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3D Analytic Shape Representatlon
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e Triangular meshes, polygonal meshes
e Analytic (commonly-used) shape
e Quadric surfaces, sphere, ellipsoid, torus
e Superquadric surfaces, superellipse, superellipsoid
. Blobby models tetrahedron, pyramid, hexahedron
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Non-unique model
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Geometric Modeling
A typical solid model is defined by solids,

surfaces, curves, and points. ZX

Solids are bounded by surfaces. A&7 |
They represent solid objects.
Analytic shape

Surfaces are bounded by lines. They represent

surfaces of solid objects, or planar or shell objects.
Solid

Curves are bounded by points. st
They represent edges of objects.

edge

vertex

loop

face
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Geometric Modeling

Points are the foundation entities.

Curves are built from the points,
Surfaces from curves,
Solids from surfaces.

Difference of
wire, surface,

&S

There is a built-in hierarchy among solid model entltles

Solids

Surfaces

Curves

Points

Solid

solldmodel/ X

mﬁuﬂ
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Surface Modeling
Bezier, B-spline and NURBS surface

is a tensor product surface
and is the product of two curves.

Surfaces are defined by grid
and have two sets of parameters,

two sets of knots, control points T
and so on. =N A




Solid Modeling

Solid Models are complete, valid and unambiguous.
Models have interior, volume, and mass properties.

While no representation can describe all possible solids,
a representation should be able to represent
a useful set of geometric objects.




Solid Modeling

A solid object is defined
by the interior volume space contained
within the defined boundary of the object.
A closed boundary is needed to define a solid object,
e informationally complete, compact, valid representation
e points in space to be classified relative to the object,
if itis inside, outside, or on the object
e store both geometric and topological information,
can verify whether two objects occupy the same space
e improves the quality of design, improves visualization, and
has potential for functional automation and integration.




Solid Modeling ¢

Support using volume information
e weight or volume calculation,
centroids, moments of inertia calculation,
 stress analysis (finite elements analysis),
heat conduction calculations, dynamic analysis,
e system dynamics analysis

Usmg volume and boundary information
e generation of CNC codes, == F
robotic and assembly simulation QR /) Ji

&




Solid Modeling v ’

Solids models must satisfy the following criteria:
Rigidity: Shape of object remains fixed when
manipulated.

Homogeneity: All boundaries remain in contact.
Finiteness: No dimension can be infinite. '

shell

vertex

Divisibility: Model yields valid sub-volumes [~24...
when divided. ’




Requirements for Solid Representation

Uniqueness
That is, there is only one way to represent a particular

solid. If a representation is unique, then it is easy to
determine if two solids are identical since one can just
compare their representations.
Accuracy

A representation is said accurate
if no approximation is required.

Parametric Hole in Mesh Geometry



Requirements for
Solid Representation

Validness

Closure

Solids will be transformed and used :
with other operations such as union and i
"Closure" means that transforming a valid solid ==
always yields a valid solid "

® L&
S
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Requirements for Solid Representation

Compactness and Efficiency
A good representation should be compact enough for
saving space and allow for efficient algorithms to

determine desired physical characteristics




Requirements for Solid Representation

Validity of the B-Rep (Boundary representation)
Solid model

The boundary of a face ‘\
is made up of edges '\

that are not allowed / \ /

to intersect each other

imnvalid

Invalid

The faces of a model can /\\ _
only intersect in common/ \ I \_ I

edges or vertices. f I /
Pyramud on base ®
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techniques ®

Surface Based 2-Manifolds Models,® mnor 2 eonrentat

3D P ara metrlc Solld Primitive Instantiation Edge \\mem
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Primitive Instancing, T\~ (7 %x

Space Subdivision, "

Cell Decomp05|t|ons o

Octree Model,
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(a) Solid (&) Spatial oocupancy () Octree encoding
enumeration



Solid modeling technic

Sweeps

Sweeping, N @
Half Spaces, % d:é X
CSG,

Torus [Eq. (7.66)]



Solid Modeling (cont.)

The most common solid-modeling
techniques used by CAD systems are:™ {55 Sy 0
e Pre-defined geometric Primitive mstancmg, ~ Dt
e Sweeping in the form of extrusion and revolving "«

e Constructive Solid Geometry (CSG tree structure)
e Boundary representation (B- rep) p7A
e Feature Based Modeling

2
—

E_{;;‘

i
(uses feature-based primitives) —
e Parametric Modeling e
(ASM, uses 3D parametric solid)




Solid modeling approaches

Boundary Representation
- Solids BRep: 7 Faces (B' re p)

8 Vertices
14 Edges

-

Constructive Solid Geometry
p—H L e - Solids CSG: | Block primitive (CSG)

| Cylinder primitive
| Equation: Block - Cylinder
i | .

Zo7 | '  Operations:
/j_ o . . union, intersection and difference.
| S | .
T |
| | s g I ‘ )
Sweeps Sweep
e }\I
i —
\ ; 1 Solids Swept: | Base block
d—ﬁ L‘ | Circular profile
¥ " L~ -~ — | Straight path to sweep the cutting circle

| - through the block




Solid modeling approaches

Hybrid (Feature based modelers)

HOLE= {
r"_".
= Features: 1 Block from stock BLOCK radius = f _mches.
| Bored hole HOLE height = 3 inches

X position = 1.5 inches
v_position = 1.5 inches
X_rotation = 90 degrees

radius_tolerance = 0,001 inches

Octree Modeling
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Parametric Solid
Analytical Solid Modeling (ASM, FEM)

i=0 j=0 k=0

Parametric space

P(u,v,w) = Z Z Z P, Bi(WB (VB (W) - ~ —>

=X
Object space

X=X (uvw) y=y(uvw) and z =z (u,vjw)

Y
v A
A Face surface
Edge \
curve
w. P(x y-z}

umax.———

! :
I
|
-~ Corner
e { | E:—J;> vertex J
uﬂ'l"l e —— } : P{usUibw w}
I . | ;’
: — !
Hl;liﬁ I Umax |
I |
W g1y o e o o e e : — : J Cartesian space
Wmax I :‘ I /
W Parametric space z




Primitive Instancing

and Sweeping | m

Primitive instancing (Feature) refers to the scaling of simple
geometrical models (primitives) by manipulating one or more of
their descriptive parameters.

Most simple geometric primitives can be
generated by a sweeping (“extrusion”) process.

Swept solid

translational

Generator surface

Axis of revolution

rotational



Cell decomposition of solid object

Space partitioning model

Spatial-occupancy enumeration

N
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(a) Solid (b} Spatial occupancy enumeration {e) Octree encoding

Octree
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e
|

e

88 S888 #8400

Cell decomposition example
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Chamfering Hole

Feature-based modeling

Open slot - _ﬁ_

Past Approach Through hole
The graphical information is represented using Pocket ___ fillt
low level graphical elements such as points, lines, arcs, etc.
The textual information is represented as texts, notes and
symbols attached to a drawing.

|ldeal/Present Approach - feature-based modeling

To represent part geometry using high-level feature
primitives such as holes, slots, pockets, etc. (consistent to
the engineering practice), and to represent dimensions,
tolerances, surface finishes, etc. as meaningful design
entities.



Feature-Based Design

Features are specific geometrical shapes on a part that
can be associated with certain fabrication processes.

Features can be classified as form (geometric elements),
material, precision (tolerancing data), and technological
(performance characteristics). '

The primary objectives of design by featuresE

* Increase the efficiency of the designer
during the geometric-modeling phase, and

* Provide a bridge (mapping) to engineering-analysis and
process-planning phases of product development. { ) | /




Feature-Based Design

Open slot
Through hole
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Design by Features

A solid model is configured through a sequence of form-feature
attachments to the primary representation of the part.

Features could be chosen from a library of pre-defined features
or could be extracted from the solid models of earlier designs.

@ Z "

Add polyhedron form feature Subtract slot form feature Subtract blind-hole
form features



Feature Recognition

Currently, feature recognition refers to examination of parts’
solid models for the identification of predefined features and
for their extraction.

In the future, extraction methods will examine a part’s solid
model for the existence of geometric features that have not
been predefined and extract them:

e Such features would, then, be classified and coded for
possible future use in a Group technology GT-based CAD
system - Namely, these features would be extractable based
on a user-initiated search for the most-similar feature in the
database via a GT-code.



Constructive Solid Geometry (CSG)

e Based on simple geometric primitives
— cube, parallelepiped, prism, pyramid, cone,
sphere, torus, cylinder, solid by points etc.
e Primitives are positioned and combined using
boolean operations |r’=~k - =
— union (addition) L 1 { LY
— difference (subtraction)
— Intersection
e Represented as a boolean tree ;i

%

e
e

D HEXAHEDRON

QU&DRILM’ERAL
Solid primitives



I CSG Primitives

Based on simple geometric primitives:
cube, parallelepiped, prism, pyramid, cone, sphere,
torus, cylinder, solid by points etc.




m aces used LU

in CSG modeling

Surface descriptions

_ Baa 1 Mol Spac
() Piecewise linear loops .
O ZL

'y

(c) General curve loops

| Toroidal Half Space
(x>+3y’+22—R2-R? <4R}(R*-2?)
Torus [Eq. (7.66))




* Infinite cylinder, I: x*2 + y?2 —= "2 <=0
* Infinite planar halfspace, P: Ax+ By + Cz+ D <=0

CSG Half Spaces * Cylinder withends: | ~ P1 ~ P2

» Planar half-space H={(x,y,2):z<0}
* Cylindrical half-space H={(x,y,z):x*+y* <R’}

Block Cyhinder

(x=y92)10<x<W,0<y<H, and 0 <z <D}
{(x,y,z x+y <R, and 0< z< H}



CSG modeling by Half Spaces

The solid modeling technique is based upon

the "half-space" concept using set operations.

The boundary of the model separates the interior and
exterior of the modeled object. Half spaces form a
basic representation scheme for bounded solids.
Example of Half Spaces:

; H ;
/Z’M;W“//‘ 7




Advantages and Disadvantages
of Half Spaces

Advantages: . |
The main advantage is its conciseness of representatlon
compared to other modeling schemes.

It is the lowest level representatlon available for
modeling a solid object

Disadvantages: 7
The representation can Iead to unbounded solid models
as it depend on user manipulation of half spaces.

The modeling scheme is cumbersome for ordinary users




Boxed half space geometry

Boxed half space operands

BaseSurface = IfcPlans

Mormal of [fcPlane
AgreementFlag =TRUE

Case 1: correct usage of Enclosure, Case 2: wrong usage of Wrong interpretation of Case 2:
.-'rr Y since the Boolean result is fully within Enclosure, as it does not fully the enclosure does not affect
the enclosure of the bounding box enclose the Boolean result the final clipping result

Volume as FirstOperand in ifeBooleanReswult

\ o
EHEDSUFE' _\_\_H\ ng__—‘—\—\_\__\_\_\_\_h | | Valume after uun%_)
; ""‘\_\_\_ -\_\_\_\_;-"i""—\—\_\_\__h | _l_ Normal of lfcPlane
‘_‘_"'——_,_\_\_\_ l | z | z
Enclesure. Comer iy | LA t _ __~
’| | |
|

| L |
| |
|

R |x

ffcBoxedHalfSpace as SecondOperand in lfcBooleanResult

SELFilicHaliSpaceSolid BaseSurface :: IfcPlane
SELFifcHallSpaceSolid AgreemeniFlag :: TRUE
SELF.Enclosure ;- fcBoundingBox




Boolean operators b (A(JB) b (AlB) b(A-B)

Constructive Solid Geometry

CSG modelers allow designers to combine a set of primitives
through Boolean operations: + Primitives:

* Operations: cuboids, cylinders, prisms, pyramids, spheres, cones.
union, intersection and difference.




CSG boolean tree Examples

(A-B)u C

union

/ \ (addition)

difference

(subtractlon)/ \

Branch 3

(-]
—
Branch 2 % @

Brarrjch 1

{a) Construction tree



- CSG tree

i

CSG tree examples
Union, U

Intersection, N
Difference, or Subtraction, -




rendering

union
N ‘

differejnce

. Fragments from the box that
= are outside the sphere

m the sﬁhere
' the box

Intersection

|

o “Fragments from the box that
- are inside the sphere - |

P - OpenSCAD demos
ragments from the sphere that
are inside the box




Constructive Solid Geometry (CSG)

* Atree structure
combining primitives

via regularized /\
U*

boolean operations

e Primitives can be
solids or half spaces

43



A Sequence of Boolean Operations

e Boolean operations
e Rigid transformations




The Induced CSG Tree

Can also be represented as a directed acyclic graph (DAG)

(+)
— (=) —
fg;
SN\ E /
2y

</




Issues with
Constructive Solid Geometry

* Non-uniqueness
e Choice of primitives
e How to handle more

complex modeling?
— Sculpted surfaces?
Deformable objects?

Non-Uniqueness

There is more than one way

to model the same artifact.

Hard to tell if A and B are identical.




Alternative Paths of Modeling

Union, U
Intersection, h
<> Difference, or Subtraction, -

ESTE:

(a) Object (b) Possible solid mode! of the solid

%

F |

L




Issues with CSG

e Minor changesin
primitive objects
greatly affect i ; i
OUtCOmES a) (b)A —* B (c)A U*B

e Shift up top solid
face

(d) (e)

48



Solid Object Definitions

Solids are point sets : Boundary and interior

i M
Bo_undary pom.ts X1 out of M
Points where distance to ° ,
_ ] , %1 7 X2 1n M
the object and the object’s
_ ® X2 ® X3 X3 on M
complement is zero
Interior pOintS Membership classification.
All the other points in the object
Closure

Union of interior points and boundary points



Issues with 3D Set Operations

e Opson 3D objects can create "non-3D objects” or
objects with non-uniform dimensions

e Objects need to be "Regularized”
— Take the closure of the interior

b) ©) (d)

Input set Closure Interior Regularized



e 3D Example A
— Two solids Aand B
— Intersection leaves a
“dangling wall”
e A 2D portion hanging off a 3D object
— Closure of interior gives a uniform 3D result

-

L

51
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Pics/Math courtesy of Dave Mount @ UMD-CP



Boolean Operations

e Other Examples:
e (c)ordinary
Intersection
e (d) reqularized
Intersection
— AB - objects on the
same side

— CD - objects on
different sides

(a)

(c)



Boolean Operations

. B
A

A and B Ai N Bj Bi— A Ap N B;

IT _ _

Bp N Aj Ap — B B, — A Ap N Bp same Ap N By diff

53

Foley/VanDam, 1990/1994



CSG Building Operations

The main building operations are reqularized set
operations like union (U*), intersection (1*) and
difference (-*).

Hence the CSG models are known as set-theoretic,
boolean or combinatorial models.

The Boolean operations are based on the set theory and
the closure property. These operations are considered
higher-level operations than B-rep Euler operations.

Some implementations of solid modelers provide
derived types of operations like ASSEMBLE and GLUE



History Tree of Design

<

10

(0.1)

/

(1.2)

(2.1)

Indexing

%

(3.1) 3.3)

a History Tree

N* regularized
set operation

CSG History Tree of Design

|
(1.1)

|

3.2)

1. €C=AnNB

2. C; = interior C

3. C* = closure C;
and CT=AN" B
A(] B Regularized

Boolean
A Operations

| I~

Procedure for < interior 14
i o A0 - 1

Regularized 3 HEPE
Intersection éﬁ Bl C'*

the *dangling”
lower-dimensional
structures. 0" = dloanra O

C=ANB C*=AN*HB



Bracket

Tree Representation
of CSG Expression

box (1.4.8)

N

CSG History Tree of Design

x—translate (..1)

box (8.4.1)

\\—h.

x—translate (..5)

y—translate (..2)

z—cylinder (1.1)



Quadric Surface Intersection Curves

Cylinder/cylinder = two ellipses.

Figure-eight intersectio

Cone/cylinder = ellipse + line. Cone/cylinder = two ellipses.

tin ns.
4
Q Two-branch intersections. w M




Main algorithms in CSG Operations

1. Edge / Solid intersection algorithm
2. Computing set membership classification

a) Divide and conquer : It is like ray tracing. Instead of a ray an
edge is used as a reference

b) Neighborhood : It deals with in, on and out decisions

When a pointis in the interior of solid face then it is called face
neighborhood

Edge neighborhood occurs when the point lies on the solid edge

When a point is a vertex, vertex neighborhood occurs. This is a
complex case because the point is shared between three solid

faces. 1 y
]P d / / .//
/

, |
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Edge-Neighborhood Merge, General Position

s

Edge-Neighborhood Merge Producing an Edge

sles)

Edge-Neighborhood Merge Producing a Face

Neighborhoods, vertex, edge, face merge

(o ANEA

Neighborhood of an Interior Edge Point

NI
T / :

A% =
TN
Il to
[y
% f il
., ¢
~

General Neighborhood
of a Vertex

Simple Neighborhoods

Disk

Neighborhood of point on

two-manifold object is a disk.



Membership classification

B X1l out of M
2457 1?1 X2 in M

A ® X2 ;XB X3 on M

Membership classification.

VI
) AL

A B

membership classification
for point / ~
/ membership classification for line




Al
The following steps describe a general CSG algorithm @ ©

based on divide and conquer (D & C) approach: D

1. Generate a sufficient number of t-faces, set of faces/
of participating primitives, say A and B. ) ®)

2. Classify self edges of A w.r.t A including neighborhood.

3. Classify self edges of A w.r.t B using D & C paradigm.
If A orB is not primitive then this step is followed recursively.

4. Combine the classifications in step 2 and 3 via Boolean
operations.

5. Regularize the ‘on’ segment that result from step 4
discarding the segments that belong to only one face of S.

Summary of a CSG algorithm



Summary of a CSG algorithm

6. Store the final ‘on’ segments that result from step 5 as
part of the boundary of S. Steps 2 to 6 is performed for each
of t-edge of a given t-face of A.

7. Utilize the surface/surface intersection to find cross edges
that result from intersecting faces of B (one at a time) with
the same t-face mentioned in step 6.

8. Classify each cross edge w.r.t S by repeating
steps 2 to 4 with the next self edge of A. AGE)

9. Repeat steps 5 and 6 for each cross edge
10. Repeat steps 2 to g for each t-face of A.
11. Repeat steps 2 to 6 for each t-face of B. /




A CSG Example

Create the CSG model of the following solid

y
| .
b| Bl ©c ]d [j
L e

z\‘ Aa @ @

Geometry of the primitives

BLOCK A: x, =a-d,y, =d,z, =c,P/(x,y,z)=P,/(d,0,-c)
BLOCKB: X, =d,y; =b,z; =¢,F(x,y,2) = F;(0,0,~¢)
CYLINDERC: R=R,H=d, P.(x,y,z)=P.(d +a/2,d,-c/2)




CSG example, Regularized set operations
Neighborhoods, Memberships

E y |
A LA
Classify' EonA .M(E,A) Z \? Bl ©oc° /] @ +g8

E out B | M(E,B) i °
____________________________ i
Combinet Er\?ﬂls g N*
—EonS—+ -
M(E,B) M(E,A * *
(EB) MEA) y N x
EoutAl, EonS
g/EonB .
B . EINA| .EonSIEonSI_.
Classify «—> Combine




Point-inside-solid test
(for CSQG)

function classify(P:point, n:nodeCSG) return InOnOut

if isLeaf(n) then
case (n.type)
Box: r:=classifyBox(P,n)
Cylinder: r:=classifyCylinder(P,n)
Sphere: r:=classifySphere(P,n)

else
rA:= classify (P, n.left)
rB:= classify (P, n.right)
r:= combine(n.operation, rA, rB)
end
returnr
end

AN Ay
r=p+Av \
\
Combmal(op. A. B)
AUB in on out
n m |in in
on m |on |on
out m |on |out
A"B in on out
in in on out
on on on out
out out out |out
A-B in on out
in out on in
on out on on

out out

out

out




e-solid
classification

r=p+Av

Solid A : [11.in] [12.0ut]
Solid B : [13,0n] [14,0ut]

a_out ™ in Ae out

C- i out 3; on ,?:' out
AUB : - - ;

out in in " on  out

Resultat de la unio : [11.in] [12.0n] [14.out]
(s'han hagut de compactar dos mtervals "in")

a_out ™ in Ag out
B : :
C out Ay on Mg out
L out ; out : on : out inut

Resultat de la intersecciod : [11.out] [13.0n] [12.0ut]
(s'han hagut de compactar dos intervals "out”)

a_out ™ in Ay out

C o out ” on A, out

e out  in  on " out  out
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Properties of CSG models

Advantages:

validity: CSG model is always valid;

conciseness: CSG treeis in principle concise;

computational ease: primitives are easy to handle;

unambiguity: every CSG tree unambiguously models a rigid solid.

Disadvantages:

non-uniqueness: a solid could have more than one representation.
limit on primitives: free-form surfaces are excluded, and primitives
are bounded by simple low order algebraic surfaces.

redundancy of CSG tree: it may have redundant primitives in tree.
no explicit boundary surface information: CSG needs to be evaluated.



Boundary Representation
B-Rep Solid Modeling

Boundary representation, B-rep is that a 3D object model is enclosed by
surfaces (faces) and has its own interior and exterior. It describes the shape as
a collection of surfaces which seperate its interior from the external
environment. It is suitable for complex designs, Polygon facets are one of the
examples of boundary representation. Both polyhedra and curved objects
can be modeled using the following topological primitive entities. — Loop
Vertex : It is a point where two or more edges meet with another.[vric
Edge : Itis a line or curve enclosed between two vertices. Genus
Fin : A fin represents the oriented use of an edge by a loop. cdge
Loop : Itis a hole in a face. o)

Face

Face: It is a surface or plane of a solid. S (Face romal
Body : It is an independent solid and has seperate shells. |
Genus : It is a through hole (handle) in a solid. J ()

¥

&N | \
;\_T—\—‘—P / E
;‘i' r. == | Vertex
| ?Gp‘ | [ Fin |




Boundary Representation
B-Rep Solid Modeling

Topological Geometric
Information Information

Data storage e
structure tree

Feature Material = 1040

Volume

Control | ¢ Halfedge Loop :
Pomnts E E

Length tol. = 0.002

O (o}
o
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Geometric Entities Topological Entities

BODY

Other Entities

GROUP

B-Rep Solid Modeling e

Data storage structures SHELL
Vertex# Location Edge# Vertices Polygon# Edges
V1 0,50 El V1\V2 P1 E1,E3,E2 SURFACE FACE
V2 4,15,0 E2 \ARVZ: P2 E3,E4,E5
V3 4,10,0 E3 V2,4
V4 8,0,0 E4 V2,v3
E5 V3,V4 LOOP
V2
E4 V2
FIN
3| P2 V3 CURVE <
P2
\ i EDGE
P1 ES 1 p1
E2
V4

V4

V1
V2
V3
V4

Vertex# Location Polygon# Vertices
0,50 P1 ViVva\Vvi
4,15,0 P2 V2V3,V4
4,10,0
8,0,0

POINT VERTEX

ATTRIB

Attributes can
be connected
to any of the
entities shown

Relationships between
Parasolid topological entities



Parasolid topological 1
o : 1 P
entities in a body | |

Topology Description " |

Face A face is a bounded subset of a surface, (== ™
whose boundary is a collection of zero or more loops.

A face with zero loops forms a closed entity, such as a
full spherical face.

Loop A loop is a connected component of a face boundary.
A loop can have: an ordered ring of distinct fins, a set of
vertices

Fin A fin represents the oriented use of an edge by a loop.

Edge An edgeisabounded piece of a single curve.

Its boundary is a collection of zero, one or two vertices.

Vertex A vertex represents a point in space. A vertex has a
single point, which may be null.




Boundary Representation

B-Rep models describe solids topologically, comprising faces,
edges and vertices — surface oriented models:

Polyhedron




3D B-Rep Boundary
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Boundary Representation

 The B-Rep method represents a solid as a collection
of boundary surfaces. The database records both of
the surface geometry and the topological relations
among these surfaces.

* Boundary representation does not guarantee that a
group of boundary surfaces (often polygons) form a
closed solid.

* The data are also not in the ideal form
for model calculations.

e This B-Rep representation is used mainly
for graphical displays.




Boundary Representation (B-rep)

Object List -- giving object name, a list of all its boundary
surfaces, and the relation to other objects of the model.

Surface List -- giving surface name, a list of all its component
polygons, and the relation to other surfaces of the object.

Polygon List -- giving polygon name, a list of all boundary
segments that form this polygon, and the relation to other
polygons of the surface.

Boundary List -- giving boundary name, a list of all line
segments that for this boundary, and the relation to other
boundary lines of the polygon.

Line List -- giving line name, the name of its two end points,
and the relation to other lines of the boundary line.

Point List -- giving point name, the X, Y and Z coordinates of
the point and, and the relation to other end point of the line.



Model Conversions, hybrid solid modelers

CSG models are quite concise and can be converted into B-Rep
models, which in turn are useful for graphical outputs.

Many CAD systems have a hybrid data structure, using both
CSG and B-rep at the same time.

Catia, Solidworks, I-DEAS and Pro-Engineer CAD software
packages are hybrid solid modelers that allow user input, and
subsequent data storage, in both CSG and B-Rep structures.

Graphical
User
Interface

CSG P
Modeler

CSG
Tree

|

B-Rep j_l

Modeler

B-Rep
Model

|

'

Application
Program

Graphical
Output

B-Rep




" Solid Modeling

B-rep modeling data structure

L}

Elemental: 14 Lines
2 Circles

Octree solid representationp” :
Manifold modeling

Manifold 3D model non-manifold Manifold 3D models

k\
(a) (b) . (c)

N
2D face inside 3D model

__2D face associated

(d) (e) 777 with 3D model

=

Manifold Idealization of non-manifold
3D model the top part 3D maodel




Solid Modeling

Shape Variation Due to Parameter Values

A CSG model design cannot be displayed or converted to
Brep boundary representation, since different parameter
assignments could lead to totally different shapes.

TN

S = -
“ .
- - — — N p N
- _ -P_d-__A--— N // . P ~
— — — ’ \“\ /’/
i f e . ":. d
_______"—_ P L !f
— N
;/,
|
I/

Shape Variation Due to
Parameter Values

Error in Face Extrusion



Manifold and non-manifold modeling

Py
/ = Surfaces: 4 Square polygons for sides

Many rectangular polygons for inside hole i ical errar
2 Odd shaped polygons for top and bottom A Small NUmETical el

results ina new adge
= el

DTV« S/

Manifold, manifold-with-boundary, and non-manifold

Non-Mamtold / Open Parts Manifold Parts

* Mon-manifold parts have,

P ﬁ = - vertices with less than 3 adjoining faces f
0 2 - edges with more or less than two adjoining faces h
(N ’ - e . |
i

2-D manifold 2-D non-manifold , x

ORI

Non two-manifold surface



Manifold and non-manifold modeling

Igllj)rr;;r:easnifold - 7 / % e

A Non-manifold Object

Non-oriented Al g
Manifolds | =
f _—
I [
_:—_ -~ //’/7 Ql

Moebius strip Klein bottle P2
T T L
¢ {"*f/ A 7 ,’f

Two Possible Topologies




Manifold and non-manifold modeling

The 2-manifold is a fundamental concept from algebraic
topology and differential topology. It is a surface
embedded in R3 such that the infinitesimal neighborhood
around any point on the surface is topologically equivalent
(‘locally diffeomorphic') to a disk. Intuitively, the surface is
‘watertight' and contains no holes or dangling edges.
Typically, the manifold is bounded (or closed).

For example, a plane is a manifold but is unbounded and

thus not watertight in any physical sense. Danding
A manifold-with-boundary is a surface locally ’
approximated by either a disk or a half-disk.

All other surfaces are non-manifold. @Lﬁeg&gmg Non-Manifold
ge Representation




Boundary Representation (B-Rep)

Solids represented by faces, edges and vertices
Topological rules must be satisfied to ensure valid objects

— faces bounded by loop of edges

— each edge shared by exactly two faces
— each edge has a vertex at each end

— at least 3 edges meet at each vertex

/ 0 . d ) f,’ﬁ:x N \ ,f’"f-ﬁahm_q__
N / : .

this is not valid solid object:

.



https://www.google.com/url?sa=i&url=https://tyda.se/search/hexahedron&psig=AOvVaw1yw0J42hZGqsrOnMUy9q0k&ust=1585230463218000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOi2g-fhtegCFQAAAAAdAAAAABAW
https://www.google.com/url?sa=i&url=https://stackoverflow.com/questions/3154269/creating-and-intersecting-hexahedrons-with-cgal?rq=1&psig=AOvVaw2gBzEcMPsuh9Z9yvSrhJ6Y&ust=1585234328047000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIjar53wtegCFQAAAAAdAAAAABAq
https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI

Brep and CSG polyhedral representations

shell
the concept of
object z Brep representation
% Q Q faces loop
the CSG po|yhedra| ver ex edge
representation shell

= 4
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Principal exchange possibilities for solid models

Receiving system type

type of CSG B-rep polyhedron
sending system
CSG exact the CSG the CSG primitives must be
expression approximated by polyhedra;
must be eval- | the approximate model must
uated into then be evaluated to produce
B-rep a polyhedron model
B-rep not possible exact curves and surfaces in the
model must be approximated
by straight lines and planes
polyhedron not possible exact exact
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Boundary Representation (B-Rep)

Closed Surface : One that is continuous without breaks.

Orientable Surface : One in which it is possible to distinguish
two sides by using surface normals to point to the inside or
outside of the solid under consideration.

Boundary Model : Boundary model of an object is comprised of
closed and orientable faces, edges and vertices. A database of a
boundary model contains both its topology and geometry.

Topology : Created by Euler operations

Geometry : Includes coordinates of vertices, rigid motions and
transformations



Boundary Representation (B-Rep)

Involves surfaces that are
— closed, oriented manifolds embedded in 3-space

A manifold surface:

— each point is homeomorphic to a disc

A manifold surface is oriented if:

—any path on the manifold maintains the orientation of the normal
An oriented manifold surface is closed if:

— it partitions 3-space into points inside, on, and outside the surface
A closed, oriented manifold is embedded in 3-space if:

— Geometric (and not just topological) information is known



Object Modeling with B-rep

Both polyhedra and curved objects can be modeled using the following primitives

e Vertex : A unique point (ordered triplet) in space.

e Edge : A finite, non-self intersecting directed space curve bounded by two
vertices that are not necessarily distinct.

e Face : Finite, connected, non-self intersecting region of a closed, orientable
surface bounded by one or more loops.

e Loop : An ordered alternating sequence of vertices and edges. A loop defines
non-self intersecting piecewise closed space curve which may be a boundary of
a face.

e Body : An independent solid. Sometimes called a shell has a set of faces that
bound single connected closed volume. A minimum body is a point (vortex)
which topologically has one face one vortex and no edges. A point is therefore
called a seminal or singular body.

* Genus : Hole or handle.



Boundary Representation

Euler Operations (Euler —Poincare' Law): The validity of
resulting solids is ensured via Euler operations which can be
built into CAD/CAM systems.

Volumetric Property calculation in B-rep: It is possible to
compute volumetric properties such as mass properties

(assuming uniform density) by virtue of Gauss divergence
theorem which converts volume integrals to surface integrals.

@
f.'\

Y E=5 . . e o ’
. . = N -
E=4 ~E =5
F=5 x: - f‘f
J =4 V'=- = /
| F =1
. F=1 ® . o . £ =1 ) . "'*-.‘,-' : .

Original object Modified objects Nonsense object



Euler-Poincare Law

Leonhard Euler (1707-1783),Henri Poincare (1854-1912)
Euler (1752) proved that polyhedra that are
homeomorphic to a sphere are topologically valid §

A
F-E+V-L=B-G Open Objects o
F=Face E=Edge V=Vertices

if they satisfy the equation:
B=Bodies L=Faces’inner Loop G=Genus @
Polygonal Loops satisfy (L)(V)-(L)(E)=0

F-FE+V-L=2(B-G) General

F-E+V =2 Simple Solids @ 6




B-Rep of cylinder and circle
The extended Euler-Poincarré F—E+V —-L=2(B-G)

formula allow test the topology Boundary Model of Sphere,
for polyhedral solids : V' manifold topology test:
Faces = F=3 F=1 V=1 E=1
1 Vertices=V =0 1+1-1-0 # 2(1-0)
Edges=E=2
3+0-2-0 # 2(1-0) > F=2 V=1 E=1

2+1-1-0 = 2(1-0)

Boundary Model of Cylinder, Cylinder with upper and
Limb manifold topology test: lower cap: F=3 V=2 E=2
silhouett F=3 V=2 E=3 3+2-2-1=2(1-0)

3+2-3-0 = 2(1-0)

E; Silhouette edge




Euler Operations

A connected structure of vertices, edges and faces that
always satisfies Euler's formula is known as Euler object.
The process that adds and deletes these boundary components
is called an Euler operation. y
D
Applicability of Euler formula to solid objects: &
e At least three edges must meet at each vertex.
e Each edge must share two and only two faces
e All faces must be simply connected (homeomorphic to disk)

with no holes and bounded by single ring of edges.
* The solid must be simply connected with no through holes

" &



https://www.google.com/url?sa=i&url=https://stackoverflow.com/questions/3154269/creating-and-intersecting-hexahedrons-with-cgal?rq=1&psig=AOvVaw2gBzEcMPsuh9Z9yvSrhJ6Y&ust=1585234328047000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIjar53wtegCFQAAAAAdAAAAABAq

Validity Checking for Simple Solids

F—E+V =2 Smple Solids

E=10
V=6
F=6

S S — 6-10+6=2

E= E=8
— F=5 an
6-12+8=2 ,
5-8+5=2
E=24
V=16
F=10

10-24+16=2




Validity Checking for Simple Solids
F—E+V =2 SmmpleSolids

K13 E=2 E=2
V=2 V=2 =9
F=3 r=2 #=9

(N
I
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B-rep Models

Suppose a solid with flat faces and no hole
has Ffaces, E edges, and V vertices.

A tetrahedron is the simplest:

F=¢4,E=6,V=4

In thiscase F+ V- E = 2.
This is also true for a cuboid (try it).
s it true in general?

E=12
V=8
F=6

6-12+8=2



B-rep Models »

F+v,~E =2 Fy ¥, ~E, =2
Suppose we have two solids, 1 and 2, and we know that the
formula is true for each of them because we've counted. Suppose
also that the solids each have a face which is the mirror image of
the corresponding face on the other (the shaded pentagons).
These faces don't have to be pentagons; say in general that they
each have n edges.

What happens if we glue the solids together at the shaded faces
to make a more complicated object, called 37

The two faces disappear, so we know that: F3=F1+F2-2
Two sets of n vertices become one : V3=Vi+V2-n
Two sets of n edges become one : E3=E1+E2-n



F oV~ E =2 FotV, ~Ep =2,

The two faces disappear: F3=F1+F2-2

B-rep Models

Two sets of n vertices becomeone: V3=Vi+V2-n

Two sets of nedges becomeone: E3=Ei1+E2-n

So F3+V3-E3=F1+F2-2+Va1+V2-n—-(E1+E2-n)

we can rearrange:
F3+V3-E3=(F2+Vi-E1)+(F2+V2-E2)-n+n-2

But we know that the first two parts in brackets both equal 2.
The nterms cancel, leaving us with: F3+V3-E3=2

So the formula F+ V - E = 2 works for all solids without holes,
because we can start with simple solids (like the tetrahedron).



W P
B-rep Models
F+V,~E=1 Fat¥y —E3 =2,
So the formula F+ V - E = 2 works for all solids without holes,
because we can start with simple solids (like the tetrahedron) for
which we know the formula is true, and build complicated solids
by gluing faces together.F3+V3—-E3=F1+F2—-2+V1+V2-n—(E1+E2-n)
This is known as the Euler-Poincaré formula, after its discoverers.
What about solids with holes? Most real engineering components
have holes, so we have to be able to deal with them. Think about
gluing together two objects such that they will make an object
with a hole:
The argument in the proof above about edges and vertices stays
the same, but now F3=F1+F2—-2(1+H)
where there are H holes. This givesus: F+V-E=2—-2H



B 0 3, 3

F+¥~E =2 Fat¥y ~Ey=2.

So the formula F+ V - E = 2 works for all solids without holes,
the formula where there are Hholes F+V-E=2(1+H)
Check for this object: F=16,E=32, V=16, H=1

So it works for that. Rg
What about this one? @
F=10,E=24,V=16,H=1 '

WRONG!

The problem is caused by the flat faces with rings of edges and
vertices floating' in them unconnected by edges to the other

vertices.



B-rep Models %.% @
F=10,E=24,V=16 ,H=1 ﬁi@

WRONG! F+V-E=2(1+H) D SHELLS

The problem is caused by the flat faces with rings of edges and
vertices floating' in them unconnected by edges to the other
vertices.

If we fix that up (say there are R rings), and also allow for the fact
that we may want to describe two or more completely separate
objects (called shells; suppose there are S of them), we come to
the final version of the Euler-Poincare formula:
F+V—-E-R=2(S—H)

The number of holes through an object, H, is called the genus of
the object.



_

oops (rings), Genus & Bodies

Genus zero
@
7

Genus two

One inner loop




my Checking for Polyhedra with

inner loops

F-E+V-L=2(B-G) General

E =36
F=16
V=24
L=2
B=1
G=0

16-36+24-2=2(1-0)=2




\7a|idity Checking for Polyhedra with holes

(P1OA) 3j0Y JouIB}U|

y

F-E+V-L=2(B-G) General

E=24
F=12

—~

V=16
L=0

B=2
G=0

12-24+16-0=2(2-0)=4

E=24 F=11
=16 L=1
B=1 G=0

11-24+16-1=2(1-0)=2

Surface hole



--'*'Iﬂi-’dity Checking for Polyhedra with
through holes (handles)

F-FE+V-L=2(B-G) General

/

a|joy ybnouayy
AN
N\

Handles/through hole

E=24
F=10
16

V
L
B

2
1

(=1

10-24+16-2=2(1-1)=0

E=48 F =20
V=32 L
B=1 G=

20-48+32-4=2(1-1)=0




Validity Checking for Open Objects
F-E+V-L=B-G

R

L -

Wireframe polyhedra Shell polyhedra

o -
- -

Lamina polyhedra Open three dimensional polyhedra




Exact vs. Faceted B-rep Schemes

Exact B-rep : If the curved objects are represented by way of
equations of the underlying curves and surfaces, then the
scheme is Exact B-rep.

Approximate or faceted B-rep : In this scheme of boundary

representation any curved face divided into planar faces. It is
also know as tessellation representation.

Exact B-rep: Cylinder and
Sphere Faceted cylinder and sphere



F—-E+V—-L=2(B-G) General

Topology
Object
Body

Genpus

Face
0 >p>

Topology

Underlying surface equation

Underlying curve equation

Edge-

ertex

Point coordinates

Exact B-rep: Cylinder and
Sphere

Faceted cylinder and sphere

Data structure for B-rep models

I Oinentation of he IfeFacs CaterBawnd is pravided by the
[ saguence of poirs im the Lst of Palpgon

Faceted B-rep




IfcSeamCurve

SeamCurve
entity definition
In B-rep

Use of a

Seam Curve
bounding a
cylindrical surface

Radius

BasisSurace

I BasisSurace
Face - - -
licAdvancedFace oometry ] IfeCylindrical Surface l;é yrof
‘ [ |I ! |
Baunds (S) ) [
Pasifion \ !
l e \
- - e -—
lfcF aceluterB ound l
| » _
Bound i
i o
IfcE dgel oop .'_
I . G
EdgeList{L} <inx, y zof a —
b " 3D spare -
[
IicPolyline IfeP olyline
EdgeEEment Y
| ReferencaCure
Curve3D o / I
1 Assuu::ateu:!Geun-etry IT[‘]
HcE dgeCurve —Uiﬁ:w—- Ifc 5 eamCurve f | HcP Curve
Aszonsed "'ae:-rreE".:LE' HeP Curve
J )
EdgeStan EdgeErd [ { [
\. | Refrencalure
&
IicVertexPoint IfeVertexPoint | HcP olyline
J |
Vert=Geometry VerteGeometry inxyzo A A
EE‘ EFIIQ- I', o o
HcCartesianPoint HcCartesianPoint |- '

inu. vof the
rerenced sursoe




Advanced B—rep_
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Right circular cone and cylinder geometry

IfcAxis2Placement3n

IfcAxis2Pla ce ment 30
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e

IfcAxis2Placement3n

Swept disk geometry
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rectangular pyramid Sphere

Revolved area

Cross

Sactions(1]

pingCurse

Cross3ection

/ Positions[3]

CmssSection
Pasitions[?]

CrossSection
Positions[1]

IfcSweptAreasclid. Swe ptarea
i, foRorangioFroficDef )

Tibject Cocrdinate System
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Winged Edge Data structure

All the adjacency relations of each edge are described
explicitly. An edge is adjacent to exactly two faces and
hence itis component in two loops, one for each face.

As each face is orientable, edges of the loops are
traversed in a given direction. The winged edge data
structure is efficient in object modifications (addition,
deletion of edges, Euler operations).

Successor 1 Predecessor 2

Predecessor 1 Successor 2
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Building Operations
F-E+V-L=2(B-G)  General

The basis of the Euler operations is the above equation. M and K
stand for Make and Kill respectively.

Operation Operator Complement | Description

Initiate Database MBFV KBFV Make Body Face Vertex

and begin creation

Create edges and | MEV KEV Make Edge Vertex

vertices MEKL KEML Make Edge Kill Loop

Create edges and | MEF KEF Make Edge Face

faces MEKBFL KEMBFL Make Edge Kill Body, Face Loop
MFKLG KFMLG Make Edge Kill Loop Genus

Glue KFEVMG MFEVKG Kill Face Edge Vertex Make Genus
KFEVB MFEVB Kill Face Edge Vertex Body

Composite MME KME Make Multiple Edges

Operations ESPLIT ESQUEEZE | Edge Split
KVE Kill Vertex Edge




‘Transition States of

MBFV

R - . p— ) . MEKBF '
Euler Operations / [ ]| = |]
—
<KEV . .
| S  — amiPKLG
F-E+V-L=2(B-G) General [ | T e
- - T (] ’
While creating B-rep models at each | MEE SLUEKFEG
stage we use Euler operators | ~ KEF “ONGLUEMFEVKG)
and ensure the validity.
Operator F E |V |IL |B |G Operator Complement | Description
MBEV 1 o 11 o [1 lo MBFV KBFV Make Body Face Vertex
MEV 0 T (110 (010 MEV KEV Make Edge Vertex
MEKL 0 110 |-110 10 MEKL KEML Make Edge Kill Loop
MEF 1 T 10 10 {0 10 | |mer KEF Make Edge Face
MEKBFL -1 T 10 |-11-110 | | MEKBFL KEMBFL Make Edge Kill Body, Face Loop
MFKLG 1 0 |0 [-1 (0 |-1]| [MFKLG KFMLG Make Edge Kill Loop Genus
KFEVMG -2 -n [-n |0 |0 |1 KFEVMG MFEVKG Kill Face Edge Vertex Make Genus
KFEVB -2 -n [-n |0 |-1 |0 KFEVB MFEVB Kill Face Edge Vertex Body
MME 0 n (n |0 |0 |9 MME KME Make Multiple Edges
ESPLIT 0 1 |1 |0 [0 |9 ESPLIT ESQUEEZE | Edge Split
KVE -n-1) [-n [-1 {0 |0 |9 KVE Kill Vertex Edge




Euler Operations

F-E+V-L=2(B-G)
MBFV .

MEKBFL_.l
MEV [_j <Kewere
~ KEV o

%L
\
NN

1 MEKL | MFKLG,
}' J SKEML D — KFMLG

" MEF 4@ GLUE(KFEVMG
- ( : )
KEF UﬁLUE(MFEVKG)




~ Euler Operations
F-E+V-L=2(B-G)

/ ar %/ // SLUE(KFEVE) // y /

UNGLUE(MFEVB)

SKME

. T o

SKME

= |




Building operations

MME

|

_]"]

MEF MEF, MEF
MEF, MEF

—




Merits and Demerits of Euler Operations

If the operator acts on a valid topology and the state
transition it generates is valid, then the resulting topology
is a valid solid. Therefore, Euler’s law is never verified
explicitly by the modeling system.

Merits:

e They ensure creating valid topology

e They provide full generality and reasonable simplicity

e They achieve a higher semantic level than that of
manipulating faces, edges and vertices directly

Demerits :

e They do not provide any geometrical information to
define a solid polyhedron

e They do not impose any restriction



Advantages and Disadvantages of B-rep

Advantages:

e |tis historically a popular modeling scheme related closely to
traditional drafting

e |tisvery appropriate tool to construct quite unusual shapes like
aircraft fuselage and automobile bodies that are difficult to build
using primitives

e |tisrelatively simple to convert a B-rep model into a wireframe
model because its boundary definition is similar to the wireframe
definitions

e |n applications B-rep algorithms are reliable and competitive to
CSG based algorithms

Disadvantages:

e |trequires large storage space as it stores the explicit definitions of
the model boundaries

e |tis more verbose than CSG

e Faceted B-rep is not suitable for manufacturing applications



Boundary Representation (B-Rep)

e Euler's rule applies of a simple polyhedron:

V-E+F=2 @@@: A & /\
where

V = numbero vertlces .

E = number o

F=numbero aces

V-E+F-(L-F)-2(5-G)=o0
where L nu ber of edge Ioops
= number ]9 5
= genus of solid (holes).

. Surface must be closed



https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI

Tetrahedron
{four faces)

Cube or hexahedron
(six faces)

Octahedron
(eight faces)

Dodecahedron
(twelve faces)

lcosahedron
(twenty faces)

Boundary Representation

Euler’s Formula

Boundary/surface contains for reqular
oD vertices, 1D edges, 2D faces polyhedrons
There are 5 reqular polyhedrons.
p | v | (p-2)(v-2) Name Description
313 1 Tetrahedron 3 triangles at each vertex
4 3 2 Cube 3 squares at each vertex
3| 4 2 Octahedron 4 triangles at each vertex
513 3 Dodecahedron | 3 pentagons at each vertex
3| 5 3 Icosahedron 5 triangles at each vertex
Face Faces
polygons vertices Edges Faces at a vertex
Tetrahedron Triangles 4 6 4 3
Cube Squares 8 12 6 3
Octahedron Triangles 6 12 8 4
Dodecahedron  Pentagons 20 30 12 3
Icosahedron Triangles 12 30 20 5


https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI

Euler’s formula for regular polyhedra

We can determine all possible regular polyhedra; that
is, those polyhedra with every face having the same
number of edges, say, h; with every vertex having the
same number of edges emanating from it, say, k; and
every edge having the same length. Since every edge
has two vertices and belongs to exactly two faces, it
follows that Fh=2E=Vk . Substitute this into Euler’s
formula: (page.294, Geometric modeling, Mortenson

1990) g4 F=2 ‘\%
2E 2E
—E+ =2
e @O
k 2



https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI

1 1 1 1 ,,__h;
——— = — < - ——_——(}
O T n %™ :2‘ 4 2 %.. o

1

2E 2F 1
kK 2

11
Euler’s formula for regular polyhedra

For a polyhedron, we safely assume that h, k = 3. On
the other hand, both h and k were larger than 3, then
the above equatlon would imply that

which is obviously impossible. Therefore, either h or k

equals3.Ifh=3,then , 1 1 1 1
0<E=3%% 2

implies that 3<ks 5. By symmetry, if k=3, then 3<hsg .
Thus, (h,k,E) =(3,3,6), (4,3,12), (3,4,12), (5,3,30), (3,5,30)
are onIy p055|b|I|t|es

Face Faces Tetrahedron
Ilolyﬂllm vertices Edn's Faces at a vertex {four faces)

n Octahedron Dodecahedron lcosahedron
(pight faces) (twalve faces) (twenty faces)

Tetrahedron Triangles 4 6 4

Cube

Octahedron Triangles 6 12 8
Dodecahedron Pentagons 20 30 12
Icosahedron Triangles 12 30 20

Squares 8 12 6

oW EwWww

\ 4


https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI

~
Thus, (h,k,E) =(3,3,6), (4,3,12), (3,4,12), (5,3,30), (3,5,30)
are only possibilities. They are, in fact, realized by the

tetrahedron, the cube (hexahedron), the octahedron,
the dodecahedron, and the icosahedron, respectively.

Observe that we did not really use the fact that the
edges of the polyhedron all have the same length. As
long as the numbers h and k are constant, we still have
only five possibilities (up to stretching or contracting).


https://www.google.com/url?sa=i&url=https://stackoverflow.com/questions/3154269/creating-and-intersecting-hexahedrons-with-cgal?rq=1&psig=AOvVaw2gBzEcMPsuh9Z9yvSrhJ6Y&ust=1585234328047000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIjar53wtegCFQAAAAAdAAAAABAq
https://www.google.com/url?sa=i&url=https://www.wikiwand.com/tr/Sekiz_y%C3%BCzl%C3%BC&psig=AOvVaw1yw0J42hZGqsrOnMUy9q0k&ust=1585230463218000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOi2g-fhtegCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https://tyda.se/search/hexahedron&psig=AOvVaw1yw0J42hZGqsrOnMUy9q0k&ust=1585230463218000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOi2g-fhtegCFQAAAAAdAAAAABAW

mary Representation
(B-Rep)

el

* The extended Euler-Poincarré [
formula allow test the topology =~ =
for polyhedral solids:

Faces=3

Vertices = 0

Edges = 2
340-2-0..2(1-0)
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Dangling
face

Dangling Non-Manifold
edge  Representation

Euler’'s rule for simple polyhedron

Euler'srule V- E + F= 2 for simple polyhedron.

Applying this formula to a cube yields 8 - 12 + 6 = 2 and

to an octahedronyields6-12+8=2 /.

To apply Euler's formula, S—>

other conditions must also be met: /'

1. All faces must be bounded by a single ring of edges,
with no holes in the faces.

2. The polyhedron must have no holes through it.

3. Each edge is shared by exactly two faces and is

terminated by a vertex at each end.

4. At least three edges must meet at each vertex. ﬁb‘

<>
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https://www.google.com/url?sa=i&url=https://stackoverflow.com/questions/3154269/creating-and-intersecting-hexahedrons-with-cgal?rq=1&psig=AOvVaw2gBzEcMPsuh9Z9yvSrhJ6Y&ust=1585234328047000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIjar53wtegCFQAAAAAdAAAAABAq

Euler's rule

The polyhedra in Figure satisfy the four conditions and,
therefore, Euler's formula applies.

6-9+5=2 , 10-15+7=2

| v=6 V=10
E=9 E=15
F=5 F=1
e Figu_re.
V= lé Vertices, edges, and faces
E=1 p |
> F=8 satisfying Euler's formula.
|1

12-18+8=2



Euler's rule

If we add vertices, edges, or faces to a polyhedron,
we must do so in a way that satisfies Euler's formula
and the four conditions. In Figure (a) we add an edge,
joining vertex 1 to vertex 3 and dividing face 1, 2, 3, 4
into two separate faces. We have added one face and
one edge. These additions produce no net change to

Euler's formula (since o -1 + 1= 0). 4



Euler's rule

In Figure (b) we add vertices g and 10 and join them
with an edge. The new vertices divide edges 1, 2, 3, 4,
and the new edge 9, 10 divides face 1, 2, 3, 4. These
changes, too, produce no net change to Euler's

formula (since 2 -3+ 1 =0).



Euler's rule

In Figure (c) we add one vertex, four edges, and four
faces, but we delete the existing Face 2, 6, 7, 3.

Again, this action produces no net change to Euler's
formula (since 1- 4 + 3 = 0).




Euler's rule

In Figure (d), where we attempt to add one vertex, two
edges, and one face, the change is not acceptable.
Although this change preserves Euler's formula (since
1- 2 + 1 = 0), it does not satisfy the conditions requiring
each edge to adjoin exactly two faces and at least
three edges to meet at each vertex.




Euler's rule

Two kinds of changes are illustrated in the figure. In
Figures (a) and (b) the solid shape of the polyhedron (in
this case a cube) is preserved, and only the network

of vertices, edges, and faces is changed. In Figure (c)
the solid shape itself is modified by the change in the
network defining it.

4 4

4 4 10 3 3
l > " P 1

2
;
9
s 7 75 . 9
0 6 0 6
(a) (b) (c) (d)
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Operation Operator | Complement Des;i_p Vo —E T Vs
Initialize database and begin creation| MBFV KBFV  |Make Body, F: Vis,
Create edges and vertices MEV KEV  |Make Edges, \ \ 7
Create edges and faces MEKL KEML  |Make Edge, K Vi3 - MEF (makes F3)
MEF KEF Makﬂ Bdgﬁ,. Fa MEF (makes FlU]
MEKBFL | KEMBFL |Make Edge, K MME MME R
MFELG KFMLG |Make Face, Ki -
Glue KFEVMG | MFEVKG |Kill Face, Edg
KFEVB | MFEVB _[Kill Face, Edg
Composite operations MME KME  |Make Multipl =
ESPLIT | ESQUEEZE |Edge-Split
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Solid B-Rep Example

Complete part representation including topological
and geometrical data

Geometry: shape and dimensions

Topology: the connectivity and associativity of the
object entities; it determines the relational information
between object entities Vertices




opology vs Geometry SameTopomgy

* Topology: faces, edges and vertices.
* Geometry: surfaces, curves and points

Topology

L, L,
o R
L, » L. P,
L3 L3

Same Geometry

Same geometry, different mesh topology

Same mesh topology, different geometry

e s




Solid B-Rep

e Complete part representation including topological
and geometrical data

» Able to transfer data directly from CAD to CAE and
CAM.

e Support various engineering applications, such as
mass properties, mechanism analysis, FEA/FEM and
tool path creation for CNC, and so on.



_d

phere Punched by Three Tunnels

'

L NS

The Genus is 2




Polyhedral Boundary Representations

winged edge half (twin) edge

- focus is on edge

nlc
e}

3 . twin Ve

- edge orientation
is arbitrary

twin edge [ doubly connected edge list]

- represent edge as 2 halves

- lists: vertex, face, edge/twin

- more storage space

- facilitates face traversal

- can represent holes with face inner/outer edge pointer



* Topology: faces, edges and vertices.

* Geometry: surfaces, curves and points.

Winged Edge Data Structure

Topology and geometry
SuUccessor1 predecessor 2

V2 Topology : Geometry
Object .
E I
F1 F2 Body !
Y ' Underlying
; Vi Genus 1 Syrface
pre E_Sessorl | §uccessor2 S
T C |
= > !
Sl D ~erfE i Curve
T T Edgé—— equation
'» o Vertex | Point

coordinates



Winged Edge Data Structure

class Vertex {
Vecd pos:

public:
Vertex{}) {pos = vl 0O:}
Vertex {double =, double ¥, double =} {pos = Veci{x,v.Z);}
vold setpos {(double x, double vy, double z) {pos = Veci{=x,v,2):}
wvold printpos{) {cout =< pos =< endl;}

}:

clazzs Edge {
Vertex #wvs, #*ve:
Face *fleft, *fright:;
public:
Edoge()y {fleft = fright = HULL:}:
Edge {Vertex #vl, WVertex #vi}) {vs = wvl, wve = vZ, fleft = fright
viold setLface(Face®* £} {fleft = £}
wviold setRface(Face® f) {fright = f£:}
Vertex® startWV{) {return v=:}
Vertex®* endV{}) {return wve:}
hool wertexInE {(Vertex® ) {return (v == w3} || (v == ve):}
wviold printedge():
}:

class Face {
Edge* edge=[:]:
public:
Face () {}:
viold setEdge{int i, Edge* edge) {edges[i] = edge:}
CGT Edge® findPreE (Edge %*e):
}:

clazs Model {

public:
wvector<Vertexk> wvs;
vector<Edge®- e3;
wvector<Face®> f=:

}:

= HULL :}

VS

fright | fleft

ve



face-based, half-edge based, edge-based
structure

There are many popular data structures used to represent
polygonal meshes.

While face-based structures store their connectivity in
faces referencing their vertices and neighbors,
edge-based structures put the connectivity information
into the edges. Each edge references its two vertices, the
faces it belongs to and the two next edges in these faces.
If one now splits the edges (i.e. an edge connecting vertex
A and vertex B becomes two directed halfedges from

A to B and vice versa) one gets a halfedge-based data
structure. The following figure illustrates the way
connectivity is stored in this structure:



Half-Edge Data Structure

used to represent polygonal

meshes con nectivity « Each vertex references one outgoing
info rmation halfedge, i.e. a halfedge that starts at this

in computer graphics. vertex (1).
 Each face references one of the

\ l / halfedges bounding it (2).
f ;-’ 2y » Each halfedge provides a handle to
s > the vertex it points to (3),
J o the face it belongs to (4)
| > the next halfedge inside the face
(ordered counter-clockwise) (5),
> the opposite halfedge (6),

.
/ : \ o (optionally: the previous halfedge
N in the face (7).

-
r

halfedge




struct Halfedge {
Halfedge *twin,

Half-Edge Data Structure
Halfedge *next;

Vertex *vertex;
Edge *edge;
Face *face;

Used in Computer Graphics programes.

y /
2 : }
5 )
: ; struct Vertex {
: o Point pt;
Halfedge *halfedge;
}
vertex struct Edge {

Key idea: two half-edges act as
Halfedge *halfedge;

“glue” between mesh elements
Each vertex, edge and face points
struct Face {

to one of its half edges
Use twin and next pointers to move around mesh Halfedge *halfedge;
}

Process vertex, edge and/or face pointers



Half-Edge Facilitates
Mesh Traversal

process all vertices of a face

Halfedge* h = f->halfedge;
do {

process(h->vertex);

h = h->next;

}
while( h != f->halfedge );

process all edges <I>
around a vertex !

Halfedge* h = v->halfedge;
do {

process(h->edge);

h = h->twin->next;

}
while( h != v->halfedge );

twin

halfedge

Basic operations for linked list: insert, delete

Basic ops for half-edge mesh: flip, split, collapse edges

c

\\\\\x///// ! L/////

b

Allocate / delete elements; reassign pointers

(Care needed to preserve mesh manifold property)



Radial Edge non-manifold data structure

Radial Edge representation of two faces joining along a
common edge showing how the four edge uses of the
common edge (each side of each face uses the edge)

are connected

vueupt:  suvuptr eu,
VU, © < NSNS Vil

/ lueulast lueunexi \\

I euluptr
|
¥

Su, - Uy < eu,




'!1.

fy

Radial Edge non-manifold data structure

Cross-sections of three and five faces sharing
a common edge in the Radial Edge representation.

fu, fu, B
fy ! f E o,
1 " / v
face use | 1
- = & /N
1 i euvuptr
edgeluso ’ .'/, } vueuptr
male
pointers s Iz " ®.
®- @ ’/ vunext
/ e, cu;\ eu, v /v [ wlasl
' X €dge use 5 vvuptr v, N
\ radial -9 —= Q+——B=
pointers vu, ey,
® e, l \ “uvplr /
eu,
o : \ \
X

ey
‘X “alls o }“x " ‘_’ - “‘_.

\ ;

w e 1t / A
fug fu, I eu,



CSGvs. B-Rep

B-Rep is appropriate to construct solid models of
unusual shapes.

CSG B-Rep

e Simple representation  Flexible and powerful

e Limited to simple objects | representation

e Stored as binary tree e Stored explicitly

e Difficult to calculate e Can be generated from

e Used in CAD systems as CSG representation
hybrid modeler e Used in CAD systems

as hybrid modeler




CSGvs. B-Rep

. Solid modeling systems
Comparison between CSG and B-rep representations.

—

T TT— Storage of Model Detail Level
CSG Implicit Low
B-rep Explicit High
Advantages (A) and Disadvantages (D) comparisons.
Complexity | Uniqueness| History of Use in Local
Construction| Interactive | Operations
Environment

CSG A D A D D
B-rep D A D A A




CSGvs. B-Rep

1. B-rep uses Euler operators in modeling.

2. CSG needs low storage due to the simple tree
structure and primitives.

3. CSG primitives are constructed from the half-space
concept.

4. Directed surfaces, Euler operations and Euler’s law
fundamentally distinguish the B-rep from wireframe
modeling.

5. Traditionally, CSG cannot model sculptured objects
and thus is limited in modeling capability. (This is no
longer true for Adv. CAD systems, such as Pro/E)




CSGvs. B-Rep

6. Itis easier to convert a CSG model to a wireframe
model than to convert a B-rep model to a wireframe
model.

7. Because both CSG and B-rep use face direction
(half-space or surface normal), they can have a full
"body knowledge.”

8. Generally speaking, most high-end CAD tools have
the B-rep (or hybrid) method.

9. B-Rep requires more storage.

10. B-Rep manipulation is slow with respect to CSG.



New Challenges to Geometric Modeling

Modeling Porous Medium
Modeling Non-homogeneous Materials

e varying density .
e changing composition

* multiple phases (solid, liquid)

Biomedical Applications (geometry,
materials, motion and mechanics)

. Medlcal Images (surgical Operatlon *«:«3%
e simulator, training and planning)/’

* Computer models from CT scans) 1 3
* (quantify motion in actual kneis) sl
"’. ) ";1? :‘:{nb)

)

.:1‘
\




Solid Modeling Ref. Mantyla

Introduction

Aim of modeling:
e The search of a media of communication




Introduction (cont)

Geometric modeling
e Which parts of the objects are visible to the viewer?
Colors?




Introduction

e Solid modeling

BELMIA




Taxonomy

Geometric Modeling

/\
Surface Modeling Solid Modeling
Voxels CSG B-rep
Winged Edge Halfedge

OpenMesh




Point Inclusion Test for CSG

1. Classify against leaf primitives
2. Propagate the result in the tree

D



<

Volumetric Representation

(b)

(a)

(c)

(d)

solid
0 otherwise

1
Vik =

Figure 5.9 CSG-to-cell conversions.
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Boundary Model

\Y
(a) (b) (c)

Face, Edge, Vertex

Figure 6.2 Basic constituents of boundary models.




Validity of Boundary Model

Self-intersecting non-manifold (next page)

N S
N ~

(a) (b)

Elements of the model
 should not self-intersect
e should not intersect each other unless at their boundary.



I Definition of Manifold

For every point on the boundary,
its neighborhood on the boundary is homeomorphic

(topologically equivalent) to an open disc.

O

disc




_

Topologically Equivalent

WA R
©-J-0 ZH

Sl




non-Manifold Edge

Figure 3.4 Solids with nonmanifold sarfaces.



lane Models
Edge identification

el

) @

Cylinder

2]

Torus

B




Plane Model ( ks >

Each edge (of a polygon) is assigned an orientation
from one endpoint to the other

Every edge is identified with exactly to one other edge

For each collection of identified vertices, the polygons
identified at that collection can be arranged in a cycle
such that each consecutive pair of polygons in a cycle
is identified at an edge adjacent to a vertex from the
collection.



Orientable Solids

A plane model is orientable if the directions of its
polygons can be chosen so that for each pair of
identified edges, one edge occurs in its positive
orientation, and the other one in its negative
orientation



Euler-Poincare Formula (ref)

V-E+F—-(L-F)=2(S-G)

V: the number of vertices

E: the number of edges

F: the number of faces

G: the number of holes that penetrate the solid, usually referred
to as genus in topology

S: the number of shells. A shell is an internal void of a solid. A
shell is bounded by a 2-manifold surface. Note that the solid
itself is counted as a shell. Therefore, the value for S is at least 1.

L: the number of loops, all outer and inner loops of faces are
counted.


http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/euler.html

Examples

Box: V-E+F-(L-F)-2(5-G) = 8-12+6-(6-6)-2(1-0)=0
Open Box: V-E+F-(L-F)-2(5-G) = 8-12+5-(5-5)-2(0-0)=1
Box w/ through hole:

V-E+F-(L-F)-2(5-G) = 16-24+10-(12-10)-2(1-1)=
Box w/ blind hole:

V-E+F-(L-F)-2(5-G) = 16-24+11-(12-11)-2(21-0)=

V-E+F-(L-F)-2(5-G) = 10-15+7-(7-7)-2(1-0)=0
Invalid nonmanifold solid yet still yields ZERQO!

The equation for Open objects is
V-E+F-(L-F)-(S-G) = 10-15+7-0-(1-0)=1

F—E+4+V-—-L=B—-G




' Count Genus Correctly




Euler Operators

(a) (b)

<empiy model= =

v X,
-‘I .\.I
{ '|
!
L i
- )
y [ ] Fi
b
Y i i =
MVFS h o
€

(2) (k)

KEMR /. .. MEF D e

(Ring: loop) «© 9




'f
“Global Operators

(a)



y’

=xample:
~ Euler Operators <

' > > <

— o
- —
a . N
(a) () (<) (g) (k) (i)
.
N\

(d) (¢} (f) (i (x) 0

Figure 9.11 Example of Euler operators.
Figure 9.11 Example of Euler operators [cont.).



Winged-Edge Data Structure

e Commonly used to describe polygon models
e Quick traversal between faces, edges, vertices
e Linked structure of the network

e Assume there is no holes in each face



Winged-Edge Data Structure

e vertices of this edge

e its left and right faces

e the predecessor and successor when traversing its left face

e the predecessor and successor when traversing its right face.



- Winged-Edge Data Structure

Edge Table



I Winged-Edge Data Structure




I Winged-Edge Data Structure

e the vertex table and the face table




Winged-Edge Data Structure

Fdge | Vertices Faces Clockwise Counter-
clockwise
Name | from to | left right | pred suce | pred  suce
a 1 21 A D d ¢ f b
b 2 3| B D & ¢ a f
f 3 1 | O D « o h (1
& 3 Il | B ' b ¢ f o
d 1 || A f c ( ¢
¢ 2 | A B (1 i b «

Edge Table of the Tetrahedron, Winged-Edge Methodology

ccw—pred

~

u = V
%f right face \

ccwW — succe

ccw — suce

lefi face

cew —pred Winged-Edge Data Structure
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Vinged Edge Data Structureﬂm Ay e
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Figure 6.3 A sample object. Figure 6.6 The winged-edge data structure


http://www.baumgart.org/winged-edge/winged-edge.html
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Winged Edge Data Structure

olass Vertex {
Vecli pos: VS
public:
Vertex{) {pos = vl 0:}
Vertex {(double x, doukle v, double =} {pos = Vec3{x,v,z):} frlght ﬂEft
woid setpos (double x, double v, double =) {pos = Veci(x,v,=):}

wold printpos() {cout << pos << endl:} v

¥: ve

class Edge {
Vertex #vz, #ve;
Face *fleft, *fright:
pubrlic:
Edge() {flefrt = fright = HULL:}:
Edge {(Vertex *vl, Vertex *vi) {vs = vl, ve = v2, fleft = fright = HULL:}
wvold setLface(Face® £) {fleft = £:}
wold setRface{Face® £y {fright = £:}
Vertex® startVWi{) {return vs:}
Vertex® endVi{) {return ve:}
bool wertexInE {(Vertex® v} {return (v == ws) || (v == wve):}
wold printedge():
P
class Face { olass Model {
Edge® edges[3]: public:
pubrlic: vector<Vertexk> v
Face () {}: vector<Edgeks es;
vold setEdge{int i, Edge* edge) {edges[i] = edge:} wvector<Facek> f=:
Edge* findPreE {(Edge *e) ; }:

i



Winged-Edge Data Structure

________________________ .
For a face with inner loops  |; === “ ‘
are ordered clockwise. o | = |
i i !
L | i
Adding an auxiliary edge T AT
between each inner loop | rResss===c o |
e | ! :t
and the outer loop ';"—"{CI: | |
L=




Halfedge Data Structure - // s

incident verlex

Modification of winged edge
Since every edge is used twice, ¢
devise “halfedge” for this use ©
Can have loop to account

for multiply connected face
(face with multiple boundaries)
Can handle

— Manifold models _
— Face with boundary | x
OpenMesh: a specialized halfedge Fig. 1
implementation (for triangular meshes)

incident facet




Half-Edge Data Structure

e Doubly connected edge list

_____

struct VertexData:;
struct EdgeData;
struct PolygonData;

struct HalfData
i

HalfData* next:;
HalfData* previous;
HalfData* pair;

VertexData* origin;
PolyvgonData* left;
EdgeData®* edge;

struct VertexData

i
HalfData* half:

. o=
- iF

struct EdgeData
{
HalfData* half:

. o=
- iF

struct PolygonData

{
HalfData®* half;



Object File Format (OFF)

e Storing a description a 2D or 3D object
e Simple extension can handle 4D objects

o [I-D (XIYIZIW)

e OFF File Characteristics
— ASClII (there is also a binary version)
— Color optional
— 3D
— No compression



Object File Format(OFF)

[C]1[H][4] [n]COFF # Header keyvword
_Ndlm_ # Space dimension of vertices, present only if nOFF
HVertices HNFaces HEdges # NEdges not used or checked

X[0 vI[D Z[D # Vertices, possibly with normals,

# co . inates, in that order,

# if the prefixes N, C, 5T

£ are present.

# If 40FF, each wvertex has 4 components,

# including a final homogeneous component.

# If nOFF, each wvertex has Ndim components.

# If 4n0OFF, each wvertex has Ndim+l components.
X[NWVertices-1] viHVertices-1] Z[HWVertices-1]

# Faces

# Nvw = # vertices on this face

# v[0] ... w[Hv-1]: wertex indices
# in range 0..HNVertices-1
Hv w[0] +w[1] ... w[Hw-1] colorspec

colorspec continues past v[Hv-1]

to end-of-line; may be 0 to 4 numbers
nothing: default

integer: colormap index

3 or 4 integer=s: RGEB[A] walue=s 0..255
3 or 4 floats: RGE[A] wvalue=s 0..1

TS TS TS TSRS



Object File Format(OFF)

OFF

#

# cube,off

# 4L cube.

# There ig extra RKGEL color information zpecified for the faces.
#

a

b 12

1632993 0.000000  1.154701
0000000 1.632993 1. 15470]
-1.63299%  0.000000  1.154701
0.000000  -1.632993 1. 15470]
1632993 0.000000  -1.154701]
0.000000  1.632993  -1.154701
-1.632993  0.000000  -1.154701
0.000000  -1.632993  -1.154701

0 1.000 0,000 0,000 0,75
0.300 0.400 0,000 0.75
0.200 0.500 0,100 0.75
0.100 0.600 0,200 0.75
0.000 0,700 0,300 0.75

0000 1.000 0,000 0,75

T e e e e
Oy e L s =]

A -2 oy i e —
e T D — T 3
s Sy I - T S R R



Polygon File Format

e Stanford Triangle Format

e Store 3-d data from 3D scanners

e Properties can be stored including
— color and transparency
— surface normals
— texture coordinates

— data confidence values

1,000 faces (30 sec)

100 faces (30 sec)



Cyberware 3D Scanners (url)

Large models also
avaiable at GeogiaTech



http://graphics.stanford.edu/data/3Dscanrep/
http://www.cyberware.com/
http://www.cc.gatech.edu/projects/large_models/

(B
.4--"""
NN
5
»
=9

Polygon File Format . K k) 5

e PLY structure ™ ﬂ
— Header
— Vertex List |/ e
— Face List ' |
— (lists of other elements) ﬁ: "

Stip:43785314276521

Triangulating a cube

for one sequential strip.




Polygon File Format

ply

format ascii 1.0
comment made by anonymous
comment thisz file i= a cube
element wvertex 3

property float3Z2 x
property float3z

b

property float32 =

element face &

property list uintf int32 vertex index
end header

O00
001
011
010
100
101
111
110
4 012 3
4 76 5 4
4 04 51
4 1 5 &6 2
4 2 86 T 3
4 3740

agcii/binary, format wversion number }
comments keyword specified, like all lines }

define "wvertex" element, & of them in file }
vertex contains float "®" coordinate }

¥ coordinate i=s also a wvertex property }

z coordinate, too }

there are & "face" elements in the file }
"vertex indices" is a list of ints }
delimits the end of the header }

start of wvertex li=st }

start of face li=st }



Scaling Transformations

affect geometry but
not topology of object . cphere

primitive shapes

Same Topology

Unit cube

Same Geometry

Uniform scaling Differential scaling

e
W

Topology: faces, edges and vertices. Figure 10.14 Instances

Geometry: surfaces, curves and points.

Source: Mortenson, Ch 10



- Differential Scaling Transformations

restrictions rw “

Fiaure 10.15 Instances of a “Z” section.

Source: Mortenson, Ch 10



Differential Scaling Transformations

Figure 10.16 Parameterized shape.

Sample restrictions: a,b,h,l,t>0, b<a, a>2t, h>4t

Source: Mortenson, Ch 10



Parameterized Shape of
Variable Topology

=" #n = number of cells
t = wall thickness
a, b = cell dimensions
[ = length

Figure 10.17 Parameterized shape of variable topology.

Source: Mortenson, Ch 10



Sweep Solids

Moving an object along a path.
e Generator = sweeping object: curve, surface, or solid
e Director = path

Common for modeling constant cross-section mechanical parts.
Translational sweep (extrusion): moving a planar curve

or planar shape along a straight line normal to plane of curve.
More generally, sweep one curve
along another.

Rotational sweep: rotating a planar
curve or shape (with finite area)
about an axis.

Source: Mortenson, Ch 10 © (d)

Figure 10.19 Examples of sweep shapes.



Sweep Solids

some problematic situations

Invalid Sweep

© | @

Figure 10.20 Dimensionally nonhomogeneous sweep representations.

Source: Mortenson, Ch 10



Loss and Eshleman (1974) Position and
Direction Specification for Swept Solids

)

: QOutline surface
_-_=..\ G i " - .
o Outline curve
A

Limit plane

\

trimmin P; d; Xp;

g — Limit plane = m= n=I1xm
_ : T P d; ><p5|

Figure 10.21 Outline surface of a constant cross-section solid.

Source: Mortenson, Ch 10



Loss and Eshleman (1974) Position and
Direction Specification for Swept Solids

Reference direction Swept solid

PD curve PD curve,” %
// Constant cross-section
generator curve)
Figure 10.22 Characteristics of a PD curve. Figure 10.23 A constant cross-section part that curves and twists.
H i
; d: Xn:
:-—EI—, m=—1t P 5 n=Ixm
i i
Pi d; Xp; ke
2
e
= o
83
g &
3 &
)
=

Source: MOI’tEﬂSOI’I, Ch 1o Figure 10.24 Components of a PD curve.



Surfaces of Revolution

4

Example: z-axis of rotation

p(u) =x(u) +z(u) 7

p(u,d) =x(u)cos@+x(u)sing+z(u)

Figure 10.25 Surface of revolution.

Source: Mortenson, Ch 10



Surfaces of Revolution

More general example using angle of
cubic Hermite curve: goal is a3
to find a Hermite patch
describing the surface.

Figure 10.26 Another surface of revolution.
u
Poi

Figure 10.27 Circumferential tangent vectors of a surface of revolution. Figure 10.28 Axial tangent vectors of a surface of revolution.

Source: Mortenson, Ch 10



Mortenson
Chapter 11

Complex Model Construction



Topics

« Topology of Models
— Connectivity and other intrinsic properties
 Graph-Based Models
— Emphasize topological structure
 Boolean Models
— Set theory, set membership classification, Boolean
operators
 Boolean Model Construction
e Constructive Solid Geometry
 Boundary Models (B-Rep)



Model Topology

Figure 11.1 Examples of nonsimple polyhedra.

Euler’'s Formula for 3D Polyhedra: V-E+F=2

Pglncarg s Generalizationto n- No _ N1 n N2 _ :1_(_1)n
Dimensional Space: 4
typo fixed
Euler-Poincare Formula: V-E+F-2(1-G)=0

(G = genus = number of “handles”)



del Topology

(continued)

Topological Atlas and Orientability =~ Topological Atlas
The simplest data structure keeps track of adjacent of a Tetrahedron

edges. Such a data structure is called an atlas.

A

= ./ A
L\ A

<y / | ‘\

LD - l-D-

ey

=1



https://www.google.com/url?sa=i&url=https://stackoverflow.com/questions/3154269/creating-and-intersecting-hexahedrons-with-cgal?rq=1&psig=AOvVaw2gBzEcMPsuh9Z9yvSrhJ6Y&ust=1585234328047000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIjar53wtegCFQAAAAAdAAAAABAq
https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI

Model Topology (continued)

2 ways to join a pair of ] 2 3 4 %2 +8 -
edges (match numbers) W TET HLE
preserves reverses
orientation orientation
{ 2 3.4
mmmﬁw_%
(a) (b)

Topological Atlas
and Orientability :
The orientability indicated with arrows or numbers as shown above.

We see that the orientation preserving arrows are in two opposite
rotational directions i.e., clockwise and anticlockwise.

While orientation reversing arrows are in the same rotational directions.

Figure 11.3 Orientation.



Schlegel Diagrams

A common form of embedding graphs on planar faces
is called Schlegel Diagram. It is a projection of its
combinatorial equivalent of the vertices, edges and
faces of the embedded boundary graph on to its
surface. Here the edges may not cross except at their
incident vertices and vertices may not coincide.

e;| f6! &5 f1

Schlegel Diagram S f 5
of a Cube e,




€5

4 i . f3
e| 6 |es f11
Atlas of Cube -

Schlegel Diagram f5
of a Cube e,

An atlas of a cube can also be given by the
arrangement of its faces as shown below

ez f ee

f3 1
fo | L Bfa .
2 3 4 3 5 1
2
6
Atlas of Cube




Model Topology (continued)

Atlas of a cube

Edge o of face1
matched with
edge o of face 2...

N

/—H

0
3 6
2

1

Figure 11.4 Atlas of a cube.

[(1,0) (2,0)] [(3,2) (5,0)] [(1,2) (4,0)] [(2,3) (3,0)]

[(2,2) (3,3)1[(2,2) (6,2)1[(2,3) (5,2)] [(3,2) (4,3)]

[(3,2) (6,3)] [(4,2) (5,3)] [(4,2) (6,0)] [(5,2) (6,1)]




123456 123456

Model Topology

. 723456 654321 . «
(CO ntl n U e d) Orientation Orientation Cylinder Mobius Strip
Preserving Reversing

Some examples of Atlases

s
t 4
Cylinder: & : ‘I ) “ Torus:
orientable | | orientable
T
Mobius strip: A Klein bottle: ngn.-orientable
non-orientable, | T ; ar?d does not. fitinto 3.D
open surface a (c) f; L-,’ (d) E without self-intersections
%‘ | 'j?
—_—

Figure 11.5 Atlas of: (a) a cylinder; (b) a torus;
(c) a Mébius strip; and (d) a Klein bottle.

Orientability is intrinsically defined: left and right are never reversed.
Non-orientable: right & left are not intrinsically defined.




Model Topology (continued)

—,_\,-“ e
) J
Sphere: & g E £3 oL g Torus:
orientable i I orientable
g | N
[(LO13)+ 11, [(LH(L2)+ 1] [LOX(L.2)+ 11, [(1,1)(1.3) + 1]
(a) (b)
_ —- e
Klein bottle: 0 o -
. Projective plane:
non-orientable . : i i._f . .
EJ ] ! > | ; i non-orientable
> <
(LON(12)+ 1L (L.D(13)- 11 [(LO)1.2)- 1L [(L1)(L3) - 1]

(© (d)

Figure 11.6 Atlas and transition parity of: (a) a sphere; (b) a torus:
' (c) a Klein bottle; and (d) a projective plane.

Transition Parity = 1 means match up normally.
Transition Parity = -1 means match up in reverse.




Model Topology (continued)

e Curvature of piecewise flat surfaces
— Curvature concentrated at vertices
— Sum up angle “excesses” of small paths around each
vertex. Let:
e E£.be excess of a path around vertex i.
e T.be total turning of a path around vertex .

K =iEi =i(272’—Ti)=27ZV —iTi =27V —i f =27(V —E+F)

1=1 =1 =1

f. = sum of interior angles of face I.

« where last part is for closed, piecewise flat surface

y=V-E+F so K=2my

¥ = Euler characteristic, which is an intrinsic, topological invariant.



CIoC
Model Topology (contmued)

 Topology of Closed, Curved Surfaces
— Net = arbitrary collection of simple arcs (terminated
at each end by a vertex) that divide the surface
everywhere into topological disks.
— All valid nets on the same closed surface have the
same Euler characteristic.

e 2 elementary net transformations
— Adding (or deleting) a face by modifying an edge
— Adding (or deleting) a vertex
v 1S Invariant under these net transformations.



Model Topology (continued)

e Euler Operators

— Euler Object = connected
network of faces, vertices, edges

— All valid nets on the same closed
surface have the same Euler
characteristic.

— Euler's formula for polyhedra /
requires:

— All faces are topological disks.  Fulers formula: V- £+ - >

— Object’'s complement is

connected. Figure 11.7 Euler’s formula and simple polyhedra.

— Each edge adjoins 2 faces with
vertex at each end.

— At least 3 edges meet at each
vertex.



Model Topology (continued)
e Spherical net example
e Nets are proper:
e collection of simple arcs (edges)
e terminated at each end by a vertex
e divide surface into topological disks
e (Curving edges preserves validity of Euler’s formula

{(a) (b)

Figure 11.8 Euler’s formula applied to a spherical net.



Model Topology (continued)

(a) (b)

Figure 11.10 Modification of an Euler net on a sphere.

valid modifications to spherical nets



Model Topology (continued)

(a) (b) ()

valid modifications of (a) and (b) invalid modification of (c)



Model Topology (continued)

5 6
/\x 2 =27
-~
L V-E+F-C=1
T 9-20+18-6=1
< b
,rff '9"".1HL S )
ff 8 -‘L\/T
P
\
4 3

Figure 11.11 Euler’'s formula and polyhedral celis.

C = number of polyhedral cells in 3D



Model Topology (continued)

(a) Object with hole.

External faces of hole are _

inadmissible. (@)
H = # holes in faces
P = # holes entirely through object
B = # separate objects (b)

(b) Edges added to correct
inadmissibility.

(c) Acceptable concavity.
(c)

(d) Adding edges satisfies

original Euler formula. @

e

V-E+F=2
16-24+10=2

V-E+F-H+2P=2B
16-24+10-2+2=2

V_E+F=2
16-32+16=0

V-E+F-H+2P=2B
16-32+16~0+2=2

V_E+F-H+2P=2B
16-24+11-1+0=2

VoE+F=2
16-28+14=2

formula
modification

Figure 11.12 Multiply-connected polyhedra and a modified Euler formula.



From\ To

Model Topology

Face
(continued)

Edge
Adjacency Topology in B-rep

VE VF =
N\ ]—l Viqv)

: 14
EF -
é E:{V}
= v
FF \F\j
v Vo By

Face Edge
F:{F} F:{E}
1:N 1:N
E: {F} E: {E}
1:2 1:N
V: {F} V:{E}
1:N 1:N
E-V‘E
|
E

V:{E}
E—rE
E
—r J/EF{E}
E
E F E
LE F:{E}

Vertex

Fv}
E: {V}
1:2

V:{V}
1:N

F

V:{F}

E:{F}

i3

Fi{F}

F

Figure 11.13 Topological relationships between
pairs of polyhedron elements.

g classes of topological relationships between pairs of 3 types of elements



Graph-Based Models

Geometric model
emphasizing
topological
structure

Data pointers link
object’s faces,
edges, vertices
Trade-off:
redundancy
yields search
speed

Figure 11.14 A graph-based model.

Vl EI FI
Vi ¥y Vis Vo V3
EZ ES,EJr, Eﬁ EI.E4, EE
FI‘FCL FZ*FS’Fél
EZ FE
V“ 1”3 Vl. VB‘ V4
Ei' ES’ E4" E.’_"} EE’ ES’ E3
FI‘FZ Fi’FB‘FaL
VS ES FB
Vl’ VE' Vi]- Vl"' V-l Va’-i-* V3" VZ
Ezl El- Ezg Ed_* *




Graph-Based Models (continued)

Vertex

0

1
1

1

0
0

I

0
1

7SS I

1

g L. 0

1

0

kot i a9 f

0

—_—

0

g 0 &0 1

1

0
1

0
0

0 0
0 0

I O

-t

T

XOLIOA

3100 0

Face
AB C DEF

Alo 1 1 1 8 13
Bl 8 1 1 1'D

For planar-faced

polyhedra

connectivity
(adjacency)

matrices can be

used.

5 S S (ol [ T
e o P U R £ B

SSNES

Figure 11.15 Connectivity matrices for a polyhedron.



, A B C D

Graph-Based Models (continued) 4o 1 0 o
B0 B 1 0

This is the connectivity matrix for Figure 11.16b: C |0 0 0 1

D0 0 0 O

E0 0 1 0

E -0 0.1

Figure 11.16 Examples of graphs.

[a—y

d

e S s R e FE e SRR



Boolean
Models

Table 11.1 Properties of Operations on Sets

Union Properties:

1. AUB isaset. Closure property

2. AuB=BUA Commutative property
3. (AUB)UC=AU(BUC) Associative property

4. AUD=A Identity property

5. AUA=A Tdempotent property
6QAUcA=E Complement property

Intersection Properties

1. AnB isaset. Closure property

2. AnnB=BrA Commutative property
3. (AnB)NC=AN(BNC) Associative property

4. AnNE=A Identity property

5 AnA=A Idempotent property

6. AncA=0 Complement property

Distributive Properties

ion

on

1. AU(BNC)=(AUB)n(AuC)  Union is distributive over intersec-

2. An(BuUC)=(AnB)U(ANC) Intersection is distributive over un-

Complementation Properties

1. ¢E=0 The complement of the universal set is the empty set.
. D =E The complement of the empty set is the universal set.

2

3. ¢(cA)=A The complement of a complement of a set A is A.
4. ¢(AUB)=cAncB DeMorgan's law.

5. ¢c(AnB)=cAuUcB DeMorgan's law.



Boolean Models (continued)
Set Membership Classification

X =bX UIX

e Goal: define reqularized set
— closure of interior
— no “dangling edges” or disconnected lower-
dimensional parts

e Set membership classification differentiates

between 3 subsets of any reqularized set X:
— bX: boundary of X

— iX: interior of X

— cX: complement of X




Boolean Models (continued)
Set Membership Classification

e Some similar geometric modeling problems:
— Point inclusion: point inside or outside a solid?
— Line/polygon clipping: line segment vs. polygon
— Polygon intersection: 2 polygons
— Solid interference: 2 solids



Boolean Models (continued)

Set Membership Classification

(a) 2 points
same or
different?

(c) point vs.
curve or

polygon

©
1

(a)

()

ro ©

(b)

(d)

Figure 11.22 Point classification.

(b) point vs.
curve: 3 cases

(d) point vs.
curved or
polyhedral
object



Boolean Models (continued)
Set Membership Classification

applicable to topological disc

e |

Winding number = +1 Winding number = Winding number =
l | I ]

Inside Qutside

Figure 11.23 The winding number and the inside-outside classification.



Boolean Models (continued)

Set Membership Classification

(a) point vs.
sphere as
parametric
surface
(assumes
knowledge of
closest point q)

(a)

(b)

Figure 11.24 Inside and outside a solid.

Ir'"l
n LY ! =
i h"'"‘-.____
: i V=

(b) point vs.
parallelepiped
defined as
Boolean
intersection of
half-spaces



Boolean Models (continued)

(a)

(b)

=
e

© /ﬁ\

A

\

(e) /

(f) ///
(2) /
(h) /

(d)

(i) ,//

Figure 11.25 Curve and line segment classification.



Boolean Models (continued)

edge of B
intersects A in
4 Ways

A

B

X, ChA|

v

A

¥ =

) [Eee
X; C bB

J

X%, % CEB

4™ way: intersection is a point

Figure 11.26 Line and polygon classifications.

2 reqularized polygons A and B



- Boolean Models (continued)

Point 2 is problematic with respect to intersection of A and B.
A

Figure 11.27 Tangent vector convention for two-dimensional objects.



Boolean Models (continued)

Outward pointing
normals can aid
intersection of
3D solids A and B.

/’

4

Figure 11.28 Normal vector convention for three-dimensional solids.



Boolean Models (continued)

B

(a) (b)

Figure 11.29 Problems for set-membership classification.



Boolean Models (continued)

A
1L B %
=5 |
b

Degenerate intersection of 2 well-defined 2D objects.



Boolean Models (continued)

¢ | A

Find intersection points. B ) :
Segment intersected edges. 2 Al

For Union: 3 |8

- Find point on boundary of
A outside B.

- Trace around loop of edges.
- Trace additional loops if
needed.

L

1
I
1
!
I

Union: A UB Difference: A — B Intersection: AN B

Figure 11.31 Union, difference, and intersection of two simple polygons.



Boolean Models (continued)

Intersection
A ) 5

Dangling edge

s B

Set-theoretic | _ Re gujari_zed
intersection . | intersection
C=ANB C*=AN*B

Set-theoretic and regularized Boolean intersections.



Boolean Models (continued)
Intersection

A A
B _ 5
Need to distinguish - !
between segments -
1 & 2 (see next r T_I
slide). ' - =
@ bANDB ®  iA~DB
A A
B B

Boundary points can
become interior points.
Interior points cannot

become boundary - .
points. © DANMIB @ IANIB

Figure 11.33 Candidate components of a regularized Boolean intersection.

C=(bANDbB)U(ANDBB) U (bANIB)U(IANIB)




Boolean Models (continued)
Intersection

rA_ ________ Segment1| InA | InB
Px 0 ]
P, P, 1 0

Segment2| InA | InB

Pr 0 0
_________ P; 1 1
Simpler test would use
consistent Ppr Note: 1 = Yes, 2 =No
parameterization
directions and tangent Figure 11.34 Regularized boundary test.
vector directions.

Summarizing overall intersection approach...

C*=DhC *UiC* =Valid, (bAbB) U (IANbB) U (bANiB) U (IANiB)



Boolean Models (continued)
Union

A A

(a) (b)

(c) (d)
Candidate components of a reqularized Boolean union.

C=(bAubB)U(IAubB)uU(bAUIB)U(IAUIB)=bAUDbBUIAUIB
IC*=1AUIB U[Valid. (b AnbB)]
bC*=DbAUDB -[(bAnIB) U (bB niA)UValid, (bAnbB)]



Boolean Models (continued)
Difference

A A

............

(c) & (d)

appear
same!

(c) (d)

Candidate components of a reqularized Boolean difference.

C* = (bA—bB —iB) U (iAnbB) UValid (bA~bB) U (iA—bB —iB)



Boolean Models (continued)

A enclosesB. |4
B
|
P e e !
E | Useful for
i I modeling
| il holes.
e e ]
(a) AUB by ANB (c)A-B

Figure 11.37 Examples of Boolean operations.



Boolean Models (continued)

(b) (AUB)-C (cy(A-C)UB

Figure 11.38 Order dependence on Boolean operations.



Boolean Models (continued) Coincidences problem

A el _ A : A,,'!____:F‘l
= — | B =1+ 1 B A B
I ., ,q j/,
1 — -
| e ————
I Y | B
Pl S R
A intersection B A-B
(a) (b) ()
(@) — (c) produce standard results. B
(d) — (f) produce invalid results.
Regularizing (d) — (f) yields null results.
A A A
; NN BTN
v/,/// N . /

(d) (e) (f) \

Figure 11.39 Boolean operations on a three-dimensional solid.



I Boolean Models

Coincidences problem [N

Pseudo manifolds




Algorithms for Boolean operations

Based on face classification (Algorithm 1)
Based on vertex classification (Algorithm 2)

Algorithm 2
QO

A union B A Iintersection B




Algorithm 2 (vertex classification)

Algorithm Boolean Op (vertex classification)

/[ 1. Classify existing vertices

addVertices(A, B, LV); /[ add to LV vertices from A classified wrt B
addVertices(B, A, LV); /[ add to LV vertices from I? classified wrt A

/[ 2. Compute new vertices ?
Foreach edge e from A E
foreach face f from B #
iIf intersect(f,e) add( mtersectlonVertex (f e),LV)

Foreach edge e from B
foreach face f from A
iIf intersect(f,e) add( intersectionVertex (f,e),LV)



)

] f:;::;-;:‘ il _--"*-‘-’--
- . , >
g e

Algorithm 2 >

/[ 3. Select output vertices according to the boolean operation
foreach vertexvin LV
if v.type=NEW add(result,v) otherwise
case
union: if v.type = deAoutB or v.type = deBoutA add(result,v)
inters: if v.type = deAinB or v.type = deBinA add(result, V)
A-B : if v.type = deAoutB or v.type = deBinA add(result,v)
B-A:if v.type = deAinB or v.type = deBoutA add(result,v)
end
/[ 4. Build F:{V} from V:{F}
buildFaces(C) // change from reverse rep. to hierarchical rep.
end




"'Example 1: A-B

VT

Y

Sy U s W N R

carad « carad
) v u caras
vB
X
vl v2 caral
Z
vé carab T
Objecte A
Cares Vertexs
:{3,4,8,7 1:(0,0,0)
:{2,6,8,4} 2:(3,0,0)
:{1,5,06,2} 3:(0,0,3)
{1,3,7,51 4:(3,0,3)
:{5,7,8,6} 5:(0,3,0)
:{1,2,4, 3} 6:(3,3,0)
7:(0,3,3)
8:(3,3,3)

9
A
carall x carad
vi3 4 u ' carai1
v15 ; v16 : caras
| 1
| '
S - L - _
-~ Y -
Y . ve vi0 ~ 7 cara?
7 v11 v12 Z | caral2 4
- X X
Objecte B
Cares Vertexs

7:{11,12,16,15} 9:(1,2,2)
8:{10,14,16,12} 10:(2,2,2)
9:{ 9,13,14,10}y 11:(1,2,5)
10:{ 9,11,15,13} 12:(2,2,5)

11:{13,15,16,14} 13:(1,4,2)
12:{ 9,10,12,11} 14:(2,4,2)
15:(1,4,5)
le: (2,4,5)



"étep 1: Classify vertices

carad ¥ cara3
Exenple 1 vs - - cara5
w7 vG cara

v 1: xyz, {4,3,6}, deAoutB . i
vV 2: xvyz, {3,2,6}, deAoutB
V 3: xyz, {1,4,6}, deAoutB , ) . oo
vV 4: xyz, {2,1,6}, deAoutB v3 vé cars6 T
vV 5: xvyz, {5,3,4}, deAoutB carat0 « carag
VvV 6: xyz, {5,2,3}, deAoutB 13 4 - ' caratt
vV 7: xyz, {1,5,4}, deAoutB e e : -
vV 8: xyz, {2,5,1}, deAoutB : |
vV 9: xyz, {9,10,12}, deBinA PRl Sl LR R
V10: xyz, {9,8,12}, deBinA Y- "o | 7 canat
V11l: xyz, {7,10,12}, deBoutA zJ_": " z owa2 4
V12: xyz, {8,7,12}, deBoutA -
vVi3: xyz, {11,9,10}, deBoutA
v1i4: xyz, {11,8,9}, deBoutA
V1ls: xyz, {7,11,10}, deBoutA
V16: xyz, {8,11,7}, deBoutA




Vl: xvz, {2:;3,6}; deAoutB
V23 ®Y2; 13;2,6), deBoutB
V 3: xyz, {1,4,6}, delioutB
V 4: xvz,; [Z+¢1;:6}); deBAoutB
V 5: xyz, {5,3,4}, delfoutB
V 6: xyz; 15:2:3}) delAoutB
¥V 73 zxyz, {1,944}, deloutB
N B: xyz, 1Z2,9,1}, deBfoutB
vV 9: xyz, {9,10,12}, deBinA

v1i0: xyz, {9,8,12}, deBinA

vil: xyz, {/,10,12}, deBoutA
viz2: xyz, {8,7,12}, deBoutA
vi3: xyz, {11,9,10}, deBoutA
vid: xyz, {11,8,9}, deBoutA
v15: xyz, {7,11,10}, deBoutA
vVliée: xvz, {8;11;,7}; deBoutA
Vi7: xyz, 1{9,10,.5), Nou

vig: xyz, {8,92,5}, Nou

Vi9: xyz, {1,5,.10}, Bou

v20: xy=, {1,5,8}, Nou

v2l: xy=z, 110,12,1},Nou

Vid: xyz; 18:12:11; Nou

'étep 3: Select output vertices

Y

v5

V7

v8

vl

¥3

vd

vi3

v15

-~

o

1 vi6

v

vi2

w2

via

carad & cara3
o caras
cara2
caral
caras 1
carall ¥ carad
\' ! carall
carad




k1 1., I

kDCDa.JO‘&U‘Ia-ﬁ-bJI\)I—‘

Xyz,
XYE
Xyz,
Xyz,
XVyZ,
Xyz,
XVZ,
Xyz,
XV Z,
Xyz,
XYZ,
XyYZ,
XVZ
XY Zy
XYZ,
Xvyz,

i EVE;
s XYz,
3 XVZ,
! XYyZ,
3 EKVZ,
B2,

{4,

9
{7
{8,

3161,
2 B)a

14},

Ci;>2 + 3},
498

B,12},
10,121
1,12},

{11,9,10},
{11,8,9},

{7,
{8,

{9,10,5},

{8, 1

11,10},
11,7},

9,35},
» 10},

Step 4: Build faces

deAoutB
deBfoutB
delAoutB
defoutBE
defAoutB
deloutB
deBAoutB
deAoutB
deBinA

deBinA

deBoutA
deBoutA
deBoutA
deBoutA
deBoutA
deBoutA

Nou
Nou
Nou

e Nou
. 5 , Nou

Nou

4a. Find the vertices referring a
given face (example, face 1)

carad

¥ carald

caras

~

V12

) -

caral2 f




| Step 4: Build faces

X XVEZ,;
: XVZ,
: XVZ;
: XYz,

! XYZ,
: XVZ;
: XVZ;

¢ XVZs

4+—20

{4,1,6}, deAoutB
{2,1,6}, deAoutB
{4,1,5}, delAoutB
{5,1,2}, deAoutB

{10,1,5}, Nou
{8,1,5}, Nou
{12,1,10},Nou

L=y

{8,1,12}, Nou

]

4+—0

q—o‘ls

F 3

p v

«’ cara3

caras

/

4b. Once we know the vertices
of a face, we must sort them
into cycles (domino algorithm)

~

>

vi2

3 =

caral2 4




carad
e v3 - b caraS
p l 7
Step 4: Build faces 7 |*
X
v v2 caral
F 4 L -

('V’S XY Z, deBAoutB v3 v cores T
GDV'4. XYZ, deAoutB

¥ T BV, deRAoutB Wi 4—o
eV 8: xyz, deAoutB

V19: xyz, {10, , Nou I I

V20 : xye, (8,1 Nou
V2l: m=em, 12,130} . Nom
V223 xyvz; 18,1;12},; Non

Cara © Cara 2 Cara 5




Step 4: Build faces

To solve the indetermination:

1. Sort the vertices involved according
to the parameter of the supporting

line: V8, V20, V19, V7

2. Group forming pairs (will become
edges of the result): (V8, V20) (V1g, V7).

Cara 8

. — w carad
v { » caras
w7 vl caral
X
w1 2 ,.:Hm (__',,,.e""i
Fi Z
v3 widl carag T
caral0 w carad
V13 V14 * ; oaratt
vis 1I vi6 : carag
| ]
| |
j B L= _
Y LT vi0 M -7 cora7
vil vi2 FA | caral2 ¢
/J_ X
—————— > V21 -———---> V19
Cara 12 Cara 10 |
|
| Cara
I
|
V3 s V7] <—-
Cara 4



- Example 2. Stil

The domino algorit

A-B

nm can detect

more than one cycle (faces with

internal loops) ,

::":B

Cara 11 Cara 8

Cara 5

Cara 12

w7

Cara 4

Cara 10

oared W carad
u
¥ 5 caras
v caral
X
wi w2 Carat
z
wil arat T
carall w corsd
."13 wid b : carall
1vi6 : caras
| ]
' 1
L - - _
Y "
e v10 ~ 7 cora?
12 Z/I_ caral2 4
X
V3
--> V23




_d

eometric tests

e Pointinside solid
| I
e Convexity ofanedge
e Sorting faces around a vertex

e (Classify cycles as interior/exterior



- Point inside solid




Sorting faces around a vertex




- Classify cycles as infout

[1 C; o

N




&Iassify cycles as infout

parity=true
C:=set of loops
while Cis not empty do
D:=0
for each loop cxin C fer
if cx is inside to some loop cy in C then
classify cx as an internal loop of cy
else D :=D + {cx}
if parity then loops in D are exterior loops of faces
else the loops in D are interior loops
parity:=not parity
C.=C-D
end




Boolean Model Construction

Boolean Model: combination of > 1 simpler solid objects.
Boolean Model is procedural: shows how to combine parts.

i Assume
$ A regularization. (AUB) = C
B
C & s
=5
] et i
i | !
: e I
: _,_';"! _____ e AUB
f" “““““ e i U
I e (
1 I e
| -
-1 D = (AUB) - C
- X
A B

Figure 11.40 A simple procedural model.

Figure 11.41 The binary tree for D=(Au B) - C.



olean Model Aons
Construction (continued) gl

Q A intersection B
A-B

A union B

st X

\

~ -

7/

B

~
-

AUB A—B

Coincidences problem
A B Aintersection B A-B

AUB

Figure 11.42 Examples of union and difference.



Boolean Model Construction (continued)

Figure 11.43 The intersection operation.



Boolean Model Construction (continued)

A A
2 2
(a) union of | i | (t.)).di.fference of
disjoint AandB &%’/ =z @Y/ @@ ! disjoint A and B:
A-B
(a) (b)
(c) union of A 4 ‘f‘/“‘“x\
encompassing B ° Sh (e) B-A
(d) difference of A _aEn
encompassingB:A-B (o) (d) (e)
R
A _ _(h) uni
r'Q-= i L2 (g) —=(h): union of
(f) A-Byields i AandB
2 objects "v“
| (h) makes
® (8) (h) concavity

Figure 11.44 A variety of Boolean modeling situations.



Boolean Model Construction (continued)

N
@/

(h} //:."

(a) 2 intersecting,
closed, planar
curves intersect an
even number of
times.

(c) Closed, planar
curve intersects
3D solid an even
number of times.

/
Iy !
|'J
r
!
F 3 i
A -
s

e ———
| i
f

(c) P}f/ (d)

Figure 11.45 Four general properties of Boolean models.

(b) If curves A and
B do not intersect
& a point of B is
inside curve A,
then B is inside A.

(d) Plane P
intersects bounding
surface of Sin3
disjoint, closed
loops.



Constructive Solid Geometry (CSG)

CSG: Modeling methods defining complex solids as compositions of simpler solids.

Root node
represents final
result.

Internal nodes
represent Boolean
operations & their

results.
R Ax
. _
Leaves are s A
primitive shapes. “——

[T = primitive solid

Figure 11.46 Constructive solid geometry representation.



Constructive Solid Geometry (continued)

(a) Block (b) Cylinder (c) Wedge

(d) Inside fillet (¢) Cylindrical segment (f) Tetrahedral wedge

(g) Sphere (h) Torus (i) Cone

Figure 11.47 Primitive solids.



Constructive Solid Geometry (continued)

&1
Y
\

x= b y=d,z=f notshown (b)

(a)

Figure 11.48 Primitives as intersections of halfspaces.



Constructive Solid Geometry (continued)

Face b
//
5.0 ;
o i
Face a : = |

_E.E
%E.-:?
A / / s
Eﬂ.b & 1

C=A-B

Figure 11.49 Boundary evaluation.



Constructive Solid Geometry (continued)

Refer to Figure 11.49

. _—on previous slide.
Neighborhood of segment 2 of e,.;

v

_-—a.-—-ln-—.-l--—-l—l--_a—-l-

Figure 11.50 Neighborhood model.



Constructive Solid Geometry (continued)

Figure 11.51 Combining neighborhood models.



Boundary Models

Boundary Model: complete representation of a solid as an organized
collection of surfaces.

Boundary of a solid must be:
- closed
- orientable
- non-self-intersecting
- bounding
- connected

Region R"is finite,
b | bounded portion of E".

. &
b .
\ R}% : R=[R,R,]
R L—— ,/

Figure 11.52 A plane figure and its boundaries.



Boundary Models (continued)

Boundary Representation (B-Rep)
// /: Plane of the face

e B-Rep minimal face
conditions:

Number of faces is finite.

Face is subset of solid’s
boundary.

Union of faces defines boundary.

Face is subset of more extensive
surface (e.g. plane).

Face has finite area.

Face is dimensionally
homogeneous (regularized).

i A

{b)

Figure 11.53 Faces defining the boundary of a solid.



Boundary Models (continued)
Boundary Representation (B-Rep)

/ >
y A
/ o Surface
i ;"n‘};
-
e B / 4
/ e / ™ Face-bounding curve
: . g
Face e /

Figure 11.54 Face boundary convention.

Curved boundary faces require inside/outside convention.



oundary Models (continued)
Boundary Representation (B-Rep)

=

T'
i i i B

Boundary representations are not unique.




Boundary Models (continued)
Boundary Representation (B-Rep)

Merging vertex 1 with vertex 2 makes object invalid.

Figure 11.56 Interdependence of topology and geometry.



Boundary Models (continued)
Boundary Representation (B-Rep)

Powerful B-rep systems view solid as union of general faces
(e.g. parametric curves).

Figure 11.57 Boundary intersection.



Boundary Models (continued)
Boundary Representation (B-Rep)

O value of
parametric
variable

2-step AU B:
-Locate v, u,

-ldentify active
parametric
regions.

b(A U B)

Include C.

Ui Upp 1

= = |

feer | Mg

Figure 11.58 Two-dimensional boundary representation.



oundary Models (contined) -
Boundary Representation (B-Rep) -

; r?

(1)
l-‘d

\\ . - ’
“ - Lo
. . 4 P, ¢ ’ e d
Physical space NS / ; e
. S /

Union of sphere with
skew-truncated cylinder

u |

Figure 11.59 Three-dimensional boundary representation.




uctory Notes on Geometric
Aspects of Topology

PART I. Experiments in Topology
1964

Stephen Barr
(with some additional material from
Elementary Topology by Gemignani)

PART Il: Geometry and Topology for Mesh Generation
Combinatorial Topology
2006
Herbert Edelsbrunner



PART |. Experiments in Topology

What is Topology?

e Rootedin:

e Geometry (our focus)
e Topology here involves properties preserved by transformations
called homeomorphisms.

e Analysis: study of real and complex functions
e Topology here involves abstractions of concepts generalized from
analysis
e Opensets, continuity, metric spaces, etc.

e Types of Topologists:
e Point set topologists
e Differential topologists
e Algebraic topologists...

Source: Gemignani



Towards Topological Invariants

 Geometrical topologists work with properties of an

object that survive distortion and stretching.
e e.g.ordering of beads on a string is preserved
e Substituting elastic for string
e Tying string in knots

Source: Barr



Towards Topological Invariants

e Distortions are allowed if you don‘t*  Seecaveaton nextslide.
e disconnect what was connected
e e.g. make a cut or a hole (or a “handle”)
e connect what was not connected
* e.g. joining ends of previously unjoined string or filling
in a hole C__‘;D b
= —_-Q—/_f_*"-:}\ .
L T

M |

Legal continuous bending and stretching transformations of torus into cup.

Fig. 2

Torus and cup are homeomorphic to each other.
Source: Barr



Towards Topological Invariants

Can make a break if we rejoin it afterwards in the same
way as before.

PRIl

Trefoil knot and curve are homeomorphic to each other.
They can be continuously deformed, via bending and stretching, into each
other in 4-dimensional space*.

Fig. 3

e Barr states this as a conjecture; another source states is as a fact.

Source: Barr



Connectivity

e Lump of clay is simply connected.
* One piece
e No holes
e Any closed curve on it divides the whole surface
Into 2 parts*:
e inside
e outside Fig. 4

*Jordan Curve Theorem is difficult to prove.

Source: Barr



Connectivity (continued)

e For 2 circles on simply connected surface, second circle is
either
e tangent to first circle

e isdisjoint from first circle Q

e intersects first circle in 2 places @

Fig. §

e For2circles on torus
e line need not divide surface into 2 pieces
e 2 circles can cross each other at one point

Fig. 6

Source: Barr



Connectivity (continued)

e Ona"“lump of clay”, given a closed curve joined at

two distinct points to another closed curve
e Homeomorphism cannot change the fact that there are
two joints.
* No new joints can appeatr.
e Neither joint can be removed.

Fig. 7

Source: Barr



Connectivity (continued)

_ _ . “pulling” the
e Preservingtopological entities: curves onto this
side preserves
number of curve

oo segments,
3 connected regions, and
curve connection
segments points
partition
surface of 2 connection
sphere into points further
3 regions. «_distortion
Fig. 10 " preserves
topological
entities

Source: Barr



Revisiting Euler’'s Formula for Polyhedra

e V—-E+F=2 - Vertex “
e Proof generalizes & ¥
. o

formula and shows it = ] d

remains true under o

certain operations. TETRAHEDRON b

f Fig. 11

e Before the proof, verify

formula for distorted
embedding of
tetrahedron onto
sphere, which is a simply

connected surface. Fig. 12

S

Source: Barr



Revisiting Euler’'s Formula for Polyhedra

(continued)

e "“Pull” arrangement of line
segments around to front
and verify formula. Fig: 12

e This gives us a vehicle for S
discussing operations on a
drawing on a simply
connected surface.

e Explore operations before

giving the proof... Fig. 13

Source: Barr



Revisiting Euler’'s Formula for Polyhedra

(continued)

e Operations must abide by rules:
e Vertices must retain identity

as marked points in same order. e oy

e C°connectivity is preserved @ @

4

Pentagon Topological
Pentagon

e Figure is drawn on a simply connected surface.

e Every curve segment has a vertex
e atits free end if there are any free ends
e where it touches or crosses another curve segment

e Any enclosure counts as a face.

Source: Barr



Revisiting Euler’'s Formula for Polyhedra

(continued)

e Forasingle curve segment:
e 1unbounded face
* 2 vertices
e V_-E+F=2-1+1=2

fJ Ba 1% Fig. 16

v

e Connecting the 2 ends preserves formula.

Source: Barr



Revisiting Euler’'s Formula for Polyhedra

(continued)

Also we can put any number of arbitrary vertices
on an edge: and each would divide the line into new
edges, giving, in Fig. 17, 1 F—4 E45 V=2.

Alternatively,
cross first line ——— C/\
with another.

Fig. 17

When a new line, or edge, meets a loop (a self-
connected edge) at its wertex, we get 2 F—2
E—+2 V=2, If not at the vertex we would have
2 F—3 E4+3 V==2. Likewise a line meeting a
loop at 2 points gives 3 F—3 E-++2 V=2 (Fig.
18).

VOQMQ

Fig. 18

The only way to obtain a new face is by adding at least one edge.
Edge must either connect with both its ends or be itself a loop.

Source: Barr



Revisiting Euler’'s Formula for Polyhedra

(continued)

e Proof claims that the following 8 cases are

exhaustive:

1. If we add a vertex to an edge between vertices,
it divides it: making 1 edge into 2, thus it adds 1
E, canceling the new V, in the expression F—
E+V.

E

O E Fig. 19

2. Add an edge that meets a vertex—its own ver-
tex on the free end cancels the new edge (in F—

E+V). .

V Fig. 20

3. Add an edge that meets an edge between ver-
tices: it adds 2 E and 2 V (having divided the
old edge). These cancel as before,

°)
&5D Fig. 21

Source: Barr



Revisiting Euler’s Formula for Polyhedra

(continued)

4. Add an edge with each end meeting a vertex: . R
itadds 1 Fand 1 E (butno V) and they cancel. 6. Add an edge that meets 1 V and 1 E: it adds 1
F, 2 E, and 1 V, which cancel (1 F—2 E+

X —=a).
1 or
Fig. 22
Fig. 24

i}.zf\dddz.n ec;ge :ithEbOﬂ}ll.ezdS meo;tmg tiescanie 7. Add an edge that meets 2 edges: it adds 1 F,
i i e 3 E, and 2 V, which cancel (1 F—3 E4-2 V=0).

D Fig. 23
-These are all the legal ways of adding
8. Add an edge with both ends meeting at one V in edges and vertices.
one edge: it adds 1 F, 2 E, and 1 V, which cancel. -Thus we can draw any such connected
figure on a simply connected surface
while preserving Euler’s formula.
o B4 - -Must also apply to polyhedra.

Fig. 25
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Source: Barr



PART II: Geometry and Topology
for Mesh Generation

Combinatorial Topology
2006 Herbert Edelsbrunner
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Goals

e Introduce standard topological language to facilitate
triangulation and mesh dialogue.
e Understand space:

— how it is connected;
— how we can decompose it.

e Form bridge between continuous and discrete

geometric concepts.
— Discrete context is convenient for computation.

...... =3

Parametric Hole in Mesh Geometry

Source: Edelsbrunner



Simplicial Complexes: Simplices

e Fundamental discrete representation of continuous space.
— Generalize triangulation.

e Definitions:
— Points are affinely independent if no affine space of dimension i contains more

than i +1 of the points.
— k-simplex is convex hull of a collection of k +1 affinely independent points.

— Faceof o: O =CONVS .\ /\

Yol - \ Ji_ \\

Figure 3.1. A O-simplex is a point or vertex, a 1-simplex is an edge, a 2-simplex is a
triangle, and a 3-simplex is a tetrahedron.

The 4 types of nonempty simplices in R3.

Source: Edelsbrunner



Simplicial Complexes

Definition: A simplicial complex is collection of faces of a finite number of
simplices, any 2 of which are either disjoint or meet in a common face.

) (ceK)r(r<o)=(r e K)and

ii)o,veK=(cnv)<o,v

Figure 3.2. To the left, we are missing an edge and two vertices. In the mic_ldla:, the
triangles meet along a segment that is not an edge of either tnangle. To the right, the

edoe crosees the trianele at an interior point.
Violations of the definition.
Source: Edelsbrunner



Simplicial Complexes:
Stars and Links

e Use special subsets to discuss local structure of a simplicial complex.
e Definitions:

— Star of a simplex 7 consists of all simplices that contain 7.
— Link consists of all faces of simplices in the star that don't intersect .

Str={oceK|(r<0o)}
Lk r={o e(CISt7)|o 7 = 0}

Figure 3.3. Star and link of a vertex. To the left, the solid edges and shaded triangles
belong to the star of the solid vertex. To the right, the solid edges and vertices bc!one to
the link of the hollow vertex.

Staris generally not closed. Link is always a simplicial complex.
Source: Edelsbrunner



Simplicial Complexes:
Abstract Simplicial Complexes

e Eliminate geometry by substituting set of vertices for
each simplex.

— Focus on combinatorial structure.

e Definition: A finite system A of finite sets is an abstract
simplicial complex if:

(aeAandﬁga)jﬂeA
Vert A is union of vertex sets. | /.ﬁ-‘-\Vm A
A is subsystem of power set of / \\
Vert A. l:*\. /}
A is a subcomplex of an n-simplex, iﬁ__,_:_v7,
where n+1 = card Vert A. “‘“-\\D/;

Figure 3.4. The onion is the power set of Vert A. The arca below the waterline is an
abstract simplicial complex.

Source: Edelsbrunner



Simplicial Complexes:
Posets

e Definition: Set system with inclusion relation forms
nartially ordered set (poset), denoted: (A <)

e Hasse diagram:
— Sets are notes
— Smaller sets are below larger ones
— Inclusions are edges (implied includes not shown)

Figure 3.5. From left to right, the poset of a vertex, an edge, a triangle, and a tetrahedron.

Source: Edelsbrunner



Simplicial Complexes: Nerves

e One way to construct abstract simplicial complex uses
nerve of arbitrary finite set C:

NrvC ={a cC |l a =0}
IfC=pcathenl ac! B Hence(a e NrvC)= (8 eNrvC)

Nerve is therefore an abstract simplicial complex.

Example: & = ’P( = > J e

C is union of elliptical regions. e ¢ I~ {’\\

Each set in covering corresponds - & y | o

to a vertex. e Ll J . U

k+1 sets with nonempty NDee =

intersection define a k-sim o) lex. Figure 3.6. A covering with eight sets to the left and a geometric realization of its nerve

to the right. The sets meet in triplets but not in quadruplets, which implies that the nerve
is two dimensional.

Source: Edelsbrunner



Subdivision:
Barycentric Coordinates

e Two ways to refine complexes by decomposing
simplices into smaller pieces are introduced later.

e Both ways rely on barycentric coordinates.

e Non-negative coefficients % such that X = X, #p;.
2 =1

b -~
Standard k-simplex =
A convex hull of
..\ ~— endpoints of k+1 unit
. ’ 4\3 vectors.

Figure 3.7. The standard triangle connects points (1, 0, 0), (0, 1, 0), and (0, 0, —1)/

Barycenter (centroid) : all barycentric coordinates = 1/(k+1)
Source: Edelsbrunner



Subdivision:
Barycentric Subdivision

e Subdivision connecting barycenters of simplices.
e Example:

0

Figure 3.8. Barycentric subdivision of a triangle. Each barycenter is labeled with the
dimension of the corresponding face of the triangle.

Source: Edelsbrunner



Subdivision:
Dividing an Interval

Barycentric subdivision can have unattractive numerical behavior.
e Alternative: try to preserve angles.

— Distinguish different ways to divide [o,1]:

e (k+1)-division associates point X with division of [0,1] into pieces of lengths ¥,
Var -1 )k

Cut[o,1] into 2
halves:

(Y b

Figure 3.9. Three generic 3-divisions. 2

Subdividing the rhombus: 2 - —h
cases for dividing line of y, | = \
with respect to separator of B : \ :
7, from y,. — .

Figure 3.10. Two pairs of generic 2-divisions.

Source: Edelsbrunner



Subdivision:
Edgewise Subdivision

=0 g~ {i=E
f 1 — 2 —;—- .I 2
2 2 ol 3

Figure 3.11. Stack of 4-division, cut into three equal intervals.

Source: Edelsbrunner



Subdivision:
Edgewise Subdivision

Figure 3.12. 8-division of a tetrahedron with shape vectors indicated by arrowheads.

Example

Consider the edgewise subdivision of a tetrahedron for j = 2. There are eight
generic color schemes, namely

0000 1IN N U R G ] S5

2 SNg e S ada
0 A R g 1 1.2
2 3 oo Jo 2 3202 3 3

r 2.2 o1 2 3
[ M 3}’{3 3 3 3]'
They divide the tetrahedron into four tetrahedra near the vertices and four
‘tetrahedra dividing the remaining octahedron, as shown in Figure 3.12. Note
that the way the tetrahedron is subdivided depends on the ordering of the four
original vertices. The distinguishing feature is the diagonal of the octahedron

used in the subdivision. It corresponds to the two-by-two color scheme with
colors 0, 1, 2, 3. The diagonal is therefore the edge connecting the midpoints

of pop2 and p; ps.

| S R o]

Source: Edelsbrunner



Topological notion of space (from point set topology)
— and important special case of manifolds

opological Spaces: Topology

Definition: A topological space is a point set X together with a

system X of subsets o — x that satisfies:
i 0.XcX
ii. ZcX=>UZeX

System Xis a topology.
—  Itssets are the open sets in X.

Example: d-dimensional Euclidean space: RY.

ZcXandZ finite=127Z e X

—  Use Euclidean distance to define open ball as set of all points closer

than some given distance from a given point.

—  Topology of RYis the system of open sets, where each open set is a

union of open balls.

Source: Edelsbrunner



Bijection (review)

®cA ®=BhB

domain(A) f— range(A)

ol
ENCE o S

one-to-one and onto
(bijection)

Source: Wolfram MathWorld



Topological Spaces:
Homeomorphisms

Topological spaces are considered same or of same type if they are
connected in same way.
Homeomorphismis a function f:X — Y thatis bijective, continuous,
and has a continuous inverse.

— “Continuous” in this context: preimage of every open set is open.
If homeomorphism exists, then X and Y are homeomorphic:

— Equivalence relation: X and Y are topologically equivalent:
X=Y

A
o e o— () ./]\‘

Figure 3.13. From left to right, the open interval, the closed interval, the half-open
interval, the circle, a bifurcation.

Source: Edelsbrunner



Topological Spaces: Triangulation

e Typically a simplicial complex

e Polyhedron in RYis the underlying space of a
simplicial complex.

e Triangulation of a topological space X is a simplicial
complex whose underlying space is homeomorphic

to X.
e d_.__"'-w__\\\
\ =2
/ _f'f \\\ / \
£ — =
= = >\ I"\_ N 7 /
\\\ £ / ‘\h / “"-. : ‘;
' N g £ S
™ & & \\\'{_ = j{/

Figure 3.14. Triangulation of the closed disk. The homeomorphism maps each vertex,
edge, and triangle to a homeomorphic subset of the disk.

Source: Edelsbrunner



opological Spaces: Manifolds

e Defined locally:
— Neighborhood of point  y _ ig an open set containing X.

— Topological space X is a k-manifold if every has a
neighborhood homeomorphic to RX. ‘e X
e Examples:

— k-sphere: sk —{x¢ R ||| =1

R o O

1' \
I

b o \/

Flgure 3.15. The O-sphere is a pair of points, the 1-sphere is a circle, and the 2- -sphere
is what we usually call a sphere.

Source: Edelsbrunner



Topological Spaces:
Manifolds with Boundary

e Now allow 2 types of neighborhoods to obtain more
general class of spaces:

— 2Mtypeis halfanopenball:  H*={x=(x,x,K x)eR"|x >0}
e Space X is a k-manifold with boundary if every point
xe X has a neighborhood homeomorphic to R¥ or to HX.

— Boundary is set of points with a neighborhood
homeomorphic to HX.

e Examples: G
— k-ball: y

Figure 3.16. The 0-ball is a point, the 1-ball is a closed interval, and the 2-ball is a
closed disk.

Source: Edelsbrunner



Topological Spaces: Orientability

e Global property.
e Envision (k+1)-dimensional ant walking on k-manifold.
— At each moment ant is on one side of local neighborhood
it is in contact with.
— Manifold is nonorientable if there’s a walk that brings ant
back to same neighborhood, but on the other side.
— Itis orientable if no such path exists.

e Orientable examples: ey
— Manifold: k-sphere Bt

— Manifold with boundary: k-ball A

* Nonorientable examples B oy st A
o) it s /_,,-'

/ Figure 3.17. The Mobius strip to the left is bounded by a single circle. The Klein mug
to the right is drawn with a cutaway view to show a piece of the handle after it passes
through the surface of the mug.

Source: Edelsbrunner



Euler Characteristic: Alternating Sums

Euler characteristic of a triangulated space.
Euler Characteristic: Shelling

Ficure 3.18. The numbers specify a shelline of the triansulation.

Source: Edelsbrunner



Euler Characteristic: Shelling
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Figure 3.19. The 13 ways a triangle can intersect with the complex of its predecessors.
Only cases (a), (b), and (c) occur in a shelling.

Source: Edelsbrunner



Euler Characteristic: Cell Complexes

Figure 3.20. The dunce cap to the left consists of one 2-cell, one edge, and one vertex.
Its triangulation to the right consists of 27 triangles, 39 edges, and 13 vertices.

Source: Edelsbrunner



Euler Characteristic: 2-Manifolds

a e T
T = f,/’l-ff“_ e e
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Figure 3.21. Edges with the same label are glued so their arrows agree. After gluing we
have two edges and one vertex.
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Fioure 3.22. The nolveonal schema of the double toms.

Source: Edelsbrunner



Parasolid 3D Geometric Modeling

3D geometric modeling needs continuous innovation
to meet the requirements of

additive manufacturing,

generative design,

and other cutting-edge design

and manufacturing techniques.

At the same time, geometric modelers should take
advantage of new and improved computing
environments.



Parasolid v30.0
3D Geometric Modeling Engine

New version extends classic B-rep and facet B-rep
modeling towards realizing the full power of
Convergent Modeling Parasolid v30.0 delivers
enhancements to classic B-rep to enable application
developers to deliver sophisticated functionality more
effectively to their end-users.

Deformation of Mesh Faces
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Several enhancements with mesh data including :

e Added mesh enquiry functions and identification of
subsets of a mesh.

e Creation of trimmed surfaces from a mesh and
generation of polylines from isoclines.

e Improved control over repair of mesh foldovers.

e Improved performance of mesh-based operations.

A trimmed surface (yellow) created from a mesh (red)
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Facet B-rep modeling §

Facet related tools enhancements have been provided.

Creation of edge blends for facet models.

Addition of direct modeling operations for deform,
offset and replace of mesh faces.

Creation of B-curves from polylines and finding
chains of smoothly connected edges.

Identification and deletion of redundant topologies
and copying of construction and orphan geometry.
Calculation of the minimum distance between
classic B-rep models and facet B-rep models.



Parasolid v30.0

Facet B-rep enhancements cover modeling with facets
and imported facet data repair, model editing.

All Parasolid operations in future releases will support
models containing arbitrary combinations of

classic B-rep geometry and facet B-rep geometry.
Enhancements have been added to classic B-rep
blending and Boolean operations




Rotational transform:

e Improved control over the direction of rotational
transforms in order to add or remove material.

e Increased body tapering operations

e Improved the accuracy of minimum radii
calculations on B-surfaces.

* Improved detection of clashes in mirror transforms

of topologies. T
PoIo3 . = .’j = .

Rotating a face (Blue)
to either add material (Left) or remove material (Right)




B-rep blending and Boolean operations

e Trimmed solution on a periodic surface blend.

e |dentification of underlying surfaces that have
curvature similar to an edge blend being applied.

e Improved behavior when topology tolerances are
involved in Boolean auto-matching operations.

e Imprinting and merging on complex grid-like faces.
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