element in @ is in P. The
inequality is denoted by # (P # Q reads P does not equal Q).

A set R is a subset of another set S if every element in R is in S. The
notation for subset is — and R < S reads “R is a subset of S.” Analogous to €
and ¢, the notation for not subset is & . If it happens that all elements in R are in
S but all elements in S are not in R, then R is called a proper subset of S and is
written R < S. This means that for R to be a proper subset of S, S must have all
elements of R plus at least one element that is not in R. For example, given
§=1{1,3,5 7}, then R={1, 3,5, 7} is a subset of § and R = {5, 7} is a proper
subset of S. Formally, R< S<>R n S = R and R # S (< reads “if and only if ")
orRcS<RuS=SandR#S.

There are two sets that usually come to mind when discussing sets and
subsets. The universal set W is a set that contains all the elements that the
analyst wishes to consider. It is problem-dependent. In solid modeling, W con-
tains E® and all points in.E® are the elements of W. In contrast the null
(sometimes referred to as the empty) set is defined as a set that has no elements or
members. It is designated by the null set symbol . The null set is analogous to
zero in ordinary algebra.

Having introduced the required definitions, we now discuss set algebra. Set
algebra consists .of certain operations that can be performed on sets to produce
other sets. These operations are simple in themselves but are powerful when com-
bined with the laws of set algebra to solve geometric modeling problems. The
operations are most easily illustrated through use of the Venn diagram named
after the English logician John Venn. It Consists of a rectangle that conceptually

354 GEOMETRIC MODELING

represents the universal set. Subsets of the universal set are represented by circles
drawn within the rectangle or the universal set.

The three essential set operations are complement, union, and intersection.
The complement of P, denoted by cP (reads “P complement”), is the subset of
elements of W that are not members of P, that is,

cP={x:x¢P} (7.6)
The shaded portion of the-Venn diagram in Fig. 7-12a shows the, complement
of P.

The union of two sets P U Q (read “P union Q7) is the subset of elements
of W that are members of either P or Q, that is,

PuQ={x:xePorxe(Q} 7.7

The union is shown in Fig. 7-12b as the shaded area.
The intersection of two sets P n Q (read “P intersect Q) is the subset of
elements of W that are simultaneously elements of both P and Q, that is,

PnQ:{x:xe'Pander} (7.8)

The shaded portion in Fig. 7-12¢ shows the intersection of P and Q. It is easy to
realize that P n W = P and P n cP = (. Sets that have no common elements
are termed disjoint or mutually exclusive. -

Two additional set operators that can be derived from the above set oper-
ations are difference and exclusive union. The difference of two sets P — Q (read
“P minus Q") is the subset of elements of W that belong to P and not Q, that is,

P—Q={x:xePandx¢Q} (7.9
or Q—P={x:xeQandx¢ P} (7.10)

Figure 7-12d and e shows the difference operator. The difference can also be
expressed as ‘

P-Q=PncQ (7.11)
oy %)
O i JCD
(@) ((is])ar;lplementa(ion (b) Union (PU Q) (¢) Intersection (PN Q) .
w ' o W
_ DIEEIC' JIE

(d) Difference (P~ Q) (e) Difference (O~ P) (f) Exclusive union
. (P U Q) or symmetric
difference (P A Q) .
FIGURE 7-12

Venn diagram of set algebra.

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 353

The exclusive union (also known as symmetric difference) of two sets P U Q (also
written as P A Q) is the subset of elements of W that are members of P or Q but
not of both, that is,

PuQ={x:x¢PnQ} (7.12)
Figure 7-12f shows the exclusive union. Using the Venn diagram it can be shown
that P U Q can also be expressed as c(P n Q) n (P U Q), (P ncQ) U (cP N Q),
P-Qu(@—P,or(PUQ—(Pn Q)

The laws of set algebra are in some cases similar to the laws of ordinary
algebra. Just as the latter can be used to simplify algebraic equations and expres-
sions, the former can be used to simplify sets. The laws of set algebra are stated
here without any mathematical proofs. Interested readers can prove most of them
using the Venn diagram. These laws are:

the commutative law (similar to ordinary algebra p + ¢ = g + p and pq = qp):
PuQ=QuUP (7.13)
PAnQ=0nP (7.14)

the associative law [similar to ordinary algebra p+(q+1r) =(p+q) +r and
plar) = (pgrl:

PU@UR=(PuUQuUR (7.15)
PAni@nR=(PnQnR (7.16)
the distributive law [similar to p(q + r) = pq + pr]:
Pu(@nR=Pu@dn(PUR) 7.17)
PAn{QuUR=(PnQu(PnR (7.18)
the idemoptence law:
PnP=P (7.19)
PuP=P (7.20)
the involution law:
c(cP)=P (7.21)
and
Pug=P (7.22)
PAnW=P (7.23)
PucP=W (7.24)
PAncP=yg (7.25)
dPuQ)=cPncQ (7.26)
(PN Q)=cPuch (7.27)

where Egs. (7.26) and (7.27) are DeMorgan’s laws and Egs. (7.13) to (7.26)' provide
the tools necessary to manipulate and simplify sets. For example, using Egs.
(7.13), (7.17), and (7.19) one can prove that the set (P U Q) U (P n Q) is equal to

356 GEOMETRIC MODELING

the set P u 0. The Venn diagram can also be used as an informal method to
reach the same conclusion. From a geometric modeling point of view, these equa-
tions, or the set theory in general, can operate on point sets that represent solids
in E? or they can be used to classify other point sets in space against solids to
determine which points in space are inside, on, or outside a given solid.

The concept of the cartesian product of two sets is useful to geometric
modeling because it can be related to coordinates of points in space. The concept
of an ordered pair must be introduced first. Let us assume that a and b are two
elements. An ordered pair of a and b is denoted by (a, b); a is the first coordinate
of the pair (a, b) and b is the second coordinate. This guarantees that (a, b) =
(b, a) if a # b. The ordered pair of a and b is a set and can be defined as

(a? b) = {{a}’ {a> b}} . (728)

Equation (7.28) implies that the first coordinate of the ordered pair is the first
element {a} and the second coordinate is the second element {a, b}; both ele-
ments form the set of the ordered pair (g, b). If a = b, then (a, a) = {{a}, {a, a}}
= {{a}, {a}} = {{a}}. Based on this definition, there is a theorem which states
that two ordered pairs are equal if and only if their corresponding coordinates
are equal, that is, (a, b) = (c,d)<>a=cand b=d. -

The cartesian product is the concept that can be used to form ordered pairs.
If A4 and B are two sets, the cartesian product of the sets, designated by 4 x B, is
the set containing all possible ordered pairs (a, b) such that a € A and b € B, that
is,

AxB={(a b):aecAandbe B} (7.29)

If, for example, A = {1, 2, 3} and B = {1, 4}, then 4 x B={(1, 1), (1, 4), (2, 1),
(2, 49, (3, 1), (3, 9}. Note that A x B+# B x A. We denote 4 x 4 by A2 The
cartesian product of three sets can now be introduced as

AXBxC=(AxByxC={{ab,c):acAd beB,ceC} (7.30)

where (a, b, c) is an ordered triple defined by (a, b, ¢) =((a, b), ¢). A x A X A is
usually denoted by A>. In general, an n-tuple can be defined as the cartesian
product of n sets and takes the form (a,, a,, ..., 4,). Ordered pairs and triples are
considered 2-tuples and 3-tuples respectively.

Equations (7.29) and (7.30) can be used to define points and their coordi-
nates in the context of set theory. If we consider a set of points (set of real
numbers) R! in one-dimensional euclidean space E!, then R? defines a set of
points in E?; each is defined by two numbers or an ordered pair. Similarly, R>
defines a set of points in E3; each is defined by three numbers or an ordered
triple.

Example 7.2. A point set S that defines a solid in E? is a set of ordered triples. Find
the three sets whose cartesian product produces S.

Solution. The point set can be written as

S§={Py, P,,..., P} (7.31)

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 357

where Py, P,, ..., P, are points inside or on the solid. This set can also be written as

S = {(x1’ y17 Zl): (x27 Y2a zz): e (Xn, yn’ Zn)} = {(xi’ yi7 zi): 1 S i S 71} (732)
We can define three sets 4, B, and C such that

CA={x, Xg, s X (7.33)
B={yy, Y2, > Vu} (7.39)
C={zy, 23, -5 Zs} (7.35)

Let us define the set P as the cartesian product 4 x B x C, that is,
P=AxBxC={x,y,z):1<i<nml1<j<nisk<n} (7.36)

" The point set S of the solid given by Eq. (7.32) is clearly a'(proper) subset of the set
P, that is, S = P. The elements of S are equal to the elements of P only when
i=j=k .

Let us introduce a new notion called the ordered cartesian product. It is a
more restricted special case of the cartesian product concept. It is applied only to
sets that have the same number of elements. We denote it by “ ® ” to differentiate
it from “ x ” which is used for the cartesian product (not ordered). If we have two
sets defined as A = {4y, a5, ..., a,} and B = {by, b,,..., b,}, then

A®B={(a;,b):a;€ 4, b;eB,and 1 <i<n} (7.37)
The ordered cartesian product of three sets is similarly given by
ARBRC=A®B)®C=/{(a;,b;,c):aie A, b;e B,¢;e C,and 1 <i<n)}
(7.38)

Comparing Egs. (7.32) and (7.38) shows that the ordered cartesian product
of the three sets 4, B, and C given by Egs. (7.33) to (7.35) gives the point set S of a
solid. This observation that S can be related to 4, B, and C might be useful in
classification problems.

7.5.2 Regularized Set Operations

The set operations (c, U, N, and —) covered in the previous section are also
known as the set-theoretic operations. When we use these operations in geomet-
ric modeling to build complex objects from primitive ones, the complement oper-
ation is usually dropped because it might create unacceptable -geometry.
Furthermore, if we use the other operations (U, N, —) without regularization in
solid modeling, they may cause user inconvenience (say, user must not have over-
lapping faces of objects or primitives). In addition, objects resulting from these
operations may lack geometric closure, may be difficult to validate, or may be
inadequate for application (e.g., interference analysis).

To avoid the above problems, the point sets that represent objects and the
set operations that operate on them must be regularized. Regular sets and regu-
larized set operations (boolean operations) are considered as boolean algebra.

A regular set is defined as a set that is geometrically closed [refer to Eg.
(7.3)]. The notion of a regular set is introduced in geometric modeling to ensure

358 GEOMETRIC MODELING

the validity of objects they represent and therefore eliminate nonsense objects.
Under geometric closure, a regular set has interior and boundary subsets. More
importantly, the boundary contains the interior and any point on the boundary
is in contact with a point in the interior. In other words, the boundary acts as a
skin wrapped around the interior. The set S shown in Fig. 7-7 is an example of a
regular set while Fig. 7-8 shows a nonregular set because the dangling edge and
face are not in contact with the interior of the set (in this case the box).)
Mathematically, a set'S is regular if and only if s

S = kiS (7.39)

This equation states that if the closure of the interior of a given set yields that
same given set, then the set is regular. Figure 7-13a shows that set S is not regular
because §' = kiS is not equal to S. Some modeling systems use regular sets that
are open or do not have boundaries. A set S is regular open if and only if

S = ikS (7.40)

This equation states that a set is regular open if the interior of its closure is equal
to the original set. Figure 7-13b shows that S is not regular open because S’ = ikS
is not equal to S.

Set operations (known also as boolean operators) must be regularized to
ensure that their outcomes are always regular sets. For geometric modeling, this
means that solid models built from well-defined primitives are always valid and
represent valid (no-nonsense) objects. Regularized set operators preserve homo-
geneity and spatial dimensionality. The former means that no dangling parts
should result from using these operators and the latter means that if two three-
dimensional objects are combined by one of the operators, the resulting object
should not be of lower dimension {two or one dimension). Regularization of set
operators is particularly useful when users deal with overlapping faces of different
objects, or in other words when dealing with tangent objects, as will be seen
shortly in an example.

Based on the above description, regularized set operators can be defined as
follows:

P uU* Q=ki(P U Q) (7.41)
PA*Q=ki(P n Q) (7.42)
P—*Q=ki(P — Q) (7.43)

c* P =ki(cP) (7.44)

where the superscript * to the right of each operator denotes regularization. The
sets P and Q used in Eqs. (7.41) to (7.44) are assumed to be any arbitrary sets.
However, if two sets X and Y are r-sets (regular sets), which is always the case for
geometric modeling, then Egs. (7.41) to (7.44) become

Xu¥Y=XuY (7.45)
X n*Y=Xn Y<bX and bY do not overlap (7.46)
X —*Y=k(X-7Y) (747

c* X =k(cX) (7.48)

Dangling edge

N B

$'=KkiS
(a) S #kiS

e

Dangling edges

Wi

ki(PUQ)=PU*Q

~7 =7

PNQ PNQ) ki(PNQ) = PN* Q
These edges
7do not exist y %
- i k V%
—
P-Q i(P-Q) ki(P-Q) = P-*Q

(a) Nonregular sets

XUY=XU*Y

% ’\<’/// —n 5 XNY=Xxn*Y
v R s
—=EE-EX

This boundary
does not exist

(b) Regular sets

FIGURE 7-14
Regularized set operators.

FIGURE 7-13
(b) S # ikS Set regularity.

359

3600 GEOMETRIC MODELING

If bX and bY overlap in Eq. (7.46), Eq. (7.42) is used and the result is a null

object. Figure 7-14 illustrates Egs. (7.41) to (7.48) geometrically. The figure does
not include the complement operation.

Example 7.3. What are the results of applying the regularized set operations to
objects A and B shown in Fig. 7-15?

Solution. The positions of objects 4 and B shown in Fig. 7-15 are chosen to illus-
trate some tangency cases of objects. 4 and B are r-sets. The results of'applying Eqs.
(7.45) to (7.47) are shown in Table 7.2 for each case. For all the cases, the results of
the regularized union operations are obvious. However, the results of the intersec-
tion operations may be less obvious. For case 1, A n B is the common face which is
eliminated by the regularization process. For case 2, the intersection does not exist;
therefore the result is-an empty set or a null object. For case 3, 4 n B is the
common edge which is eliminated by the regularization process. For case 4, 4 n B
is the common block and the common face. The common face is eliminated after
regularization. The results of the regularized difference operations are obvious. In
cases 1, 2, and 3, 4 —* B is the object A itself. For case 4, the difference is a disjoint
object. Such an object should not be viewed as two objects. Any further set oper-
ation or rigid-body motion treats it as one object.

The reader is advised to carry the details of these results following the steps
illustrated in Fig. 7-14. The reader should also try to use these cases to test any
available solid modeling package.

75.3 Set Membership Classification

In various geometric problems involving solid models, we are often faced with
the following question: given a particular solid, which point, line segment, or a
portion of another solid intersects with such a solid? These are all geometric
intersection problems. For a point/solid, line (curve)/solid, or solid/solid intersec-

Ny,
Common face] \
A ll’

~— Common edge

i,
Iy

Sample objects. E

Tangent face

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLiDs 361

TABLE 72

Results of Example 7.3

Case Objects Set operation Result
ANn*B & (null object)
A-—-*B

2 ’ﬁ’ “‘ Au*B

=y

LWL

=7

An*B & (null object)
A ~* B @
ANn*B & (null object)
A —* B @
An*B :

A —* B @

tion, we need to know respectively which points, line segments, or solid portions

- are inside, outside, or on the boundary of a given solid. These geometric intersec-

tion problems have useful practical engineering applications. For ex'ample, l.ine/
solid intersection can be used to shade or calculate mass properties of given

362 GEOMETRIC MODELING

FIGURE 7-16
M[L.R]=(LinR.LonR.LoutR) Line/polygon set membership classification.

solids via ray-tracing algorithms, while solid/solid intersection can be used for
interference checking between two solids.

In each of the above problems, we are given two point sets: a reference set S
and a candidate set X. The reference set is usually the given solid whose inside
(interior) and boundary are iS and bS respectively. The outside of S is its com-
plement cS. The candidate set is the geometric entity that must be classified
against S. The process by which various parts of X (points, line segments, or solid
portions) are assigned to iS, bS, and/or ¢S is called set membership classification.

A function called a set membership classification function exists which pro-
vides a unifying approach to study the behavior-of the candidate set X relative to
the reference set S. The function is denoted by M[.] and is defined as

M[X,8]=(Xin S, X on S, X out §) (749

Equation (7.49) implies that the input to M[.] is the two sets X and S and the
output is the classification of X relative to S as in, on, or out S. Figure 7-16
shows an example of classifying a portion of a line L against the polygon R.

The implementation of the classification function given by Eq. (7.49)
depends to a great extent on the representations of both X and S and their data
structures. Let us consider the line/polygon classification problem when the
polygon (reference solid) is stored as a B-rep or a CSG. Figure 7-17 shows the
B-rep case. The line L is chosen such that no “on” segments result for simplicity.

Vi v
Py il - P
L N
FIGURE 7-17
Vs Line/polygon classification for B-rep.

TYPES AND MATHEMATICAL REPRESENTATIONS OF sOLIDS 363

The algorithm for this case can be described as follows:

1. Utilizing a line/edge intersection routine, find the boundary crossings P,
and P,.

2. Sort the boundary crossings according to any agreed direction for L. Let the
sorted boundary crossing list be given by (Py, Py, P5, P3).

3. Classify L with respect to R. For this simple case, we know that the odd
boundary crossings (such as P,) flags “in” segments and the even boundary
crossings (such as P,) flags “out” segments. Therefore, the classification of L
with respect to R becomes

[Py, Py] < L outR
[P,, P,]=Lin R
[P,,P;]=LoutR

If the line L contains an edge of the polygon, the above classification
criterion of odd and even crossings would not work and another criterion
should be fourd. In this case, a direction (clockwise or counterclockwise) to
traverse the polygon boundaries is needed. Let us apply this idea to the
problem at hand to see how it would work. If we choose the counterclockwise
direction, polygon vertices would be numbered as shown in Fig. 7-17. Now we
know that iR is always to the left of any edge. The new classification criterion
can be stated as follows. Let us assume that an edge is defined by the two
vertices ¥; and V;, . Whenever there is a boundary crossing on an edge whose
V, is above L and V;,, is below L, this crossing is flagged as “in” and when-
ever V; is below L and V;,, is above, it is flagged “out.” This criterion obvi-
ously gives the same result as the previous criterion for this example.

Let us consider the same line/polygon classification problem when the
polygon is stored as a CSG representation. The classification for this case is done
at the primitive level and the algorithm becomes as follows:

1. Utilize a line/primitive intersection routine to find the intersection points of
the line with each primitive of R.

2. Use these intersection points to classify the line against each primitive of R.

3. Combine the “in” and “on” line segments obtained in step 2 using the same
boolean operators that combine the primitives. For example, if two primitives
A and B are unioned, then the “in” and “on” line segments are added.

4. Find the “out” segments by taking the difference between the line (candidate
set) and the “in” and “on” segments. Figure 7-18 shows the “classify” and
“combine” strategy for the three boolean operations of two blocks 4 and B.
Notice that the polygon that results from the union operation is the same as
the polygon R used in the classification of the B-rep case. The classification of
L relative to A and B is straightforward. To combine these classifications, we -
first combine L in A and L in B to obtain L in R, using the proper boolean
operator. The L on R can result from combining three possibilities: L in 4 and

364 GEOMETRIC MODELING

AUB ANB A-B
% % L & L B
/////// ’
N /////// Lo Lo i
] I
; BN AN bl
| | ! ! | ! b [
by | : [| : | : ! [[! I
| ; | | ! s { |- | (-
Lind |} —— = 1 {1t e—— 1][t]
M(LA) LonA [I I NourL | 1 || | NuLL ! [1 NULL i
DTN e S e e I = S e = N I = S B
LinB [l | e —e — |] —
— " ; f et y ¢
M(L.B) LonB || | NULL L ! NUL Il [NULL [
3 4 4
Lout B :-——L—-—-:. i :-—:0 :‘——t———é | — "‘;—‘*—;‘ 1 -t
' " f T Ly } J
oA [et [= et]
inaonB |1 1 NuLL @ |11 Nl ¢y [r) mo
- f—t T t t i t 7 t
onainB 1 | wul 7 [0 how 1 [] Nl
Combine onAfnB |1 | NULL | 1|1 1 Nuw 1 [1] NuiL (!
—t ——+ +———t 4 +—t + ——t —
LonR || [Nutt T [F 0 N i [0] NuL
LinRULonR|| o : Ry — i [t |
L R 1 1 l._4 T 1 : : 1 T ! 1 1 f
outR |7 [h 1 [I 1 1 1
FIGURE 7-18

Line/polygon classification for CSG rep.

LonB,LonAandLinB,and L on 4 and L on B. All these possibilities are
obtained and then combined to give L on R. The remaining classification L
out R is obtained by adding L in R and L on R, and subtracting the result
from L itself.

The above example has considered the polygon case. The example does not
purposely include “on” segments because they are ambiguous and need more
information (neighborhoods) to resolve their ambiguities for both B-rep and CSG
(refer to Sec. 7.8 for details). Algorithms to classify candidate sets against three-
dimensional solids can follow similar steps to those described in the above
example but with more elaborate details.

7.6 HALF-SPACES

Half-spaces form a basic representation scheme for bounded solids. By combin-
ing half-spaces (using set operations) in a building block fashion, various solids
can be constructed. Half-spaces are usually unbounded geometric entities; each
one of them divides the representation space into two infinite portions, one filled
with material and the other empty. Surfaces can be’ consxdered half—space bound-
aries and half-spaces can be considered directed surfaces.

A half-space is defined as a regular point set in E? as follows:

H={P:PeEandf(P) <0} (7.50)

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 365

where P is a point in E® and f(P) = 0 defines the surface equation of the half-
space boundaries. Half-spaces can be combined together using set operations to
create complex objects.

7.6.1 Basic Elements

Various half-spaces can be described and created using Eq. (7.50). However, to
make them useful for design and manufacturing applications, supporting algo-
rithms and utility routines must be provided. For example, if one were to add a
cylindrical half-space to a modeling package, intersecting routines that enable
this half-space to intersect itself as well as other existing half-spaces must be
developed and added as well.

The most widely used half-spaces (unbounded) are planar cylindrical,
spherical, conical, and toroidal half-spaces. They form the natural quadrics dis-
cussed earlier in Sec. 7.3 (with the exception of the torus which can be formed
from the other half-spaces). The regular point set of each half-space is a set of
ordered triplets (x, y, z) given by

Planar half-space: H={(xy12:2<0} (7.51)
Cylindrical half-space: H = {(x, y, 2): x* + y* < R*} (7.52)
Spherical half-space: H = {(x, y, z) x? +y* + 22 < R%*} (7.53)
Conical half-space: H={(x, y, z) x* + y* < [(tan 2/2)z]*} (7.54)
Toroidal half-space: H={xy 2:(*+y*+2* — R%Z - R%?

<4RXR? —z%)} (1.55)

Equations (7.51) to (7.55) are implicit equations and are expressed in terms of
each half-space local coordinate system whose axes are Xy, Yy, and Zy. The
implicit form is efficient to find surface intersections (refer to Chap. 6). The corre-
sponding surface of each half-space is given by its equation when the right and
left sides are equal. For the planar half-space, Eq. (7.51) is based on the vertical
plane z = 0. Other definitions can be easily written. Figure 7-19 shows the
various half-spaces with their local coordinate systems and the limits on their
configuration parameters.

7.6.2 Building Operations

Complex objects can be modeled as half-spaces combined by the set operations.
As a matter of fact, half-spaces are treated as lower level primitives and all the
related construction techniques to CSG can be used here. As will be seen later,
one form of CSG can be based on unbounded half-spaces. Regularized set oper-
ations can be used to combine half-spaces to form complex solids. Most often,
half-spaces may have to undergo rigid motion via homogeneous transformations
to be positioned properly before intersection.

Let us represent the solid S shown in Fig. 7-20a using half-spaces. Param-
eters of the solid are shown. The hole is centered in the top face. The MCS of the

366 GEOMETRIC MODELING

Yu

Zy

Planar half-space

Y

Xu

¥

Zy

Cylindrical half-space (R > 0)
Yu

Xy

Zy

Two-sheet conical half-space
O<a<m)

FIGURE 7-19
Unbounded half-spaces.

(a) Solid S

FIGURE 7-20
Half-space representation of solid S.

Xu

Xy

Zy

Spherical half-space (R > 0)

Toreidal half-space
(R{>0,R,>0.R,>Ry)

H
2 7.
Hy
H, AS
Hy
2
A H,

(b) Half-space representation

Hg

Hs

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLIDs 367

solid model is chosen as shown in the figure. Figure 7-20b shows that nine half-
spaces (eight planes and one cylinder) H, to H, are needed to represent S. Half-
spaces H, and Hy that model the front and back faces of the model are not
shown in the figure. Utilizing local coordinate systems shown in Fig. 7-19, some
half-spaces have to be positioned first. For example, rotate H given by Eq. (7.51)
an angle —90° about the X axis and translate it up in the Y direction a distance
b to obtain H,. In a similar fashion, the other half-spaces can be positioned using
the proper rigid motion. Only H, needs no positioning. The positioned half-
spaces can be intersected and then boolean operations are used to combine them.
H, to Hg are unioned and H, is subtracted from the result.

Example 7.4. How can you create a solid fillet using unbounded half-spaces?

Solution. Surface fillet has been defined in Chap. 6 as a B-spline surface blending
two given surfaces. Similarly, a solid fillet can be used to blend sharp edges of a
solid as shown in Fig. 7-21a. The solid fillet is defined by its radius r and length d.
. Six half-spaces H, to Hg (see Fig. 7-21b) are needed to construct the fillet. H,, H,,
H,, and H, represent the front, left, back, and bottom faces respectively. Hy is the
cylindrical face. H is an auxiliary half-space positioned at distance r from the origin
of the X, ¥, Z, local coordinate system of the fillet and oriented at 45° as shown in

Solid fillet

(a) Sotid fillet
He
H,

H,
Hy Hs

Hs

Y,
X /
Ze A-A
(b) Half-space representation

FIGURE 7-21

Solid fillet and its half-space representation.

368 GEOMETRIC MODELING

view A-A in Fig. 7-21b. H; is used to intersect H,, H,, and Hg so that the bound-
aries of the fillet can be evaluated. This is because the cylindrical half-space is
tangent to H, and H,.

Except for H,, the other half-spaces must be positioned before intersection
and set operations are performed to create the fillet. Let us look at positioning H
and H, as an example. Using Eq. (7.51), H has to rotate an angle of 90° about the Y
axis, followed by a 45° rotation about the Z axis, and finally translated a distance r
in the positive X direction to produce Hs. H, is obtained by translating the cylin-
drical half-space H given by Eq. (7.52) an equal distance r in both the positive X
and Y directions. At this position, the complement of the cylindrical half-space, cH,
is taken to obtain H. Theoretically, cH is equal to E® minus the cylindrical half-
space. For practical and implementation purposes, E* can be limited to a bounded
volume, such as a box, enclosing the cylindrical half-space, or the complement
process-can be replaced by choosing a surface normal to be posmve on one side of
the half-space and negative on the other side.

The intersections of H, to H¢ with each other can now be performed and the
results can be unioned to obtain the solid fillet. Notice that the solid fillet could
have been created without the complement operation by subtracting the cylindrical
half-space itself after its positioning from the intersection results of H; to H.
However, the complement of a half-space is generally used to minimize the number
of half-spaces used in modeling objects.

It should be noted from this example that using half-spaces and/or their
complements or directed surface normals, any complex object can be modeled as
the union of the intersection of half-spaces, that is,

S=u (ﬂ H,.> (71.56)

where S is the solid and 7 is the number of half-spaces and/or their complements.
As an example, a box is the union of six intersected half-spaces.

7.6.3 Remarks

The half-space representation scheme is the lowest level available to represent a
complex object as a solid model. The main advantage of half-spaces is its concise-
ness in representing objects compared to other schemes such as CSG. However, it
has a few disadvantages. This representation can lead to unbounded solid models
if the user is not careful. Such unboundedness can result in missing faces and
abnormal shaded images. It can also lead to system crash or producing wrong
results if application algorithms attempt to access databases of unbounded
models. Another major disadvantage is that modeling with half-spaces is cumber-
some for casual users and designers to use and may be difficult to understand.
Therefore, half-space representation is probably useful only for research pur-
poses. Modelers, such as SHAPES, TIPS, and PADL, attempt to shield users
from dealing directly with the unbounded half-spaces.

7.7 BOUNDARY REPRESENTATION (B-rep)

Boundary representation is one of the two most popular and widely used
schemes (the other is CSG discussed in Sec. 7.8) to create solid models of physical

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 369

objects. A B-rep model or boundary model is based on the topological notion
that a physical object is bounded by a set of faces. These faces are regions or
subsets of closed and orientable surfaces. A closed surface is one that is contin-
uous without breaks. An orientable surface is one in which it is possible to dis-
tinguish two sides by using the direction of the surface normal to point to the
inside or outside of the solid model under construction. Each face is bounded by
edges and each edge is bounded by vertices. Thus, topologically, a boundary
model of an object is comprised of faces, edges, and vertices of the object linked
together in such a way as to ensure the topological consistency of the model.

The database of a boundary model contains both its topology and
geometry. Topology is created by performing Euler operations and geometry is
created by performing euclidean calculations. Euler operations are used to create,
manipulate, and edit the faces, edges, and vertices of a boundary model as the set
(boolean) operations create, manipulate, and edit primitives of CSG models.
Euler operators, as boolean operators, ensure the integrity (closeness, no dangling
faces or edges, etc.) of boundary models. They offer a mechanism to check the
validity of these models. Other validity checks may be used as well. Geometry
includes coordinates of vertices, rigid motion and transformation (translation,
rotation, etc.), and metric information such as distances, angles, areas, volumes,
and inertia tensors. It should be noted that topology and geometry are inter-
related and cannot be separated entirely. Both must be compatible otherwise
nonsense objects may result. Figure 7-22 shows a square which, after dividing its
top edges by introducing a new vertex,is still valid topologically but produces a
nonsense object depending on the geometry of the new vertex.

In addition to ensuring the validity of B-rep models, Euler operators
provide designers with drafting functionality. These allow solid models to be built
up graphically by incrementally adding individual vertices, edges, and faces to the
model in such a way as to always obey Euler’s laws, as will be seen in Sec. 7.7.2.
Euler operators are considered to be lower level operators than boolean oper-
ators in the sense that they combine faces, edges, and vertices to form B-rep
models.

Boolean operations are not considered a part of the representation of a
B-rep model, but they are often employed as one of the means of creating, manip-
ulating, and editing the model as mentioned in Sec. 7.1 and shown in Table 7.1.

Nonsense object

(a) Original object - (b) Modified object

FIGURE 7-22
Effect of topology and geometry on boundary models.

370 GEOMETRIC MODELING

The effect of a Boolean operation on a CSG model (see Sec. 7.8) is simply an
addition to the CSG tree. However, since B-rep systems require an explicit repre-
sentation of the boundary of the solid, they must evaluate the new boundary that
is the result of the operation.

While B-rep systems store only the bounding surfaces of the solid, it is still
possible to compute volumetric properties such as mass properties (assuming
uniform density) by virtue of the Gauss divergence theorem which relates volume
integrals to surface ones. The speed and accuracy of these calculations depend on
the types of surfaces used by the models. More details are covered in Chap. 17.

The modeling domain (or the range of objects that can be modeled) of a
B-rep scheme is potentially large and depends mainly on the primitive surfaces
(planar, curved, or sculptured) that are admissible by the scheme to form the
faces of various models. For example, given the modeling domain of a scheme
based on half-spaces, a B-rep scheme with the same domain can be designed by
" using the boundary surfaces of the half-spaces as its primitive surfaces.

The desired properties of a representation scheme discussed in Sec. 7.4
apply to B-rep schemes. These schemes are unambiguous if faces are represented
unambiguously, that is, as regions of closed orientable surfaces. This claim
(unambiguous faces result in unambiguous B-rep) is based on the fact that an
r-set is defined unambiguously by its boundary and that non-r-sets are not
defined unambiguously by their boundaries. The validity of B-rep models is
ensured via Euler operations which can be built into the syntax of a CAD/CAM
system. However, these models are not unique because the boundary of any
object can be divided into faces, edges, and vertices in many ways. Verification of
uniqueness of boundary models is computationally expensive and is not per-
formed in practice.

7.7.1 Basic Elements

If a solid modeling system is to be designed, the domain of its representation
scheme (objects that can be modeled) must be defined, the basic elements
(primitives) needed to cover such modeling domain must be identified, the proper
operators that enable the system users to build complex objects by combining the
primitives must be developed, and finally a suitable data structure must be
designed to store all relevant data and information of the solid model. Other
system and geometric utilities (such as intersection algorithms) may also need to
be designed. Let us apply these ingredients to a B-rep system.

Objects that are often encountered in engineering applications can be classi-
fied as either polyhedral or curved objects. A polyhedral object (plane-faced
polyhedron) consists of planar faces (or sides) connected at straight (linear) edges
which, in turn, are connected at vertices. A cube or a tetrahedron is an obvious
example. A curved object (curved polyhedron) is similar to a polyhedral object
but with curved faces and edges instead. The identification of faces, edges, and
vertices for curved closed objects such as a sphere or a cylinder needs careful
attention, as will be seen later in this section. Polyhedral objects are simpler to
deal with and are covered first.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLos 371

The reader might have jumped intuitively to the conclusion that the primi-
tives of a B-rep scheme are faces, edges, and vertices. This is true if we can answer
the following two questions. First, what is a face, edge, or a vertex? Second,
knowing the answer to the first question, how can we know that when we
combine these primitives we would create valid objects? Answers to these ques-
tions can help users to create B-rep solid models of objects successfully. To show
that these answers are not always simple, consider the polyhedral objects shown
in Fig. 7-23. Polyhedral objects can be classified into four classes. The first class
(Fig. 7-23a) is the simple polyhedra. These do not have holes (through or not
through) and each face is bounded by a single set of connected edges, that is,
bounded by one loop of edges. The second class (Fig. 7-23b) is similar to the first

s f &2

(a) Simple polyhedra

)

(b) Polyhedra with faces of inner loops

Interior hole

(c) Polyhedra with not through holes

(d) Polyhedra with handles (through holes)

FIGURE 7-23
Types of polyhedral objects.

372 GEOMETRIC MODELING

with the exception that a face may be bounded by more than one loop of edges
(inner loops are sometimes called rings). The third class (Fig. 7-23¢) includes
objects with holes that do not go through the entire object. For this class, a hole
may have a face coincident with the object boundary; in this case we call it a
boundary hole. On the other hand, if it is an interior hole (as a void or crack
inside the object), it has no faces on the boundary. The fourth and the last class
(Fig. 7-23d) includes objects that have holes that go through the entire objects.
Topologically, these through holes are called handles. 4

With the above physical insight, let us define the primitives of a B-rep
scheme and other related topological items that enable a user to create the
boundary model of an object. They apply to both polyhedral and curved objects.
A vertex is a unique point (an ordered triplet) in space. An edge is a finite, non-
self-intersecting, directed space curve bounded by two vertices that are not neces-
sarily distinct. A face is defined as a finite connected, non-self-intersecting, region
of a closed oriented surface bounded by one or more loops. A loop is an ordered
alternating sequence of vertices and edges. A loop defines a non-self-intersecting,
piecewise, closed space curve which, in turn, may be a boundary of a face. In Fig.
7-23a, each face has one loop while the top and the right side faces of the object
shown in Fig. 7-23b have two loops each (one inner and one outer). A “nci”
through hole is defined as a depression in a face of an object. A handle (or
through hole) is defined as a passageway that pierces the object completely. The
topological name for the number of handles in an object is genus. The last item
to be defined is a body (sometimes called a shell). It is a set of faces that bound a
single connected closed volume. Thus a body is an entity that has faces, edges,
and vertices. Such an entity may be a useful solid or an intermediate polyhedron.
A minimum body is a point. Topologically this body has one face, one vertex,
and no edges. It is called a seminal or singular body. It is initially attached as
part of the world. The object on the right of Fig. 7-23¢ has two bodies (the
exterior and interior cubes) and any other object in Fig. 7-23 has only one body.

Faces of boundary models possess certain essential properties and charac-
teristics that ensure the regularity of the model; that is, the model has an interior
and a boundary. The face of a solid is a subset of the solid boundary and the
union of all faces of a solid defines such a boundary. Faces are two-dimensional
homogeneous regions so they have areas and no dangling edges. In addition, a
face is a subset of some underlying closed oriented surface. Figure 7-24 shows the
relationship between a face and its surface. At each point on the face, there is a
surface normal N that has a sign associated with it to indicate whether it points
into or away from the solid interior. One convention is to assume N positive if it
points away from the solid. It is desirable, but not required, that a face has a
constant surface normal.

The representation of a face must ensure that both the face and solid inte-
riors can be deduced from the representation. The direction of the face’s surface
normal can be used to indicate the inside or outside of the model. The surface
equation must be consistent with the normal chosen convention. For example, if
the face belongs to a Bezier or B-spline surface, the normal vector could be
defined as 0P/dv x 0P/0u or dP/0u x dP/dv depending on the chosen normal
convention and the directions of parametrizing the surface. Practically, some

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 373

Face edge

Plane of the face

(a) ‘Underlying surface is a plane

N

(b) A general underlying surface

FIGURE 7-24
Underlying surface of a face.

CAD/CAM systems store the surface normal and its sign as part of the face data
(although it could be computed from' the ‘surface equation) since it is a useful
parameter in many applications such as generating graphics displays or NC
machining data. The face interior can be determined by traversing the face loops
in a certain direction or assigning flags to them. In traversing loops, the edges of
the face outer loop is traversed, say, in a counterclockwise direction and the
edges of the inner loops are traversed in-the opposite direction, say the clockwise
direction. If one of the loops is a continuous or piecewise continuous curve, the
parametrization direction is chosen to reflect the traversal direction. Figure 7-25
shows some traversal examples. The other alternative assigns one flag to outer
loops and another one to inner loops.

Having defined the boundary model primitives, we now return to the ques-
tion of how they can be combined to generate topologically valid models. The
development of volume measure (valid models) based on faces, edges, and vertices
is rigorous and not easy. Euler (in 1752) proved that polyhedra that are homo-
morphic to a sphere (i.e., their faces are non-self-intersecting and belong to closed
orientable surfaces) are topologically valid if they satisfy the following equation:

F—E+V-—L=2B-G) (1.57)

where F, E, V, L, B, and G are the number of faces, edges, vertices, faces’ inner
loop, bodies, and genus (handles or through holes) respectively. Equation (7.57) is
known as the Euler or Euler-Poincare law. The simplest version of this equation
is F— E + V =2 which applies to polyhedra shown in Fig. 7-23a. With Eq.
(7.57) in hand, it has been easier to take it as the more primitive definition of a
polyhedron on which to base its construction and data structure. From a user

374 GEOMETRIC MODELING

IR

%

(a) Piecewise linear loops

(b) Circular loops

FIGURE 7-25
(c) General curve loops Traversal of face’s loops.

point of view, to create the boundary model of a given object, the user identifies
the proper number for all the variables of Eq. (7.57) and substitutes them into the
equation to ensure validity. Then system commands (Euler operations) are used
to create the model and ensures the validity simultaneously. This is similar to
identifying primitives and boolean operators in the case of a CSG-based user
interface. Table 7.3 shows the counts of the various variables of Eq. (7.57) for
polyhedra shown in Fig. 7-23. The numbering of these polyhedra in the table is
taken from left to right and top to bottom with the top left cube being poly-
hedron number 1 and the bottom right object being number 9.

Euler’s law given by Eq. (7.57) applies to closed polyhedral objects only.
These are the valid solid models we like to deal with. However, open polyhedral
objects do not satisfy Eq. (7.57). This class of objects includes open polyhedra

TABLE 73
Counts of polyhedral values for objects of Fig.
7-23
Object number F E Vv L B G
1 6 12 8 0 1 0
2 5 8 5 0 1 0
3 10 24 16 0 1 0
4 16 36 24 2 1 0
5 11 24 16 1 1 0
6 12 24 16 0 2 0
7 0 24 16 2 1 1
8 20 48 32 4 1 1
9 14 36 24 2 1 1

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 375

that may result during constructing boundary models of closed objects as well as
all two-dimensional polygonal objects. Open objects satisfy the following Euler’s
law:

F—-E+V—-L=B-G (7.58)

Figure 7-26 shows some examples of open objects. The reader can easily verify
that they satisfy the above equation. In the above equation, B refers to an open
body which can be a wire, an area, or a volume. All the objects in Fig. 7-26 have
one body and only bodies of Fig. 7-26¢ have one genus each. It might be inter-
esting to mention that Eq. (7.58) can form the basis of creating a boundary model
based on wireframe modeling. There are some systems such as MEDUSA that do
that.

We now turn from polyhedral objects to curved objects such as cylinders
and spheres. The same rules and guidelines for boundary modeling discussed thus
far for the former objects apply to the latter. The major difference between the
two types of objects results if closed curved edges or faces exist. Consider, for
example, the closed cylinder and sphere shown in Fig. 7-27. As shown in Fig. 7-
27, a closed cylindrical face (and alike) has one edge and two vertices and a
spherical face (and alike) has one vertex and no edges. The boundary model of a
cylinder has three faces (top, bottom, and cylindrical face itself), two vertices, and
three edges connecting the two vertices. The other “edges” are for visualization
purposes. They are called limbs, virtual edges, or silhouette edges. The problem
of computing the silhouette curve of a solid object is covered in Chap. 10. The
boundary model of a sphere, on the other hand, consists of one face, one vertex,
and no edges. Notice that both models satisfy Euler laws F —E + V =2 for
simple polyhedra.

The representation of curved edges is more complex than representing
piecewise linear edges. There are direct and indirect schemes. In direct schemes,
an edge is represented by a curve equation and ordered endpoints. In indirect
schemes, the edge is represented by the intersection of two surfaces. In practice,

(a) Wire polyhedra (c) Shell polyhedra

> (O

Open box Open cylinder
Disc (no top face) (no top face)
(b) Lamina polyhedra (d) Open three-dimensional polyhedra

FIGURE 7-26
Open polyhedral objects.

376 GEOMETRIC MODELING . TYPES AND MATHEMATICAL REPRESENTATIONS OF soLibs 377

E, 1
. L B N
‘ Generating o ' N
I edge / ‘ \
Limb Limb | AN | =
(silhouette edge) \ T
l i
| |
>~ l ‘
) Va i ?Ianar—l-:——- i
s acets i
Object Boundary model l !
| N | %
(a) Cylinder 1 NN ; P
v 1
(a) Cylinder
Limb
N
Generating VA ALY
edges < T
g =T\
//,,— - -T_ —A o\
Object Boundary model FIGURE 7-27 {\“: —— - :: f
Exact B-rep of a cylinder and a -~ T _
b) Sph sphere. \ L i
(5) Sphere P Planar kA i w e
facets N 7
NS Z

indirect schemes are probably preferred because the intersection of two under— FIGURE 7-28
lying surfaces of two faces produces the curved edge of the two faces. Faceted B-rep of a cylinder and

If the curved objects are represented by storing the equations of the under- ‘ (b) Sphere ’ a sphere.
lying curves and surfaces of the object edges and faces respectively, the resulting
boundary scheme is known as an exact B-rep scheme. Another alternative is the
approximate or faceted B-rep (sometimes called tessellation rep). In this scheme,
any curved face is divided into planar facets—hence the name faceted B-rep. Object
Figure 7-28 shows a faceted B-rep of a cylinder and sphere. The faceted cylinder
is generated by rotating a line incrementally about the cylinder axis the desired :
total number of facets. This is accomplished via a rotational sweep operator. A b Body
faceted sphere is formed in a similar way by rotating m connected line segments
(edges) about the sphere axis for a total of n sides. MEDUSA, for example, is a
faceted B-rep package. The numbers n and m are user inputs. This representation, Genus
although continuous, will no longer be smooth and as the number of facets
increases to give a more accurate representation, the computing time involved
increases dramatically.

A general data structure for a boundary model should have both topologi-
cal and geometrical information. The structure shown in Fig. 7-29 is based on
Eq. (7.57). A relational database model is very effective to implement such a data
structure. Lists for bodies, faces, loops, edges, and vertices are generated and
stored in tables. Each line in Fig. 7-29 represents a pointer in the database.

The winged edge data structure is a particularly useful data structure which
has been adopted by several modeling systems such as GLIDE and BUILD. In] FIGURE 7-29
this structure, all the adjacency relations of each edge are described explicitly. Vertex ———————— Point coordinates General data structure for boundary

Since an edge is adjacent to exactly two faces, it is a component in two loops, one < } modeling.

Topology Geometry

|
|
|
|
|
|
|
|
!
|
|
|
i
|
!
|
|
|

Face «———+—— Underlying surface equation

Loop

Edge ————+—— Underlying curve equation

378 GEOMETRIC MODELING

Successor 1 Predecessor 2

FIGURE 7-30
Predecessor | Successor 2 The winged edge data structure.

for each face. If these loops are oriented, that is, edges of a loop are traversed in a
given direction, say counterclockwise, the edge has a predecessor and a successor
in addition to the two bounding vertices (see Fig. 7-30). This edge structure
together with its implication on the loop and face elements is extremely efficient
for manipulation purposes (adding or deleting vertices, edges, or faces) using
Euler’s law. For example, the insertion of a new edge in the structure changes the
predecessor/successor relationship of its ‘adjacent edges, possibly splitting a face
into two and therefore adding a new loop.

7.7.2 Building Operations

Equation (7.57) forms the basis to develop building operations to create bound-
ary models of complex objects. Euler operators (or Euler primitives) are based on
this equation. There are many variations on how these operators can be imple-
mented. Sample operators are MBFV, MEV, MEF, and GLUE. In these oper-
ators, M and K stand for Make and Kill respectively and the other letters mean
the same as in Eq. (7.57). Other operators are available to add convenience and
flexibility to the construction process. Each operator usually has a complement
that has the exact opposite effect on the construction process. Table 7.4 shows
some Euler operators. The table shows that the user is not free to construct faces,
edges, or vertices as with wireframe and surface modeling. There is no such oper-
ator as ME, MV, or MF only because they all violate Euler’s law. To create an
edge, for example, a new vertex or a new face must be created to preserve the
topology. Thus, the two operators MEV and MEF are legitimate. The operator
MBFYV is usually used to begin constructing the boundary model and it returns a
seminal or singular body. It could be thought of as creating the first vertex of the
model. The gluing operator is used to glue bodies together at certain faces. The
gluing can result in forming a genus or killing one body, as indicated by the
operators KFEVMG and KFEVB respectively. Both operators can be called the
GLUE operator whose complement would be UNGLUE. The composite com-
mands are available for efficiency of construction and can always be replaced by
a sequence of other basic operators. For example, ESPLIT can be replaced by
KEV, MEV, and MEYV. Similarly, the KVE operator which kills a vertex and all

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 379

TABLE 74
Some Euler operations
Operation Operator Complement Description of operator
Initialize database and begin creation =~ MBFV KBFV Make Body, Face, Vertex
Create edges and vertices MEV KEV Make Edge, Vertex
Create edges and MEKL KEML Make Edge, Kiil Loop
faces MEF KEF Make Edge, Face
MEKBFL KEMBFL Make Edge, Kill Body,
Face, Loop
MFKLG KFMLG Make Face, Kill Loop,
Genus
Glue KFEVMG MFEVKG Kill Face, Edge, Vertex,
Make Genus
KFEVB MFEVB Kill Face, Edge, Vertex,
Body
Composite operations MME KME Make Multiple Edges
: ESPLIT ESQUEEZE Edge-Split
KVE Kill Vertex, Edge

attached edges to it can be replaced by an (n — 1) KEF followed by a single KEV
if n edges are attached to the vertex. Notice that some Euler operators do not tell
directly their end result (see Table 7.5). For example, one would think the glue
operator KFEVMG Kkills only one face. It is less confusing to write KFFEVMG,
especially to new users of a system. The actual implementation and syntax of the
above operators into modeling systems are not discussed here. Instead, Fig. 7-31
shows how they can be used conceptually in constructing boundary models.
Euler operators create changes in the number of the components in the
topology under construction. The operators can be characterized by the tran-
sition status they make in the six-space defined by the parameters of Euler’s law.
Table 7.5 shows these changes for the operators listed in Table 7.4. Observe that
the transition state of each operator satisfies Euler’s law. This observation pro-
vides a general rule to design any new Euler operator. Moreover, if the operator

TABLE 7.5

Transition states of some Euler operators
Operator F E 1 4 L B G
MBFV 1 0 1 0 1 0
MEV 0 1 1 0 0 0
MEKL 0 1 0 -1 0 0
MEF 1 1 0 0 0 0
MEKBFL -1 1 0 -1 -1 0
MFKLG 1 0 0 -1 0 -1
KFEVMG -2 —-n —-n 0 0 1
KFEVB -2 —n —n 0 -1 0
MME 0 n n 0 0 0
ESPLIT 0 1 1 0 0 0
KVE —-@n-1) -n -1 0 0 0

380 GEOMETRIC MODELING
Input/output Operator Output/input
MBFV
—_— °
MEV
° < TTwEv /
KEV

I:I . MEKL .
< KEML i

MEF |
KEF

I:I MEKBFL .
<~ T=omae

KEMBFL

GLUE(KFEVMG) Z
—

—————————— - UNGLUE(MFEVKG) |

GLUE(KFEVB)

- s L

UNGLUE(MFEVB)
. = —— e
KME

. ESPLIT
_

ESQEEZE

FIGURE 7-31
Topology creation via Euler operators.

e &0

acts on valid topology and the state transition it generates is valid, then the
resulting topology is a valid solid. Therefore, Euler’s law is never verified explic-
itly by the modeling system and its software. It should also be noticed that inter-
mediate topology: during construction may not make geometrical sense or may
not represent an acceptable, though valid, solid (see Fig. 7-31).

- Higher-level. Euler operators are possible to develop. Examples include
MCUBE, MCYL, MSPH, SWEEPR, and SWEEPT to respectively create a
cube, a cylinder, a sphere, axisymmetric (rotational sweep) objects, and uniform
(translational) objects. Figure 7-32 shows a wire and a face that are rotated to

Initial wire

(a) Axisymmetric model

Initial face
lamina

,(b) Torus

FIGURE 7-32
Rotational sweep (approximate) boundary models.

create a symmetric object and a torus respectively. In addition, union, difference,
and intersection operators can be developed.

The advantages of Euler operators are that they ensure creating valid
topology, they provide full generality and reasonable simplicity, and they achieve
a higher semantic level than that of manipulating faces, edges, and vertices
directly. However, Euler operators do not provide any geometrical information
to define a solid polyhedron. They do not impose any restriction on surface
orientation, face planarity, or surface self-intersection. Nevertheless, in practice,
Euler operators perform a useful role as a topological foundation for developing
routines that embody more algebra and geometry.

Example 7.5. Create the boundary model of solid S shown in Fig. 7-20a.

Solution. First let us develop the boundary model of the solid S. For simplicity, we
assume that an approximate B-rep scheme is used. Figure 7-33 shows the boundary
model of the solid. Based on the figure, the model has 16 faces, 28 vertices, 42 edges,
2 loops, 1 body, and 1 genus. They all together satisfy Euler’s law. A suggested
sequence to create the model is shown in Fig. 7-34. The sequence matches the plan-
ning strategy reflected in Fig. 7-33 in which the cylindrical face of the hole has been
approximated by eight facets. Figure 7-34 is shown in an isometric view although it

Fy !
F: Fy
s Foly /o
[6 10 . Vg
v ! . :
o Vs } Vi Vi Fs
v, - Vi Vy
Vs i L4V 25 £
s & ZAAE
/_/ F, L 8 -4
s K [
Vi Vs
F3 FIGURE 7-33
Faces Fy to Fy for hole are not shown Boundary model of solid S.
Ve Vs
Vi V, Vs .
. T
MBFV(makes Fg) MME MEF
Via Vi)
Vio Vo e
:) TE]]
8 W
g MEF (makes Fy)
MEF (makes F,) MEF (makes Fs)
MME MEF (makes F;) MEF (makes Fg)
SR (vvzar Fa) MEF (makes F7)

MEF (makes Fy)
MEF (makes F;o)

MEF (makes F, 5)

MEF (makes F)
MEF (makes F|q)

FIGURE 7-34

KEML

Creation of boundary model of solid §.

382

KFMLG

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLps 383

only reflects topology construction and not geometry. It is presented in this way for
clarity and learning purposes. However, this topology could have been shown in
one plane or one surface; that is, model S is homomorphic to a sphere. Each step in
the figure shows the operator(s) used and its result(s) and whatever is needed from
the previous steps. It is observed that at the end of construction the final number of
primitives (faces, edges, vertices, loops, bodies, and genus) created is equal to the
number calculated from Fig. 7-33. Any intermediate topology (edge E and face F)
that is created for comstruction purposes has to be killed. Notice that the face
created by the MBFV operator is chosen arbitrarily as Fg for convenience. It could
have been equally chosen to be F, or F;. At this point, the face has no edges.
However, its edges are formed automatically later on after creating the faces (F,, Fg,
and F,) surrounding it. It would have been impossible to create Fg otherwise and
the topology would have been invalid if we had ignored the face created by MBFV.

Vis

oV

MBFV(makes Fyo) MME MEF

Fy
F

MEF (makes F»)

MME MEF

MEF (makes F7)

A

MEF

<

FIGURE 7-35
Creation of boundary model of solid fillet.

384 GEOMETRIC MODELING

Similarly, the body created by this command is part of the topology and in fact is
the body of solid §.

The reader can perhaps find a totally different set of steps than those shown
in Fig. 7-34 to construct the boundary model, or these steps can change significantly
depending on the available set of Euler operators. For example, if composite Euler
operators for linear sweep and making cylinders are available, the model can easily
be constructed in a smaller number of steps. The reader is encouraged to investigate
this route.

4
Example 7.6. Create the boundary model of the solid fillet shown in Fig. 7-21.

Solution. Figure 7-35 shows the boundary model of the solid fillet and its creation.
The curved face has been approximated by six facets. The construction steps follow
the same general outline as in Example 7.5. It is obvious that the larger the number
of facets, the more the CPU time and storage needed to create the model.

Example 7.7. Develop an algorithm that can enable the user to create and manipu-
late boundary models by using set operations.

Solution. We have mentioned in Sec. 7.2 and at the beginning of Sec. 7.7 that B-rep-
based packages use set operations to create and manipulate boundary models. They
seem to be more efficient than Euler operators. We have also mentioned in Sec. 7.7
that the effect of set operations on a B-rep model is different from that on a CSG
model. In the former, the new boundary that results from the operation must be
evaluated.

This example illustrates how to develop an algorithm to provide the user
with the set operations union, difference, and intersection. The problem at hand
can be stated as follows. Given two solids or primitives as boundary models, find
their union, difference, and intersection. This problem is also known as boundary
merging for B-reps and boundary evaluation for CSG. Set-operation algorithms
are in general very complex programs. For simplicity purposes, let us assume that
the two solids are not tangent to or touch each other. Thus, if two solids intersect

pu
/
/
/
A
B 7 J 1
/ /
s ,
B a4 /
— / f / 7/ 4
yav4 Y__ Vv
|
b- A
A
“(a) Planar polygon *(b) Nonplanar polygon
FIGURE 7-36

Intersection polygons of two solids.

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 385

at all, they do so along one or more closed (maybe nonplanar) intersection poly-
gons. Figure 7-36 shows a planar and a nonplanar intersection polygon. Such
polygons result from the edges of each solid intersecting the faces of the other
solid.

While set-operation algorithms could be written to manipulate the low-level
data structures directly, basing them on Euler operators offers important advan-
tages. They guarantee the topological validity of the result of the set operation
and they hide the actual data structure during writing of the algorithms. The
algorithm we develop here is therefore based on Euler operators. First, it finds
the intersection polygon between the two solids and checks for its planarity. Then
it splits each solid’s boundary along this polygon. The two solids are then classi-
fied against each other. Finally, the proper parts of the two solids are glued’
together to give the desired result.

The detailed steps of the algorithm for the case of a planar intersection
polygon (see Fig. 7-36a) are described as follows:

1. Compare each of the faces of A with the edges of B. If an edge intersects a face
in a point, we create a null edge as a loop into the face and split the edge by
two coincident vertices to form a null edge. Figure 7-37a shows the result of
this step. To create the null edges in the top face of 4, the MME operator is
used four times to create two edges (the dashed and the null edges) each time.
This is followed by KEML four times to eliminate the undesired edges
(dashed). To create the null edges in solid B, each of its intersecting edges is
split twice by the ESPLIT operator. Each null edge in 4 or B has two coin-
cident vertices, that is, geometrically identical vertices.

Repeat step 1 for faces of B and edges of A. The result of this step is null for
this example.

3. Connect neighbor null edges in each solid to create the intersection polygons.
A “combine” algorithm is needed to achieve this step and is assumed to be
available. Such an algorithm could be based on connecting the vertices of a
null edge to the vertices of the nearest null edge on the same face by the MEF
operator. To accomplish connecting the null edges, they are sorted in a given
direction by the coordinates of their vertices. An intersection polygon is con-
structed for each solid and since these polygons are identical, the “combine”
algorithm can construct both of them simultaneously.

In order to construct the intersection polygons, null faces have to be
created. Some of these faces will be killed with the null edges created in steps 1
and 2 to complete the construction process and some will remain to enable the
two solids 4 and B to be split. To avoid any confusion that may result from
this process, the following rule can be followed. Use the MEKL operator to
create as many edges as there are loops created in steps 1 and 2 and then use
the MEF operator to create the remaining edges. For solid A in Fig. 7-37b,
MEKL is applied four times to create four edges, say the top polygon, and kill
the four loops created in step 1. Then MEF is used four times to create, say,
the bottom polygon. The double-intersection polygon is needed to create the
intersection faces. For solid B, MEF is applied eight times.

1

386 GEOMETRIC MODELING

I
Bl
!
;
MME T ESPLIT
/L _‘}
A
(a) Null edges
. % \
' B
H MEKL MEF
3
e
i
(b) Intersection polygons
B .
@ igﬂ XY ker
/A keML
(c) Intersection faces -
Ain B
< BoutA -
.) \\\\\\\\\\\ MFBKL
MFBKL

AW|Bina FIGURE 7-37
- Splitting two solids by a set-
(d) Solid splitting and classification operation algorithm.

.

4. Construct the intersection faces by deleting all the null edges in each solid.
This is accomplished by using the KEF operator for all of the edges except the
last null edge which is killed by KEML. In Fig. 7-37¢, KEF is applied three
times followed by one KEML.

5. Split each solid into two by using the MFBKL operator as shown in
Fig. 7-37d.

By following steps 1 to 5, the reader can easily find out that all the null
edges are killed for each solid, eight edges and two faces are added to solid 4,
eight edges and six faces are added to solid B, and one body is added to each
solid. While it is easy to interpret all these topological changes, faces need
some clarification. For solid A4, the two faces are the intersection faces. In this
case, the top face of A is split into two faces; one of them is an intersection
face. For solid B, two of the six faces are the intersection faces and the other
four result from splitting each-side face by the intersection polygon.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLiDs 387

6. Each subsolid resulting from step 5 is classified against each original solid,
that is, A is classified as 4 in B and A out B and B is classified as B in 4 and
B out A. A in B, for example, means the parts of 4’s boundary inside B where-
as A out B is outside B (see Fig. 7-37d). Notice that any part of the original
solid is by itself a valid solid.

7. Combine the proper parts of each solid to obtain the desired set operation as
follows:

A U B = Glue (4 out B, B out A)

A n B=Glue (4in B, Bin A)

A — B = Glue (4 out B, Bin A)
or B — A =Glue (Bout A, 4 in B)

The gluing operator for 4 U B and A — B is simple because all the
subsolids involved are closed objects. The KFEVB operator described in
Tables 7.4 and 7.5 can be used to glue the subsolids to give the proper results,
that is, closed solids. However, if the same gluing operator is used in 4 N B
and B — A, open (unregularized open sets) objects would result. This is
because one of its operands (4 in B) is an open object—in this example the
two-dimensional intersection face. In such a case, the same previous gluing
operator, KFEVB, can be used with the difference that it kills only one face
instead of two. Therefore, the operator satisfies Eq. (7.58) and is used to kill
the open object (intersection face).

The above described algorithm can be applied to any two boundary models
whose classifications with each other do not yield A on B and/or B on A cases.
This is why we mentioned in the beginning that A and B should not touch each
other. The reader can extend solid B to pierce through 4 and apply the above
steps.

The reader is also encouraged to apply this algorithm to the two solids
shown in Fig. 7-36b. It can be assumed that an algorithm that sorts vertices by
their planes is available. In this case, six null edges on each of 4 and B, four loops
for A, eight faces for A4, two loops for B, and twelve faces for B are created as
intermediate results. After killing the null edges and splitting 4 and B, four and
eight faces are created to split A and B respectively to give the final result. The
gluing process is exactly as above except that the number of faces the gluing
operator has to kill is four instead of two.

7.7.3 Remarks

The B-rep scheme is very popular and has a strong history in computer graphics
because it is closely related to traditional drafting. Its main advantage is that it is
very appropriate to construct solid models of unusual shapes that are difficult to
build using primitives. Examples are aircraft fuselage and automobile body
styling. Another major advantage is that it is relatively simple to convert a B-rep
model into a wireframe model because the model’s boundary definition is similar

388 GEOMETRIC MODELING

to the wireframe definition. For engineering applications studied to date, algo-
rithms based on B-rep are reliable and competitive with those based on CSG.

One of the major disadvantages of the boundary model is that it requires
large amounts of storage because it stores the explicit definition of the model
boundaries. It is also a verbose scheme—more verbose than CSG. The model is
defined by its faces, edges, and vertices which tend to grow fairly fast for complex
models. If B-rep systems do not have a CSG-compatible user interface, then it
becomes slow and inconvenient to use Euler operators in a design and pro-
duction environment. In addition, faceted B-rep is not suitable for many applica-
tions such as tool path generations.

78 CONSTRUCTIVE SOLID GEOMETRY
(CSG) ;

CSG and B-rep schemes are the most popular schemes to create solid models of
physical objects. This is apparent from the existing research and technological
activities. They are the most popular because they are the best understood repre-
sentations thus far. CSG offers representations that are succinct, easy to create
and .store, and easy to check for validity. Moreover, difference and intersection
operations can respectively provide means for material removal processes and
interference checking between objects. Interference checking is useful in many
applications such as vision and robot path planning.

A CSG model is based on the topological notion that a physical object can
be divided into a set of primitives (basic elements or shapes) that can be com-
bined in a certain order following a set of rules (boolean operations) to form the
object. Primitives themselves are considered valid CSG models. Each primitive is
bounded by a set of surfaces; usually closed and orientable. The primitives’ sur-
faces are combined via a boundary evaluation process to form the boundary of
the object, that is, to find its faces, edges, and vertices. In addition to degenerating
an object to a collection of primitives, a CSG model is fundamentally and topo-
logically different from a B-rep model in that the former does not store explicitly
the faces, edges, and vertices. Instead, it evaluates them whenever they are needed
by applications’ algorithms, e.g., generation of line drawings. The reader might
then ask the question: if a CSG scheme has to evaluate faces, edges, and vertices,
why not use a B-rep scheme from the beginning? The answer to this question
entails close comparison between all aspects of both schemes including efficiency
and performance. Such comparison is difficult to make due to all implementation
and algorithmic details involved. However, one answer can be given. The concept
of primitives offers a different conceptual way of thinking that may be extended
to model engineering processes such as design and manufacturing. It also appears
that CSG representations might be of considerable importance for manufacturing
automation as in the study of process planning and rough machining operations.

There are two main types of CSG schemes. The most popular one, and the
one we always mean when we talk about CSG models, is based on bounded solid
primitives, that is, r-sets. The other one, less popular, is based on generally
unbounded half-spaces, that is, non-r-sets. The latter scheme belongs more to
half-space representation covered in Sec. 7.6. As a matter of fact, bounded solid

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 389

primitives are considered composite half-spaces and the boundaries of these
primitives are the surfaces of the corresponding half-spaces. CSG systems based
on bounded primitives (e.g., PADL-2 and GMSOLID) allow their sophisticated
users to use both their bounded primitives and/or half-spaces to create new
primitives, typically called metaprimitives. It is also possible to extend the model-
ing domain of a system by implementing new half-spaces, and eventually new
primitives, into its software. This implementation does not only require the trivial
inclusion of the half-space equation into the software, but more importantly it
requires developing supporting utilities such as intersecting the half-space with
itself as well as other already existing half-spaces.

The modeling domain of a CSG scheme depends on the half-spaces that
underlie its bounded solid primitives, on the available rigid motion and on the
available set operators. For example, if two schemes have the same rigid motion
and set operations but one has just a block and a cylinder primitive and the
other has these two plus a tetrahedron, the two schemes are considered to have
the same domain. Each has only planar and cylindrical half-spaces, and the tetra-
hedron primitive the other system offers is just a convenience to the user and
does not extend its modeling domain. Similarly, the surfaces that a CSG scheme

- can represent directly depend on the bounding surfaces of its underlying half-

spaces. The most widely represented surfaces are the quadric surfaces that bound
most existing primitives. Extending the solid modeling domain to cover sculp-
tured surfaces requires representing a “sculptured” half-space and its supporting
utilities. -

CSG schemes based on bounded primitives are usually more concise than
those based on half-spaces because half-spaces are lower-level primitives. As an
example, consider the solid shown in Fig. 7-38a. The model is represented by
three bounded primitives (Fig. 7-385) and seven half-spaces (Fig. 7-38¢c). Con-
sidering the half-spaces composing the three bounded primitives, it is obvious
that 15 half-spaces (six for each block and three for the cylinder) have been used.
Some of these half-spaces, such as the two at the bottom of blocks 4 and B, are
redundant. This redundancy is perfectly accepted by users in trade of the conve-
niences they gain from using bounded primitives. However, it raises the question
of the minimal CSG representation of a solid.

C
B
A
(a) Solid (b) Bounded primitives (c) Unbounded half;spaces

FIGURE 7-38
Bounded and unbounded primitives. N

390 GEOMETRIC MODELING

The database of a CSG model, similar to B-rep, stores its topology and
geometry. Topology is created via the regularized set (boolean) operations that
combine primitives. Therefore, the validity of the resulting model is reduced to
the validity checks of the used primitives. For bounded primitives, these checks
are usually simple (in the form of greater than zero) and the validity of the CSG
model may be ensured essentially at the syntactical level. This means that in a
CSG language a model is valid if it can be described syntactically correct using
this language (user interface). The geometry stored in the database of a CSG
model includes configuration parameters of its primitives and rigid motion and
transformation. Geometry of faces, edges, and vertices are not stored but can be
calculated via the boundary evaluation process.

While data structures of most boundary representations are based on the
winged-edge structure developed by Baumgart in 1972, data structures of most
CSG representations are based on the concept of graphs and trees. This concept
is introduced here in enough depth to enable understanding of CSG data struc-
tures. The interested reader is referred to any standard textbook on Pascal or
data structures for more details. N

A graph is defined as a set of nodes connected by a set of branches or lines.
Each branch in a graph is specified by a pair of nodes. Figure 7-39q illustrates a
graph. The set of nodes is {4, B, C, D, E, F, G} and the set of branches, or the set
of pairs, is {{4, B}, {4, C}, {B, C}, {B, E}, {B, F}, {B, G}, {C, D}, {C, E}}. Notice
that these pairs are unordered, that is; no relations exist between the elements of
each pair. For example, the pair {4, B}-can also be {B, 4}. If the pairs of nodes
that make up the branches are ordered pairs, the graph is said to be a directed
graph or digraph. This means that branches have directions in a digraph and
become in a sense arrows going from one node to another, as shown in Fig.
7-39b. The tail of each arrow represents the first node in the pair and its head
represents the second node. The set of ordered pairs for Fig. 7-39b is {(4, B),
(4, C), (C, B), (B, E), (F, B), (B, G), (D, C), (E, C)}.

Each node in a digraph has an indegree and outdegree and has a path it
belongs to. The indegree of a node is the number of arrow heads entering the
node and its outdegree is the number of arrow tails leaving the node. For
example, node B in Fig. 7-39b has an indegree of 3 and an outdegree of 2 while
node D has a zero indegree and an outdegree of 1. Each node in a digraph

(a) Graph (d) Digraph

FIGURE 7-39
Graphs and digraphs.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLDs 391

belongs to a path. A path from node n to node m is defined as a sequence of
nodes ny, n,, ..., n such that n; = n and n, = m and any two subsequent nodes
(n;, ;4 1) in the sequence are adjacent to each other. For example, the path from
node A to node G in Fig. 7-39b is 4, B, G or 4, C, B, G. If the start and end
nodes of a path are the same, the path is a cycle. If a graph contains a cycle, it is
cyclic; otherwise it is acyclic.

We now turn our attention to trees. A tree is defined as an acyclic digraph
in which only a single node, called the root, has a zero indegree and every other
node has an indegree of 1. This implies that any node in the tree except the root
has predecessors or ancestors. Based on this definition, a graph need not be a tree
but a tree must be a graph. The digraph shown in Fig. 7-39b is not a tree.
However, its modification shown in Fig. 7-40a is a tree. Node 4 is the root of the
tree and nodes E, F, and G, for example, have node B as their ancestor or node B
has nodes E, F, and G as its descendants. If the descendants of each node are in
order, say, from left to right, then the tree is an ordered one. Moreover, when
each node of an ordered tree has two descendants (left and right), the tree is
called a binary tree (see Fig. 7-40b). Finally, if the arrow directions in a binary
tree are reversed such that every node, except the root, in the tree has an out-
degree of 1 and the root has a zero outdegree, the tree is called an inverted binary
tree (see Fig. 7-40c). An inverted binary tree is very useful to understand the data
structure of CSG models (sometimes called boolean models).

Any node in a tree that does not have descendants, that is, with an out-
degree equal to zero, is called a leaf node and any node that does have descen-
dants (outdegree greater than zero) is an interior node. In Fig. 7-40b, nodes D, E,
F, and G are leaf nodes and nodes B and C are interior nodes. Nodes G and D
are called the leftmost leaf and the rightmost leaf of the tree respectively. Nodes

& © B © G e -

(a) Tree (b) Binary tree

(c) Inverted binary tree

FIGURE 7-40
Types of trees.

392 GEOMETRIC MODELING

in a tree can also be viewed from a different perspective as follows. Every node of
a tree T is a root of another tree, called a subtree of T, contained in the original
tree T. A subtree is itself a binary tree. Any tree can be divided into two subtrees:
left and right subtrees of the original tree. Considering Fig. 7-40b, the original
tree consists of seven nodes with 4 as its root. Its left subtree is rooted at B and
its right subtree is rooted at C. This is indicated by the two branches emanating
from A to B on the left and to C on the right. The absence of a branch indicates
an empty subtree. The binary trees rooted at the leaves D, E, F, and G have
empty (nil) left and right subtrees.

Let us return back to the data structures of CSG representations and relate
them to graphs and trees. Consider the solid shown in Fig. 7-41a with its MCS. A
block and a cylinder primitive are enough to create the CSG model of the solid.
Figure 7-41b shows one of the possible ways to decompose the solid into its
primitives. Using the local coordinate systems of the primitives as shown in
Fig. 7-4, and regardless of the user interface or command syntax offered by a
particular CAD/CAM system, a user can construct the CSG model using the
following steps: '

B, = block positioned properly)

B, = block positioned properly

B, = block

B, = By moved piroperly in the X direction

C, = cylinder positioned properly ¢ Primitives’ definitions

C, = C, moved properly in the X direction
C; = cylinder positioned properly

C, = C3 moved properly in the X direction |

S, =B, U* B;

§,=8,u*C, Construct left half
S;=8, Uu* Cy

S,=B, U* B,

Ss=C, U*S, Construct right half
S =C, U* S5

S=8;U*Ss } Model

To save the above steps in a data structure, such a structure must preserve the
sequential order of the steps as well as the order of the boolean operations in any
step; that is, the left and right operands of a given operator. The ideal solution is
a digraph; call it a CSG graph. A CSG graph is a symbolic (unevaluated) repre-
sentation and is intimately related to the modeling steps used by the user. This
makes the CSG graph a very efficient data structure to define and edit a solid.
The CSG graph representing the above steps is shown in Fig. 7-42. Each of the
intermediate solids S, to S¢ is shown as the same node of its corresponding set
operation node. Notice that the steps starting from S, and ending at S can be
replaced by

S=B, U* By u*C, u* C3 U* B, U* B, U*C, U* C,

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLibs 393

C Cs
636 Ci 2
= S5
B3 By
Y
‘ B, | B
X
Z . .
(a) Typical solid (b) Primitives
 FIGURE 7-41

A typical solid and its building primitives.

where set operations are evaluated from left to right unless otherwise indicated
by parenthesis. In this case the intermediate solids §; to Ss do not exist and
should be removed from the CSG graph.

While a CSG graph has a succinct data structure to represent a solid model
and is suitable for convenient and efficient editing of the model, it is not suitable
to use in geometric computation. This is mainly because of the cycles that the
graph may have which, in turn, means graph nodes may be shared to reflect
congruence relationships in the solid. This sharing means that useful information
about the solid such as the locations of shared nodes is not explicitly stored by
the graph structure. Another reason the CSG graph is not efficient in computa-
tions is its storage of real expressions that may be used in defining a solid (e.g.,
¢ =b?, then use ¢ as a primitive parameter) as strings, that is, unevaluated.

FIGURE 742
CSG graph of a typical solid.

394 GEOMETRIC MODELING

Therefore, a less symbolic and more evaluated data structure is needed before
involving computation and application algorithms such as boundary evaluation
and mass properties of a solid. A CSG tree data structure is an ideal solution. It
is a natural extension of the CSG graph and results from copying shared nodes
and evaluating all strings (real expressions). Some solid modelers such as
PADL-2 has both data structures. In these modelers, the CSG graph is the
primary data structure and the CSG tree structure is derived from it whenever
needed. Other modelers may have the CSG tree as their only data structure.

A CSG tree is defined as an inverted ordered binary tree whose leaf nodes
are primitives and interior nodes are regularized set operations. Figure 7-43
shows the CSG tree derived from the CSG graph shown in Fig. 7-42. Notice that
this CSG tree can be derived directly from the modeling steps without having to
create the CSG graph. As a matter of fact, the tree can be created from the
planning strategy shown in Fig. 7-41b. In Fig. 7-43, blocks B, to B,, cylinders C,
to C,, and union operators are renamed as P, to P,, P to Py, and OP, to OP,
respectively to emphasize the fact that they are evaluated and stored explicitly
compared to their counterparts used in the CSG graph (Fig. 7-42). The CSG tree
is shown with its full details including arrows. In practice, the arrows are usually
not shown, the leaf nodes are just shown as primitives’ names without circles
surrounding them, and a line extends from the tree root up to indicate the result

. of the final solid. Other styles of showing a CSG tree may replace primitive

names by their sketches as well as showing each intermediate solid that results
from an operator in the stream of the tree branches.

The total number of nodes in a CSG tree of a given solid is directly related
to the number of primitives the solid is decomposed to. The number of primitives
decides automatically the number of boolean operations required to construct
the solid. If a solid has n primitives, then there are (n — 1) boolean operations for
a total of (2n — 1) nodes in its CSG tree. The balanced distribution of these nodes
in the tree is a desired characteristic for various applications, especially those that
use ray casting such as shading and mass properties. A balanced tree is defined as

FIGURE 743
CSG tree of a typical solid.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLiDs 395

a tree whose left and right subtrees have almost an equal number of nodes; that
is, the absolute value of the difference (n;, — ng) is as minimal as possible where

N +ng=2n—2 (7.59)

The root node is not included in this equation. n, and n; are the number of
nodes of the left and right subtrees respectively. A perfect tree is one whose
|n;, — ng|is equal to zero. A perfect tree results only if the number of primitives is
even. For a perfect tree, the following equation applies:

ng=ng=n-—1 (7.60)

Each subtree has n/2 leaf nodes (primitives) and (n — 2)/2 interior nodes (boolean
operations). Figure 7-43 shows a perfect tree.

The creation of a balanced, unbalanced, or a perfect CSG tree depends
solely on the user and how he/she decomposes a solid into its primitives. The
general rule to create balanced trees is to start to build the model from an almost
central position and branch out in two opposite directions or vice versa; that is,
start from two opposite positions and meet in a central one. The tree shown in
Fig. 7-43 begins at the central blocks B; and B, and branches out. Another
vseful rule is that symmetric objects can lead to perfect trees if they are decom-
posed properly (see Figs. 7-41b and 7-42) starting from the plane(s) of symmetry.
Figure 7-44 shows an unbalanced tree of the same solid shown in Fig. 7-41. This
tree results if the user starts building the model from the left or right side. In this
figure, primitives P; to P, correspond to primitives Cy, C3, B3, B; + B,, By,
C,, and C, respectively, shown in Fig. 7-41b. In this tree n; = 11 and ny = L.
Reorganizing an unbalanced tree internally by a solid modeler is possible but is
not practical to do.

FIGURE 7-44
An unbalanced CSG tree.

396 GEOMETRIC MODELING

Application algorithms must traverse a CSG tree, that is, pass through the
tree and visit each of its nodes. Also traversing a tree in a certain order provides
a way of storing a data structure. The order in which the nodes are visited in a
traversal is clearly from the first node to the last one. However, there is no such
natural linear order for the nodes of a tree. Thus different orderings are possible
for different cases. There exist three main traversal methods. The methods are all
defined recursively so that traversing a binary tree involves visiting the root and
traversing its left and right subtrees. The only difference among the methods is
the order in which these three operations are performed. The three methods are
preorder, inorder, and postorder traversals. Sometimes, these methods are
referred to as prefix, infix, and postfix traversals. Three other methods can be
derived from these three main ones by reversing the order of the traversal to give
reverse preorder, reverse inorder, and reverse postorder traversals.

To traverse a tree in preorder, we perform the following three operations in
the order they are listed:

1. Visit the root.)
2. Traverse the left subtree in preorder.
3. Traverse the right subtree in preorder.

In the reverse preorder method, the three operations are reversed to give the
sequence of visiting the right subtree, then the left subtree, and then the root.
Figure 7-45 shows the preorder, and its reverse, traversal of the tree shown in
Fig. 7-43. :

To traverse a tree in inorder (or symmetric order):

1. Traverse the left subtree in inorder.
2. Visit the root.
3. Traverse the right subtree in inorder.

In the reverse inorder method, the tree is traversed by visiting the right subtree,
then the root, and then the left subtree (see Fig. 7-46).
To traverse a tree in postorder:

1. Traverse the left subtree in postorder.
2. Traverse the right subtree in postorder.
3. Visit the root.

In the reverse postorder method, the tree is traversed by visiting the root, then
the right subtree, and then the left subtree, as shown in Fig. 7-47.

By comparing Figs. 7-45 to 7-47, the reader can easily observe that the
reverse preorder is a mirror image of the postorder, the reverse postorder is a
mirror image of the preorder, and the reverse inorder is a mirror image of the
inorder. ‘ ’ ~

‘Which of the traversal methods shown in Figs. 7-45 to 7-47 is more suitable
to store a tree in a solid modeler? In arithmetic expressions, e.g., 4 + (B + C)D,

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLIDS 397

(b) Reverse preorder

FIGURE 745
Preorder and reverse preorder traversals of a tree.

the order of operations in an infix expression might require cumbersome paren-
theses while a prefix form requires scanning the expression from right to left.
Since most algebraic expressions are read from left to right, postfix is a more
natural choice. In addition, if the concept of a stack (refer to Pascal textbooks)
(last-in, first-out behavior) is used in an algorithm to evaluate an expression, the
postfix becomes the most efficient form. These same rationales can be extended to
binary trees. Trees are derived from steps that are commands input by a user to-
create a solid. These commands are scanned from left to right by the software
and they might contain parentheses. In addition, if stacks are used in algorithms
that evaluate trees (PADL-2 does that), then the postorder is the ideal choice to
traverse a tree. However, the problem with the postorder traversal, as shown in
Fig. 7-47a, is that the root of the tree has the highest node number. It is more

398 GEOMETRIC MODELING

(b) Reverse inorder

FIGURE 7-46
Inorder and reverse inorder traversals of a tree.

natural to assign the root the number 1. Therefore, the reverse postorder seems
the ideal traversal method of a CSG tree. PADL-2 solid modeler uses such a
method. In this method also the leftmost leaf node of the tree has the hishest
node number in the tree.

7.8.1 Basic Elements

Bounded solid primitives, or primitives for short, are the basic elements or build-
ing blocks a CSG scheme utilizes to build a model. Primitives can be viewed as
parametric solids which are defined by two sets of geometric data. The first set is

called configuration parameters and the second is the rigid motion parameters.

‘The most common primitives are shown in Fig. 7-4. Each one of these primitives

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 399

(b) Reverse postorder

FIGURE 7-47
Postorder and reverse postorder traversals of a tree.

is defined by its configuration and rigid motion parameters. For example, the
configuration parameters of a block primitive is the triplet (ordered 3-tuple) (W,
H, D) and its rigid motion is given by the location of its origin P relative to a
reference coordinate system, say MCS or WCS, or by explicit rigid motion values
(translation and/or rotation). The configuration parameters of the other primi-
tives are shown in Fig. 7-4.

Each primitive, viewed as a parametric object, corresponds to a family of
parts. Each given part of the family is called a primitive instance and corresponds
to one and only one value set of the primitive configuration parameters. Each
primitive has a valid configuration domain which is maintained by its solid
modeler. User input values of any primitive parameters are usually checked
against its valid domain. For example, a block primitive instance of the triplet

400 GEOMETRIC MODELING

(0, 0, 0) is not a valid instance because the corresponding parameters are not
within the valid domain of a block.

The choice of the two sets of the geometric data to define the size (via
configuration parameters) and the orientation (via rigid motion parameters) of a
primitive are based on the fact that any primitive can be described generically by
an equation. in its local coordinate system. The configuration parameters define
such an equation completely. Utilizing the rigid motion parameters, the equation
and, therefore, the primitive can be transformed properly into anothgr coordinate
system. Therefore, primitives’ information such as equations, intersections,
boundaries, and others are usually expressed in terms of the primitive local coor-
dinate system X, Y, Z, .

Mathematically, each primitive is defined as a regular point set of ordered
triplets (x, y, z). For the primitives shown in Fig. 7-4, these point sets are given
by:

Block: {(x,9,2):0<x<W,0<y<H,and 0 <z < D} (7.61)
Cylinder: {(x,y,2):x*+y*<R* and 0 <z < H} (7.62)
Cone: {(x, y, 2): x*> + y* < [(R/H)z]? and 0 < z < H} (7.63)
Sphere: {x, y9,2): x> + y* + 22 < R?*} (7.64)
Wedge: {(6y,2:0<x<W,0<y<H,0<z<D,

and yW + xH < HW} (7.65)
Torus: {x, 3, 2): (x* + y* + 22 — R3 — R})® < 4R3(R? — z%)} (7.66)

Comparing Egs. (7.61) to (7.66) with the half-space equations (7.51) to (7.55), it is
obvious that each of the above bounded primitives is a combination of a finite
number of half-spaces. A block is the regularized union of six intersecting half-
spaces. Each of these half-spaces is given by one limit of the three inequalities of
‘Eq. (7.61). Similarly, a cylinder, cone, and a wedge are the union of three, three,
and five half-spaces respectively. Figure 7-48 shows two-dimensional illustrations
of the half-spaces of each primitive shown in Fig. 7-4. Some half-spaces for the
block and wedge primitives are not shown in the figure for clarity purposes.

There are many representational alternatives for primitives. Some represen-
tations are terse and contain little or no redundant data. These are called input
representations and are convenient for user input. Other representations are
verbose, contain lots of redundant data, and are therefore convenient and effi-
cient for computational purposes. They are called internal representations. Most
CSG-based modelers use both and usually derive the internal representation
from the input one. While one of these modelers may provide alternative input
representation, mainly for user convenience, it usually has only one internal rep-
resentation and all input alternatives are converted to it before storage. Consider,
for example, the torus primitive shown in Fig. 7-4. A user can spec1fy its R; and
R, or R, and R, as input representations to create it. -

- What are the redundant data of a primitive that a solid modeler calculates

based on user input representation and stores as its internal representation for
computational purposes? An internal representation of a primitive that does not

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLms 401

Block ; Cylinder
Y.
XL
s
x* + y* < [(RIH)7]? 2 +y + <R
Cone Sphere
Y.
Y,
yW+xH < HW
0<x
” XL
0=<y
Wedge Torus [Eq. (7.66)]
FIGURE 7-48

Half-spaces of bounded primitives.

have redundant data would only store the primitive’s underlying half-spaces posi-
tioned and oriented properly in space, based on the user’s configuration and rigid
motion input parameters. Any other data such as primitive faces and edges that
might be needed to evaluate the result of, say, a boolean operation must be
derived by explicitly calculating the proper intersections of the underlying half-
spaces. Such an approach would make application and computational algorithms
totally inefficient. Therefore, underlying surfaces, faces, and edges, surface
normals, and other data that are considered redundant are stored internally for
each primitive in addition to its half-spaces. In essence the internal representation
of each primitive is a CSG-rep plus a B-rep plus other information that is compu-
tationally useful. This “other information” could be engineering and design
related in the case of implementing a new application into solid modeling.

" Let us now look closely into how faces, edges, and other redundant data of
a primitive are represented. Analogous to decomposing a solid into a com-
bination of primitives, each primitive can be decomposed into a collectionof

402 GEOMETRIC MODELING

faces and edges. Each face is a finite region of a closed orientable surface and
each edge is a finite segment of an underlying curve. Therefore, a CSG scheme
would have a set of primitives for its users to use and internally would have a set
of half-spaces, a set of closed orientable surfaces (boundaries of these half-spaces),
a set of primitive faces, and a set of primitive edges. Figure 7-49 shows such a
data structure (internal representation) of a typical primitive. The PADL-2 solid
modeler uses the structure shown in this figure.

The underlying surfaces, primitive faces, and primitive edges that a solid
modeler can provide are directly related to the half-spaces the modeler CSG
scheme utilizes. If a scheme utilizes the natural quadrics given by Egs. (7.51) to
(7.55), then planar, cylindrical, spherical, conical, and toroidal surfaces (called
quadric surfaces) become the underlying surfaces of the scheme or the modeler.
These surfaces are the boundaries of their corresponding half-spaces and their
point sets are given by:

Planar surface: P={(x,y2:2=0} (7.67)
Cylinder surface: P={(x,y 2): x* + y* = R?} (7.68)
Spherical surface: P = {(x, y, 2): x> + y* + 2z = R?} (7.69)
Conical surface: P ={(x, y, z): x* + y* = [(R/H)z]*} (7.70)

Toroidal surface: P = {x, y, 2): (x* + y* + 22 — RZ — R%)?
. =4R3R? —z9} (7.71)

These are infinite surfaces whose intersections yield infinite curves. These curves
are usually classified against given primitives using set membership classification
to determine which curve segments lie within these primitives and consequently
within the solid.

Primitive faces are faces of primitives selected such that the boundary of
any primitive may be represented as the union of a finite number of these faces
after being positioned properly in space. The sufficient set of primitive faces to
represent the boundary of any of the primitives shown in Fig. 7-4 consists of
plate, triplate, disc, cylindrical, spherical, conical, and toroidal primitive faces.
The equations of these primitive faces (Pfaces for short) are given by:

Plate Pface:: F={xy12:0<x<W,0<y<H, and z=0} (7.72)
Triplate Pface: F={x,12:0<x<W,0<y<H, and
yW + xH < HW} (1.73)

Disc Pface: F={(x,y 2):x*+y* <R? and z = 0} (7.74)
Cylindrical Pface: F = {(x, y, z): x> + y* = R?, and 0 < z < H} (7.75)
Spherical Pface: F = {(x, y, 2): x* + y* + z% = R?} (7.76)

Conical Pface: F={(x,y2:x*+y*=[(R/H)z]*>, and 0 <z < H} (7.77)
Toroidal Pface: F = {(x, y, 2): (x* + y*> + z% — R2 — R??
: =4R3R} -2} (1.78)

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLps 403.

Primitive | Code Listof 1 Listof List of
solid number 4 faces half-spaces edges
eoe
Primitive Code Containing List of List of
faces number surface half-spaces edges

AR

To

e

Half-space/ Code Configuration | Rigid motion
surface number parameters | parameters

acs

/ N\

Edge/ Code Configuration | Rigid motion
curve segment number parameters | parameters
FIGURE 749

Data structure of a typical primitive solid.

Any of the above primitive faces is a subset of its underlying surface, that is,
F < P. For example, the plate primitive face, Eq. (7.72), is a subset of the planar
surface given by Eq. (7.67). The subset is bounded in the x and y directions.
Similarly, a cylindrical primitive face is a finite (but not bounded) region (between
z = 0 and H) of the cylindrical surface given in Eq. (7.68). In addition, the bound-
ary of any primitive is 2 combination of these primitive faces. The boundary ofa
block primitive consists of six plate primitive faces positioned properly while that
of a sphere or a torus consists of one spherical or toroidal primitive face respec-
tively. The boundary of a cylinder consists of one cylindrical primitive face closed
from each end by a disc primitive face. Lastly, a cone has a conical face closed by
a disc and a wedge has three plates and two triplates.

Similar to primitive faces, primitive edges (sometimes called face bounding
edges) are edges selected such that the boundary of any primitive face may be
represented as the union of a finite number of these edges after being positioned
properly in space. Each edge is a finite or bounded region of a corresponding
underlying curve that may be possibly unbounded and disjointed (in which case
curve segments make up the total curve). The underlying curves are usually

404 GEOMETRIC MODELING

obtained by finding all possible intersections of the underlying surfaces represent-
ed by a given CSG scheme. Curves, and therefore edges, can be true curves or
virtual (profile or silhouette) curves, as in the case of a cylinder, sphere, cone, and
a torus. For quadratic surfaces, the virtual edges can be generated by intersecting
the surface with a plane. This offers the advantage that true and virtual curves
can be obtained via surface/surface intersection. It is useful to realize that edges
and curves, like faces and surfaces, have a single representation with a dual
purpose. This implies that a curve equation is also an edge equation after impos-
ing the proper parameter limits. Because surface/surface intersections are compu-
tationally intensive and because a particular CSG scheme represents a given set
of surfaces, surface/surface intersection problems are solved algebraically a priori
and stored in the corresponding solid modeler. A solid modeler that supports the
primitives shown in Fig. 7-4 must contain the intersections of the surfaces given
by Eqgs. (7.67) to (7.71). For example, a cylinder/plane intersection may give a
circle, an ellipse (could be very thin), two infinite parallel lines, or no intersection
at all. What usually complicates the surface/surface intersection is the position
and orientation of the two intersecting surfaces in space. One solution to this
problem is to intersect the two surfaces in a given standard position and orienta-
tion and then transform the result to the actual position and orientation. Inter-
section curves are usually represented in parametric form because quadric
surfaces can be parametrized conveniently as shown in Chap. 6. Equations of
edges and curves are not given here. The reader is referred to Chap. 5 for some of
these equations.

Surface/surface intersection is very crucial in geometric modeling in general
and in solid modeling in particular. It is a decisive factor in determining and/or
limiting the modeling domain of a solid modeler. As a matter of fact, it is the only
factor in slowing down the implementations of sculptured surfaces into solid
modeling. One might ask the following basic question. Why is surface/surface
intersection so important while algebraic and numerical methods exist to solve
virtually any two equations? The answer is not so much in the solution as it is in
characterizing the solution. In order to perform boolean operations automati-
cally, efficiently, and unambiguously, we need a precise description of the inter-
section curve. We need to know which surface pair results in which intersection
curve, and we need to know when two different surface pairs give rise to the same
curve. For example, if a boolean operation requires the intersection of a plane
and a cylinder, the advance knowledge of their intersection curve provides a
precise equation of the curve and consequently saves computation time that
would otherwise be spent solving the two surface equations. In addition, two
curves of a pair of surface/surface intersections can be checked out if they are
identical, which can help eliminate many problems that may occur trying to dif-
ferentiate between them. One may then conclude that if there was a universal
description, say an equation, of any intersection curve in terms of the parameters

of the two intersecting surfaces, the surface/surface mtersectlon would have been

solved once and for all.

While the full details of surface/surface mtersectlons of quadrxc surfaces are
beyond the scope of this book, the essence of the problem can be described as
follows. Any of the surfaces described by Egs. (7.67) to (7.71) can be rewritten in

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 405

the following polynomial form:
Ax? + By* + Cz% 4+ 2Dxy + 2Eyz + 2Fxz + 2Gx + 2Hy + 2Jz + K =0
(7.79)

where 4, B, ..., K are arbitrary real constants. This equation can be expressed in
a quadratic form as

F(x, y,z) = VI[Q]V = 0 (7.80)

where V is a vector of homogeneous coordinates of a point on the surface and is
givenby [x y z 1]%.[Q] s the coefficient matrix. It is symmetric and is given
by

[e1= (7.81)

QMmoo
WY
“ Ol
N mQ

The coefficient matrix [Q] can be formed for any of the quadric surfaces [Eqs.
(7.67) to (7.70)] by comparing the surface equation with Eq. (7.80). This gives

0000
0000
; - 7.82
Planar surface: [2] 0 0.0 4 (7.82)
0 0 -0
[1 0o o 0]
0 1 0 0
Cylindrical surface: [Q]= 0 0 0 0 (7.83)
|0 0 0 —R?]
(1 0 0o 0]
0 1 0 0
Spherical surface: [Q]= 0 0 L 0 (7.84)
| 0 0 0 —RZ%|
10 0 0
0 1 0 0
Conical surface: [0]= 0 0 —(R/H) 0 (7.85)
10 0 0 0

The coefficient matrix [Q] depends directly on the surface orientation and
position. The above matrices are valid only if the local coordinate system of the
primitive is identical to the MCS of the solid model to whom the primitive
belongs. Otherwise, each matrix has to be transformed by the transformation
matrix that results from the rigid motion (rotation and/or translation) of the
primitive. This gives

[0 =[T]"[QI[T] (7.86)

406 GEOMETRIC MODELING

where [Q’] is the transformed coefficient matrix and [T7] is the transformation
matrix given by Eq. (3.3). For example, if the origin of a sphere is located at point
(a, b, ¢) measured in the MCS, Eq. (7.84) is transformed by a translation vector to
give

1 00 a
01 0 b

Q1= 00 1 c (7.87)
a b ¢ a®+b>+c2—R? !

This idea of transformation suggests that one can solve the intersection
problem of two primitives in any convenient coordinate system and then trans-
form the results as needed. Actually, there exists a set of algebraic constructs
derived from [Q] that remain invariant under rigid motions and completely
specify the shape of the quadratic surface.

The intersection of two quadric surfaces can be solved as follows. If one
surface has a coefficient matrix [Q,] and the other has [Q,], then the equation of
the intersection curve is)

Vi[.]-[Q. V=0 (7.88)

This equation describes an infinite intersection curve. In order to determine finite
segments of this curve (edges) which belong to the intersecting primitives, we
must find the appropriate bounding points. One way of finding these points is if
one of the intersecting surfaces can be parametrized in terms of two parameters u
and v, and Eq. (7.88) can be solved for one of the parameters in terms of the
other. In this case, the equation of the intersecting curve can be written in a
parametric form in terms of one parameter. To understand this approach, con-
sider the cylinder/quadric intersection case. In this problem, we wish to find the
intersection curve between a cylinder and any quadric surface. Assuming the
cylinder is in a standard position, its parametric equation is known. In this case
the vector V in Eq. (7.88)is [R cos u R sin u ov]". Substituting Egs. (7.81) and
(7.83) for [Q,] and [Q,] respectively and simplifying the result we get

a(u)v? + b(u + c(u) =0 (7.89)

Equation (7.89) could also be obtained by substituting the parametric equation of
a cylinder directly into Eq. (7.79). Equation (7.89) is a quadratic equation that can
be solved for v in terms of u. Moreover, the proper range of u can be obtained by
investigating the characteristics of the discriminant b%(u) — 4a(u)c(u). The same
analysis can be done for the cone/quadric intersection. In this case the vector V
(the cone parametric equation) is given by [(R/H)v cos u (R/H)v sin u v]T.

What made it possible to reduce Eq. (7.88) to Eq. (7.89) in the case of a
cylinder or a cone is the fact that either surface is a ruled quadric with v being the
parameter along the surface rulings. A sphere/quadric or torus/quadric intersec-
tion problem cannot be solved directly by following the above approach. A
special transformation must be done first, which is not discussed here.

‘We have mentioned that surface normals are useful redundant data that is
usually a part of the internal representations of solid primitives. A surface normal
is usually useful in representing the direction of the unit normal vector of a face

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 407

with respect to its solid so that the interior and exterior of the solid can be
identified unambiguously. One convention is to choose the surface normal to be
positive if it points away from its corresponding half-space. A positive surface
normal of a cylindrical surface is one which points away from the cylindrical
half-space given by Eq. (7.52) or simply points away from the cylinder axis. For a
spherical surface, the positive surface normal points away from the center of the
sphere. The surface normal can be calculated following the methods discussed in
Chap. 6. Consider the cases of a plane, cylinder, and sphere (Fig. 7-19). The posi-
tive surface normal of a plane is simply the unit vector, k;, in the Z, direction.
For a cylindrical surface, assuming that the position vector of a point on the
surface is P (with respect to the local coordinate system), then the positive surface
normal is given by [P — (P - k)k;]/R where k; is the unit vector in the Z; direc-
tion. For a sphere, it is P/R.

The way the above convention of a surface normal is used to represent the
direction of the unit normal of a face of a solid can be explained as follows. In
some cases, the positive surface normal may point away from the solid interior or
point into the interior, depending on the face position relative to its solid. In
other cases, the negative surface normal may exhibit similar behavior. One can
assign a variable to the face that may be 1 or —1. This variable always defines
the outward pointing (away from the solid interiors) normal of the face of the
solid. If the positive surface normal of the face underlying surface happens to
point outward from the solid, then the variable is assigned the value 1. Otherwise,
it is assigned the value —1 which indicates that the positive surface normal
points inward into the solid. The value of the variable is predefined for each
primitive face of all the primitive solids a solid modeler supports.

7.8.2 Building Operations

The main building operations in CSG schemes are achieved via the set operators
or more specifically the regularized operators: union (U*), intersection (n*¥), and
difference (—*). Set operators are also known as boolean operators due to the
close correspondence between the two. Union, intersection, and difference are
equivalent to OR, AND, and NOT AND respectively. Due to the deep roots of
CSG schemes in set theory or boolean algebra, CSG models are usually referred
to as set-theoretic, boolean, or combinatorial models. Set-operation algorithms
are amongst the most fundamental and delicate software components of solid
modelers.

Unlike Euler operators, regularized set operators are not based on a given
law or equation, but they derive their properties from the set theory and the
concept of closure. They are considered higher-level operators than Euler oper-
ators. The validity checks for set operators are usually simple in the case of
bounded primitives. They take the form of checking the user input of each primi-
tive parameter. This is due to the-fact that if primitives are valid and set oper-
ators are regularized, then the topology of the resulting solid is always valid.

Some solid modelers provide their users with other building operators that
are less formal than set operators. ASSEMBLE and GLUE are two popular
ones. Both of them operate on full solids and usually do not combine the solids.

408 GEOMETRIC MODELING

They are merely assembled or glued. They only allow the user to refer to two
solids as a single (usually) named entity. The two solids must be positioned prop-
erly first.

Almost all contemporary solid modelers provide their users with boolean
operations. Boolean operators are mainly used to define solid models through
proper combinations of solid primitives. Other important uses include modeling
and simulation of manufacturing processes such as drilling and milling as well as
detecting spatial interferences and collisions of positioned solid objects in space.
In general, engineering processes that involve volumetric and spatial relation-
ships are amenable to using boolean operations.

While boolean operators seem the same to users on all solid modelers, a
set-operation algorithm depends primarily and solely on the solid representation
scheme supported by each modeler. Example 7.7 in the previous section shows
how set operations are performed for the B-rep scheme. In this section we see
how they are performed for a CSG scheme. Regardless of the scheme the set
operations depend on, an algorithm implementing them must evaluate the
boundary of the resulting solid from a desired operation. For discussion pur-
poses, let us write a typical set operation as A(OP)B where A and B are oper-
ands (primitives) and {OP) is any regularized set operator. The central question
to implementing set operations can be asked as follows. Given the representa-
tions of two operands A and B of a given operator, evaluate the boundary of the
resulting solid. The representations of A and B must contain representations of
their boundaries and this is where the difference between schemes comes into
play. In B-rep, boundaries are faces, edges, and vertices that are all stored explic-
itly. In CSG, boundaries are primitive faces and edges (no vertices) of primitives
that are not stored explicitly and must be computed from their underlying
surfaces/half-spaces. o

Set operations are performed by so-called boundary merging in B-rep while
in CSG they are performed by so-called boundary evaluation. In CSG, non-
incremental and incremental boundary evaluations are available. In the non-
incremental evaluator, only the boundary of the final solid S is evaluated and not
for subsolids of S. In the incremental evaluator, the boundaries of the interme-
diate subsolids are evaluated as the CSG tree is traversed to produce the bound-
ary for the final solid. This latter evaluator is actually a boundary-merging
procedure similar to what is used by B-rep schemes. Regardless of which evalu-
ator is used in a modeler, performing set operations in CSG is equivalent to
converting the CSG representation of a solid into its B-rep. The incremental
boundary evaluator is more widely used than the nonincremental evaluator due
to its computational efficiency and its speed in editing, displaying, and/or section-
ing solids. GMSOLID and PADL-2 use incremental evaluators to perform set
operations while PAD-1 uses a nonincremental boundary evaluator.

Set-operation algorithms based on a CSG scheme are quite similar in phi-
losophy to those based on a B-rep scheme and discussed in Example 7.7. Both
are based on edge/face intersection and classification. The differences arise mainly
due to the amount and form of data stored by each scheme in its related data
structure which, in turn, influences the classification process and how computa-
tions are organized. In Example 7.7, we have assumed that a classification algo-

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 409

rithm exists to classify edges against a solid. A line of thinking for such an
algorithm can follow the one described for the line/polygon classification
problem covered in Sec. 7.5.3. While the line of thinking for the CSG representa-
tion of the same problem can be utilized in this section, wé choose to investigate
classification algorithms in more detail for better understanding.

To fully implement CSG-based set-operation algorithms, the required tools
are an edge/solid intersection algorithm (not covered here), a classification algo-
rithm to compute: the set membership classification function M[X, S] discussed
in Sec. 7.5.3, and an algorithm to combine the resulting classifications. A classi-
fication algorithm can be based on the divide-and-conquer paradigm and com-
bining classifications need the introduction of the concept of neighborhoods.

The divide-and-conquer paradigm is very similar in concept to the ray-
casting algorithm (see Chap. 10). The main difference between the two is that the
divide-and-conquer paradigm replaces the rays that are used by the ray-casting
algorithm by the edges of a given solid. The line/polygon problem covered in
Sec. 7.5.3 can be considered as a simple application of the paradigm. The para-
digm is based on the fact that edge/solid classification is identically equivalent to
classifying the edge against the left and right subtrees of the solid and then com-
bining the two classifications using the same set operation that operates on the
solid subtrees. If one of the subtrees is all primitives, then the edge is classified
against all the primitives of the subtree. The paradigm, of course, requires pro-
cedures to classify edges with respect to primitives and to combine classifications
(refer to Sec. 7.5.3 on how these procedurés can be developed). The paradigm can
also be extended to classify points and faces against a given solid.

The concept of neighborhoods is introduced to resolve the on/on ambi-
guities that result when combining “on” segments in a given classification. They
are also used in converting a CSG representation into a B-rep. They are mainly
useful with the divide-and-conquer paradigm to classify candidate sets and to
combine classifications. Figure 7-18 does not show any “on” segments and also
shows that combining “in” segments usually results in “in” segments. Figure
7-50 shows a case where a solid S = 4 U B. After classifying the edges of 4 and
B against each other, combining the “on” segments of each primitive may result
in “in” or “on” segments of S. The on/on ambiguities usually result when the
two subsolids or primitives to be combined are tangent to each other along one
or more faces. These ambiguities can be resolved using neighborhood informa-
tion of any point on the “on” segments. The neighborhood of a point P with
respect to a solid S, denoted by N(P, §), is the regularized intersection of a sphere
with radius R centered at P with the solid. The value of the radius R is arbitrary
and should be chosen sufficiently small. We can generalize the set membership
classification function M[X, S] given by Eq.(7.49) to include neighborhood
information by assuming that the candidate set X has such information and
therefore the resulting segment “X on S™ has it.

The representation of the neighborhood of a point is related to its position
relative to the solid under investigation. Neighborhoods for points that are in the
interior or outside of the solid are full or empty and can be represented easily.
Ore alternative is to assign a variable, say N, to the neighborhood of the point
such that it can take the values —1, 0, and 1 if the point is outside, on, or inside

410 GEOMETRIC MODELING

On B
S
On A} ?on

(a) On/on ambiguities

S=AU'B

) B‘T N(P.B) N(P.S)
P u £
! _ P
A N(P.A)
B N(P.B) -
N(P.S)
A .__99 :> On
U ’
P N(P.A)

(b) Neighborhood information

FIGURE 7-50
On/on ambiguities and their resolutions using neighborhood information.

the solid respectively. If N = —1 or 1, no further information is needed. For
points on the boundaries of the solid (N = 0), three cases can arise. A point may
be in the interior of a solid’s face. This becomes a case of the face neighborhoods,
which can be represented using the face and surface normal signs described in
Sec. 7.8.1. The second case is edge neighborhoods which result if the point lies on
a solid’s edge. Assuming that the edge is shared by two faces, the normal and
tangent signs of the faces and their underlying surfaces serve to represent the
neighborhood. The third case arises when the point is a vertex, thus resulting in
vertex neighborhoods. A vertex is typically shared by three faces (or surfaces) and
its neighborhood is complex and difficult to manipulate and is not needed in
most algorithms. Figure 7-51 shows face and edge neighborhoods.

With all the tools in hand, we can now develop a CSG-based set-operation
algorithm. The essence of an algorithm that can perform S = 4(OP)B is to clas-
sify faces with respect to S by the divide-and-conquer paradigm using face/solid

classification, and then combiné the classifications using {(OP) to obtain the

solid S. The resulting classifications produce portions of the faces of A and B that
are on S only; that is, that yields the boundary of S. The faces of 4 and B form a
sufficient set of faces which include the boundary of S and which can be used in
the paradigm. This is based on the fact b(4{OP>B) = (bA U bB) where b means
boundary. This fact is intuitively acceptable and can be proven mathematically.
The faces of A and B are called tentative faces or t-faces.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 411

: Surf(F,)

@, i

/ < Surf(F), i >

(a) Face neighborhoods

< Surf(F,). 1. @ >, < Surf(Fa). ty. i, >
(b) Edge neighborhoods

FIGURE 7-51
Face and edge neighborhood representations.

While face/solid classification is possible in theory using the divide-and-
conquer paradigm, it is complex and not attractive because it must perform
boolean operations on face subsets. Therefore, it is replaced by edge/solid classi-
fication which is much simpler. Thus a face classification is done indirectly by
classifying its edges with respect to S. This, in turn, requires a set of tentative
edges (t-edges) which if classified and combined result in the edges, and conse-
quently the faces, of S. The two types of t-edges that may exist are self-edges,
which are the edges of A and B themselves, and cross-edges, which result from
intersections between faces of A and B.

One can now devise a set-operation algorithm for a CSG scheme by using
the divide-and-conquer paradigm which is based on edge/solid classification. The
detailed steps of the algorithm can be envisaged as follows:

1. Generate a sufficient set of t-faces. If A and B are primitives, their primitive
faces form such a set.

2. Classify self-edges of A4 with respect to 4 including neighborhoods. This is a
trivial step because such classifications are already known. This step merely
prepares information needed in step 4 below.

3. Classify self-edges of A with respect to B using the divide-and-conquer para-
digm. The classification includes neighborhoods as well. If A or B is not a
primitive, the paradigm becomes recursive. It is usually based on edge/
primitive classifiers which are easy to write for primitives such as blocks,
cylinders, and the like.

4. Combine classification results (via a “combine” algorithm) of steps 2 and 3
according to the desired boolean operation. Refer to Sec. 7.5.3 and Fig. 7-18
for an example on how to combine classifications. In following Fig. 7-18, the
line L is replaced by a given self(or cross)-edge. The result that is of interest
to the set-operation algorithm is the segments that are on the boundary of §
(call them “on” segments). Thus, for any edge E that is already classified via
the divide-and-conquer paradigm, the combining classification is:

{OP) = U*: E on S = (E out A INT* E on B) UN* (E on A INT* E out B)
(OP>=n*:Eon S =(Ein A INT* E on B) UN* (E on 4 INT* E in B)
(OP) = —*: E on S = (E in‘4 INT* E on B) UN* (E on 4 INT* E out B)

412 GEOMETRIC MODELING

N

9.
10.
11.

The UN* and INT* operators are regularized union and intersection oper-
ators in one-dimensional space. They are not the u* and Nn* we are
developing. They combine the classification results by simply comparing and
merging the endpoints of different segments. Edges are usually expressed in
parametric form and thus UN* and INT* find the appropriate parametric
ranges of the result. Thus UN* and INT* are based on scanning parametric
intervals and are easy to write.

The above combining rules are valid only if there are no on/on ambi-
guities. If there are, they should be resolved using neighborhoods and added
accordingly to the results obtained from the above rules. This step gives the
classification of self-edges of 4 with respect to solid S.

. Regularize the “on” segments that result from step 4 by discarding the seg-

ments that belong to only one face of S. This is done through testing neigh-
borhoods of the segments.

Store the final “on” segments that result from step 5 as part of the boundary
of S. Steps 2 to 6 are performed for each t-edge of a given t-face of 4.

Utilize surface/surface intersection to find cross-edges that result from inter-
secting faces of B (one face at a time) with the same t-face mentioned in step
6. This step results in “oversized” cross-edges which are reduced to
“minimal” cross-edges by using step 8 below. Refer to Example 7.9 for more
details.

Classify each cross-edge with respect to S by repeating steps 2 to 4 with the
replacement of self-edges of A used in these steps by each cross-edge. Here,
cross-edges are classified with respect to the faces of A and B they belong to.
This is a two-dimensional classification and can be combined using the rule E
on S = E in A INT* E in B (see Example 7.9).

Repeat steps 5 and 6 for each cross-edge.

Repeat steps 2 to 9 for each t-face of 4.

Repeat steps 2 to 6 for each t-face of B.

The above set-operation algorithm is not very efficient. For example, each

self-edge is classified at least twice (each edge belongs to two t-faces). This can be
easily avoided. Other shortcuts (such as spatial locality in geometric
computations) can be used to avoid unnecessary calculations.

Example 7.8. Create the CSG model of the solid S shown in ‘Fig. 7-20a.

Solution. The creation of a CSG model of S is by and large much simpler to create
using solid primitives and boolean operators than using faces, edges, and vertices
and Euler operators utilized in Example 7.5. That is not to say that creating a B-rep
model of the same complexity is inefficient because the steps covered in this example
can be used in B-rep if it supports boolean operations.

The first step in the creation procedure is the planning strategy. This model is
simple and can be created by adding two blocks and subtracting one cylinder. The
primitives and the CSG tree are shown in Fig. 7-52. Utilizing the local coordinate
systems shown in Fig. 7-4, blocks A and B must be translated and cylinder C trans-
lated and rotated relative to the MCS shown to be positioned and oriented prop-
erly. Points P, Py, and P show the origins of the local coordinate systems of these

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLiDs 413

z

CSG model of solid S.

_ (@) Decomposing § into primitives

. FIGURE 7-52

A

B

(h) CSG tree

primitives. The geometrical information of each of these primitives is:

Block A:
Block B:

Cylinder C: R =R, H = d, P(x, y,) = Pc[(a+ d)/2, d, —c/2], Rot about X =90°

Assuming the user has created the primitives 4, B, and C, the command

xp=a—d,yp=d,z=c Pyx,y 2 =Py, 0, —c)
xL=d7yL=brzL=c! PB(xvyr z)=PB(O7 0’ —C)

§ = A U* B —*C creates the CSG tree.shown in Fig. 7-52b.

A

(a) CSG tree

divide-and-conquer

M[E.B] M[E.A]

Classify via -

paradigm

Combine

E
A
EonA MIE.A]
Eout B M[E.B]
1" " Eems | 7777

U*

Null n*

EonS .

™

Eon B

Eout A

EinA

EonS

EonS$

FIGURE 7-53,

Classify «—+——> Combine

(c) Right subtree

Self-edge classification and combination.

414 GEOMETRIC MODELING

Example 7.9. Apply the CSG-based set-operation algorithm discussed above to
perform set operations on the two primitive blocks shown in Fig. 7-36a.

Solution. This example clarifies to a great extent the eleven-step set algorithm
described above. The example is intended to particularly show how classifications
and their combinations are performed for both self-edges and cross-edges. The CSG
tree of the operation § = A(OP)B is shown in Fig. 7-53a. The ieft and right
subtrees are block primitives in this example to enhance understanding of the
algorithm. s

Step 1 of the algorithm is clear here. The sufficient set of t-faces has the 12
faces of A4 and B. The set of t-edges has 24 edges. To perform steps 2 to 6 and 10
and 11, let us deal with one edge on each 4 and B. The other edges can be handled
in a similar way. Figure 7-53b and ¢ shows the results. Classifying each edge with
respect to its primitives (step 2) is trivial and produces “on” segments. Classifying
the same edge with respect to the other primitive (step 3) requires an edge/primitive
classifier. The classification results are combined according to the rules of step 4.
This procedure is repeated for the other 23 edges.

Unlike self-edges, cross-edges must be found first by using step 7 as shown in
Fig. 7-54. Consider faces F, of 4 and F, of B. Their underlying surfaces are S, and

P
S2
B |
T T T T T
Fy
F
S A I
Eout F Ein F, Eout F;
RN — ~ " |M[EF
Classify (E.F]
T Eout Fy Ein F, EoutF, MIE.F)
l EonS Ut o, —*
Combine
Edge/face classification
EoutA EonA EoutA
——— M([E,A]
Eout B EonB EoutB
— | M[E.B]
‘Edge/solid classification
FIGURE 7-54

Cross-edge classification and combination.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 415

S, respectively. Intersecting S; and S, is easier than interesting F, and F, but pro-
duces an “oversized” edge that must be reduced down to the edge between F, and
F,; that is, the “minimal” edge. This is achieved via an edge/face classifier (step 8).
The “minimal” edge is the “E on S” segment shown in Fig. 7-54. This procedure
(steps 7 and 8) is repeated for the other three cross-edges in this case (step 9).

The edge/face classification used in this example assumes that the B-rep of
A and B is available in addition to their CSG. This assumption is acceptable for
CSG modelers that use incremental boundary evaluations. Modelers that use
nonincremental boundary evaluations can replace this classification by an edge/
solid classification utilizing the divide-and-conquer paradigm. In this case, the
classifier must eliminate the “on” segments, of the cross-edge, that belong to only
one face, as mentioned in step 6 (see Fig. 7-54). This is normally done with the
aid of neighborhoods and is not shown in Fig. 7-54 or discussed here because it
requires new definitions of faces (maximum faces or m-faces) that may be confus-
ing to the reader.

The reader is encouraged to apply the set-operation algorithms to other
problems. However, the reader is advised that the algorithm needs refinements
and details regarding neighborhoods to be universal.

The classification ideas used in this example and its related algorithm can
be applied to algorithms based on B-rep (see Example 7.7). The major change to
be done is to replace the divide-and-conquer paradigm that utilizes CSG tree
structure by an algorithm that is based on a face/edge/vertex data structure.

7.8.3 Remarks

The CSG scheme is a very powerful representation scheme. It is not closely
related to conventional drafting language and has many advantages. It is easy to
construct out of primitives and boolean operations. It is concise and requires
minimum storage to store solid definitions (the CSG graph). This is why it is slow
to retrieve the model because it has to build a boundary from the CSG graph. It
is also due to this fact that CSG is slow in generating wireframes, that is, line
drawings. CSG must be converted internally into a B-rep (similar to the set-
operation algorithm covered earlier) to display the model or gemerate its line
drawings.

Application algorithms based on CSG schemes are very reliable and com-
petitive with those based on B-rep schemes. However, the major disadvantage of
CSG is in its inability to represent sculptured surfaces and half-spaces. This is an
active area of research, and one would expect this limitation to go away with
time.

7.9 SWEEP REPRESENTATION

Schemes based on sweep representation are useful in creating solid models of
two-and-a-half-dimensional objects. The class of two-and-a-half-dimensional
objects includes both solids of uniform thickness in a given direction and axisym-
metric solids. The former are known as extruded solids and are created via linear
or translational sweep; the latter are solids of revolution which can be created via

416 GEOMETRIC MODELING

rotational sweep. Sweeping is used in general as a means of entering object
descriptions into B-rep or CSG-based modelers. There exists no sweeping-based
modelers due to the limited modeling domain of sweep representations and the
lack of a formal underlying theory of sweeping. For example, general validity and
regularization conditions for sweep representations are not known and are
usually left to the user.

Sweeping is based on the notion of moving a point, curve, or a surface
along a given path. There are three types of sweep: linear, nonlinear, and hybrid
sweeps. In linear sweep, the path is a linear or circular vector described by a
linear, most often parametric, equation while in nonlinear sweep, the path is a
curve described by a higher-order equation (quadratic, cubic, or higher). Hybrid
sweep combines linear and/or nonlinear sweep via set operations and is, there-
fore, a means of increasing the modeling domain of sweep representations.

Linear sweep can be divided further into translational and rotational sweep.
In translational sweep, a planar two-dimensional point set described by its
boundary (or contour) can be moved a given distance in space in a perpendicular
direction (called the directrix) to the plane of the set (see Fig. 7.55a). This is
similar to entity projection and surface offsetting or translation in wireframe and
surface representations respectively. The boundary of the point set must be closed
otherwise invalid solids (open sets) result. In rotational sweep, the planar two-
dimensional point set is rotated about an axis of rotation (axis of symmetry of
the object to be created) by a given angle (see Fig. 7-554). This is similar to entity
rotation or a surface of revolution in wireframe and surface representations. Non-
linear sweep is similar to linear sweep but with the directrix being a curve instead
of a vector (Fig. 7-55b). Hybrid sweep tends to utilize some form of set oper-
ations. Figure 7-55¢ shows the same object shown in Fig. 7-55a but with a hole.
In this case two point sets are swept in two different directions and the two
resulting swept volumes are glued together to form the final object. Invalid solids
or nonregular séts may result if the sweeping direction is not chosen properly, as
shown in Fig. 7-55d.

Sweeping operations are useful in engineering applications that involve
swept volumes in space. Two widely known applications are simulations of
material removal due to machining operations and interference detection of
moving objects in space. In the first application, the volume swept by a moving
cutter along a specific direction is intersected with the raw stock of the part. The
intersection volume represents the material removed from the part. In inter-
ference detection, a moving object collides with a fixed one if the swept volume
due to the motion of the first intersects the fixed object.

79.1 Basic Elements

Wireframe curves, both analytic and synthetic, covered in Chap. § are valid basic
elements, or primitives, to create two-dimensional contours for sweep operations.
However, a solid modeler may not allow its users to use all wireframe entities it
supports in sweep operations. Such a lirnitation usually stems from the modeling
domain of the internal representation the modeler supports. It is this representa-
tion that user sweep operations are converted to before being stored in the data-

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLos 417

Rotational axis Boundary of point

set to rotate

Boundary of point
set to translate

Translational sweep Rotational sweep

(a) Linear sweep

—__-; Directrix

Directrix

Boundary of point set to move Gluing area

(b) Nonlinear sweep (c) Hybrid s‘;veep
~—> Directrix

Dangling
surface

-7

(d) Invalid sweep

FIGURE 7-55
Types of sweep.

base of the model under construction. If the sweep operations are converted to a
B-rep, the permissible wireframe entities are those that are the same as the under-
lying curves of edges that the B-rep supports. If they are converted to a CSG, the
permissible entities are the ones that generate surfaces (boundaries) of supported
half-spaces. Lines, arcs, circles, and B-splines are among the most widely used
entities in sweep operations. :

The boundary of a two-dimensional point set used in sweep operations can
consist of nested contours up to one level only (one inner contour) within the
outer contour. This is allowed to create holes in the resulting solid. There may
also exist a maximum number of entities allowed to create any one contour. The
number is usually adequate for practical uses. It is usually set for implementation
purposes of the sweep algorithm.

79.2 Building Operations

The building operations of linear and nonlinear sweep models are simple: gener-
ate the boundary and sweep it. If hybrid sweep is available, these operations
extend to include boolean operations. If there existed data structures designed
only for sweep representation, algorithms to implement these boolean operations

418 GEOMETRIC MODELING

would have been different from those already discussed for B-rep and CSG. Prac-
tically, this is not the case and the sweep operations are used only as a user
convenience and a boolean operation acts on the corresponding B-rep or the
CSG data structure of the sweep operations.

How are sweep operations converted to a B-rep or CSG? It is well known
that only linear sweep can be converted. In the case of a translational sweep, each
entity in the swept boundary represents an edge and each corner point represents
a vertex in the corresponding boundary model. For a one-contour boundary,
each entity in the boundary indicates a face also. The number of faces of the
model are equal to (N + 2), where N is the number of entities of the boundary
and the 2 accounts for the front and back faces (see Fig. 7-55a). The number of
edges is equal to (2N + M), where M is the number of corner points of the
boundary and the number of vertices is equal to 2M. These values satisfy the
Euler equation (7.57), regardless of the number of entities of the boundary, if we
notice that N = M for a closed boundary. If the boundary has holes (nested
contours), a similar relationship can be obtained. Rotational sweep operations
can be converted in a similar fashion. In Sec. 7.7, we have discussed how a rota-
tional sweep operator (see Fig. 7-32) based on approximate B-rep can be devel-
oped. The reverse of that discussion shows how a sweep model can be converted
into an approximate B-rep. It is left to the reader to find the number of faces,
edges, vertices, loops, bodies, and genus when the sweeping angle is a full 360° or
a given range of it. o

The linear sweep to CSG conversion must be based on unbounded CSG
primitives, that is, half-spaces. Conversion to CSG based on bounded primitives
might not be possible all the time and may be no better than the half-space
alternative. In this case, each entity in the swept boundary represents a bounding
surface of a corresponding half-space. A linear entity, for example, represents a
planar surface and half-space and a circular entity or an arc represents a cylin-
drical surface and half-space. The CSG model is then composed of the union of
these intersecting half-spaces.

In both conversions, the underlying surfaces must be oriented. This requires
the direction of a surface normal. This can be achieved by choosing a direction
(clockwise or counterclockwise) when inputting or creating the outer and inner
contours of the given boundary. The interior of the boundary, which defines the
interior of the solid, can be identified and the proper normal sign can be chosen
accordingly. For example, one may choose to traverse the outer contour in a
counterclockwise direction and then choose the positive normal sign to indicate

the exterior of the solid. A vector that represents such a surface normal becomes
very easy to create.

Example 7.10. Create the sweep model of the solid S shown in Fig. 7-20a.

Solution. The solid S is two-and-a-half dimensional, having uniform thickness in the
negative Z direction. If it was not the cylindrical hole, the model could have been
created via translational sweep exactly as shown in Fig. 7-55a. Due to the hole
presence, hybrid sweep is utilized as shown in Fig. 7-55¢. The bottom face with the
circular hole is created and swept vertically and the left face is created and swept to
the right. The two subsolids are then glued along the hatched gluing area shown.

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 419

7.9.3 Remarks

Sweep representation is useful once it develops. Its modeling domain can be
extended beyond two-and-a-half-dimensional objects if nonlinear (sometimes
called general) sweep is available. Nonlinear sweep may be useful in creating
nonrigid objects and studying their deformation as they travel in space. Complex
mechanical parts such as screws, springs, and other components that require
helical and special loci can be represented by sweeping. In any one of these parts,
a two-dimensional polygon can form the basis of the desired boundary.

710 ANALYTICAL SOLID MODELING
(ASM)

The historical development of ASM is closely related to finite element modeling.
Those who are familiar with finite element analysis (FEA) can easily recognize
that the mathematical foundations of ASM follow similar guidelines to three-
dimensional isoparametric formulation of FEA for 8- to 20-node hexahedral ele-
ments. ASM is developed to aid designers and engineers in the arduous task of
modeling complex geometry commonly found in design applications. ASM can
be viewed as more of a representation scheme for design than for manufacturing
purposes due to its formulation, as seen in this section, which does not involve
orientable surfaces as does B-rep or CSG.

While ASM originated from the need to solve the problem of finite element
modeling, it has now a wide range of applications such as mass property calcu-
lations, composite material modeling, and computer animation. The wic}qspread
acceptance of ASM in the finite element and finite difference communities has
been due to the efficiency and flexibility of mesh-generation algorithms the%t
operate on hyperpatches (see the next section). A uniform transition, or nonuni-
form mesh, can be generated within a hyperpatch and, consequently, within the
entire model. In addition, because a hyperpatch is a mapping of a unit cube, it is
easy to subdivide it into hexahedral elements. The solid modeler PATRAN-G is
based on ASM and interfaces to various FEA packages and other solid modelers.

7.10.1 Basic Elements

ASM is an extension of the well-established tensor product method, introduced
to represent surfaces in Chap. 6, to three-dimensional parametric space with th.e
parameters u, v, and w. Therefore, it involves only products of univar‘iate b'as1s
polynomials and introduces no conceptual difficulty due to the higher.dlmenswn-
ality of a solid. The properties of tensor product solids can be easily deduced
from properties of the underlying curve schemes. Thus, one can conceptua.lly
conceive and easily derive the representations of tricubic, Bezier, and B-spline
solids analogous to bicubic, Bezier, and B-spline surfaces in two-dimension'al
parametric space (4, v) and analogous to cubic, Bezier, and B-spline curves in
one-dimensional parametric space (u). '
The tensor product formulation in three-dimensional parametric space is a
mapping of a cubical parametric domain described by u, v, and w values intq a
solid described by X, y, and z in the cartesian (modeling) space, as shown in Fig.

420 GEOMETRIC MODELING

Y
Face surface
Edge \
curvef U\
\ Plxyz) _——
DML\XJ——— //
/ J Corner "
// { | vertex |
Umin P{u.v.w) J«II
| i
! u ! L
Umin Umax |
| I | X
Wmin, | !)
| |
Wmax | |
W o Z
Parametric space Cartesian space
FIGURE 7-56

Hyperpatch representation.

7-56. The resulting solid is called a parametric solid or a hyperpatch (so called
because hyperpatches are extensions of and bounded by surface patches) whose
points in the interior or on the bounary are given by.

P(u9 v, W) = [x y Z] = [x(ua v, W))’(u, v, W) z(“» v, W)],

mmsu<umax’ mmsv<vmax7 <W<W (790)

min =

As with curves and surfaces, Eq. (7.90) gives the coordmates of a point inside or
on the hyperpatch as the components of its position vector. The equation
uniquely maps the parametric space (E> in u, v, and w values) to the cartesian
space. The parametric variables are constrained to intervals bounded by
minimum and maximum values. In most hyperpatches, these intervals are [0, 1]
which result in a unit cube in the parametric space.

Equation (7.90) suggests that ASM represents an object as an assembly of
nonoverlapping hyperpatches. Each hyperpatch has six faces, each of which is
any surface patch discussed in Chap. 6. Each face has four edge curves of the
same type as the surface patches and four corner vertices (see Fig. 7-56). For
example, a tricubic hyperpatch is bounded by six bicubic surface patches, each of
which is bounded by four cubic splines. This hierarchy in topology, from a hyper-
patch to patches, edges, and vertices, provides a means to construct a hyperpatch
from given control points, curves, or patches. This feature makes ASM an exten-
sion of wireframe or surface modeling. For example, a user can create a Bezier
hyperpatch by either entering its control points, Bezier curves, or Bezier patches.

While a hyperpatch can be described by a polynomial of any order, a cubic
polynomial in each parameter is sufficient for practical design applications. As
mentioned in Chap. 5, the higher the order, the more difficult it is to control the
resulting shape. Analogous to Egs. (5.74) and (6.39), a cublc hyperpatch can be
given by the following equation:

3 3 3)
P, o,w=3 Y ZC,J,,uv’w" 0<u<1,0<v<1,0<w<l (791)

i=0 j=0 k=

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 421

The face surfaces, edge curves, and corner vertices can be obtained by
substituting the proper value(s) of the parameters into this equation. The face
surfaces are given by P(0, v, w), P(1, v, w), P, 0, w), P(y, 1, w), P(y, v, 0), and
P(u, v, 1). Similarly, the equation of any edge curve is obtained by fixing two of
the three parametric variables and keeping the third one free. P(u, 0, 0), P(y, 1, 0),
and P(0, v, 0) are three of the available 12 edge curves, and the eight corner
vertices are obviously P(0, 0, 0), P(1, 0, 0), P(0, 1, 0), P(1, 1, 0), P(0, 0, 1), P(1, 1, 0),

. PO, 1,0),and P(1, 1, 1).

There are 64 C;; vector coefficients (called polynomial or algebraic coeffi-
cients, as they were called previously for curves and surfaces) that must be deter-
mined utilizing a given set of boundary conditions of a given hyperpatch. For a
tricubic hyperpatch, these conditions are 8 position vectors (one P at each corner
vertex), 24 tangent vectors [three (6P/du, dP/0v, and 0P/0w) at each corner
vertex], 24 twist vectors [three (8°P/du dv, 8°P/0u 0w, and &°P/0v Ow) at each
corner vertex], and 8 triple mixed partial derivatives [one (0°P/du dv dw) at each
corner vertex]. For a cubic Bezier hyperpatch, there are 64 given control (data)
points that form the characteristic (control) polyhedron of the hyperpatch. These
points are arranged in a 4 x 4 x 4 mesh. Each face surface of the hyperpatch uses
16 of these control points to define its control polygon and each edge curve uses
four control points to form its control polygon. In the case of a cubic B-spline
hyperpatch, an n x m x q mesh can be used where the number of control points
in the u, v, and w directions are n, m, and g respectively and are not necessarily
equal. B-spline surfaces and curves at.the boundary of the hyperpatch can be

"deduced in a similar fashion to the Bezier hyperpatch. If a hyperpatch that inter-

polates the data points is desired, an interpolating polynomial must be used.

The reduction of Eq. (7.91) to a matrix form as we have done to Egs. (5.74)
and (6.39) [see Egs. (5.77) and (6.40)] is possible but produces an awkward form.
In addition, converting Eq. (7.91) (sometimes called the algebraic form) to a form
similar to Egs. (5.83) and (6.42) (sometimes called the geometric form), in the case
of a tricubic hyperpatch, requires relating the algebraic coefficients C;; to the
geometric coefficients, that is, the 64 boundary conditions. This conversion
process is not different from the case of curves and surfaces and is very cumber-
some for hyperpatches. Therefore, the developments of the geometric forms of
Eq. (7.91) for a tricubic cubic Bezier and cubic B-spline hyperpatches are done
here by extending (intuitively) the patterns we can identify in one- and two-
dimensional parametric spaces into three-dimensional parametric space.

Let us look into developing the geometric form of a tricubic hyperpatch. If
Eq. (5.83) is expanded and rearranged by collecting the terms of 13, 4?, u?, and °,
we get the following equations:

3 4
Pw=7Y Y uMyV,, O<uxl1 (7.92)
i=0 j=1
where My, are the elements of the geometry matrix [Mg] given by Eqg. (5.84) and
V; are the elements of the vector V given by Eq. (5.85). It is more desirable to
umfy the summation limits of both the i and j indices in Eq. (7.92) by writing it as

4 4
Pw=Y Yu MgV, 0<uc<l (7.93)

i=1 j=1

422 GEOMETRIC MODELING

Equation (7.92) can also be written as

P(u) = i (ZMH,,) i 0<u<l (7.94)

=0 \I=1

Comparing Eqs. (7.94) and (5.74) gives
4
Ci= Y MgV, (7.95)
=1

and, therefore, Eq. (7.93) becomes

4

P = Y Cu'"?, O<ux<l (7.96)
i=1

Equations (7.93) and (7.96) give the geometric and algebraic terms respectively of
a Hermite cubic spline. Equation (7.95) relates the algebraic coefficients to the
geometric ones.

Applying the same treatment to a blCUblC surface, Eq. (6.42) can be rewrit-
ten as

P, v) =

||[\/]p

4
Z 7t 0<u<1,0<vxgl (797

where
4

4
Cu = lzl ZIMHu MH,-,.. blm (7'98)
and b, are the elements of the [B] matrix given by Eq. (6.43).

Comparing Egs. (7.96) and (7.97) shows that introducing an additional
parametric variable amounts to adding an extra summation sign into the geomet-
ric form. Moreover, comparing Egs. (7.95) and (7.98) shows the same effect, as
well as the fact that the matrix [M] always relates the algebraic coefficients to
the geometric ones. On the basis of these observations, one can easily write the
equation of a tricubic hyperpatch as

4 4 4
Pau,v,w)y= 3y Y Y Cupu W W™ 0<u<1,0<v<1,0<w<l1

i=1 j=1 k=1
(7.99)

where
4

4 4
Cijk = lzl 21 ZXMHﬂ MH].,. MH;;,. blmn (7'100)

Notice that Eq. (7.99) is the same as Eq. (7.91) with summation limits
changed. The geometric coefficients by, can be arranged in four [B] matrices
similar to the one given by Eq. (6.43). The first and second, say {B,] and [B,],
are exactly like [B] of Eq. (6.43) but for w=0 and w = 1 respectively. For
example, b,,, and b, , are P,,, and Py, respectively. The third and the fourth,
say [B3] and [B,], are the derivatives of [B,] and [B,] respectively with respect
to w. For example, bs,, and b, , are P, and P, . respectively. If we choose
the subscript ! in Eq. (7.100) to correspond to the four [B] matrices, we can easily

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 423

see that the four specific b elements we just mentioned become b;,,, by;;, bs,3,
and by, respectively. '

The tricubic hyperpatch suffers from all the disadvantages of the cubic
curve and the bicubic surface. It even requires the input of 3°P/du dv 0w as a
boundary condition. Therefore, let us look into a cubic Bezier hyperpatch. Fol-
lowing the same approach we used for the tricubic patch, the cubic Bezier curve
(see Prob. 5.10), the cubic Bezier surface [see Eq. (6.73)], and the cubic Bezier
hyperpatch can also be described by Egs. (7.96), (7.97), and (7.99) respectively.
Equations (7.95), (7.98), and (7.100) then become respectively:

Ci= Y My, P, (7.101)
=1
4 4
=3 Z BaME;, Pim (7.102)
=1 m=1
4
Cij = 121 21 Z Mg, My, Mp,, Py (7.103)
=1 m=1 a=1

where the elements of the matrix [M], given by Eq. (6.74), are used in these three
equations. The control points P,,, for the hyperpatch are arranged in the
I x m x n mesh. The m x n mesh for the Bezier surface can easily be extended to
form the I x m x n mesh. Thus any point P,,, is much easier to locate and under-
stand than the by, coefficients used in Eq. (7.100) for the tricubic hyperpatch.

The cubic B-spline hyperpatch would be more advantageous to use in
design applications over the cubic Bezier hyperpatch due to the local control
characteristics of the former. The cubic B-spline curve (see Prob. 5.15), the cubic
B-spline surface [see Eq. (6.82)], and the cubic B-spline hyperpatch can be
described by Eqgs. (7.96), (7.97), and (7.99) respectively. The maximum value of any
of the parameters may exceed the value of 1. Equations (7.101) to (7.103) can be
extended to the cubic B-spline hyperpatch by replacing the matrix [M] with the
matrix [M] given by Eq. (6.81).

7.10.2 Building Operations

The creation of an ASM model of an object simply involves dividing the object
into the proper assembly of nonoverlapping hyperpatches. Each hyperpatch can
be constructed from curves and/or surface patches. For example, a cubic Bezier
or a B-spline hyperpatch can be constructed by creating Bezier or B-spline curves
and connecting the curves by surfaces. This process reflects the natural nesting of
curves, surfaces, and solids.

If the ASM model of an existing object is to be created, Bezier and B-spline
hyperpatches introduced in Sec. 7.10.1 cannot be used because they extrapolate
the given data points. Instead, we can use a B-spline hyperpatch that interpolates

the data points or a cubic curve that interpolates through four data pomts at
specified parametric locations can be used. If these points are at u =0, 4 % and
1, they are sometimes referred to as the one-third points. Similarly 16 points and
64 points would be needed to create a bicubic surface and a tricubic hyperpatch
respectively.

424 GEOMETRIC MODELING

Other construction methods of ASM models can include ruled volumes and
sweeping. A ruled volume can be created between two given surface patches by
linearly interpolating between them as we did in developing ruled surfaces.
Linear sweep creates hyperpatches that have uniform thickness normal to the
surface patch. It is also possible to create hyperpatches that have thicknesses that
vary bilinearly over the surface patch (see Sec. 6.6.6). Rotational and/or nonlinear
sweep of surface patches can also create hyperpatches. The equations of the ruled
or swept hyperpatches created by these construction methods are considered
special cases of the general equations covered in Sec. 7.10.1 and can be obtained
from them. "

It is desirable, from a user point of view, for ASM schemes to support
boolean operations. In such a case hyperpatches can be unioned, intersected, and
differenced to model various objects. This would require developing intersecting
algorithms of these hyperpatches as well as validity checks to ensure the creation
of valid objects. ‘

Example 7.11. Create the ASM model of the solid S shown in Fig. 7-20a.

Solution. The ASM model of this solid § consists mainly of hyperpatches that have
planar face surfaces. Figure 7-57 shows the minimum number of hyperpatches that
can be used to create the ASM model of the solid S.

(a) Subdivision of S into hyperpatches

FIGURE 7-57

(b) Individual hyperpatches .. ASM model of solid S.

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 425

7.10.3 Remarks

ASM has a strong history in finite element modeling. The fact that a hyperpatch
is given by Eq. (7.99) makes it appealing in design and analysis applications that
require information inside as well as on the boundary of a given object. This is
desirable, for example, in modeling and studying composite materials and frac-
ture mechanics problems. However, ASM is not adequate for manufacturing
applications such as tool path generation because face surfaces of hyperpatches
are not explicitly stored and are not orientable; that is, normals to face surfaces
(surface patches) cannot indicate the interior or exterior of the object.

7.11 OTHER REPRESENTATIONS

We have covered the four most popular representations (B-rep, CSG, sweep, and
ASM) used in solid modeling in Secs. 7.7 to 7.10. Other representations exist.
However, they are less popular because their modeling domain is limited and/or
they do mot support a wide range of applications. These representations are
primitive instancing, cell decomposition, spatial occupancy enumeration, and
octree encoding.)

" Primitive instancing is based on the notion of families of objects or family
of parts. All objects that have the same topology but different geometry can be
grouped into a family called generic primitive. Each individual object within a
family is called a primitive instance. Take, for example, a block primitive which
can be represented by its length L, width W, and height H. Each block primitive
instance is defined by specific values of L, W, and H. Primitive instancing is
similar in philosophy to group technology used in manufacturing. It promotes
standardization. It is also an unambiguous, unique, and easy to use and validate
scheme. However, its main drawbacks are its limited domain of modeling unless
we use an enormous number of generic primitives, and the lack of generality to
develop any algorithms to compute properties of represented solids.

In a cell decomposition scheme, an object can be represented as the sum of
cells into which it can be decomposed. Each cell in the decomposition can always
be represented. Thus, cell decomposition may enable us to model objects, which
may not otherwise be representable, by their cells. Take the case of a cup with a
handle. It can be decomposed into two cells: a body and a handle. The body
and/or handle can be decomposed further if needed. Cell decompositions are
unambiguous, nonunique, and are computationally expensive to validate. They
have been historically used in structural analysis. ASM and finite element model-
ing are forms of cell decomposition.

In a spatial enumeration scheme, a solid is represented by the sum of spatial
cells that it occupies. These cells (sometimes called voxels for “volume elements”)
are cubes of a fixed size that lie in a fixed spatial grid. Each cell can be represent-
ed by its centroid coordinates in the grid. The smaller the size of the cube, the
more accurate the scheme in representing curved objects. It is exact for boxlike
objects. The scheme is unambiguous, unique, and easy to validate, but it is
verbose when describing an object, especially curved ones.

The octree encoding (quadtree encoding in two-dimensions) scheme can be
considered a generalization of the spatial enumeration scheme in that the cubes

426 GEOMETRIC MODELING

(a) Solid (b) Spatial occupancy enumeration (c) Octree encoding

FIGURE 7-58
Quasi-disjoint decomposition of a solid.

may have variable sizes. Octrees are hierarchical structures that reflect the recur-
sive subdivision of objects into variably sized cubes. Figure 7-58 shows the differ-
ence between spatial occupancy enumeration and octree encoding. In octree
encoding, we enclose the object to be modeled inside a cube. If the object does
not uniformly cover the cube, then we subdivide the cube into eight octants. If
any of the resulting octants is full (completely inside the object) or empty
(completely outside the object), no further subdivision is made. If any of the
octants is partially full, we subdivide it again into octants. We continue to sub-
divide the partially full octants until the resulting octants are either full or empty
or until some predetermined level of subdivision is reached. Quadtree encoding is
exactly the same as octree encoding but it begins with a square and recursively
subdivides it into quadrants. Quadtree and octree encodings were originally
developed for use in image representation. They have been adapted to finite
element modeling (refer to Chap. 18 for more details).

712 ORGANIZATION OF SOLID
MODELERS

Each of the solid modeling representations described above has its advantages
and disadvantages. Some are more suitable for certain applications than others.
This leads to the idea of developing solid modelers with more than one internal
representation. While this idea might extend the geometric coverage (modeling
domain) of a modeler, the development and maintenance of such a modeler
requires more time and effort than a modeler based on only one representation.
The generic architecture of a solid modeler is shown in Fig. 7-59. This
architecture applies also to most of the existing CAD/CAM systems. The figure
shows that a solid modeler can be divided into four major systems. The input
system consists primarily of the user interface and its related commands. Users
can input commands (sometimes called a symbol structure) to define a new object
or input application commands that invoke .an application algorithm such as
mass property calculations. The GMS (geometric modeling system) is the heart of
the solid modeler. The GMS translates the symbol structure that defines an
object into the internal representation the solid modeler supports. The applica-

Input system

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 427

GMS (geometric engine) Applications system

Object

gegn?e'trys Definition Internal Application Transformed
definition translator representation algorithm representation | !
(symbol i

|
|
|
|
{
structure) i

| R A

1
t
I
_________________ !
!
|
J

Application
algorithm

T
i
|
|
I
|
|
1
|
I
|

Command
translator

Application
commands

|
!
I
|

FIGURE 7-59
Architecture of a typical solid modeler.

tions system usually consists of various application algorithms. Each algorithm
operates on the modeler’s internal representation and transforms it into the
proper geometric form (transformed representation) needed by the analysis pro-
cedure related to the application. In the case of finite element modeling, the mesh
algorithm produces nodal (grid) points and elements. In general, the GMS is
fixed once it is developed while the applications system is extending to accommo-
date new design and manufacturing applications. The engineering value of a solid
modeler is usually assessed by the capabilities of its applications system. The
output system displays the results in a graphical form. Its details have been dis-
cussed in Chapter 2. Typically, a solid modeler is a part of a total CAD/CAM
system. In such a case, the architecture shown in Fig. 7-59 is an extension of that
of the CAD/CAM system.

Solid modelers can be categorized into three types based on their GMSs as
follows:

1. Single representation modelers. These modelers have only one internal repre-
sentation they store. B-rep is usually such a representation. All modelers based
on B-rep fall into this type. These modelers usually support CSG-like input
and sweep operations to facilitate user input. These forms of input are not
stored internally but are converted into the B-rep format before storing.
Figure 7-60a shows the GMS of a single representation system.

2. Dual representation modelers. This type is very popular among modelers
whose primary representation scheme is CSG (e.g., PADL-2). A modeler vhas
both B-rep and CSG representations. However, B-rep is derived internally by
the modeler from the CSG and the user has no control over it. In addition, the
modeler does not usually store the B-rep. It only stores the CSG graph (and
tree) and can always reevaluate the B-rep. The need for converting the CsSG

!

|

|

!

|

!

- !
|

|

l

!
Transformed |
representation ‘
1

|

|

|

|

i

1

1

|

!

Output system

| /
———>{ and/or sweep }-——-—)(Convert\y——)‘
\

428 GEOMETRIC MODELING

B-build
To application

'r____CS_G___..t o~ B-rep algorithm

(for input only) |

(/
e i ~_ -~

(a) Single representation modeler
To application
g:ﬁ; CSG pe—> algorithm
(based on CSG)

To application

B-rep pP——> algorithm
(based on B-rep)

(b) Dual representation modeler

‘ To application
(Trec) o —s

¢ algorithm
W (based on CSG)

Input
definition

To application
B-build B-rep p—> algorithm
v (based on B-rep)

(¢) Hybrid modelers

)

FIGURE 7-60
Types of solid modelers.

into B-rep is natural and is needed for display and other graphics purposes.
Dual-rep modelers can support a wide range of applications. However, their

evelopments and maintenance are usually more complex than single-rep
modelers. Figure 7-60b shows the structure of the related GMS.

3. Hybrid modelers. Here the modeler uses two independent internal representa-

tions, usually B-rep and CSG (see Fig. 7-60c). GMSOLID is a true hybrid
modeler. Hybrid modelers are different from dual-rep modelers in a few ways.
Neither of the internal representations supported is derived from the other.
The user can choose which representation and input form to use. Further-
more, the user can use both representations to solve a given problem and
compare them. In such cases, it is the user’s responsibility to ensure the consis-
tency between input data. The need for a hybrid modeler is clearly to increase

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 429

the modeling domain of the modeler. For example, sculptured surfaces can be
modeled on a hybrid modeler using its B-rep while this cannot be done on a
dual-rep system if it does not support sculptured surfaces.

7.13 SOLID MANIPULATIONS

Solid manipulations are useful during the design phase of a given part or object.
It is beneficial if the manipulation concepts (refer to Chaps. 5 and 6) utilized by
the wireframe and surface modeling techniques can be extended to solid model-
ing. Most of these concepts can be foreseen as solving intersection problems
and/or using set membership classification. In addition, any solid manipulation
involves manipulation of both its geometry (as in curves and surfaces) and its
topology to ensure that the resulting solids are valid.

7.13.1 Displaying

Displaying a solid can take two forms: wire display and shaded images. The wire
display requires the B-rep of the solid, in which case the metric information of
edges and vertices are used to generate the wireframe model of the solid. This
wireframe model can be displayed, edited, or produce line drawings. Editing of
the wireframe model derived from a solid database does not, of course, affect the
solid itself. If the underlying surfaces of the solid faces are utilized, a mesh can be
added to the display to help visualization.

Displaying solids as shaded images provides realistic visual feedbacks to
users of solid modelers. Shading is perhaps considered the oldest and most
popular application of solid modeling. In fact, there exists the mistaken notion
that a shaded image is a solid model. As one expects, shading algorithms are
directly related to the representation schemes of solids. Shaded images can be
generated from B-reps by a variety of visible-surface algorithms. Most often,
these exact B-reps are converted to faceted (approximate or polygonal) B-reps
because such algorithms become simple for the latter. Special-purpose tiling
engines based on algorithms for displaying approximate B-reps are available
commercially for faster displays.

Shading can be performed directly from CSG by means of ray-casting (also
called ray-tracing) algorithms or depth-buffer (also called z-buffer) algorithms.
Many improvements and alterations have been introduced to ray casting to
speed up the algorithms. Shading algorithms for both spatial enumeration and
octree have been implemented in special-purpose hardware: a voxel machine for
the former and an octree machine for the latter. Visible-surface algorithms can be
utilized to shade ASM models. Details of some of these shading algorithms are
covered in Chap. 10.

7132 Evaluating Points, Curves, and Surfaces
on Solids

Applications that require information about the boundary of a solid would need
to evaluate points, curves, and surfaces on this boundary. Take the popular

430 GEOMETRIC MODELING

application of generating tool paths from solid modeling databases. To drive a
tool along the solid boundary, proper curves are evaluated on the underlying
surfaces of the solid faces. Points are then generated on each curve to generate
the required tool locations.

Evaluating points and curves on solids can be viewed as intersection prob-
lems. Solutions of curve/solid and surface/solid intersection problems generate
points and curves on solids respectively. Curves and surfaces, utilized in the inter-
section problems, must be of the type that the solid modeler supports. More
specifically, it suffices for these intersecting curves and surfaces to be lines and
boundaries of planar half-spaces (i.e., planes) respectively. A plane/solid intersec-
tion is also useful in sectioning a solid to generate desired cross-sections. An
algorithm that evaluates points and curves on a solid is dependent on the repre-
sentation of the solid, but in the most part follows similar outlines as described in
Examples 7.7 and 7.9.

Evaluating surfaces on a solid can be regarded as extracting the underlying
surfaces of the solid faces. These surfaces can be bounded by the proper solid
edges or other user-defined boundaries. To keep the solid topology and geometry
intact, the geometry and other related information of these surfaces must be
copied. The parametric equations of the surfaces might have to be stored in the
given solid modeler to facilitate editing the extracted surfaces.

The inverse problem involves checking whether given points, curves, and
surfaces lie in, on, or outside a given solid. The solution of this problem is
achieved by the set membership classification and neighborhoods. To classify a
point against a solid, one passes a line through the point, intersects it with the
solid, and classifies it with respect to the solid. A similar approach can be fol-
lowed for curve/solid and surface/solid classification.

7.13.3 Segmentation

The segmentation concept introduced for curves and surfaces is applicable to
solids. Segmenting a solid is equivalent to splitting it into two or four valid sub-
solids depending on whether it is to be split by a plane or a point respectively.
Each resulting subsolid should have its own topology and geometry. In a B-rep
model, new vertices, edges, and faces are created. Steps 1 to 5 described in
Example 7.7 shows how to split a B-rep model into two subsolids. In a CSG
model, splitting the solid would also require splitting its CSG graph and tree.
Splitting an ASM model is an extension of segmenting curves and surfaces dis-
cussed in Chaps. S and 6. ‘

7.13.4 Trimming and Intersection

Trimming a solid entails intersecting the solid with the trimming boundaries, say
surfaces, followed by the removal of the solid portions outside these boundaries.
In trimming a solid, it is split into three subsolids, two of which are removed. The
trimming surfaces must be of the type supported by the given solid modeler to be
able to solve the resulting surface/solid intersection problem.

The intersection problem involving solids is trivial to perform if boolean

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLIDs 431

operations are supported by the solid modeler. All that needs to be done is to use
the intersection operator. No additional development or programming is
required.

7.13.5 Transformation

Homogeneous transformations, or rigid motion, of solids involve translating,
rotating, or scaling them. These transformations can be used on two different
occasions. When constructing a solid, its primitives are positioned and oriented
properly before applying boolean operations by using these transformations.
Here, the local coordinate system of each primitive is positioned and oriented
relative to the MCS or a WCS of the solid under construction. If the solid is to
be transformed later after its complete construction, the transformation operation
must be applied to all, say, its faces, edges, and vertices for a B-rep solid or its
primitives for a CSG solid.

7.13.6 Editing

Editing a solid model is an important feature for the design process. Most new
designs are not totally new but rather alterations of existing ones. Editing a solid
involves changing its existing topological and geometrical information. An effi-
cient means of solids editing is to use its CSG graph which is only a symbolic
structure, as discussed in Sec. 7.8. This is natural for CSG models but for other
models such as a B-rep model a CSG graph and a tree can be created; otherwise
editing would have to be done on the face/edge/vertex structure which may be
slow. :

Solid modelers must provide users with fast visual feedbacks when solids
are edited. This implies that boundary representations must be updated rapidly,
because displays are typically generated from face, edge, and vertex data. Thus,
editing is faster if only the part of the boundary representation that is affected by
the user changes is updated. Some updating algorithms are based on structural
and spatial localities and are not covered here.

7.14 SOLID MODELING-BASED
APPLICATIONS

Applications based on solid modeling have been increasing rapidly. The under-
lying characteristic of all these applications is full automation. Current applica-
tions can be divided into four groups:

1. Graphics. This is considered the most complete group. It includes generating
line drawings with or without hidden line removal, shading, and animation.

2. Design. The most well-understood application in this group is the mass
property calculations. Other applications include interference analysis, finite
element modeling, and kinematic and mechanism analysis. Some of these
applications are more developed than the others.

432 GEOMETRIC MODELING

3. Manufacturing. The most active application in this group is tool path gener-
ation and verification. Other applications include process planning, dimension
inspection, implementing form features needed for manufacturing into solid
modelers, and representing geometric features such as tolerances and surface
finish.

4. Assembly. This is a useful group of applications to robotics and flexible manu-
facturing. Applications include assembly planning, vision algorithms based on
solid modeling, and robotic kinematics and dynamics driven by solid models.

Some of the above applications are covered in the appropriate chapters of
Part V of the book while other applications are not covered because they are
either beyond the scope of the book or at an early stage of research.

7.15 DESIGN AND ENGINEERING
APPLICATIONS

Following are some examples to show how the solid modeling theory can be
utilized in design and engineering applications. Readers can utilize available solid
modelers to them torework these examples or develop new ones along the same
line of thinking.

Example 7.12. Figure 7-61 shows a 3 x 3 x 1 inch block. A curved slot of 0.3 inch
deep is to be milled in the block using a ball-end mill of 0.25 inch diameter. The
equation of the centerline of the slot on the top face of the block is given by z =
—(1.5 — 3/x*/3.5). Create the solid model of the block with the slot in it and show
the swept volume of the tool if it moves perpendicular to the top plane of the block.

/Q

FIGURE 7-61
A block with a curved slot.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLiDs 433

Solution. This example illustrates how complex shapes can be approximated to fit
within the modeling domain of a given solid modeler. Here, we are assuming that
the modeler supports boolean operations and has natural quadrics as its minimum
set of primitives. If the block had a slot with a straight centerline in any orientation
relative to it, its modeling would have been exact and trivial. In the case of a curved
centerline, the tool motion is approximated by line segments along the centerline.
The solid model of the block becomes a block primitive from which the tool, in its
proper position and orientation, is subtracted. The swept volume of the tool is the
union of the tool instances.

The tool is the union of a sphere and a cylinder both positioned at 0.175 inch
below the top face. This position (0.175) assumes the slot is created in the block by
removing all the material in one cut. The original position of the centerline of the

_ tool is at the beginning of the slot centerline, as shown in Fig. 7-61. In this position,

the tool is oriented vertically along the Y axis. In order to obtain a fairly smooth
slot, the tool is positioned every d/4, where d is the tool diameter, that is, every
0.0625 inch. The top view of the profile of the tool swept volume is shown in Fig.
7-62. The curve length S of the slot must be calculated to determine the required
number of tool positions, N, to sweep the slot. This length is given by

s =~f \/ 14 (E)z dx (7.104)
= dx

Profile of tool swept volume

13333390

|

Initial and final tool positions
533113132130

i
iy

i
if

mﬁi»
I

| I

e

' Sw;vept volume superimposed on the block Solid model of the block

FIGURE 7-62
Block and tool swept volume.

434 GEOMETRIC MODELING

where dz/dx is calculated from the slot equation as

:—z =0.439x~13 (7.105)
X

Substituting Eq. (7.105) into (7.104), rearranging, and integrating, we obtain
S =./(0.193 + x2/3)® (7.106)

The curve length of the slot between x = 0 and x = 3 is [S(x = 3) —.S(x = 0)] 3.342
inch. Thus the number N is given by

S
N= INT(A—S-) +1 (7.107)

where INT is the INTEGER function. For AS = 0.0625, 54 tool instances are
required. :
Rearranging Eq. (7.106) to give x in terms of S enables the calculation of the

tool position, that is,
x = /(§%% —0.193)* (7.108)

In a recursive form, this equation becomes

Xery = /(S5 — 01933, O<i<(N-—1) (7.109)
and Sipy =5+ AS (7.110)

where the subscripts i and i + 1 indiqaté the previous and current positions respec-
tively. For the initial position, i = 0, S, = 0.085 inch, and x, = 0. Having the value
of x from Eq. (7.109), the z coordinate of the tool position can be obtained from the
equation of the slot centerline. The y coordinate of the origins of the sphere and
cylinder primitives that make up the tool (see Fig. 7.4) is 0.825.

The position of each primitive (sphere and cylinder) of the tool is given by
(x, y, z) as calculated above. The sphere and cylinder are unioned together to give
the tool which, in turn, is subtracted from the block. For example, the initial and
final positions of the sphere and the cylinder are given by (0, 0.825, —1.5) and
(3.0, 0.825, —0.13) respectively. Repeating this process 54 times produces the block
with the slot. The results are shown in Fig. 7-62.

The above solution is approximate: the more the number of tool instances,
the more accurate the solid model of the block and, of course, the more expensive to
operate on the model. The exact solution of this problem would require a solid
modeler that supports nonlinear (or general) sweep of moving objects besides the
natural quadrics primitives.

Example 7.13. Figure 7-63 shows a crankshaft mounted on a bracket. The given
dimensions cause interference between the crankshaft and the bracket to occur. Find
the maximum volume of interference. The interference can be removed by either
creating a depression in the bracket or decreasing the length of the crankshaft. Find
the amount of material removed for the latter solution.

Solution. This problem illustrates how to use boolean operations for interference
detection between components of a solid model. Given the dimensions shown,
create the solid model of the crankshaft system. Designate the bracket and crank-
shaft as solids B and C respectively. The interference volume is the intersection of
the two; that is, B n* C and is shown in Fig. 7-63b. The mass properties of this
volume can easily be calculated and are not discussed now (refer to Chap. 17).

TYPES AND MATHEMATICAL REPRESENTATIONS OF SOLIDS 435

(a) Crankshaft system

/ _L_L

(b) Interference volume

(c) Elimination of interference

FIGURE 7-63
Interference detection.

The crankshaft should be reduced by 0.35 inch (see Fig. 7-63c) so that the
interference between the bracket and the crankshaft is removed, and to allow 0.1
inch clearance between the two. The amount of material removed is 2(D ~*D’),
where D —* D’ is the difference between the original crankshaft D (see Fig. 7-63a)
and the new one D’ (Fig. 7-63c).

PROBLEMS
Part 1: Theory

7.1.

72.

713.

A valid solid is defined as a point set that has an interior and a boundary as given by
Egq. (7.1). A valid boundary must be in contact with the interior. Sketch a few two-
and three-dimensional solids and identify iS and bS for each one. Is iS always joint
for any S? Can bS be disjoint? What is your conclusion?

Three point sets in E? define three valid polygonal solids S,, S,, and S,. The three
solids are bounded by three boundary sets bS,, bS,, and bS; given by their corner
points as: bS; = {(2, 2), (5, 2), (5, 5), (2, 5)}, bS, ={(3, 3), (7, 3), (7, 6), (3, 6)}, and
bS; ={(4, 1), (6, 1), 4, 4), (6, 4)}. Find §, U §, U §3,§; " S, N S5, and §, — 5,
—-S,.

Reduce the following set expressions:

@dPAQUP

®) (P U Qu(PncQ

PN ncdPuQ)

(d P—-(P—0)

Use the set laws given by Eqgs. (7.13) to (7.27) as well as the Venn diagram.

436 GEOMETRIC MODELING

7.4. Using the set membership classification, classify the line L shown in Fig. P7-4 with
respect to the solid shown if the solid given is a B-rep and a CSG.

L FIGURE P74

7.5. Implementing set opérations given by Egs. (7.41) to (7.48), or S = ACOP)B in
general, involves finding intersections between bA and bB, classifying the boundaries
with respect to each operand, and combining classifications according to the rules:

{OP} = U*: bS = (4 out B UN* B out 4 UN* 4 on B+)
{OP> = n*: bS =(4 in BUN* Bin 4 UN* 4 on B+)
{OP) = —*: bS = (4 out BUN* Bin A™! UN* 4 on B—)

where UN* is a regularized union operator in E*. 4 on B+ consists of those parts of

bA that lie on bB so that the face normals of the respective faces are equal, whereas

A on B— consists of the overlapping parts where the normals are opposite. Bin A™!

denotes the complement of B in A, that is, B in 4 with the orientation of all faces

reversed. Notice that the + and —, and the exponent —1, are a form of neighbor-
hoods. Using the above equations:

(a) Explain the concept of closure used in Egs. (7.41) to (7.48) and shown in Fig.
7-14. What should be.done to implement the concept of interior to eliminate
nonregular sets?)

(b) Find S = ACOP)B for 4 and B shown in Fig. P7-5.

7.6. Solids in E? (i.e., two-dimensional solids) and their solid modelers are valuable in
understanding many of the concepts needed to handle solids in E® (ie., three-
dimensional solids). A two-dimensional solid is a point set of ordered pairs (x, y). A
two-dimensional solid modeler based on half-spaces is to be developed utilizing
linear and disc half-spaces. Find the equations of the two half-spaces.

Hint: See Egs. (7.51) and (7.52).
Develop a parametric equation for their intersection.

7.7. Apply Euler laws, Eqs. (7.57) and/or (7.58), to models shown in Prob. 7.17 of Part 2.
Using Euler operators, write the construction sequence needed to create them.

7.8. Following Example 7.7, write a procedure to split a solid with a plane.

7.9. Create an input sequence to create a CSG model of each object shown in Prob. 7.17
in Part 2. Based on this sequence, find the model CSG graph and tree. It is preferred
to obtain balanced trees if possible.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLIDS 437

A A B
B
(a) [©)]
A
A
B B
©) (d)
A
A
B
B
(e) ()]
:
B .)
® () FIGURE P7-5

7.10. Apply the various available traversal methods to traverse each tree developed in
Prob. 7.9.

7.11. It is desired to develop bounded primitives for a two-dimensional solid modeler
based on the CSG scheme. A plate (rectangular plate and triplate) and disc primi-
tives are to be developed. Find the mathematical definitions of these primitives.

Hint: See Egs. (7.61), (7.62), and (7.65).
Develop intersection equations (refer to Prob. 7.6).

7.12. Apply the algorithms that perform boolean operations and described or used in
Examples 7.7 (B-rep) and 7.9 (CSG) to the two primitive blocks shown in Fig. 7-36b.

7.13. How can you use a cylinder primitive to generate a sphere?

7.14. How can you generate a torus using other natural quadrics?

7.15. Repeat Prob. 7.8 but for a CSG model (follow Example 7.9).

7.16. Problems 7.6 and 7.11 introduced the mathematical foundations of a two-
dimensional solid modeler. The further development of such a modeler requires rep-
resentations of orientable surfaces, that is, represent surface normals, neighborhoods,
classifications, and combining the classifications. Discuss the following for half-space,
B-rep, and CSG schemes:

(@) How to represent surface normals and neighborhoods
(b) How to develop a classification algorithm
(¢) How to combine classifications

438 GEOMETRIC MODELING

Part 2: Laboratory

7.17. Create the solid models of the objects of Prob. 5-20. Similarly, create the solid
models of the objects shown in Prob. 6.16. Use layers and colors provided by your
CAD/CAM system to be able to manage the primitives and resulting subsolids. How
do you compare the amount of effort it takes to create the wireframe, surface, and
solid models of a given object?

7.18. Perform the set operations on the two objects shown in Fig. 7-15 on your
CAD/CAM system. Compare the results with those of Example 7.3. Did your system
fail to perform any of the operations? What is your conclusion?

Part 3: Programming
‘Write a procedure to:

7.19. Classify lines with respect to two-dimensional solids for B-rep and CSG (see Figs.
7-17 and 7-18).

7.20. Combine the classifications that result from the above procedure.

7.21. Implement the results of Prob. 7.6.

7.22. Convert a user input into a CSG graph and a tree traversed in a reverse postorder.
7.23. Implement the results of Prob. 7.11.

7.24. Create two-dimensional primitives based. on B-rep schemes (assume that low-level
Euler operators exist).

7.25. Implement results of Prob. 7.16.]
7.26. Implement results of Prob. 7.13 into an existing solid modeler.
7.27. Implement results of Prob. 7.14 into an existing solid modeler.

BIBLIOGRAPHY

Baer, A, C. Eastman, and M. Henrion: “Geometric Modeling: A Survey,” Computer Aided Des.
(CAD) J., vol. 11, no. 5, pp. 253-272, 1979.

Baumgart, B. G.: “Winged Edge Polyhedron Representation,” AIM-179, report STAN-CS-320,
Stanford University, 1972.

Baumgart, B. G.: “Geometric Modeling for Computer Vision,” AIM-249, report CS-463, Artificial
Intelligence Laboratory, Stanford University, 1974.

Berlin, E.: “Solid Modeling on a Microcomputer,” Computer Graphics World, pp. 39-42, November
1984.

Bin, H.: “Inputting Constructive Solid Geometry Representations Directly from 2D Orthographic
Engineering Drawings,” CAD J., vol. 18, no. 3, pp. 147-155, 1986. ‘

Bobrow, J. E.: “NC Machine Tool Path Generation from CSG Part Representation,” CAD J., vol. 17,
no. 2, pp. 69-76, 1985.)

Bowerman, R. G.: “Drafting Links Up with Solid Modeling,” Mach. Des., pp. 46-49, September 12,
1985.

Boyse, J. W.: “Interference Detection among Solids and Surfaces,” Commun. ACM, vol. 22, no. 1, pp.
3-9, 1979.

Braid, 1. C.: “The Synthesis of Solids Bounded by Many Faces,” Commun. ACM, vol. 18, no. 4, pp.
209-218, 1975.

Bronsvoort, W. F., J. J. Wijk, and F. W. Jansen: “Two Methods for Improving the Efficiency of Ray
Casting in Solid Modeling,” CAD J., vol. 16, no. 1, pp. 51-55, 1984.

CAM-], Inc.: “Design of an Experimental Boundary Representation and Management System for
Solid Objects,” report R-80-GM-02, CAM-I, Arlington, Tex., 1980.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLiDs 439

CAM-L, Inc.: “Boundary File Design,” report R-81-GM-02.1, CAM-], Arlington, Tex., 1981.

CAM-], Inc.: “Boundary Representation for Solid Objects,” report R-82-GM-02.1, CAM-I, Arlington,
Tex., 1982.

CAM-], Inc.: “Extended Geometric Facilities for Surface and Solid Objects,” report R-83-GM-02.1,
CAM-I, Arlington, Tex., 1983.

CAM-I, Inc.: “Solid Modeling Applications; The Real Payback,” Proc. CAM-I's 3rd Geometric
Modeling Seminar, March 19-20, 1985, Nashville, Tenn.

Casale, M.: “Free-Form Solid Modeling with Trimmed Surface Patches,” IEEE CG&A, pp. 33-43,
January 1987.

Casale, M. S,, and Stanton, E. L.: “An Overview of Analytic Solid Modeling,” IEEE CG&A, pp.
45-56, February 1985.

Childress, R. L.: Sets, Matrices, and Linear Programming, Prentice-Hall, Englewood Cliffs, N.J., 1974.

Chiyakura, H., and F. Kimura: “A Method of Representing the Solid Design Process,” I[EEE CA&A,
pp- 3241, April 1985.

Choi, B. K., M. M. Barash, and D. C. Anderson: “Automatic Recognition of Machined Surfaces from
a 3D Solid Model,” CAD J., vol. 16, no. 2, pp. 81-86, 1984.

Clark, A. L.: “Roughing It: Realistic Surface Types and Textures in Solid Modeling,” Computers In
Mechanical Engineering (CIME) Mag., pp. 12-16, March 1985.

Congdon, R. M, and D. C. Gossard: “Interactive Graphic Input of Plane-Faced Solid Models,” Proc.
Conf. on CAD/CAM Technology in Mechanical Engineering, March 24-26, 1982, pp. 350~360,
MIT, Cambridge, Mass.

Crocker, G. A.: “Screen-Area Coherence for Interactive Scanline Display Algorithms,” IEEE CA&G,
pp. 10-17, September 1987.

Doctor, L. J.,, and J. G. Torborg: “Display Techniques for Octree-Encoded Objects,” IEEE CG&A,
pp. 29-38, July 1981.

Eastman, C., and M. Henrion: “GLIDE: A Language for Design Information Systems,” Proc. First
Annual Conf. on Computer Graphics in CAD/CAM Systems, April 9-11, 1979, pp. 24-33, MIT,
Cambridge, Mass.

Eastman, C., and K. Weiler: “Geometric Modeling Using the Euler Operators,” Proc. First Annual
Conf. on Computer Graphics in CAD/CAM Systems, April 9-11, 1979, pp. 248-259, MIT,
Cambridge, Mass.

Farr, R, and G. Fredrickson: “Interactive Solid Modeling,” CAE Mayg., pp. 4648, November 1986.
Hakala, D. G, R. C. Hillyard, B. E. Nourse, and P. J. Malraison: “Natural Quadrics in Mechanical
Design,” in AUTOFACT WEST, pp. 363-378, Anaheim, Calif., November 17-20, 1980.

Halmos, P. R.: Naive Set Theory, Litton Educational Publishing, New York, 1960.

Hillyard, R.: “The Build Group of Solid Modelers,” IEEE CG&A, pp. 43-52, March 1982.

Holt, M. G.: “Experiences with CAD Solids Modeling and Its Role in Engineering Design,”
Computer-Aided Engng J., pp. 38-44, April 1985.

Hook, T. V.: “Advanced Techniques for Solid Modeling,” Computer Graphics World, pp. 45-54,
November 1984.

Hrbacek, K., and T. Jech.: Introduction to Set Theory, Marcel Dekker, New York, 1978.

Johnson, R. H.: “Product Data Management with Solid Modeling,” Computer-Aided Engng J., pp.
129-132, August 1986.

Kalay, Y. E.: “A Relational Database for Nonmanipulative Representation of Solid Objects,” CAD J,,
vol. 15, no. 5, pp. 271276, 1983.

Kirk, D. B.: “Curved Surfaces in Solid Modeling: New Hardware Improves the View,” CIME Mag.,
pp. 10-14, May 1986.

Krouse, J. K.: “Solid Models for Computer Graphics,” Mach. Des., pp. 50-55, May 20, 1982.

Krouse, J. K.: “Sorting Out the Solid Modelers,” Mach. Des., pp. 94-101, February 10, 1983.

Krouse, J. K.: “Solid Modeling Catches On,” Mach. Des., pp. 6064, February 7, 1985.

Lee, Y. C., and K. S. Fu: “Machine Understanding of CSG: Extraction and Unification of Manufac-
turing Features,” IEEE CG&A, pp. 20-32, January 1987.

Levin, J.: “A Parametric Algorithm for Drawing Pictures of Solid Objects Composed of Quadratic
Surfaces,” Commun. ACM, vol. 19, no. 10, pp. 555-563, 1976.

Manty, M. la: “Boolean Operations of 2-Manifolds Through Vertex Neighborhood Classification,”
ACM Trans. on Graphics, vol. 5, no. 1, pp. 1-29, 1986.

440 GEOMETRIC MODELING

Manty, M. la, and R. Sulonen: “GWB: A Solid Modeler with Euler Operators,” IEEE CG&A, pp.
17-31, September 1982.

Manty, M. la, and M. Tamminen: “Localized Set Operations for Solid Modeling,” ACM Computer
Graphics, vol. 17, no. 3, pp. 279-288, 1983.

Miller, J. R, D. R. Starks, and M. D. Hastings: “An Evolving Volume Modeling-Based CAD/CAM
System,” Proc. Conf. on CAD/CAM. Technology in Mechanical Engineering, March 24-26,
1982, pp. 33-53, MIT, Cambridge, Mass.

Mortenson, M. E.: Geometric Modeling, John Wiley, New York, 1985.

Myers, W.: “An Industrial Perspective on Solid Modeling,” IEEE CG&A, pp. 86-97, March 1982.

Patnaik, L. M., R. S. Shenoy, and D. Krishnan: “Set Theoretic Operations on Pblygons Using the
Scan-Grid Approach,” CAD J., vol. 18, no. 5, pp. 275-279, 1986.

Pickett, M. S., and J. W. Boysl (Eds): “Solid Modeling by Computers: From Theory to Applica-
tions,” Proc. Symposium on Solid Modeling, September 25-27, 1983, General Motors Research
Laboratories, Warren, Mich.

Post, F. H,, and F. Klok: “Deformations of Sweep Objects in Solid Modeling,” in Eurographics ‘86
(Ed. A. A. G. Requicha), pp. 103-115, Elsevier Science, New York, 1986.

Pratt, M. J.: “Solid Modeling and the Interface Between Design and Manufacture,” IEEE CG&A4, pp.
52-59, July 1984.

Putnam, L. K., and P. A. Subrahmanyam: “Boolean Operations on n-Dimensional Objects,” IEEE
CG&A, pp. 43-51, June 1986.

Requicha, A. A. G. (Ed.): Eurographics ‘86, Elsevier Science, New York, 1986.-

Requicha, A. A. G, and S. C. Chan: “Representation of Geometric Features, Tolerances, and
Attributes in Solid Modelers Based on Constructive Geometry,” IEEE J. of Robotics and
Automation, vol. RA-2, no. 3, pp. 156-166, 1986.

Requicha, A. A. G, and H. B. Voelcker: “Solid Modeling: A Historical Summary and Contemporary
Assessment,” IEEE CG&A, pp. 924, March 1982.

Requicha, A. A. G, and H. B. Voelcker: “Solid Modeling: Current Status and Research Directions,”
IEEE CG&A, pp- 25-37, October 1983.

Requicha, A. A. G, and H: B. Voelcker: “Boolean Operations in Solid Modeling: Boundary Evalu-
ation and Merging Algorithms,” Proc. IEEE, vol. 73, no. 1, pp. 30-44, 1985.

Rossignac, J. R., and A. A. G. Requicha: “Offsetting Operations in Solid Modeling,” Computer Aided
Geometric Des., vol. 3, pp. 129-148, 1986.

Rossignac, J. R, and A. A: G. Requicha: “Depth-Buffering Display Techniques for Constructive Solid
Geometry,” IEEE CG&A, pp. 29-39, September 1986.

Roth, S. D.: “Ray Casting as a Method for Solid Modeling,” report GMR-3466, General Motors
Research Laboratories, Warren, Mich., 1980.

Rouse, N. E.: “Linking Solids and Surfaces,” Mach. Des., pp- 82-86, May 7, 1987.

Sarraga, R. F.: “Algebraic Methods for Intersections of Quadric Surfaces in GMSOLID,” Computer
Vision, Graphics, and Image Processing, vol. 22, pp. 222-238, 1983.

Stewart, I P.: “Quadtrees: Storage and Scan Conversion,” The Computer J., vol. 29, no. 1, pp. 60-75,
1986.

Tamminen, M., O. Karonen, and M. la Manty: “Ray-Casting and Block Model Conversion Using a
Spatial Index,” CAD J., vol. 16, no. 4, pp. 203-208, 1984.

Tan, S. T, and M. M. F. Yuen: “Integrating Solid Modeling with Finite Element Analysis,”
Computer-Aided Engng J., pp. 133137, August 1986.

Tan, S. T, M. F. Yuen, and K. C. Hui: “Modeling Solids with Sweep Primitives,” Computers In
Mechanical Engineering (CIME) Mag., pp. 60-73, September/October 1987:

The Merrit Company: Solid Modeling Today, vol. 1, no. 1-8, The Merm Company, Santa Monica,
Calif,, 1986.

Tilove, R. B.: “Set Membership Classification: A Unified Approach to Geometnc Intersection Prob-
lems,” IEEE Trans. on Computers, vol. C-29, no. 10, pp. 874-883, 1980.

Tilove, R. B.: “A Null-Object Detection Algorithm for Constructive Solid Geometry,” Commun.
ACM, vol. 27, no. 7, pp. 684694, 1984.

Tilove, R. B., and A. A. G. Requicha: “Closure of Boolean Operations on Geomet.nc Entities,” CAD
J., vol. 12, no. 5, pp. 219-220, 1980.

Tilove, R. B., A. A. G. Requicha, and M. R. Hopkins: “Efficient Editing of Solid Models by Exploit-
ing Structural and Spatial Locality,” Computer Aided Geometric Des., vol. 1, pp. 227-239, 1984.

TYPES AND MATHEMATICAL REPRESENTATIONS OF soLips 441

Toriya, H., T. Satoh, K. Ueda, and H. Chiyokura: “UNDO and REDO Operations for Solid Model-
ing,” IEEE CA&A, pp. 3542, April 1986.

Vandoni, C. E. (Ed.): Eurographics ‘85, Elsevier Science, New York, 1985.

Varady, T., and M. J. Pratt: “Design Techniques for the Definition of Solid Objects with Free-Form
Geometry,” Computer Aided Geometric Des., vol. 1, pp. 207-225, 1984,

Voelcker, H. B, and A. A. G. Requicha: “Geometric Modeling of Mechanical Parts and Processes,”
Computer, pp. 48-57, December 1977.

Wagner, P. M.: “Solid Modeling for Mechanical Engineering,” Computer Graphics World, pp. 10-24,
September 1984.

Wang, W. P, and K. K. Wang: “Geometric Modeling for Swept Volume of Moving Solids,” IEEE
CG&A, pp. 8-17, December 1986.

Weiler, K.: “Edge-Based Data Structures for Solid Modeling in Curved-Surface Environment,” IEEE
CG&A, pp. 21-40, January 1985. A

“What’s Holding Back Solid Modeling?,” CAE Mayg., pp. 46-52, December 1986.

Williams, N. H.: Combinatorial Set Theory, North-Holland, 1977.

Wilson, P. R.: “Euler Formulas and Geometric Modeling,” IEEE CG&A, pp. 24-36, August 1985.

Woo, T. C.: “Computer Aided Recognition of Volumetric Designs,” in Advances in Computer-Aided
Manufacture (Ed. D. McPherson), pp. 121-136, North-Holland, 1977.

Woo, T. C.: “Feature Extraction by Volume Decomposition,” Proc. Conf. on CAD/CAM Technology
in Mechanical Engineering, March 24-26, 1983, pp. 76-94, MIT, Cambridge, Mass.

Woo, T. C.: “Interfacing Solid Modeling to CAD and CAM: Data Structures and Algorithms for
Decomposing a Solid,” Computer, pp. 44-49, December 1984.

Woo, T. C.: “A Combinatorial Analysis of Boundary Data Structure Schemata,” IEEE CG&A, pp.
19-27, March 1985.

- Woodwark, J. R.: “Generating Wireframes from Set-Theoretic Solid Models by Spatial Division,”

CAD J., vol. 18, no. 6, pp. 307-315, 1986.

Wyvill, G, T. Kunii, and Y. Shirai: “Space Dmslon for Ray Tracing in CSG,” IEEE CG&A, pp.
28-34, April 1986.

Yamaguchi, F., and T. Tokieda: “A Solid Modeler with a 4 x 4 Determinant Processor,” IEEE
CG&A, pp. 51-59, April 1985.

Yerry, M. A, and M. S. Shephard: “A Modified Quadtree Approach to Finite Element Mesh Gener-
ation,” IEEE CG&A, pp. 39-46, January/February 1983.

1985 European Conference on Solid Modeling, September 9-10, 1985, London.

CHAPTER

9

GEOMETRIC
TRANSFORMATIONS

9.1 INTRODUCTION

A crucial software module of a CAD/CAM system is its graphics package. Such
a package contains many graphics concepts that produce the functionality and
interactivity of the system. Some of these concepts are geometrical transform-
ations, viewing in two and three dimensions, modeling and object hierarchy,
algorithms for removing hidden edges and surfaces, shading and coloring, and
clipping and windowing.

Geometric transformations play a central role in model construction and
viewing. They are used in modeling to express locations of objects relative to
others. In generating a view of an object, they are used to achieve the effect of
different viewing positions and directions. Typical CAD/CAM construction
commands to translate, rotate, zoom, and mirror entities are all based on geo-
metric transformations covered in this chapter. Some of these commands have
been utilized in Chaps. 5 and 6 to construct typical models. Once the model
construction is complete, its viewing in its modeling space is achieved via geo-
metric transformations again. Orthographic views for engineering drawings as
well as perspective views of a geometric model can be obtained by projecting the
model onto the proper plane. In addition, the model itself can be rotated or
scaled up and down to yiew it in its three-dimensional space.

Geometric transformation can also be used to create animated files of geo-
metric models to study their motion. For example, the motion of a spatial
mechanism can be animated by first calculating its motion (displacements and/or
rotations) using the proper kinematic and dynamic equations. The geometric
model of the mechanism at the initial position is then constructed and trans-
formed incrementally using the calculation results. The resulting configurations

481

482 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

of the mechanism are grouped together and redisplayed to convey the contin-
uous motion effect. Similarly, transformation can be applied to display vibra-
tions and deformations of modeled objects.

Geometric transformations are ideally suited for computer graphics appli-
cations and object modeling because the utilized geometry is point-based. Chap-
ters 5, 6, and 7 have shown that displaying and/or transforming a given entity
require the transformation of its key points first. In applications where the view-
point changes rapidly or where objects move fast in relation to each other, trans-
formation of these points must be carried out rapidly and repeatedly. It is,
therefore, necessary to find efficient ways of performing three-dimensional trans-
formations. Most of these transformations are implemented at the hardware
level, and firmware that perform them are commonly provided by CAD/CAM
systems.

Geometric transformations is a well-established subject. However, this
chapter covers them from a new perspective. A unified vector treatment of the
subject is presented. This enables both two- and three-dimensional transforma-
tions to be handled at once. Sections 9.2 and 9.3 cover both transformations and
mappings of geometric models respectively. Basic transformations such as trans-
lation, reflection, and rotation as well as their concatenations are covered. The
recast of these transformations in terms of homogeneous coordinates is present-
ed. In Sec. 9.3, it is shown how the same transformation equations are inter-
preted to map model representations from one coordinate system to another.
Sections 9.4 and 9.5 describe the inverse operations and show how they are
useful in a user’s environment. Section 9.6 shows useful applications of geometric
transformations.

9.2 TRANSFORMATIONS OF GEOMETRIC
MODELS

By definition, geometric transformations are mappings from one coordinate
system onto itself. In other words, the description of a geometric model of an
object can change within its own MCS. This would imply that the geometric
model must undergo motion relative to its MCS. The simplest motion is the
rigid-body motion in which the relative distances between object particles remain
constant; that is, the object does not deform during the motion. Geometric
transformations that describe this motion are often referred to as rigid-body
transformations and typically include translation, scaling, reflection, rotation,
and any combination of them. These transformations can be applied directly to
the parametric representations of objects such as points, curves, surfaces, and
solids. Matrix notation provides a very expedient way of developing and imple-
menting geometric transformations into graphic packages.

Transformation of a point represents the core problem in geometric trans-
formation because it is the basic element of object representation. For example, a
line is represented by its two endpoints, and a general curve, surface, or solid is
represented by a collection of points as seen in the previous part of the book.
The problem of transforming a point can be stated as follows. Given a point P
that belongs to a geometric model that undergoes a rigid-body motion, find the

GEOMETRIC TRANSFORMATIONS 483

corresponding point P* in the new position such that
P* = f(P, transformation parameters) 9.1

that is, the new position vector P* should be expressed in terms of the old posi-
tion vector P and the motion parameters. One of the characteristics of Eq. (9.1)
that should be emphasized here is that geometric transformation should be
unique. A given set of transformation parameters must yield one and only one
new point for each old point. This characteristic is a direct outcome of the rigid-
body motion requirement. Another characteristic is the concatenation, or com-
bination, of transformations. Intuitively, two transformations can be
concatenated to yield a single transformation which should have the same effect
as the sequential application of the original two.

In order to implement Eq. (9.1) into graphics hardware or software, it is
desirable to express it in terms of matrix notation as

P* = [T]P 9.2)

where [T] is the transformation matrix. Its elements should be functions of the
given transformation parameters. The matrix [7T] should have some important
properties. It must apply to all rigid-body transformation (translation, scaling,
reflection, and rotation) as well as clipping and windowing. It should also be
applicable to both two- and three-dimensional graphics applications. As
explained in the sections to follow, homogeneous representation of Eq. (9.2) is
introduced in order to be able to recast translation in terms of this equation.

Applying Eq. (9.2) repeatedly to key- points in a geometric model database
or a particular entity enables the transformation of the model or the entity. For
example, to transform a straight line, its two endpoints are transformed and then
connected to produce the transformed line. Similarly, to transform a curve,
points on the curve are generated utilizing its parametric equation, transformed,
and then connected to give the transformed curve. Equation (9.2) may also be
applied to the parametric equation of the entity as discussed in this chapter. The
display of transformed entities entails displaying the line segments connecting the
transformed key points as discussed in Part II of the book.

9.2.1 Translation

When every entity of a geometric model remains parallel to its initial position, the
rigid-body transformation of the model is defined as translation. Translating a
model implies that every point on it moves an equal given distance in a given
direction. Translation can be specified by a vector, a unit vector and a distance,
or two points that denote the initial and final positions of the model to be trans-
lated. Figure 9-1 shows a curve translated by a vector d.

To relate the final position vector P* of a point P to its initial position
vector P after being translated by a vector d, consider the triangle shown in
Fig. 9-1. In this case Eq. (9.1) takes the form

P*=P+d 9.3)

484 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

FIGURE 9-1
z Translation of a curve.

This equation is applicable to both two- and three-dimensional points and can be
written in a scalar form for the three-dimensional case as

x*=x+x
y*.—.—‘)’z + vq (94)
*F=z+7z,

If Eq. (9.3) is applied to each poinit on a curve, that is, pointwise transfor-
mation, the curve is then translated by the vector d. However, it is more efficient
and useful to relate the translation of an entity (curve, surface, or solid) to its
geometric representation whether it is analytic or synthetic. For example, trans-
lating a circle or an ellipse requires translating its center only, and translating a
parabola or hyperbola requires translating its vertex. Example 9.1 as well as
problems at the end of the chapter provide more details.

As expected intuitively, translating a curve does not change its tangent
vector at any of its points. This can be seen by differentiating Eq. (9.3) with
respect to the parameter u to obtain P* = P’ because the translation vector d is
constant.

Example 9.1. Given a Hermite cubic spline, show that its pointwise translation and
translating its geometric representation are identical.

Solution. As shown in Chap. 5, the geometric representation of a Hermite cubic
spline is define by its two endpoints and two end slopes. Let us assume that the
spline is defined in its initial and final positions by the geometry vectors V =
[P, P, P, P.]7 and V*=[P¢¥ P*¥ P¥ P¥]7 respectively, as shown in
Fig. 9-2. Because the spline undergoes translation only, V* becomes

Vt=[P,+d P,+d P, P,]T=V+D (9.5

whereD=[d d 0 0]".
Utilizing Eq. (5.83), the spline equation in the translated position is given by

P*w) = UT[MgIV*, O<u<l 9.6)

GEOMETRIC TRANSFORMATIONS 485

Py

FIGURE 9-2
z Translating a Hermite cubic spline.

Substituting Eq. (9.5) into Eq. (9.6) gives
P*(u) = UT[MZ](V + D) = U'[M{]V + UT[MyID

or P*(u) = P(u) + UT[M4ID .7
Substituting Eq. (5.84) into the second term of Eq. (9.7) and reducing the result
gives

P*u) =Pu) +d 9.8)

Equation (9.8) simply implies that each point on the translated spline is obtained by
translating its corresponding point on the initial spline by the vector d. Therefore,
pointwise translation of a Hermite spline is identical to translating its geometry
vector—more specifically its endpoints. This is beneficial because the geometric
characteristics of the curve can be preserved and no intermediate points are needed
to be calculated on the curve to translate it.

922 Scaling

Scaling is used to change, increase or decrease, the size of an entity or a model.
Pointwise scaling can be performed if the matrix [T] in Eq. (9.2) is diagonal, that
is,

P* =[S]P 9.9
where [S] is a diagonal matrix. In three dimensions, it is given by
s, 0 0
[SI=|0 s, O (9.10)
0 0 s,

Thus (9.9) can be expanded to give

x*=s.x y*=sy z¥=5,z 9.11)

486 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

The elements s,, s, and s, of the scaling matrix [S] are the scaling factors in the
X, Y, Z directions respectively. Scaling factors are always positive (negative
factors produce reflection). If the scaling factors are smaller than 1, the geomet-
ric model or entity to which scaling is applied is compressed; if the factors are
greater than 1, the model is stretched. If the scale factors are equal, that is,
s, = 5, = 5, = 5, the model changes in size only and not in shape; this is the case
of uniform scaling. For this case, Eq. (9.9) becomes

P* =P s (9.12)

Unlike translation, scaling proportionally changes tangent vectors by the
factor s as differentiating Eq. (9.12) with respect to u, for a curve, gives
P* = sP'. However, uniform scaling does not change the slope, or direction
cosines, at any point. ‘

Differential scaling occurs when s, # s, # s,; that is, different scaling
factors are applied in different directions. Differential scaling changes both the
size and the shape of a geometric model or curve. It also changes the direction
cosines at any point. Differential scaling is seldom used in practical applications.

The scaling discussed above is said to be about the origin, that is, a model
or a curve changes size and location with respect to the origin of the coordinate
system, as shown in Fig. 9-3. The model or the curve gets closer to or further
from the origin depending on whether the scaling factor is smaller or greater
than one respectively (see Fig. 9-3). Scaling about any other point than the origin
is possible, and its development is assigned in Prob. 9.3.

Uniform scaling is available on CAD/CAM systems in the form of a
“zoom” command. The command requires users to input the scale factor s and
digitize the entity or the view to be zoomed. The zoom, or scaling, function is
useful if a user needs to magnify a dense graphics area, on the screen, to be able

5P Py 52> 1.0

FIGURE 9-3 7

z Scaling a curve relative to the origin.

GEOMETRIC TRANSFORMATIONS 487

to visually identify the geometry in the area for picking and selection purposes. If
a view is zoomed, a “set view” or “reset view” command is usually required to
make the view scaling permanent or to return the view to its original size respec-
tively.

Example 9.2. Show that scaling the geometric representation of a Hermite cubic
spline is identical to its pointwise scaling.

Solution. The solution is similar to that followed in Example 9.1. Here the
geometry vector, based on Eq. (9.12), is given by

V*=[sP, sP, sP, sP.]"=sV
Substituting the above equation into Eq. (9.6) gives
’ P*(u) = sUT[M,]V = sP(w)

Therefore, scaling the geometry vector V of a Hermite cubic spline is identical to
scaling each point on it.

9.2.3 Reflection

Reflection (or mirror) transformation is useful in constructing symmetric models.
If, for example, a model is symmetric with respect to a plane, then only half of its
geometry is created which can be copied by reflection to generate the full model.
A geometric entity can be reflected throtigh a plane, a line, or a point in space, as
illustrated in Fig. 9-4. Reflecting an entity through a principal plane (x =0,
y =0, z=0 plane) is equivalent to negating the corresponding coordinate of
each point on the entity. Reflection through the x =0, y = 0, or z = 0 plane can
be achieved by negating the x, y, or z coordinate respectively. Reflection through
an axis is equivalent to reflection through two principal planes intersecting at the
given axis. As shown in Fig. 9-4b, an entity is reflected through the Y axis by
reflection through the z = 0 plane followed by a reflection through the x =0
plane. In this case, reflection is accomplished by negating the x and z coordinates
of each point on the entity. Similarly, reflection through the X and Z axes
requires negating the y and z and the x and y coordinates respectively. Reflection
through the origin is equivalent to reflection through the three principal planes
that intersect at the origin. Figure 9-4¢ shows reflection of an entity through the
origin which is accomplished by negating the three coordinates of any point on
the entity. - .

Equation (9.9) can be used to describe reflection if the diagonal elements of
[S] are chosen to be ones. Thus, the reflection transformation can be expressed
by the following equation:

P* = [M]P 9.13)
where [M] (mirror matrix) is a diagonal matrix with elements of +1, that s,
m, 0 0 +1 0 0
M= 0 my; O =0 =£1 0 9.14)
0 0 msyy 0 0 =1

488 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

z

(a) Reflection through a principal plane (x = 0 plane)

N 4

AN

- é/ Reflection relative to
=__4 z = 0 plane

X

z

(b) Reflection through an axis (Y axis) (¢) Reflection through the origin

FIGURE 9-4
Reflecting a curve relative to a coordinate system.

The reflection (or mirror) matrix [M] given by Eq. (9.14) applies only to
reflections relative to planes, axes, or the origin of a coordinate system. For
reflection through the x =0 plane, m;; = —1 and m,, = m;, = 1. Similarly,
setting my = m33 =1 and m,, = —1, or my;, =m,, =1 and m;; = —1, pro-
duces reflection through the y =0 or z=0 plane respectively. Reflection
through the X axis requires m,; = 1 and m,, = m3; = —1, through the Y axis
requires m,, = my; = —1 and m,, = 1, and through the Z axis requires m,, =
m,, = —1 and m,; = 1. Selecting all the diagonal elements to be negative, that
is, my; = m,, = m33 = —1, produces reflection through the origin. For the latter
case, Eq. (9.14) becomes P* = —P and, therefore, P* = —P’; that is, magni-
tudes of tangent vectors remain constant but their directions are reversed.

While reflections relative to a coordinate system have been discussed above,
other reflections through general planes, lines, and points are possible and useful
in practice. Figure 9-5 illustrates this general reflection of an entity. As seen from
the figure, the common characteristic of the general reflection (the same as in
Fig. 9-4) is that the distance from any point P to be reflected to the reflection
mirror (plane, line, or point) is equal to that from the mirror to the image

GEOMETRIC TRANSFORMATIONS 489

P*
Y //Q
-~
2y
/ ///
P* ///
i
7]
// /
- //
/
s/
/
P
P
9 b's

(b) Reflection through a line (P,, P,)

(¢) Reflection through a point P,

FIGURE 9-5
General reflection of a curve.

(reflected) point P*. In the three cases, the triangle OPP* can be identified and
can be used to relate the coordinates of P* to those of P as follows:

P*=P+Q (9.15)

where Q is the vector connecting P and P¥*.

In order to obtain P* from Eq. (9.15), the vector Q must be evaluated first
from the given geometry. This is when the difference between the three cases
comes into play. Consider first the case shown in Fig. 9-5a. The plane is defined
by a point P, and two unit vectors £ and §. The vector Q is perpendicular to the
plane and its magnitude is double the normal distance between P and the plane.
Utilizing Eq. (6.34), the normal distance D can be obtained (compare Figs. 9-5a
and 6-26) and we can write

Q =2Dh (9.16)

where i is the surface unit normal to the plane and can be calculated from Eq.
(6.27) by using £ and § in place of (P, — P,) and (P, — Py) respectively in the
equation.

The vector Q in the case of reflection through a general line shown in
Fig. 9-5b can be evaluated by using the results of Example 5.9, case b. Compar-
ing Fig. 5-20b and Fig. 9-5b, we can rewrite Eq. (5.22) to give

Q= —-2{®-P)—[(P-P)- i} | ©.17)

490 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

- The factor —2 is used in Eq. (9.17) because the magnitude of Q is twice the

normal distance between P and the line and its direction is opposite to i, , shown
in Fig. 5-205.

In the case of reflection through a general point P,, the vector Q can easily
be written as (refer to Fig. 9-5¢)

Q=2(P,—P) (©.18)

The effect of reflection on tangent vectors to a curve dependls on each indi-
vidual given case. Only for reflection through the origin or a general point can
we write

P¥ =P (9.19)

that is, tangent vectors reverse directions and their magnitudes remain
unchanged. For other cases, only appropriate component(s) reverse directions.

Example 9.3. Show that reflecting the geometric representation of a Hermite cubic
spline is identical to its pointwise reflection.

Solution. Let us consider the case of reflection through a general point. Utilizing
Egs. (9.15), (9.18), and (9.19), we can write the geometry vector V* of the spline as

V*=[2P,—-P, 2P,—P, -P, —PI7
=—[P, P, P, P]7"+[2P, 2P, 0 0]T=—V+F (9.20)
where F = [2P, 2P, 0 0]. Substituting Eq. (9.20) into Eq. (9.6), we get
P*w) =UT[My(-V +F) = ~Uf[M wlV + UT[M]F = —P + UT[M,IF
S (9.21)
Substituting Eq. (5.84) into the second term of Eq. (9.21) and reducing we obtain
P*uw)=-P+2P,=P+2P,—-P)=P+Q 9.22)

This equation is the same as combining Egs. (9.15) and (9.18). Therefore, reflecting
the end conditions of a Hermite cubic spline results in the pointwise reflection of
the spline. Proofs of other cases of reflections can follow the same outlines dis-
cussed in this example and are left as exercises to the reader.

9.2.4 Rotation

Rotation is an important form of geometrical transformation. It enables users to
view geometric models from different angles and also helps many geometric
operations. For example, it can be used to create entities arranged in a circular
pattern (circular arrays) by creating the entity once and then rotatmg/copymg it
to the desired positions on the circumference. In a similar fashion, rotation can
be used to construct axisymmetric geometric models.

GEOMETRIC TRANSFORMATIONS 491

Rotation has a unique characteristic that is not shared by translation,
scaling, or reflection—that is, noncommutativeness. The final position and orien-
tation of an entity after going through two subsequent translations, scalings, or
reflections are independent of the order of the operations, that is, commutative.
On the contrary, two subsequent rotations of the entity about two different axes
produce two different configurations of the entity depending on the order of the
rotations. The reader can verify this by simply marking an edge of a box and
then rotating it about two of its other edges and observe the final configuration
of the marked edge. The same experiment can be performed on a CAD/CAM
system. Interpretations of these experiments are covered in Sec. 9.2.6.

9.2.41 ROTATION ABOUT COORDINATE SYSTEM AXES. Rotating a point a
given angle 6§ about the X, Y, or Z axis is sometimies referred to as rotation about
the origin. A convention for choosing signs of angles of rotations must be estab-
lished. In this book, the right-hand convention is chosen. Therefore, a rotation
angle about a given axis is positive in a counterclockwise sense when viewed
from a point on the positive portion of the axis toward the origin.

To develop the rotational transformation of a point (or a vector) about one
of the principal axes, let us consider the rotation of point P a positive angle §
about the Z axis, as shown in Fig. 9-6. This case is equivalent to two-
dimensional rotation of a point in the XY plane about the origin. The final
position of P after rotation is shown as point P*. Equation (9.1) or (9.2) can be
written here by relating the coordinatés of P* to those of P as follows:

x*=rcos(8+a)=rcosacosf—rsinasinf
y*=rsin (@ +o)=rsin acos 6 + r cos o sin 8 (9.23)
¥ =z .

where r = |P| = |P*|. To eliminate the angle § from Eqs. (9.23), we can write
(refer to the trigonometry in Fig. 9-6)

x=rcosa y=rsina (9.24)
Substituting Egs. (9.24) into (9.23) gives
x*¥=xcos 8 —ysin @
y*=xsinf+ ycos b (9.25)
Z¥F=1z

Rewriting Egs. (9.25) in a matrix form gives

x* cos§ —sin 6 0l x
y*|=|sné cos 0 0lly (9.26)
z* 0 0 1}l z

or P* = [R,]P - 9.27)

492 TwO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

Y
P*
AN
| N
N
N
\
* Ly : ' 4
¥ |
‘ i
P |y
] t J
| |
L
! X
6———,‘(*‘—-—4
x

FIGURE 9-6
z) Rotation of a point about the Z axis.

where

cos® —sin 6 0
[RZ1=|sin@ cosf 0 (9.28)
0 0 1

Similarly, we can prove that matrices for rotations about X and Y axes are given
by :

1 0 0

[Rx1=1|0 cos§ —sin 6 (9.29)
| 0 sin 8 cos 0
[cos 6 0 sin 6

[Ry] = 0 1 0 (9.30)

| —sin 6 0 cos @

Thus, in general, we can write
P* = [R]P 9.31)

where [R] is the appropriate rotational matrix. Equations (9.28) to (9.30) show
some popular forms of [R]. Other forms are covered in the next two sections.
The columns of the rotation matrix [R] have some useful characteristics. If
we substitute the unit vector [1 0 0]7 in the X direction into Eq. (9.26), we
obtain the first column of [R,] as the components of the transformed unit
vector. This implies that if we rotate the unit vector in the X direction and angle
6 about the Z axis, the first column of [R,] gives the coordinates of the trans-
formed unit vector. Similarly, the second and third columns of [R;] are the new

GEOMETRIC TRANSFORMATIONs 493

coordinates of the unit vectors [0 1 0]Tand [0 0 1]7 in the ¥ and Z direc-
tions respectively after rotating them the same angle 0. Therefore, the columns of
a rotation matrix [R] represent the unit vectors that are mutually orthogonal in
a right-hand system, that is, C; x C, = C3, C, x C3 =C,, and C; x C; = C,,
where C,, C,, and C; are the first, second, and third columns of [R] respec-
tively. From linear algebra, a matrix with orthonormal columns is an orthogonal
matrix and its inverse is equal to its transpose.

The effect of rotation on tangent vectors of a curve can be obtained from
Eq. (9.31) as

P* = [R]P' ‘ (9.32)

Thus, for a Hermite cubic spline, it is easily seen that V* = [R]V. Therefore, the
rotation of the spline about a given axis is equivalent to rotating its end condi-
tions about the same axis.

9.2.42 TWO-DIMENSIONAL ROTATION ABOUT AN ARBITRARY AXIS. The
rotation of a point, or an entity in general, about an axis passing through an
arbitrary point that is not the origin occurs when one point rotates about

-another one. In fact, the rotation of a point about the origin covered in the

previous section is considered a special case of this problem we are about to
solve. Rotation of a point or an entity about a point is useful in simulations of
mechanisms, linkages, and robotics where links or members must rotate about
their respective joints.

Figure 9-7 shows the rotation of point P about point P, in the XY plane.
Figure 9-7a shows P and its rotation, to its final position P*, an angle § about an
axis parallel to the Z axis and passing through P,. In order to develop the rota-
tion matrix correctly for this case, we can use Eq. (9.27) to rotate the vector
(P — P,)(not P) about P, to obtain (P* — P,) (not P*). Thus, we can write

P* — P, =[RI(P—Py) (9.33)
Rearranging Eq. (9.33) gives
P*=[R,P—-P,)+ P, (9.34)

Equation (9.34) can also be obtained by considering the rotation of point P
about P, instead of considering the rotation of the vector (P — P,) about P, as
we did. From this point of view, the rotation of P about P, can be achieved in
three steps as shown in Fig. 9.75 to d. In the first step, translate P, to the origin
0. In this position, we refer to point P, as P,,. Also, translate point P to P, by
the translation vector —P; as shown in Fig. 9.7b. Therefore,

P,=P—P, (9.35)

In the second steb, rotate P,, in the XY plane, the angle about the origin, as
shown in Fig. 9.7¢. Consequently, Eq. (9.27) gives

Pf =[R,]P, = [R](P — Py) (9.36)

494 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

Y Y

P*

N
.
P -P,
P-P \\ P
P* g 1 P /
Py Py //
P, 4 Zp
P -p,/ S
/)
/ Pe
P-P
(o) X 0 1
Pll X
(a) Rotate P about P, an angle 6 (b) Translate P to the origin
z
Y
P
~
~
\
P* N
\
0 P,
o bl
P, X X
(c) Rotate P, about O the angle ¢ (d) Translate Py, back to P;
FIGURE 9-7

Two-dimensional rotation of a point about an arbitrary axis.

In the last step, translate points P, and P, back to their original positions P,
am.i P respectively by the translation vector P;. This would require translating
point P¥ by the same vector to the position P*, as shown in Fig. 9.7d. Thus,

P*=P'+P, =[RIP-P)+ P, ©37

E'quation (9.37) is the same as Eq. (9.34). Equation (9.37) applies to two-
dimensional rotations in the XZ or YZ plane by replacing [R,] by [Ry] or [Ry]
respectively. S

9.2.4.3 THREE-DIMENSIONAL ROTATION ABOUT AN ARBITRARY AXIS.
Points undergoing rigid-body rotation describe arcs in a plane perpendicular to a
fixed line, the axis of rotation. In planar two-dimensional rotation the axis is
always perpendicular to the XY plane; that is, parallel to the Z axis. Conse-
quently, the axis is completely defined by its intersection with the XY plane (the
origin O in Fig. 9-6 and point P, in Fig. 9-7) and the orientation of the axis is
implicitly defined (along the Z axis) and does not appear as a parameter in the

z

GEOMETRIC TRANSFORMATIONS 495

rotation matrix [R]. As a result, the angle of rotation € is the only transfor-
mation parameter required to completely define a two-dimensional rotation and,
therefore, the corresponding [R]. It will be shown later in this section that two-
dimensional rotation is a special case of three-dimensional rotation.

In the general spatial (three-dimensional) case, rotation is not constrained
to the XY plane and the axis of rotation may be oriented in any direction. There-
fore, the orientation of the axis must be incorporated into the rotation matrix in
addition to the angle of rotation. If we define the orientation by the unit vector f
(Fig. 9-8), Eq. (9.1) can be written as

P*=f(P, 0, 0) (9.38)

In this equation, it is assumed that the axis of rotation passes through the origin.
If it does not, then a similar development to that presented in Sec. 9.2.4.2 should
be followed. Equation (9.38) is derived below and recast in a matrix form for
three-dimensional rotation about an arbitrary axis. Two cases are considered:
the axis passes through the origin and the axis is in an arbitrary location.

Figure 9-8 shows the three-dimensional rotation of a point P an angle 0
about an arbitrary axis that passes through the origin. The positions of the point
before and after rotation are P and P* respectively. The orientation of the axis of
rotation is defined by the unit vector f such that

i =n,i+n,j+nk=cos o + cos B + cos yk 9.39)

where n, = cos «, n, = cos f§, and n, = cos y are the direction cosines of i. If the
axis of rotation is defined as a line connecting the origin O and any point, say 4,
on it (see Fig. 9-8), then n, = x,/|A|, n, =y, /1Al, and n. = z,/|Al|, where x,,
¥4, and z, are the coordinates of point 4 and |A| = | /x% + ¥4 + Z3

/S S, P* A/B
A
A, Axis of
R R rotation
g
P A
P*
Q
J” Q 5 4
8
il
¥ a
[0} i X
k
FIGURE 9-8

Thres-dimensional rotation of a point about an arbitrary axis.

496 Two- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

The rotation of P about the axis O4 defines a circle whose plane is perpen-
dicular to OA. Its center is point Q which is the intersection between the axis and
the plane. Its radius is R which is the perpendicular distance between P and 04
in any position, that is, R = PQ = P*Q. The angle of rotation 6 is chosen in Fig.
9-8 to be positive according to the agreed-upon convention adopted for two-
dimensional rotation. View A-4 shows 0 counterclockwise, that is, positive, if the
observer is placed at 4-4, that is, on the positive portion of the axis.

In order to facilitate the development, let us define the directions of the
lines PQ and P*Q by the unit vectors £ and § respectively, as shown in Fig. 9-8.
From the figure, it is obvious that the final position vector P* of point P is the
resultant of three vectors, that is,

P* =P+ PQ + QP* (9.40)

where the notation PQ indicates a vector going from point P to point Q.
Utilizing £, §, and R, Eq. (9.40) can be written as

P*=P + Ri — RS (9.41)

The remainder of the development that follows centers around expressing £
and § in terms of P, i, 6, that is, in terms of the desired rotation parameters.
Utilizing the right triangle OPQ, we can write

PQ = Q —-P (9.42)

Observing that Q is the component of P along the axis of rotation, we can write

Q=(P-)i (9.43)

Substituting Eq. (9.43) into (9.42) and dividing the result by R (the magnitude of
PQ) gives

. (P-DA-—P

= 9.44
¢ 2 (0.44)
In order to express § in terms of P and i, we need to introduce the interme-

diate unit vector m shown in view 4-4 in Fig. 9-8. The vector is chosen to be
perpendicular to £ and lies in the plane of the circle; thus it is also perpendicular
to ii. Utilizing the cross-product definition of two vectors, we can write

m=fx*f (9.45)

The unit vector § can now be written in terms of its components in the £ and m
directions as

§ = cos 6f + sin 6 (9.46)

Substituting Eq. (9.45) into (9.46) and substituting the result together with Eq.
(9.44) into (9.41), we obtain

=@ -0+ [P —(P-d)i]cos 8+ (& x P)sin 0 — it x (P -)i sin 6
' (9.47)

GEOMETRIC TRANSFORMATIONS 497

The last term in the above equation is equal to zero because it represents the
cross product of two collinear vectors fi and (P * @) (also Q). Thus we have

P*=(P-ﬁ)ﬁ+[P——(P~ﬁ)fi] cos 6 + (it x P) sin 6 (9.48)
To write Eq. (9.48) in matrix form, we can write the following:
Mx
P-a=xn+yn,+zm . =[n, n nly (9.49)
z
i § k
ixP= ne n, njg= (nyz - nzy)f + (nzx - nxz)i + (nxy - nyx)Ii
x y z
o —n, n, || x
= n, .0 -—n.|ly (9.50)
| —n, n, 04z
Subs‘tituting Egs. (9.49) and (9.50) into Eq. (9.48) and rearranging, we get
n, 1 00
P*=q(1—cos O) n,{[n, n, nl+cosbf0 1 0
n, 0 0 1
0 —n, n,
+sin 8 n, 0 —n.lrly 9.51)
—n, n, 0 z
or P* =[R]P (9.52)

After reducing Eq. (9.51) further, [R] becomes
n2ve+c6 n.n,v0—n,s6 n.n,v0+n,sh
[R]=|n.n,v0+n_so n2 v + cf n,n, v — n, sf (9.53)
nen,vg—n,s0 n,n v0+n.sf nZvh+ch

where cf = cos 0, s6 = sin 6, and vf = versine # = 1 — cos 0.

The general rotation matrix [R] given by Eq. (9.53) has two important
characteristics. First, it is skew symmetric because the third term in Eq. (9.51) is
skew symmetric. Second, its determinant | R| is equal to one. In general, |[R| =1
for any rotation matrix that describes rotation about the origin. The reader can
verify this fact for Egs. (9.28) to (9.30) and (9.53).

The rotation matrices given by Egs. (9.28) to (9.30) can now be seen as
special cases of Eq. (9.53) as follows. If the axis of rotation is the Z axis, then its
orientation is given by i =k, that is, n, = n, =0 and n, = 1. Substituting these
values into Eq. (9.53) gives Eq. (9.28). Slm_tlarly, the X and Y axes of rotation are
given by Ai=1 (n, = 1,-n, =n, =0) and i=j(n,=n=0, n, = 1) respectively
and Egs. (9.29) and (9.30) can be easily obtained from Eq. (9. 53)

We now return to the case of three-dimensional rotation about an arbitrary
axis that does not pass through the origin. This case is conceptually similar to the
two-dimensional case covered in Sec. 9.2.4.2 and its development follows exactly

498 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

the same steps. Therefore, Eq. (9.37) is applicable for the three-dimensional case
after replacing [R,] by [R] given by Eq. (9.53), that is,
P*=[RIP —-P)+P, 9.54)

Here the point P, can be any point in space and is not restricted to the XY plane
as in the two-dimensional case.

4
Example 9.4. Prove that if a point to be rotated about a given axis of rotation lies

on the axis, the point does not change position in space and, therefore, its coordi-
nates do not change.

Solution. Figure 9-9 shows this problem. It is expected that P and P* are identical
and, therefore, P = P* regardless of the angle of rotation 6. Substituting Eq. (9.53)
into Eq. (9.52) and expanding the result, we obtain for the x coordinate:

x* = (n2 v0 + cO)x + (n.n, v0 — n_sO)y + (n.n, v0 + n, sb)z 9.55)
If point P lies on the axis of rotation, then we can write (see Fig. 9-9)
x=|Pln, y=|Pln, z=|Pin, ©56)

where | P| is the magnitude of P. Substituting Eq. (9.56) into (9.55) and reducing the
result, we obtain

x* = |P|[n, vO(i2 + n} + n?) + n,] (9.57)
Using the identity n2 + n? + n? = 1, Eq. (9.57) becomes
x*=|p|[n{l —cos B) + n cos 6] = |P|n,=x (9.58)

Similarly, we can prove y* = y and z* = z.

Y
A Axis of
rotation
pPP* = o
PP*
i
0 e
FIGURE 9-9
Rotation of a point about an
y axis passing through it and
z5h through the origin.

GEOMETRIC TRANSFORMATIONS 499

This example has useful practical implications. Typically, CAD/CAM
systems let users define axes of rotations by inputting endpoints. If the axis of
rotation happens to be an entity of a geometric model to be rotated, the coordi-
nates of the endpoints of that entity should stay the same before and after rota-
tion. The user can utilize the “verify entity” command available on the system
before and after the rotation to display the coordinates and compare. If there are
small differences, they usually result from the round-off errors. Coordinates
should be the same within the given significant digits of the computer system
used.

9.2.5 Homogeneous Representation

The various rigid-body geometric transformations have been developed in the
previous section. Equations (9.3), (9.9), (9.13), and (9.52) represent translation,
scaling, mirroring, and rotation respectively. While the last three equations are in
the form of matrix multiplication, translation takes the form of vector addition.
This makes it inconvenient to concatenate transformations involving translation.
Equation (9.37) shows an example. It is desirable, therefore, to express all geomet-
ric transformations in the form of matrix multiplications only. Representing
points by their homogeneous coordinates provides an effective way to unify the
description of geometric transformations as matrix multiplications.

Homogeneous coordinates have been used in computer graphics and geo-
metric modeling for a long time. With their aid, geometric transformations are
customarily embedded into graphics hardware to speed their execution. Homoge-
neous coordinates are useful for other applications. They are useful to obtain
perspective views of geometric models. The subjects of projective geometry,
mechanism analysis and design, and robotics utilize them quite often in develop-
ment and formulation. In addition, homogeneous coordinates remove many
anomalous situations encountered in cartesian geometry such as representing
points at infinity and the nonintersection of parallel lines. Also, they greatly sim-
plify expressions defining rational parametric curves and surfaces.

In homogeneous coordinates, an n-dimensional space is mapped into
(n + 1)-dimensional space; that is, a point (or a position vector) in n-dimensional
space is represented by (n + 1) coordinates (or components). In three-dimensional
space, a point P with cartesian coordinates (x, y, z) has the homogeneous coordi-
nates (x*, y*, z*, h) where h is any scalar factor #0. The two types of coordinates
are related to each other by the following equations:

x= y== z=— 9.59)

Equations (9.59) are based on the fact that if the cartesian coordinates of a
given point P are multiplied by a scalar factor h, P is scaled to a new point P*
and the coordinates of P and P* are related by the above equations. Figure 9-10
shows point P scaled by the two factors h; and h, to produce the two new points
P¥ and P¥ respectively. These two points could be interpreted in two different

/

500 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

Y JFPE(c. 328, ho)
/

7/
/
/
/
/\ /
- ettt
/
/ ,
/ Pey.z.l)
-
7
AN

~
7
AN

z

FIGURE 9-10
Homogeneous coordinates of point P.

ways. From a cartesian-coordinates point of view, Eq. (9.12) can be used with
s = h, and h,. Once the cartesian coordinates of P¥ and P¥ are calculated, their
relationships to P do not exist any more. Moreover, the three points still belong
to the cartesian space. From a homogeneous-coordinates point of view, the orig-
inal point P is represented by (x, y, z, 1) and P¥ and P¥ are represented by
(xt, ¥%, 2%, hy) and (x%, y%, z3, h,) respectively according to Egs. (9.59). More
importantly, the three points belong to the homogeneous space, with the carte-
sian coordinates obtained when h = 1, and the relationship between P and P¥ or
P% is maintained through the proper value of h. As a matter of fact, any two
homogeneous-coordinates points PF and P% represent the same cartesian point if
and only if h, = chy, for any nonzero constant c. Therefore, there is no unique
homogeneous representation of a point. For the purpose of geometric transfor-
mations, the scalar factor h used in Egs. (9.59) is taken to be unity to avoid
unnecessary division. .

The translation transformation given by Eq. (9.3) can now be written as a
matrix multiplication by adding the component of 1 to each vector in the equa-
tion and using a 4 x 4 matrix as follows:

1 0 0 x4
01 0 yilly
3 % ¥ T -
[x* y* z* 1] 00 1 2|z (9.60)
000 1|1
or - P*=[D]P (9.61)

GEOMETRIC TRANSFORMATIONS 501

where [D] is the translation matrix shown in Eq. (9.60). While scaling, reflection,
and rotation are already expressed in terms of matrix multiplication, their corre-
sponding matrices are changed from 3 x 3 into 4 x 4 by adding a column and a
row of zero elements except the fourth, which is 1. Thus, the scaling matrix [Eq.
(9.10)] becomes

s, 0 0 O
0 s, 00
= 9.62
[s] 0 0 s 0 9.62)
0 0 0 1
Similarly, the reflection matrix [Eq. (9.14)] becomes
+1 0 0 0
0 +1 0 0
= - 9.63
[M] 0 0 +1 0 (0-63)
0 0 0 1
and the rotation matrix [Eq. (9.53)] becomes
ryy Ty T3 O
Tar Taz T3 O
R] = (9.64)
LR ray Taz T3z O
0 0 o0 1

Equations (9.28) to (9.30) can be rewritten in a similar fashion.
To illustrate the convenience gained from the homogeneous representation,
Eq. (9.37) can be written as

P* = [D,1[R,I[D,]P = [T]P (9.65)
where
(1 0 0 —x,
0 1 0 —y,
= 9.66
I=lg o 1 _ 966)
K 0 0 1
[cos® —sind O 0
sin 6 cos 6 0 0
_ 9.67
[RA=|", o 1 o 967)
. O 0 0 1
1 0 0 Xy
0 1 0 Y1
= 9.68
D=y o 1 . 068)
K 0 0 1

502 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

and

cos § —sin @ Xx(cos @ —1)—y,sinf O

[T] = [DI[RA[D,] =|sin 0 cos 6 x, sin 8 + y,{cos 8 —1) O
0 0 1 0

0 0 0 1

. (9.69)

A closer look at the transformation matrices given in Egs. (9.61) to (9.64)
shows that they can all be embedded into one 4 x 4 matrix. This matrix takes the
form:

tin tiz i3 . Lig

thyy lfaz b3 fae I:T1 A Tz:] ‘
= =] -1 9.70
(11 f31 tsz fa3 il T 1 670

tar Taz taz | lag

The 3 x 3 submatnx [T.] produces scaling, reflection, or rotation. The 3 x 1
column matrix [T,] generates translation. The 1 x 3 row matrix [T;] produces
perspective projection, covered in Sec. 9.5.2. The fourth diagonal element is the

homogeneous-coordinates scalar factor h used in Eq. (9.59) and is chosen to be

unity, as mentioned earlier.

Equation (9.70) gives the explicit form of the transformation matrix [T]
used in Eq. (9.2). It is usually written for one geometric transformation at a time
by using any of Egs. (9.60) to (9.64). If more than one.transformation is desired,
the resulting matrices are multiplied to produce the total transformation, as dis-
cussed in Sec. 9.2.6 that follows.

While the homogeneous representation and the resultmg transformation
matrix [T] given by Eq. (9.70) are useful and convenient to think of and write
compact equations, 2 computer program to implement them to transform entities
should be carefully designed to avoid wasting time multiplying ones and zeros.
As a matter of fact, they may not even be used at all to simplify the related
programming logic.

9.2.6 Concatenated Transformations

So far we have concentrated on one-step transformations of points such as rotat-
ing or translating a point. However, in practice a series of transformations may
be applied to a geometric model. Thus, combining or concatenating transfor-
mations are quite useful. Concatenated transformations are simply obtained by
multiplying the {T] matrices [Eq. (9.70)] of the corresponding individual trans-
formations. However, because matrix multiplication may not be commutative in
all cases, attention must be paid to the order in which transformations are
applied to a given geometric model. In general, if we apply n transformations to a
poirt starting with transformation 1, with [T;], and ending with transformation

GEOMETRIC TRANSFORMATIONS 503

n, with [T,], then the concatenated transformation of the point is given by
P* = [TIT,-,] - [TILT,IP 6.71)

As an example, consider rotating a point, or its position vector, in the fixed
coordinate system XY Z, that is, MCS, by the following rotations in the following
order: « about the Z axis, f about the Y axis, and y about the X axis. Substitut-
ing a, B, and y in Egs. (9.28), (9.30), and (9.29) respectively and multiplying, we
obtain the concatenated transformation matrix as

[T] = [T T] (6.72)
* [e
or [R] = [Rx][Ry][R,] (©.74)
Expanding the above equation gives
co cff —so cff sp
[R] =| st cy+ casfsy cacy —sasfsy —cfisy (9.75)

sa sy —casfcy casy+ sasfcy cfcy

Example 9.5. Using the concatenated rotations about the axes of the coordinate
system shown in Fig. 9-8, rederive Eq. (9.53).

Solution. The basic idea to solve this example is to rotate the axis of rotation 04
shown in Fig. 9-8 to coincide with on€ of the axes, rotate the point P the angle 0
about this coincident axis, and finally rotate OA in the opposite direction to its
original position. The rotation of 04 is achieved in two steps. In effect, this is
equivalent to decomposing the rotation about the general axis into three rotations
about the principal axes X, Y, and Z. Figure 9-11 shows one possible decomposi-
tion where point B is the projection of point A onto the XZ plane. In this decompo-
sition, the following sequence of rotations is followed: ‘

1. Rotate OA4 and point P about the Y axis an angle —¢ so that OB is collinear
with the Z axis, where

t —Za_ 4100 T
an ¢ "z 1Al n 9.76)
This then gives
n n
COS p =——— sin ¢ =—— 9.77
nZ + n? ¢ n? +n? 77
Thus,
=[R{-¢)IP (9.78)

2. Following the above rotation, rotate 04 and P about the X axis an angle ¢ so
that OA is collinear with the Z axis, where

smlﬁ=m=n,: cos Y = /1 —n? 9.79)

504 TwO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

FIGURE 9-11
Decomposition of three-
dimensional rotation of a
point.

Equation (9.78) becomes

P* = [Ry(\)I[R(— $)IP (9.80)
2. Rotate point P about the Z axis an angle 6. Note that P is now given by Eq.
(9.80). After rotating by the angle 9, it then becomes
P* = [Ry(O)I[Rx(V)I[R(—$)IP (9.81)
4. Reverse step 2, that is, rotate about the X axis an angle —y. This modifies Eqg.
(9.81) to
P* = [Ry(—¥)I[R(O1[R<(¥)I[RA— $)]IP (.82
5. Reverse step 1, that is, rotate about the Y axis an angle ¢. This modifies Eq.
(9.82) to :
: P* = [RyAA)ILR{—¥)I[RAOILR)1 [Ry(— $)IP (9-83)
Equation (9.83) should be the same as Eq. (9.51) butin a different form, and in
comparing it with Eq. (9.52), we can write
[R] = [Ry{($YILRx{— ¥)IIRAOILR ()1 Ry(— $)] (9-84)

If the matrix multiplications in the above equation are performed and the result is
reduced, Eq. (9.53) will be obtained. The reader can carry out the details by using
Egs. (9.28) to (9.30) and using the identity nZ + nj + n} = 1. If other sequences of
decompositions of the rotation are used, the right-hand side of Eq. (9.84) changes
but the final result, that is, [R], stays the same. The reader is encouraged to try
these sequences.

9.3 MAPPINGS OF GEOMETRIC MODELS

In the previous section, we concerned ourselves with rigid-body transformations
of geometric models. Thus, we have discussed transforming a point (or a set of

GEOMETRIC TRANSFORMATIONS 505

points) belonging to an object into another point (or another set of points), with
both points (or sets) described in the same coordinate system. Thus, the model
position and orientation change with respect to the origin of the coordinate
system which stays unaltered in space. In this section; we think of rigid-body
motion and its related matrices as mappings of geometric models between differ-
ent coordinate systems. This is useful in geometric modeling as transformations
(see Example 9.6). Mapping of a point (or a set of points) belonging to an object
from one coordinate system to another is defined as changing the description of
the point (or the set of points) from the first coordinate system to the second one.
Thus, the model position and orientation stays unaltered in space with respect to
the origins of both coordinate systems while only the description of such position
and orientation changes. This is equivalent to transforming one coordinate
system to another.

Mapping can be used in various applications. It is useful during model
construction, as discussed in Chap. 3. When the user defines a WCS and creates
geometry by inputting coordinates measured in this WCS, the software maps
these coordinates to the MCS before storing them in the model database.
Mapping is also useful in assemblies or model merging where one or more
models, each defined in its own MCS, are combined or merged into a host model.
The coordinates of each subassembly or merged model is expressed in terms of
the MCS of the host assembly or model via mapping.

The same mathematical forms that we have developed for geometric trans-
formations can be used to map points between coordinate systems. However, the
interpretation of these forms is different. The problem of mapping a point from
one coordinate system to another can be stated as follows. Given the coordinates
of a point P measured in a given X YZ coordinate system, find the coordinates of
the point measured in another coordinate system, say X*Y*Z*, such that

P* = f(P, mapping parameters) (9.85)

where P and P* are the position vectors of point P in the XYZ and X*Y*Z*
systems respectively. The mapping parameters describe the relationship between
the two systems and consist of the position of the origin and orientation of the
X*Y*Z* system relative to the XYZ system. Equations (9.1) and (9.85) are the
same, but their interpretations differ. Equation (9.85) can be expressed in the
matrix form given by Eq. (9.2), where [T7] is referred to as the mapping matrix.
This matrix describes the position of the origin and the orientation of one coordi-
nate system relative to another one as expressed by Eq. (3.3). We now consider
the three possible cases of mapping and develop their corresponding matrices.

93.1 Translational Mapping

When the axes of the two coordinate systems are parallel, the mapping is defined
to be translational. In Fig. 9-12, the origins of the X YZ and the X*Y*Z* systems
are different but their orientations in space are the same. The point P is described
by the vectors P and P* in the XYZ and X*Y*Z* systems respectively. The
vector d describes the position of the origin of the former system relative to the

506 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

Y

P* X

X*

Z*

FIGURE 9-12
Translational mapping of a point.

latter. Equation (9.85) can be written exactly as Eq. (9.3) or (9.60) in the homoge-
neous form.

9.3.2 Rotational Mapping

Figure 9-13 shows rotational mapping between two coordinate systems. The two
systems share the same origin and their orientations are different by the angle 6.
In this figure, we assume that the XY and X*Y* planes are coincident. Utilizing

Y*

e x sin 09

X*

FIGURE 9-13
Rotational mapping of a point.

GEOMETRIC TRANSFORMATIONS 507

the trigonometric relationships shown in the figure, Eq. (9.25) can be derived.
Therefore, the rotation matrix given by Eq. (9.28) or (9.67) is applicable for rota-
tional mapping. Similarly, Egs. (9.29), (9.30), (9.53), and (9.75) are applicable for
their corresponding rotational mapping cases.

In rotational mapping, it is important to realize that the columns of a rota-
tional matrix [R] can be interpreted to describe the orientations of a given coor-
dinate system in space. If we take the unit vectors i, J, and k in the directions of
the axes of the XYZ system as shown in Fig, 9-13, these vectors can be expressed
in terms of the X*Y*Z* system as follows:

i = cos 6i* + sin 6j* + Ok*

§ = —sin 68* + cos &f* + Ok* 9.86)
k=k*
Rewriting Eqgs. (9.86) in a matrix form, we obtain:
cos 8 —sinf 0 T i*
i j £]"={sin6 cos6 O}]|j* (.87
0 0 1] Lk*

The matrix in the above equation is [R,]T and each of its untransposed columns
represents the components of a unit vector. Comparing the columns of the matrix
[R;] with Egs. (9.86) shows that the first.column represents the direction cosines
(components) of the unit vector i. The second and the third columns represent the
direction cosines of the unit vectors j and k respectively. Therefore, the columns
of any rotational matrix [R] represent orthogonal unit vectors. This observation

is useful in building [R] from user input, as explained in Example 9.6. The reader

can show that the columns of any rotation matrix [Egs. (9.28) to (9.30) or (9.53)
or (9.75)] all have unit magnitude and that they are orthonormal.

9.3.3 General Mapping

The general mapping combines both translational and rotational mappings as
shown in Fig. 9-14. In this case, the general mapping matrix [T] is given by Eq:
(9.70) with the submatrix [T3] set to zero, that is,

]
Typ Tiz2 Ty Xa

Ta1 T2z Ta3 : Ya [R]\ d]
T] = | =|:—-~—‘-- 9.88
: Tao Taz TaajZa| LOI -
0 0 0.1

where [R] and d are the rotational and translational mapping parts of [T7]
respectively.

Due to the involvement of two coordinate systems in mapping geometric
models, the correct interpretation of Eqgs. (9.2) and (9.88) can be explained as
follows. In Eq. (9.2), the coordinates of point P are measured in the X YZ coordi-
nate system while its coordinates measured in the X*Y*Z* coordinate system are
given by P* or [T]P. Therefore, Eq. (9.88) gives the position vector of the origin
of the XYZ system as d and its orientation as [R], both measured in the

508 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

Y P
y*

P*

X*

FIGURE 9%-14
z* General mapping of a point.

X*Y*Z* system. The columns of [R] are the components of the unit vectors of
the X YZ system (along its axes) measured in the X*Y*Z* system. If one reverses
the descriptions, that is, given P measured in the X*Y*Z* system, then the
inverse of [T] must be used (see Sec. 9.4). To emphasize this point, Eq. (9.2) can
be written as P = 5[T]*P, where A and B are the two coordinate systems
involved in the mapping process. However, this notation is not used in the book
to emphasize that we deal with one matrix [T7] for both mapping and transform-
ation, but we interpret it differently.

9.3.4 Mappings as Changes of Coordinate System

In the previous section, 9.3.3, we have presented mappings as changing descrip-
tions of points (or point sets) from one coordinate system to another. In this
section we view the same mappings and their related matrices as changes of
coordinate system. Let us assume that we are given a set of points described in a
given coordinate system. Mapping this coordinate system to another is defined as
changing the coordinate system so that the coordinates of the points in the trans-
formed set with respect to the new coordinate system are the same as the coordi-
nates of the points in the original set with respect to the original system.

Mappings as changes of coordinate system are useful in applications such
as model merging or building solid models. The local coordinate system of each
subassembly in model merging or of each primitive in solid modeling is posi-
tioned and oriented properly relative to a reference coordinate system. In both
cases, the coordinates of the related point set stays the same with respect to its
local coordinate system in its new configuration. The mapping matrix between
the reference and the local coordinate systems can be derived as explained in the
following section. This matrix can be used to find the coordinates of the point set
in its final position, measured in the reference coordinate system as described in
Sec. 9.3.3.

Figure 9-15 shows mapping as a change of coordinate system. Let us
assume that the X*Y*Z* reference coordinate system and point P* are changed

GEOMETRIC TRANSFORMATIONS 509

to the XYZ system and point P respectively such that the coordinates of P*
relative to the X*Y*Z* system are the same as those of P relative to the XYZ
system. In other words, the magnitudes and orientations of the vector P* relative
to X*Y*Z* and of the vector P relative to XYZ are the same. The mapping
matrix given by Eq. (9.88) can be used to describe the relationship between the
X*Y*Z* and XYZ systems. In terms of Fig. 9-15, the columns of this matrix are
precisely the coordinates of the unit vectors i, J, and k, and the origin O of the
XYZ systems, all measured relative to the reference system X*Y*Z*. Therefore,
this matrix maps the reference coordinate system into a new system (XYZ) whose
origin, in reference system coordinates, is the point (x5, yo, o) and whose x, y, z
direction cosines are given by (iy, iy, i), (., j,»j.) and (ks Ky, k2).

Once the mapping matrix [T] given by Eq. (9.88) is established, it can be
used to map coordinates of points from the XYZ system to the X*Y*Z* as
described in Sec. 9.3.3. Equation (9.2) can be used to find the coordinates of P
(vector P** shown in Fig. 9-15) relative to the X* Y*Z* system if its coordinates
(vector P in Fig. 9-15) relative to the XYZ system are given. Figure 9-16 shows
the various cases of mappings as changes of coordinate system with their corre-
sponding mapping matrices.

Example 9.6. For the geometric model shown in Fig. 9-17, a user defines the XYZ
coordinate system shown as the MCS of the model database. The user later defines
the two WCSs {W} and {W,} shown to be able to construct the two circles whose
centers are C and C,. Both C and C, are the centerpoints of the respective faces of
the model. Find:

(@) The mapping matrices [Ty] and [T,] that map points from any one of the two

WCSs to the MCS.
(b) The coordinates of the centers C and C, as they are stored in the model data-
base.
Y*
z
: k
Y 9
i
P, P
P
P*
P pr* X
O* X*
Z*
FIGURE 9-15

Mapping as a change of coordinate system.

510 TwO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

Y

Z* (a) Translational mapping

Y (b) Rotational mapping

y4

0—1 0lxy,

-1 0 Oyyaq
[T]= 1l

0 0Lz

0 0 0l1

«
X X

Z* (c) General mapping

FIGURE 9-16
Cases of mappings as changes of coordinate system.

‘Solution o i

(a) Using a typical CAD/CAM system, the user creates all the lines of the model
(assuming a wireframe construction). To create the circle with center C, the user
defines the WCS {W} by selecting the endpoints P,, P,, and P; of the existing
lines shown such that P, defines the origin of the WCS, and the lines P, P, and
P,P; define the Xy and Y axes respectively. The definition of this WCS is
useful for two reasons. First, it defines the plane of the circle. Secord, the coordi-
nates of the center C relative to this WCS are obviously (1.5, 2, 0). In order to
calculate [Ty], we need to calculate [R] and d given in Eq. (9.88). The coordi-
nates of points P,, P,, and P, relative to the MCS are (5, 0, 0), (5, 0, —3), and
3,2 \/3, 0) respectively. The unit vectors Iy, j, and Ky :can be calculated as

GEOMETRIC TRANSFORMATIONs 511

Ywi
ZWl
Ps
0.75
/(@
fwh A Yw
w7 m Xw 075 Xw
N
¢ iwt 3 Ps @
Py
4
3
s - iw . Zw
J w Ky
X
i i 5 Py
FIGURE 9-17
Utilizing general mapping
z - in model construction.
follows:
s - - P
w=£L—L=—R (9.89)
’Pz -P, !

Notice that this relation between fW and k is easily seen from Fig. 9-15 without
substituting P, and P, into the above equation.

Py P3 - Pl 1 2 2 2 a
jp = ————— == (=21 + 2,/3]j) = —0.51 + 0.866] (9.90)
AT N V3
ky = iy x j = 0.8661 + 0.5 (9.91)
Writing Egs. (9.89) to (9.91) in a matrix form, we obtain
0 —05 0.8366
[Rwl=| O 0.866 0.5 9.92)
-1 0 0

Substituting this equation into Eq. (9.88) and knowing that d = P, we obtain

0 -05 0866 | 5.0
0 086 05 |0
= | 9.93
[Tyl . o 0 o (9.93)
it SO SIS SR 19
0 0 0 1

A similar way can be followed to find [Tjy] by using the points
P, (3 Zﬁ, 0), P, (0, 2\/35 0), and P; (0, 0, —3). However, by inspection we can

see that iy, =1, j, = —k, and ky, = J. The vector d is equal to P,. Therefore,
1 o 0,0
0 0 1 | 3.464
= 9.94
Twid=|g 1 oo 0.94)
¥

i
I
|
b

512 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

(b) The coordinates of the centers C and C, are expressed in terms of the MCS be-
fore they are stored in the model database. The coordinates of C relative to the
WCS {W} are (1.5, 2, 0) and those of C, relative to the WCS {W,} are (1.5, 1.5,
0). Their MCS coordinates are given by utilizing Egs. (9.93) and (9.94) as follows:

(157 [40
20 1732
c=I[FT, =
(%] 0 ~15
O O ‘
[15] [15]
L5 3.464
and C =Tyl o 1= 15
1 1

The reader can verify these results by constructing the model on a CAD/CAM
system and using the “verify entity” command or its equivalence.

94 INVERSE TRANSFORMATIONS AND-
MAPPINGS ‘

Calculating the inverse of transformations and mappings is useful in both theo-
retical and practical aspects of geometric modeling. For example, using inverse
mappings, some CAD/CAM systems (e.g, Computervision and GE Calma)
provide their users with functions that ¢an take an existing entity and return its
coordinates relative to a given WCS. Normally, the “verify entity” command
returns the coordinates relative to the MCS.

All the transformation and mapping matrices developed in Secs. 9.2 and 9.3
have inverses. These matrices have been collected into one general matrix given
by Eq. (9.70). Thus, it is appropriate to find the inverse [T] ! of this matrix and
then try to relate the result to the various matrices of the previous two sections.
Because [T is partitioned into four submatrices, then [T] ™! = [4] also has four
submatrices such that

[T1[4] = [1] 9.95)

where [I] is the identity matrix. This equation can be written as

T, LA 4] 110
[Tsln][AaiA4 =loTT ©-96)

Here we replaced the element t,, = 1 of [T] given by Eq. (9.70) by the submatrix
T, of size 1 x 1. The partitioned form implies four separate matrix equations, two
of which are Ty4, + T, A3 =1 and T3 A, + T, A3 =0. These can be solved
simultaneously for A, and 4;. The remaining two equations give 4, and 4, and
lead to the following result:

| GBI TR - T
(73 [—T:‘Ta(n LI @G-nrim] O
The inverse [T] ™! given by the above equation does not take full advan-
tage of the inherent structure of [T7] itself. First, T, is one element equal to 1.

GEOMETRIC TRANSFORMATIONS 513

Therefore, T; ! = 1 also. Second, in both transformation and mapping, [75] has
zero elements, that is, [T;] = [0 0 0]. Moreover, [T;] and [T,] are the rota-
tion matrix [R] and the translational vector d in both transformation and
mapping. Substituting all these properties into Eq. (9.97) gives

(R | —[RT} d:l

(7]t = [_______ , ________ (9.98)

We have mentioned in Sec. 9.3.2 that the rotational matrix [R] is orthog-
onal. Therefore, its inverse is equal to its transpose, that is,

[R]™* =[R]” (9.99)
Substituting this equation into (9.98), we obtain the final form of [T]~* as
- [R]" | —-[R]"d
T _j_ Y4 Vo
[r1=" = [0 5 o i {9.100)

This equation is general and extremely useful to compute the inverse of 2 homo-
geneous transformation or mapping. The derivation we just followed to obtain
Eq. (9.100) is quite general and other special derivatives of it may exist.

We may now ask ourselves the following questions. Does Eq. (9.100) agree
with one’s intuition for simple cases? And if it does, how? Take the example of
translation. If a translational transformation or mapping is given by Eq. (9.60),
the corresponding inverse is obtained by reversing the translational vector 4, that
is, by negating its components x,, y;, and z,. Here, no rotation is involved and
therefore [R] = [R]” = [I] and Eg. (9.100) yields exactly the same result. Simi-
larly, for scaling d = 0 and [R] is a diagonal matrix, that is, [S] given by Eq.
(9.62). In this case, Eq. (9.98) must be used, because [R] is not orthogonal, with
the diagonal elements of [R] ™! being the reciprocals of those of Eq. (9.62). For
rotation, d = 0 and [R]7 to find the inverse is equivalent to negating the angle of
rotation, as one would expect. The reader can check this for Eqgs. (9.28) to (9.30),
(9.53), and (9.75).

One last useful inverse transformation problem is that of determining the
direction of the axis of rotation #i and the angle of rotation 8 from a given rota-
tion matrix [R]. In general, the elements of [R] are as shown by the top left
submatrix of Eq. (9.88). They are also as shown by Eq. (9.53) in terms of fi and 6.
To solve for #i and 6, we equate both forms, that is,

ri1 Tiz Ti3 n2vd+cd n.n,v0—n sH n.n, v +n,s
[RI=|ry 722 ras|=|n.n,v0+n,s6 nivo+cd nn vo—n,sb
rii Tz T33 nen,v0 —n,s6 nyn v0+n.s6 nZvl+ch-
(9.101)

Adding elements (1, 1), (2, 2), and (3, 3) on both sides of this equation to each
other and simplifying the result, we obtain

0 = cos™ ! (’“ Rl Sk 1) (9.102)

2

514 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

Subtracting element (2, 3) from (3, 2) on both sides yields

T3z —Ta3

n, = Z—Sll;—é— (9.103)

Similarly, we can find n, and n,, and write

1 T3z —Ta3
i = (2 n 9) riz — T3 A (9.104)

T2y — T2

Equation (9.102) always computes a value of 6 between 1 and 180°. Thus, for any
axis-angle pair (@, 6) there is another pair (—#, —6) that results in the same
orientation in space, with the same [R] describing it. Therefore, a choice has to
always be made when converting from a rotation matrix into an axis-angle repre-
sentation. It is also obvious from Eg. (9.101) that the smaller the angle of rotation
0, the closer to zero the off-diagonal elements are, and consequently the more
ill-defined the axis of rotation becomes as seen from Eq. (9 104). When 6 =0 or
180 the axis becomes completely undefined. .

Example 9.7. An entity is rotated about the three principal axes of its MCS with
equal angles of 45° each. Find the equivalent axis and angle of rotation.
Solution. Substituting « = § =y = 45° into Eq. (9.75), we obtain

~ Jos —os 0.707]
[R]=|0854 0.146 =05
0146 0854 05

Substituting these values into Egs. (9.102) and (9.104), we obtain

6 = 85.81°

0.679

and i =|0.281
0.679

9.5 PROJECTIONS OF GEOMETRIC
MODELS

Databases of geometric models can only be viewed and examined if they can be
displayed in various views on a display device or screen. Viewing a three-
dimensional model is a rather complex process ‘due-to the fact that display
devices can only display graphics on two-dimensional screens. This mismatch
between three-dimensional models and two-dimensional screens can be resolved
by utilizing projections that transform three-dimensional models onto a two-
dimensional projection plane. Various views of a model can be generated using
various projection planes.

- To define a projection, a center of projection and a projection plane must
be deﬁned as shown in Fig. 9-18. To obtain the projection of an entity (a line
connecting points P, and P, in the figure), projection rays (called projectors) are

GEOMETRIC TRANSFORMATIONS 515

Projection
Projectors plane
P
Center of
Center of projection
projection ' at infinity
(a) Perspective projection (b) Parallel projection

FIGURE 9-18
Projection definition.

constructed by connecting the center of projection with each point of the entity.
The intersections of these projectors with the projection plane define the project-
ed points which are connected to produce the projected entity. There are two
different types of projections based on the location of the center of projection
relative to the projection plane. If the center is at a finite distance from the plane,
perspective projection results and all the projectors meet at the center. If, on the
other hand, the center is at an infinite distance, all the projectors become parallel
(mieet at infinity) and parallel projection results. Perspective projection is usually
a part of perspective, or projective, geometry. Such geometry does not preserve
parallelism, that is, no two lines are parallel. Parallel projection is a part of affine
geometry which is identical to euclidean geometry. In affine geometry, parallelism
is an important concept and therefore is preserved.

Perspective projection creates an artistic effect that adds some reahsm to
perspective views. As can be seen from Fig. 9-18a, the size of an entity is inversely
proportional to its distance from the center of projection; that is, the closer the
entity to the center, the larger its size is. Perspective views are not popular among
engineers and draftsmen because actual dimensions and angles of objects, and
therefore shapes, cannot be preserved, which implies that measurements cannot
be taken from perspective views directly. In addition, perspective projection does
not preserve parallelism.

Unlike perspective projection, parallel projection preserves actual dimen-
sions and shapes of objects. It also preserves parallelism. Angles are preserved
only on faces of the object which are parallel to the projection plane. There are
two types of parallel projections based on the relation between the direction of
projection and the projection plane. If this direction is normal to the projection
plane, orthographic projection and views result. If the direction is not normal to
the plane, oblique projection occurs.

There are two types of orthographic projections. The most common type is
the one that uses projection planes that are perpendicular to the principal axes of
the MCS of the model; that is, the direction of projection coincides with one of
these axes. The front, top, and right views that are used customarily in engineer-
ing drawings belong to this type. There are three other views that belong to this
type and are typically provided by CAD/CAM systems. These are the bottom,
rear, and left views. The other type of orthographic projection uses projection

5§16 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

planes that are not normal to a principal axis and therefore show several faces of
a model at once. This type is called axonometric projections. They preserve
paralelism of lines but not angles. Thus, measurements can be made along each
principal axis. Axonometric projections are further divided into trimetric,
dimetric, and isometric projections. The isometric projection is the most common
axonometric projection. The isometric projection has the useful property that all
three principal axes are equally foreshortened, as will be seen in Sec. 9.5.1. There-
fore measurements along the axes can be made with the same,scale—thus the
name: iso for equal, metric for measure. In addition, the normal to the projection
plane makes equal angles with each principal axis and the principal axes make
equal angles (120° each) with one another when projected onto the projection
plane.

We may now ask the following question. How does the common practice of
defining views, on CAD/CAM systems, of geometric models relate to both
orthographic and isometric projections? Typically, a view definition requires a
view origin, viewport (or view window), and a viewing direction, as shown in
Fig. 9-19. The view origin defines the location of the origin of the MCS of the
model (to be viewed) inside the view window. The viewing direction is the same
as the projectors shown in Fig. 9-18b. The viewing plane is perpendicular to this
direction and is the same as the projection plane. The viewport or view window
defines the boundaries against which the view is clipped. Displayed graphics can
always be zoomed in or out to scale within the viewport.

A view has a viewing coordinate. system (VCS). It is a three-dimensional
system with the X, axis horizontal pointing to the right and the Y, axis vertical
pointing upward, as shown in Fig. 9-19. The Z, axis defines the viewing direction.
The positive Z, axis has an opposite sense to the viewing direction to keep the
VCS a right-handed coordinated system, even though a left-handed system may
be more desirable here since its positive Z, axis is in the direction of the lines of
sight emitting from the viewing eye. (This leads to the logical interpretation of

Viewing plane

7 e
/// ;
_

Z, /"iewing direction
ye ,

Viewing, FIGURE 9-19
eye at @ View definition.

.

GEOMETRIC TRANSFORMATIONS 517

larger z values being further from the viewing eye.) To obtain views of a model,
the viewing plane, the X, Y, plane, is made coincident with the XY plane of the
MCS such that the VCS origin is the same as that of the MCS. Model views now
become a matter of rotating the model with respect to the VCS axes until the
desired model plane coincides with the viewing plane followed by projecting the
model onto that plane. Thus, a view of a model is generated in two steps: rotate
the model properly and then project it. These steps are usually performed when
the user follows the view definition syntax on a given CAD/CAM system. Figure
9-20 shows the relationship between the MCS and VCS for typical views of a
geometric model. We can apply the two-step procedure just described to the
figure. For the front view, the XY and X, Y, plane are identical. To obtain this
view, we simply project the geometry onto the viewing plane. For the top view,

Y

=

(a) Model views relative to its MCS

Top

b =35.26° % &
. X
JET
7 z Isometric view X
z

v

Y,.Y .Y

X, X z
Front view ‘ Right view Xe

(b) MCS and VCS relationship

FIGURE 9-20
Relationship between MCS and VCS.

518 TwO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

we must rotate the model about the X, axis by 90° so that the XZ plane coin-
cides with the X, Y, plane. The other views can be obtained in a similar fashion.
The MCS is shown in Fig. 9-20b as if it rotates in space with respect to the VCS
exactly in the same way as the model rotates with respect to this VCS. This keeps
the relationship between the model and its MCS unchanged in space. Another
way to look at this observation is to say that views of a model are obtained by
rotating the model and its MCS about the X, and ¥, axes of the VCS.

The remainder of this section shows the underlying mathematics of projec-
tions and how views relate to geometric transformations.

9.5.1 - Orthographic Projections

An orthographfc projection (view) of a model is obtained by setting to zero the
coordinate value corresponding to the MCS axis that coincides with the direction
of projection (or viewing) after the model rotation. An orthographic view follows
the definition shown in Fig. 9-19. To obtain the front view (see Fig. 9-20b), we
only (no rotation is needed) need to set z = 0 for all the key points of the model.
Thus, Eq. (9.70) becomes

10 00
: 0100
IT3=|4 0 0 o (9.105)
0 0 01
and Eq. (9.2) gives -
P,=[TIP (9.106)

where P, is the point expressed in the VCS. For the front view, Eq. (9.106) gives
x, = x and y, = y. For the top view, the model and its MCS are rotated by 90°
about the X, axis followed by setting the y coordinate of the resulting points to
zero. The y coordinate is the one to set to zero because the Y axis of the MCS
coincides with the projection direction. In this case, [T] becomes

1 0 0 0
0 -1 0

0
[T]= 0 0 0 0 (9.107)
0 0 0 1
and Eq. (9.106) gives x, = x and y, = —z. If we use the above equation to trans-

form the MCS itself, the X axis (y = z = 0) transforms to x, = x and the Y axis
(x = z = 0) transforms to y, = —z. This result agrees with Fig. 9-20b. The right
view shown in the figure can be obtained by rotating the model and its MCS
about the Y, axis by —90° and setting the x coordinate to zero. Thus,

0 0 -1 0

0 1 0 0
[T]1= 0 0 0 0 (9.108)
0 0. 0 1

which gives x, = —zand y, = y.

GEOMETRIC TRANSFORMATIONS 519

Examining Egs. (9.105), (9.107), and (9.108) shows that [T] is a singular
matrix with a column of zeros which corresponds to the MCS axis that coincides
with the projection or viewing direction. These equations are obtained by rota-
tion followed by setting a coordinate value to zero. They can also be obtained in
the reverse order, that is, setting the coordinate.value to zero followed by the
rotation. Once the viewpoints P, are generated, they are clipped against the view-
port boundaries, and then mapped into the physical device coordinate system
(SCS discussed in Chap. 3) to display the view.

To obtain the isometric projection or view, the model and its MCS are
customarily rotated an angle 6 = +45° about the Y, axis followed by a rotation
¢ = +35.26° about the X, axis. These angles have been used for years in conven-
tional manual drafting. In practice, the angle ¢ is taken as +30° to enable the
drafting (plastic) triangles in manual construction of isometric views. The values
of these angles are based on the fact that the three axes are foreshortened equally
in the isometric view. This can be explained as follows. The two rotations give

P, =[TI[T,IP
1 0 0

0 cos @ 0 sin 6 0]l x

|0 cos ¢ —sin ¢ 0 0 1 0 Offy
10 sing cos¢p Ol —sinf O cosf 0|z (©-109)

0 0 0 1 0 0 0 1|1

Applying this equation to transform “the unit vectors in the X direction
{1 0 0 117, in the Y direction -[0 -1 0 117, and in the Z direction
[0 0 1 177 and ignoring the Z component because we are projecting onto
the z, = 0 plane, we obtain respectively:

X, = CoS ¢ y, =sin ¢ sin 0
x, =0 ¥, =cos 6 (9.110)
, =sin ¢ y, = —cos ¢ sin 6
If the three axes are to be foreshortened equally, the magnitudes of the unit
vectors given by the above equations must be equal. The first two equations give
cos? ¢ + sin® ¢ sin? 6 = cos? 0 (9.111)
and the last two equations give

sin® ¢ + cos® ¢ sin? 0 = cos® 6 (9.112)

Solving Egs. (9.111) and (9.112) gives 6 = +45° and ¢ = +35.26°. The signs of
the rotation angles 9 and ¢ result in four possible orientations of isometric views.
Figure 9-20b shows the most common orientation where 6 = —45° and
¢ = 35.26°.

Example 9.8. Find the rotations that are necessary to define the front, top, right,
rear, bottom, and left views of a model if the XY plane of the MCS is (a) vertical, (b)
horizontal.

|
|

5200 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

Solution. In Chap. 3, we have obtained these six views as two-dimensional and
isometric views, as shown in Figs. 3-47 and 3-48. To generate these views, use the
following axes and angles of rotations in the view definition command available on
the CAD/CAM system being used.

Case (2) Case (b)
Two - Two '
View dimensions Isometric dimensions Isometric
Front = — — Y, X b,¢ X -9 X, Y, X -90,0,¢
Top X 90 X, Y, X 90,0,¢ — — Y, X 8, ¢
Right Y -9 Y,Y,X -90,6,¢ Y -9 Y, Y, X -90,8,¢
Rear X 180 X, 7, X 180,0,¢ X 90 X, 7, X 90, 6, ¢
Bottom X -9 X,Y,X -90,6,¢ X 180 X,7, X 180, 6, ¢
Left Y 9 Y, 7, X 90,6,¢ Y 9 Y, Y, X 90, 6, ¢

In this table, columns with X’s and Y's show the order of rotation about the VCS
axes and other columns show the corresponding angles of rotation. The angles 6
and ¢ are —45° and 35.26° as derived previously. The angles shown above are
based on the assumption that the front and top views are the default views for cases
(a) and (b) respectively. The reader is encouraged to test the proper case on the
available CAD/CAM system. .

9.5.2 Perspective Projections

One common way to obtain a perspective view is to place the center of projection
along the Z, axis of the VCS and project onto the z, =0 or the XY, plane.
Figure 9-21 shows this case. The center of projection C is placed at a distance d
(measured along the Z, axis) from the projection plane. In order to find the
matrix [T] for the case of perspective projection where the viewing eye lies on
the Z, axis let us develop it from the trigonometry shown in Fig. 9-21. The
viewing eye is located at the center C. A new coordinate system called the eye
coordinate system (ECS) is introduced relative to the line of sight (see Fig. 9-21).
The ECS has an origin located at the same position as the viewing eye. Its X,
and Y, axes are parallel to the X, and Y, axes of the VCS. However, it is a
left-handed system. The Z, axis is taken in the direction of the line of sight.
Therefore, points with larger Z, values are taken to be further from the viewing
eye. The ECS is useful in the hidden line and surface removal algorithms (see
Chap. 10). The transformation matrix of coordinates of points from the VCS to
the ECS or vice versa can be written as

1 0 0.0
0 1 010
[T1= 0 0 —1 ! 0 (9.113)

This matrix simply inverts the sign of the z coordinate. In the orthographic views,
the ECS is located at infinity. It is obvious that the ECS can be replaced by the

GEOMETRIC TRANSFORMATIONS 521

FIGURE 9-21
Perspective projection along the
Z,Z, Z, axis.

VCS. In this case, points with smaller z values are interpreted as being further-
from the viewing eye.

The figure shows the perspective projection of point P as point P,. To find
the y, of P,, the two similar triangles COP, and CP; P, give

; = T2 = I——z/d (9.114)
The two similar triangles CP, P, and CPP, give x, of P, as
d 1
L (9.115)

Rearranging Egs. (9.114) and (9.115) to give y, and x, respectively and knowing
z, = 0, we can put the result in a homogeneous form as

1 0 0 0]} x
0 1 0 olly

P,= 0 0 0 oll z (5.116)
0 0 —1/d 1 1

If this equation is expanded it gives P,=[x y 0 (1—z/d)]". This would
require the division of x and y by (1 — z/d) to obtain the corresponding cartesian
coordinates of these homogeneous coordinates. Consequently, Egs. (9.114) and
(9.115) result. Thus, Eq. (9.116) gives the perspective projection onto the z, =0
plane when the center of projection is placed on the Z, axis at a distance d from

§22 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

the origin. This result agrees with what was mentioned earlier that the matrix
[T3] [Eq. (9.70)] produces perspective projection. If the center of projection is
placed at a general point in space, the other clements of [T;] will be nonzero.

9.6 DESIGN AND ENGINEERING
APPLICATIONS

Geometric transformations and mappings are useful in various design and engin- -

eering applications, especially those that are related to kinematics, mechanisms,
linkages, and robotics. Most of these applications involve rotations and/or trans-
lations of various elements while maintaining the spatial and geometric con-
straints at the joints that connect these elements. The various configurations of
these elements can be used to study their effects on the motion or kinematics of
the corresponding geometric models, or they can be used to animate the motion
of the models for visualization purposes.

‘When more than one degree-of-freedom model is to be transformed such as
in a robotics system, kinematic analysis is required to determine the relative
motion between the elements. This motion can then be executed via geometric
transformations. Due to the repetitive work to transform the elements (such as
incremental rotation or translation), programming is usually more efficient than
just typing commands. The following example shows how to use rotations in
relation to a simple mechanism.

Example 9.9. Figure 9-22 shows a representation of a slider-crank mechanism. Find
the locus of point D, the midpoint of the connecting rod BC. What is the angle 0 at
which the tangent to the locus at D becomes horizontal?

Solution. The idea here is to find enough points on the locus of D and then connect
them with a closed B-spline. This is achieved by constructing the mechanism for
§ = 0. Then the crank AB is rotated incrementally, say by A8 = 10°, and the mecha-
nism is constructed for each 8 (10, 20, ...). At each configuration the position of
point D is recorded by simply inserting a point at the origin of the line BC. The
resulting positions are then connected with a closed B-spline command to produce
the locus. To find the angle 6 at which the tangent is horizontal, we construct a few
tangents to the locus where they may be horizontal. Using the “measure angle”
command, the angle that each tangent makes with the horizontal can be obtained

Mechanism at 6 = 90°

Tangent

NN

=

(a) Geometric model

(b) Locus of point D

FIGURE 9-22
Slider-crank mechanism. =

=)

Mechanism at 8§ = 0°

GEOMETRIC TRANSFORMATIONS 523

and compared to zero. The closest angle to zero with an allowable error gives the
horizontal tangent and the corresponding angle is the solution. Figure 9-22b shows
. the locus and the tangent within an error of 2.6 x 107¢°. The angle 6 that corre-
sponds to this tangent is 90°.
The reader can extend this method to study the effect of the lengths of the
crank and the connecting rod on the locus and the tangent. Programming is useful
in this study (refer to Chap. 15).

PROBLEMS
Part 1: Theory

9.1. A general curve such as a Bezier or B-spline is to be translated. Does translating the
control points and then generating the curve give the same Tesult as translating the
original curve or not? Prove your answer.

9.2, Develop the translational transformation equation for a Hermite bicubic spline
surface, a bicubic Bezier surface, and a bicubic B-spline surface. How can you extend
the results to a cubic hyperpatch?

9.3. Derive the relationship between a point P and its scaled counterpart P* if P is scaled
uniformly about a given point Q which is not the origin.

9.4. How can a Bezier curve, B-spline curve, Hermite bicubic surface, Bezier surface, and

B-spline surfdce be scaled uniformly?

Show that Egs. (9.15) to (9.18) can reduce to Egs. (9.13) and (9.14); that is, show that

reflection relative to a coordinate system is a special case of general reflection.

9.6. Develop the reflection transformation equations for Bezier and B-spline curves and

surfaces as well as a Hermite bicubic surface. Carry the developments for the case of

reflection through a general point.

Figure P9-7 shows a cube of length 2 in. The cube is rotated an angle 6 = 30° about

the cube diagonal OD. If point B is the midpoint of side AD, find the coordinates of

points A, B, and C before and after rotation. Verify your answer by solving the
problem on your CAD/CAM system.

9.8. Show how the homogeneous representation can help represent points at infinity and
can also be used to force parallel lines to intersect.

99, Show that parallel and perpendicular lines transform to parallel and perpendicular
lines.

95

9.7

.

FIGURE P9-7

i
b
b
|
i

524 TWO- AND THREE-DIMENSIONAL GRAPHICS CONCEPTS

9.10. Show that the midpoint of a line transforms to the midpoint of the transformed lines.
9.11. A point is rotated about the Z axis by two successive angles 8, and §,. Show that
this is equivalent to rotating the point about the same axis once with an angle
0=0,+6,.
9.12. Show that:
(a) Translation is commutative.
(b) Mirror and two-dimensional rotation about the Z axis are not commutative.
(¢) Scaling and two-dimensional rotation about the Z axis are commptative.
(d) Three-dimensional rotations are not commutative.
9.13. Given a point P = (2, 4, 8) and using the homogeneous representation:
(a) Calculate the coordinates of the transformed point P* if P is rotated about the
X, Y, and Z axes by angles 30, 60, and 90° respectively.
(b) If the point P* obtained in part (a) is to be rotated back to its original position,
" find the corresponding rotation matrix. Verify your answer.
(¢) Calculate P* if P is translated by d = 3i — 4] — 5k and then scaled uniformly by
s=15.
(d) Calculate the orthographic projection P, of P.
(¢) Calculate the perspective projection P, of P if the center of projection is at a
distance d = 10 in from the origin along the Z, axis.
9.14. Given three points P,, P,, and P, that belong to a geometric model and given three
other points Q,, 0,, and Q5, find the transformanon matrix [T7] that:
(a) Transforms P, to Q,.
®) Transforms the direction of the vector (P2 — P,) into the direction of the vector
(QZ 1
(¢) Transforms the plane of the three pomts P,, P,, and P into the plane of 0, Q2 s
and Q5.
This problem is sometimes called “three-point” transformation. It is useful to move
two geometric models, mainly solids, to coincide with one another or to position
entities in a geometric model.

9.15. Figure P9-15 shows the rotation of a point P about an arbitrary axis of rotation that
passes through the origin and lies in the XZ plane. Derive the rotation matrix [R]
for this case. Verify your answer by substituting the proper values in the general
matrix [R] given by Eq. (9.53). .

Axis of rotation
z (in the XZ plane) FIGURE P9-15

GEOMETRIC TRANSFORMATIONS 525

Part 2: Laboratory

9.16. Find the view definitions required by your CAD/CAM system to define the six two-
dimensional views as well as the six isometric views described in Example 9.8.

9.17. Show that three-dimensional rotations are not commutative. Take a sequence of 90°
rotations about the three principal axes and permutate them.

9.18. Redo Example 9.5 on your CAD/CAM system. Use fi = 0.51 + 0.707j + 0.5k and
P=(1,35).

9.19. A line is connecting the origin of the MCS of a model and a point P(1, 2, 3). Find
three different ways to rotate the line so that it coincides with the Z axis of the MCS.

Part 3: Programming

9.20. Write a program to implement Eq. (9.70). Use the form P* = [T]P where P is a
vector of points, tangent vectors, or any other vectors of interest. For example, P
could be four points, that is, [P; P, P, P,]%, orit could be [P, P, P; PT
as for the Hermite cubic spline. Write the program for rotation about the Z axis,
translation, and scaling uniformly.

9.21. Using the program developed in Prob. 9.20, write a program to translate a cubic
spline curve, a Bezier curve, and a B-spline curve.

BIBLIOGRAPHY

Demel, J. T, and M. J. Miller: Introduction to Computer Graphics, Brooks/Cole Engineering Division,
Monterey, Calif,, 1984.

Encarnacao, J,, and E. G. Schlechtendahl: Computer-Aided Design: Fundamental and System Architec-
tures, Springer-Verlag, New York, 1983.

Faux, L D., and M. . Pratt: Computational Geometry for Design and Manufacture, John Wiley, New
York, 1981.

Foley, J. D., and A. van Dam: Fundamentals of Interactive Computer Graphics, Addison-Wesley,
Reading, Mass., 1982.

Giloi, W. K.: Interactive Computer Graphics: Data Structures, Algorithms, Languages, Prentice-Hall,
Englewood Cliffs, N.J., 1978.

Groover, M. P, and E. W. Zimmers: CAD/CAM Computer-Aided Design and Manufacturing,
Prentice-Hall, Englewood Cliffs, N.J., 1984.

Harrington, S.: Computer Graphics: A Programming Approach, McGraw-Hill, New York, 1983.

Harris, D.: Computer Graphics and Application, Chapman and Hall, New York, 1984.

Mortenson, M. E.: Geometric Modeling, John Wiley, New York, 1985.

Newman, W. M., and R. F. Sproull: Principles of Interactive Computer Graphics, 2d ed., McGraw-Hill,
New York, 1979.

Park, C. S.: Interactive Microcomputer Graphics, Addison-Wesley, Reading, Mass., 1985.

Rogers, D. F., and J. A. Adams: Mathematical Elements for Computer Graphics, McGraw-Hill, New
York, 1976.

