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• Triangular meshes, polygonal meshes 
• Analytic (commonly-used) shape 
• Quadric surfaces, sphere, ellipsoid, torus 
• Superquadric surfaces, superellipse, superellipsoid 
• Blobby models, tetrahedron, pyramid, hexahedron 

 
 

Non-unique model 

 
 
3D Analytic Shape Representation  
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Geometric  
Elements 
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A typical solid model is defined by solids,  
surfaces, curves, and points. 
 
Solids are bounded by surfaces.  
They represent solid objects.  
Analytic shape  
 
Surfaces are bounded by lines.  They represent 
surfaces of solid objects, or planar or shell objects.  
 
Curves are bounded by points.  
They represent edges of objects.  

Geometric Modeling 
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There is a built-in hierarchy among solid model entities.  
Points are the foundation entities.   
Curves are built from the points,  
Surfaces from curves,  
Solids from surfaces. 
 
Difference of  
wire, surface,  
solid model 

Geometric Modeling 

Points 

Curves 

Surfaces 

Solids 
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Bezier, B−spline and NURBS surface  
is a tensor product surface  
and is the product of two curves. 
 
Surfaces are defined by grid  
and have two sets of parameters,  
two sets of knots, control points  
and so on. 
 

Surface Modeling 
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Solid Modeling 
Solid Models are complete, valid and unambiguous.  
Models have interior, volume, and mass properties. 
 
While no representation can describe all possible solids, 
a representation should be able to represent  
a useful set of geometric objects. 



A solid object is defined  
by the interior volume space contained  
within the defined boundary of the object.   
A closed boundary is needed to define a solid object,  
• informationally complete, compact, valid representation  
• points in space to be classified relative to the object,            

if it is inside, outside, or on the object  
• store both geometric and topological information,       

can verify whether two objects occupy the same space  
• improves the quality of design, improves visualization, and 

has potential for functional automation and integration.  

Solid Modeling 



Solid Modeling 
Support using volume information 
• weight or volume calculation,                                       

centroids, moments of inertia calculation, 
• stress analysis (finite elements analysis),                      

heat conduction calculations, dynamic analysis,  
• system dynamics analysis 

 
Using volume and boundary information 
• generation of CNC codes,  
 robotic and assembly simulation 



Solid Modeling 
Solids models must satisfy the following criteria: 
Rigidity:  Shape of object remains fixed when 
manipulated. 
Homogeneity:  All boundaries remain in contact. 
Finiteness:  No dimension can be infinite. 
Divisibility:  Model yields valid sub-volumes  
when divided.  
 



Uniqueness 
That is, there is only one way to represent a particular 
solid. If a representation is unique, then it is easy to 
determine if two solids are identical since one can just 
compare their representations.  
Accuracy 
A representation is said accurate  
if no approximation is required. 

Requirements for Solid Representation 



Validness 
This means a representation should not  
create any invalid or impossible solids.  
Closure 
Solids will be transformed and used                               
with other operations such as union and intersection.  
"Closure" means that transforming a valid solid     
always yields a valid solid 

Requirements for  
Solid Representation 
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Compactness and Efficiency 
A good representation should be compact enough for 
saving space and allow for efficient algorithms to 
determine desired physical characteristics 

Requirements for Solid Representation 



Requirements for Solid Representation 
Validity of the B-Rep (Boundary representation) 
Solid model 
The boundary of a face  
is made up of edges  
that are not allowed  
to intersect each other.  
 
The faces of a model can  
only intersect in common  
edges or vertices.  
 



Surface Based 2-Manifolds Models,  
3D Parametric Solid,  
Primitive Instancing,  
Space Subdivision,  
Cell Decompositions,  
Octree Model,  
 

Solid modeling  
techniques 



Sweeping,  
Half Spaces,  
CSG,  
B-rep 
 

Solid modeling techniques 



Solid Modeling   (cont.) 
The most common solid-modeling  
techniques used by CAD systems are:  
• Pre-defined geometric Primitive instancing,  
• Sweeping in the form of extrusion and revolving 
• Constructive Solid Geometry (CSG tree structure) 
• Boundary representation (B-rep) 
• Feature Based Modeling                                                 
(uses feature-based primitives) 
• Parametric Modeling                                                               
(ASM, uses 3D parametric solid) 

 



Boundary Representation 
(B-rep) 

 
Constructive Solid Geometry  

(CSG) 
 
 
 

                                                   Sweep 

Solid modeling approaches 



Solid modeling approaches 
Hybrid (Feature based modelers) 
 
 
 
 
Octree Modeling 
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Parametric Solid 
Analytical Solid Modeling (ASM, FEM) 
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Primitive instancing (Feature) refers to the scaling of simple 
geometrical models (primitives) by manipulating one or more of 
their descriptive parameters. 

Most simple geometric primitives can be  
generated by a sweeping (“extrusion”) process. 

Primitive Instancing  
and Sweeping 



Space partitioning model 
Spatial-occupancy enumeration 

Cell decomposition of solid object 



Past Approach 
The graphical information is represented using  
low level graphical elements such as points, lines, arcs, etc. 
The textual information is represented as texts, notes and 
symbols attached to a drawing. 
 
Ideal/Present Approach – feature-based modeling 
To represent part geometry using high-level feature 
primitives such as holes, slots, pockets, etc. (consistent to 
the engineering practice), and to represent dimensions, 
tolerances, surface finishes, etc. as meaningful design 
entities. 

Feature-based modeling 



Features are specific geometrical shapes on a part that    
can be associated with certain fabrication processes. 

Features can be classified as form (geometric elements), 
material, precision (tolerancing data), and technological 
(performance characteristics). 

The primary objectives of design by features: 

• Increase the efficiency of the designer                            
during the geometric-modeling phase, and 

• Provide a bridge (mapping) to engineering-analysis and 
process-planning phases of product development. 

Feature-Based Design 



. 

Feature-Based Design 



 

Machining Features 



A solid model is configured through a sequence of form-feature 
attachments to the primary representation of the part.  

Features could be chosen from a library of pre-defined features 
or could be extracted from the solid models of earlier designs. 

Design by Features 

Base Part

Add polyhedron form feature Subtract slot form feature Subtract blind-hole
form features










Currently, feature recognition refers to examination of parts’ 
solid models for the identification of predefined features and  
for their extraction.  

In the future, extraction methods will examine a part’s solid 
model for the existence of geometric features that have not 
been predefined and extract them:   

• Such features would, then, be classified and coded for 
possible future use in a Group technology GT-based CAD 
system - Namely, these features would be extractable based 
on a user-initiated search for the most-similar feature in the 
database via a GT-code.  

Feature Recognition 



• Based on simple geometric primitives 
– cube, parallelepiped, prism, pyramid, cone, 

sphere, torus, cylinder, solid by points etc. 
• Primitives are positioned and combined using 

boolean operations 
– union (addition) 
– difference (subtraction) 
– Intersection 

• Represented as a boolean tree 

Constructive Solid Geometry (CSG) 



Based on simple geometric primitives: 
cube, parallelepiped, prism, pyramid, cone, sphere, 
torus, cylinder, solid by points etc. 

CSG Primitives 



Surface descriptions 

Half Spaces used  
in CSG modeling 



. 

CSG Half Spaces 



The solid modeling technique is based upon                 
the "half-space" concept using set operations.  
The boundary of the model separates the interior and 
exterior of the modeled object. Half spaces form a 
basic representation scheme for bounded solids.  
Example of Half Spaces: 

CSG modeling by Half Spaces 



Advantages: 
The main advantage is its conciseness of representation 
compared to other modeling schemes. 
It is the lowest level representation available for 
modeling a solid object  
 
Disadvantages: 
The representation can lead to unbounded solid models 
as it depend on user manipulation of half spaces.  
The modeling scheme is cumbersome for ordinary users 

Advantages and Disadvantages  
of Half Spaces 



Boxed half space operands 

Boxed half space geometry 



CSG modelers allow designers to combine a set of primitives 
through Boolean operations: 

Constructive Solid Geometry 

s1

s2

s  = s   s5 1 2U

s3 s4

s = s s6 4 3     U

s  = s  s7 5 6

s8

s  = s   s9 7 8
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CSG boolean tree Examples 

C 

A-B 

(A-B) ∪ C union 
(addition) 

difference 
(subtraction) 

A 

B 
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CSG tree examples 



                                            difference 
 
 
 
 
intersection 
 
 
 
                                                                        OpenSCAD demos 

CSG rendering 
union 
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Constructive Solid Geometry (CSG) 

• A tree structure 
combining primitives 
via regularized 
boolean operations 

• Primitives can be 
solids or half spaces 
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A Sequence of Boolean Operations 

• Boolean operations  
• Rigid transformations 

Pics/Math courtesy of Dave Mount @ UMD-CP 
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The Induced CSG Tree 

Can also be represented as a directed acyclic graph (DAG) 

Pics/Math courtesy of Dave Mount @ UMD-CP 
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Issues with  
Constructive Solid Geometry 

• Non-uniqueness 
• Choice of primitives 
• How to handle more  
 complex modeling? 

– Sculpted surfaces?   
 Deformable objects? 

 
Non-Uniqueness 
There is more than one way 
 to model the same artifact.  
Hard to tell if A and B are identical. 

 



. 

Alternative Paths of Modeling 
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Issues with CSG 

• Minor changes in 
primitive objects 
greatly affect 
outcomes 

• Shift up top solid 
face 

Foley/VanDam, 1990/1994 



Solids are point sets : Boundary and interior 
 
Boundary points 
Points where distance to  
the object and the object’s  
complement is zero 
Interior points 
All the other points in the object 
Closure 
Union of interior points and boundary points 
 

Solid Object Definitions 
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Issues with 3D Set Operations 

• Ops on 3D objects can create “non-3D objects” or 
objects with non-uniform dimensions 

• Objects need to be “Regularized” 
– Take the closure of the interior 

Foley/VanDam, 1990/1994 

      Input set                      Closure                              Interior                 Regularized 



Regularized Boolean Operations 

Pics/Math courtesy of Dave Mount @ UMD-CP 

• 3D Example 
– Two solids A and B 
– Intersection leaves a  
 “dangling wall” 
• A 2D portion hanging off a 3D object 
– Closure of interior gives a uniform 3D result 

 
Zero-thickness 

geometry error? 

                     51 
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Boolean Operations 

• Other Examples: 
• (c) ordinary 

intersection 
• (d) regularized 

intersection 
– AB - objects on the 

same side 
– CD - objects on 

different sides 

Foley/VanDam, 1990/1994 
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Boolean Operations 

Foley/VanDam, 1990/1994 



The main building operations are regularized set 
operations like union (U*), intersection (∩*) and 
difference (-*).  

Hence the CSG models are known as set-theoretic, 
boolean or combinatorial models. 

The Boolean operations are based on the set theory and 
the closure property. These operations are considered 
higher-level operations than B-rep Euler operations. 

Some implementations of solid modelers provide 
derived types of operations like ASSEMBLE and GLUE 

CSG Building Operations 



. 

CSG History Tree of Design 



. 

CSG History Tree of Design 
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Quadric Surface Intersection Curves 



1. Edge / Solid intersection algorithm 
2. Computing set membership classification 
a) Divide and conquer : It is like ray tracing. Instead of a ray an 
edge is used as a reference 
b) Neighborhood : It deals with in, on and out decisions 
When a point is in the interior of solid face then it is called face 
neighborhood 
Edge neighborhood occurs when the point lies on the solid edge 
When a point is a vertex, vertex neighborhood occurs. This is a 
complex case because the point is shared between three solid 
faces. 

Main algorithms in CSG Operations 



. 

Neighborhoods,  vertex, edge, face merge 



. 

Membership classification 



The following steps describe a general CSG algorithm   
based on divide and conquer (D & C) approach: 
1. Generate a sufficient number of t-faces, set of faces           
of participating primitives, say A and B. 
2. Classify self edges of A w.r.t A including neighborhood. 
3. Classify self edges of A w.r.t B using D & C paradigm.          
If A or B is not primitive then this step is followed recursively. 
4. Combine the classifications in step 2 and 3 via Boolean 
operations. 
5. Regularize the ‘on’ segment that result from step 4 
discarding the segments that belong to only one face of S. 

Summary of a CSG algorithm 



6. Store the final ‘on’ segments that result from step 5 as 
part of the boundary of S. Steps 2 to 6 is performed for each 
of t-edge of a given t-face of A. 
7. Utilize the surface/surface intersection to find cross edges 
that result from intersecting faces of B (one at a time) with 
the same t-face mentioned in step 6. 
8. Classify each cross edge w.r.t S by repeating                           
steps 2 to 4 with the next self edge of A. 
9. Repeat steps 5 and 6 for each cross edge 
10. Repeat steps 2 to 9 for each t-face of A. 
11. Repeat steps 2 to 6 for each t-face of B. 

Summary of a CSG algorithm 



Create the CSG model of the following solid S. 

A CSG Example 



. 

CSG example, Regularized set operations  
Neighborhoods, Memberships 



function classify(P:point, n:nodeCSG) return InOnOut 
      if isLeaf(n) then 
         case (n.type) 
                Box: r:=classifyBox(P,n) 
                Cylinder: r:=classifyCylinder(P,n) 
                Sphere: r:=classifySphere(P,n) 
                 ... 
       else 
                 rA:= classify (P, n.left) 
                 rB:= classify (P, n.right) 
                 r:= combine(n.operation, rA, rB) 
       end 
        return r 
end 

Point-inside-solid test  
(for CSG) 



. 

Line-solid  
classification 



 
 
. 

CSG  
Normalization 



Advantages: 
validity: CSG model is always valid; 
conciseness: CSG tree is in principle concise; 
computational ease: primitives are easy to handle; 
unambiguity: every CSG tree unambiguously models a rigid solid.  
 
Disadvantages: 
non-uniqueness: a solid could have more than one representation. 
limit on primitives: free-form surfaces are excluded, and primitives 
are bounded by simple low order algebraic surfaces. 
redundancy of CSG tree: it may have redundant primitives in tree. 
no explicit boundary surface information: CSG needs to be evaluated. 

Properties of CSG models 



Boundary representation, B-rep is that a 3D object model is enclosed by 
surfaces (faces) and has its own interior and exterior. It describes the shape as 
a collection of surfaces which seperate its interior from the external 
environment.  It is suitable for complex designs, Polygon facets are one of the 
examples of boundary representation. Both polyhedra and curved objects 
can be modeled using  the following topological primitive entities.  
Vertex : It is a point where two or more edges meet with another.  
Edge : It is a line or curve enclosed between two vertices.  
Fin : A fin represents the oriented use of an edge by a loop. 
Loop : It is a hole in a face.  
Face : It is a surface or plane of a solid.  
Body : It is an independent solid and has seperate shells.  
Genus : It is a through hole (handle) in a solid.  

Boundary Representation  
B-Rep Solid Modeling 



Data storage  
structure tree 

Boundary Representation  
B-Rep Solid Modeling 

??? 

Feature 

Volume 

Boundary 

Element 

BOX 

Material = 1040 ???? 

grind 
face2 face6 

line1 line2 line4 

Length tol. = 0.002 

face1 



B-Rep Solid Modeling 

Vertex#   Location    Edge#     Vertices     Polygon#     Edges 
V1           0,5,0            E1           V1,V2        P1                E1,E3,E2 
V2           4,15,0          E2           V1,V4        P2                E3,E4,E5 
V3           4,10,0          E3           V2,V4  
V4           8,0,0            E4           V2,V3  
                                    E5           V3,V4  

Vertex#    Location      Polygon#    Vertices 
V1             0,5,0             P1               V1,V2,V4 
V2             4,15,0           P2               V2,V3,V4 
V3             4,10,0   
V4             8,0,0   

E1 
E3 

E2 

E4 

E5 

V3 

V1 

V4 

V2 

P1 

P2 V3 

V1 

V4 

V2 

P1 

P2 

Data storage structures 
 
 
 
 
 
 
 

Relationships between  
Parasolid topological entities 



Parasolid topological  
entities in a body 
Topology Description 
Face A face is a bounded subset of a surface,  
 whose boundary is a collection of zero or more loops. 
 A face with zero loops forms a closed entity, such as a 

full spherical face. 
Loop A loop is a connected component of a face boundary. 

A loop can have:  an ordered ring of distinct fins, a set of 
vertices 

Fin  A fin represents the oriented use of an edge by a loop. 
Edge   An edge is a bounded piece of a single curve.        

Its boundary is a collection of zero, one or two vertices. 
Vertex A vertex represents a point in space. A vertex has a 

single point, which may be null.  



B-Rep models describe solids topologically, comprising faces, 
edges and vertices – surface oriented models: 

Boundary Representation 
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3D B-Rep Boundary Representation model 



• The B-Rep method represents a solid as a collection 
of boundary surfaces. The database records both of 
the surface geometry and the topological relations 
among these surfaces. 

• Boundary representation does not guarantee that a 
group of boundary surfaces (often polygons) form a 
closed solid.  

• The data are also not in the ideal form                         
for model calculations. 

• This B-Rep representation is used mainly                   
for graphical displays. 

Boundary Representation 



Object List -- giving object name, a list of all its boundary 
surfaces, and the relation to other objects of the model. 
Surface List -- giving surface name, a list of all its component 
polygons, and the relation to other surfaces of the object. 
Polygon List -- giving polygon name, a list of all boundary 
segments that form this polygon, and the relation to other 
polygons of the surface. 
Boundary List -- giving boundary name, a list of all line 
segments that for this boundary, and the relation to other 
boundary lines of the polygon. 
Line List -- giving line name, the name of its two end points, 
and the relation to other lines of the boundary line. 
Point List -- giving point name, the X, Y and Z coordinates of 
the point and, and the relation to other end point of the line. 

Boundary Representation (B-rep) 



CSG models are quite concise and can be converted into B-Rep 
models, which in turn are useful for graphical outputs. 
Many CAD systems have a hybrid data structure, using both 
CSG and B-rep at the same time.  
Catia, Solidworks, I-DEAS and Pro-Engineer CAD software 
packages are hybrid solid modelers that allow user input, and 
subsequent data storage, in both CSG and B-Rep structures. 

Model Conversions, hybrid solid modelers  

CSG 
Tree 

Application 
Program 

Graphical 
Output 

B-Rep 
Modeler 

CSG 
Modeler 

Graphical 
User 

Interface 

B-Rep 
Model 



B-rep modeling data structure 
 
 
 
 
     Octree solid representation 
Manifold modeling 
 

Solid Modeling 



Shape Variation Due to Parameter Values 
A CSG model design cannot be displayed or converted to     
Brep boundary representation, since different parameter 
assignments could lead to totally different shapes. 

Solid Modeling 
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Manifold and non-manifold modeling 



Non-manifold  
Surfaces 
 
 
Non-oriented 
Manifolds 

Manifold and non-manifold modeling 



The 2-manifold is a fundamental concept from algebraic 
topology and differential topology. It is a surface 
embedded in R3 such that the infinitesimal neighborhood 
around any point on the surface is topologically equivalent 
(`locally diffeomorphic') to a disk. Intuitively, the surface is 
`watertight' and contains no holes or dangling edges. 
Typically, the manifold is bounded (or closed).  
For example, a plane is a manifold but is unbounded and 
thus not watertight in any physical sense.  
A manifold-with-boundary is a surface locally 
approximated by either a disk or a half-disk.                            
All other surfaces are non-manifold. 

Manifold and non-manifold modeling 



Solids represented by faces, edges and vertices 
 

Topological rules must be satisfied to ensure valid objects 
 
– faces bounded by loop of edges 
– each edge shared by exactly two faces 
– each edge has a vertex at each end 
– at least 3 edges meet at each vertex 
 
 
 
 
             this is not valid solid object: 

Boundary Representation (B-Rep) 
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the concept of  
Brep representation 

 
 
 
the CSG polyhedral  
representation 

Brep and CSG polyhedral representations 



Brep 

The underlying structure to be recorded 



. 

Principal exchange possibilities for solid models 



An example  
illustrating  
the scope aspect  
of the reference  
schema 

Assembly World 



Closed Surface : One that is continuous without breaks. 

Orientable Surface : One in which it is possible to distinguish 
two sides by using surface normals to point to the inside or 
outside of the solid under consideration. 

Boundary Model : Boundary model of an object is comprised of 
closed and orientable faces, edges and vertices. A database of a 
boundary model contains both its topology and geometry. 

Topology : Created by Euler operations 

Geometry : Includes coordinates of vertices, rigid motions and 
transformations 

Boundary Representation (B-Rep) 



Involves surfaces that are 
– closed, oriented manifolds embedded in 3-space 
 
A manifold surface: 
– each point is homeomorphic to a disc 
A manifold surface is oriented if: 
– any path on the manifold maintains the orientation of the normal 
An oriented manifold surface is closed if: 
– it partitions 3-space into points inside, on, and outside the surface 
A closed, oriented manifold is embedded in 3-space if: 
– Geometric (and not just topological) information is known 

Boundary Representation (B-Rep) 



Both polyhedra and curved objects can be modeled using the following primitives 
• Vertex : A unique point (ordered triplet) in space. 
• Edge : A finite, non-self intersecting directed space curve bounded by two 

vertices that are not necessarily distinct. 
• Face : Finite, connected, non-self intersecting region of a closed, orientable 

surface bounded by one or more loops. 
• Loop : An ordered alternating sequence of vertices and edges. A loop defines 

non-self intersecting piecewise closed space curve which may be a boundary of 
a face. 

• Body : An independent solid. Sometimes called a shell has a set of faces that 
bound single connected closed volume. A minimum body is a point (vortex) 
which topologically has one face one vortex and no edges. A point is therefore 
called a seminal or singular body. 

• Genus : Hole or handle. 

Object Modeling with B-rep 



Euler Operations (Euler –Poincare‘ Law): The validity of 
resulting solids is ensured via Euler operations which can be 
built into CAD/CAM systems. 
Volumetric Property calculation in B-rep: It is possible to 
compute volumetric properties such as mass properties 
(assuming uniform density) by virtue of Gauss divergence 
theorem which converts volume integrals to surface integrals. 

Boundary Representation 



Leonhard Euler (1707-1783),Henri Poincaré (1854-1912) 
Euler (1752) proved that polyhedra that are 
homeomorphic to a sphere are topologically valid  
if they satisfy the equation:  
 
 
 
 
 
Polygonal Loops satisfy  (L)(V)-(L)(El)=0 

Euler-Poincare Law 



The extended Euler-Poincarré  
formula allow test the topology 
for polyhedral solids : 

B-Rep of cylinder and circle 

Boundary Model of Cylinder, 
manifold  topology test: 

F=3  V=2  E=3 
3+2-3-0 = 2(1-0) 

Limb 
silhouette 

E1 F1 V1 

Silhouette edge 

E3 F3 

F2 

V2 
E2 

Faces = F= 3 
Vertices = V = 0 

Edges = E = 2 
3+0-2-0 ≠ 2(1-0) 

F1 

F2 

F3 

E1 

E2 

V 

F 

   Boundary Model of Sphere, 
manifold  topology test: 

F=1  V=1  E=1 
 1+1-1-0 ≠ 2(1-0) 

 
F=2  V=1  E=1 

 2+1-1-0 = 2(1-0) 

E 

F1 F2 

Cylinder with upper and 
lower cap: F=3  V=2  E=2 

3+2-2-1 = 2(1-0) 



A connected structure of vertices, edges and faces that 
always satisfies Euler’s formula is known as Euler object. 
The process that adds and deletes these boundary components 
is called an Euler operation. 
 
Applicability of Euler formula to solid objects: 
• At least three edges must meet at each vertex. 
• Each edge must share two and only two faces 
• All faces must be simply connected (homeomorphic to disk) 

with no holes and bounded by single ring of edges. 
• The solid must be simply connected with no through holes 

Euler Operations 

https://www.google.com/url?sa=i&url=https://stackoverflow.com/questions/3154269/creating-and-intersecting-hexahedrons-with-cgal?rq=1&psig=AOvVaw2gBzEcMPsuh9Z9yvSrhJ6Y&ust=1585234328047000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIjar53wtegCFQAAAAAdAAAAABAq


. 

Validity Checking for Simple Solids 



. 

Validity Checking for Simple Solids 



Suppose a solid with flat faces and no holes 
has F faces, E edges, and V vertices.  
 
A tetrahedron is the simplest:  
F = 4 ,  E = 6 , V = 4  
 
In this case F + V - E = 2.  
This is also true for a cuboid (try it).  
Is it true in general? 

B-rep Models 



Suppose we have two solids, 1 and 2, and we know that the 
formula is true for each of them because we've counted. Suppose 
also that the solids each have a face which is the mirror image of 
the corresponding face on the other (the shaded pentagons). 
These faces don't have to be pentagons; say in general that they 
each have n edges. 
What happens if we glue the solids together at the shaded faces 
to make a more complicated object, called 3? 
The two faces disappear, so we know that:  F3 = F1 + F2 – 2  
Two sets of n vertices become one :               V3 = V1 + V2 – n  
Two sets of n edges become one :                   E3 = E1 + E2 – n  

B-rep Models 



The two faces disappear :                        F3 = F1 + F2 – 2  
Two sets of n vertices become one :   V3 = V1 + V2 – n  
Two sets of n edges become one :       E3 = E1 + E2 – n  
So             F3 + V3 – E3 = F1 + F2 – 2 + V1 + V2 – n – (E1 + E2 – n) 
we can rearrange:  
                  F3 + V3 – E3 = (F1 + V1 – E1) + (F2 + V2 – E2) – n + n – 2  
But we know that the first two parts in brackets both equal 2. 
The n terms cancel, leaving us with:                    F3 + V3 – E3 = 2 
So the formula F + V - E = 2 works for all solids without holes, 
because we can start with simple solids (like the tetrahedron). 

B-rep Models 



So the formula F + V - E = 2 works for all solids without holes, 
because we can start with simple solids (like the tetrahedron) for 
which we know the formula is true, and build complicated solids 
by gluing faces together.F3+V3–E3=F1+F2–2+V1+V2–n–(E1+E2–n)  
This is known as the Euler-Poincaré formula, after its discoverers. 
What about solids with holes? Most real engineering components 
have holes, so we have to be able to deal with them. Think about 
gluing together two objects such that they will make an object 
with a hole:  
The argument in the proof above about edges and vertices stays 
the same, but now                                 F3 = F1 + F2 –2 (1 + H) 
where there are H holes. This gives us:  F + V - E = 2 –2H 
 

B-rep Models 



So the formula F + V - E = 2 works for all solids without holes,  
the formula where there are H holes   F + V - E = 2 (1 + H) 
Check for this object: F = 16 , E = 32 , V = 16 , H = 1  
So it works for that.  
What about this one?  
F = 10 , E = 24 , V = 16 , H = 1  
WRONG!  
The problem is caused by the flat faces with rings of edges and 
vertices `floating' in them unconnected by edges to the other 
vertices. 
 

B-rep Models 



F = 10 , E = 24 , V = 16 , H = 1  
WRONG!   F + V - E = 2 (1 + H) 
The problem is caused by the flat faces with rings of edges and 
vertices `floating' in them unconnected by edges to the other 
vertices.  
If we fix that up (say there are R rings), and also allow for the fact 
that we may want to describe two or more completely separate 
objects (called shells; suppose there are S of them), we come to 
the final version of the Euler-Poincaré formula:  
F + V – E – R = 2 (S – H)  
The number of holes through an object, H, is called the genus of 
the object. 
 
 

B-rep Models 



 
Genus zero 
 
Genus one 
 
 
Genus two 
 
 
One inner loop 

Loops (rings),Genus & Bodies 



. 
 

Validity Checking for Polyhedra with 
inner loops 



. 
 

Validity Checking for Polyhedra with holes 



. 
 

Validity Checking for Polyhedra with 
through holes (handles) 



. 
 

Validity Checking for Open Objects 



Exact B-rep : If the curved objects are represented by way of 
equations of the underlying curves and surfaces, then the 
scheme is Exact B-rep. 
Approximate or faceted B-rep : In this scheme of boundary 
representation any curved face divided into planar faces. It is 
also know as tessellation representation. 

Exact vs. Faceted B-rep Schemes 



 
 
 
 
 
 
 
 
 

                                                           Faceted B-rep 

Data structure for B-rep models 



SeamCurve 
entity definition  
in B-rep 
 
Use of a  
Seam Curve  
bounding a  
cylindrical surface 

IfcSeamCurve 



The diagram shows  
the topological  
and geometric  
representation  
items that are  
used for  
advanced B-reps,  
based on  
IfcAdvancedFace.  

Advanced B-rep 



The diagram shows  
the topological  
and geometric  
representation  
items that are  
used for  
advanced B-reps,  
based on  
IfcAdvancedFace. 

OrientedEdge 
Advanced B-rep 



Right circular cone and cylinder geometry 
 
 
 
 
Swept disk geometry        rectangular pyramid    Sphere 
                                   Sectioned spine          Revolved area 
  



All the adjacency relations of each edge are described 
explicitly. An edge is adjacent to exactly two faces and 
hence it is component in two loops, one for each face.  
As each face is orientable, edges of the loops are 
traversed in a given direction. The winged edge data 
structure is efficient in object modifications (addition, 
deletion of edges, Euler operations). 

Winged Edge Data structure 



. 
 

Building Operations 



. 
 

Transition States of  
Euler Operations 



. 
 

Euler Operations 



. 
 

Euler Operations 



. 
 

Building operations 



If the operator acts on a valid topology and the state 
transition it generates is valid, then the resulting topology 
is a valid solid. Therefore, Euler’s law is never verified 
explicitly by the modeling system. 
Merits: 
• They ensure creating valid topology 
• They provide full generality and reasonable simplicity 
• They achieve a higher semantic level than that of 

manipulating faces, edges and vertices directly 
Demerits : 
• They do not provide any geometrical information to 

define a solid polyhedron 
• They do not impose any restriction 

Merits and Demerits of Euler Operations 



Advantages : 
• It is historically a popular modeling scheme related closely to 

traditional drafting 
• It is very appropriate tool to construct quite unusual shapes like 

aircraft fuselage and automobile bodies that are difficult to build 
using primitives 

• It is relatively simple to convert a B-rep model into a wireframe 
model because its boundary definition is similar to the wireframe 
definitions 

• In applications B-rep algorithms are reliable and competitive to 
CSG based algorithms 

Disadvantages : 
• It requires large storage space as it stores the explicit definitions of 

the model boundaries 
• It is more verbose than CSG 
• Faceted B-rep is not suitable for manufacturing applications 

Advantages and Disadvantages of B-rep 



Boundary Representation (B-Rep) 
• Euler’s rule applies of a simple polyhedron:  

 
 V – E + F = 2  
 
 where  
 V = number of vertices,  
 E = number of edges,  
 F = number of faces. 
 
• Euler-Poincare topological equation for solid with hole: 
  
 V - E + F - (L - F) -2 (S - G) = 0   
 
 where L = number of edge loops,  
 S = number of shells,  
 G = genus of solid (holes). 
 
• Surface must be closed 

https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI


Boundary/surface contains 
0D vertices, 1D edges, 2D faces 
There are 5 regular polyhedrons. 
 

Boundary Representation 

  
p   v   (p - 2)(v - 2)   Name   Description   
3   3   1   Tetrahedron   3 triangles at each vertex   
4   3   2   Cube   3 squares at each vertex   
3   4   2   Octahedron   4 triangles at each vertex   
5   3   3   Dodecahedron   3 pentagons at each vertex   
3   5   3   Icosahedron   5 triangles at each vertex   
  

Euler’s Formula 
for regular 
polyhedrons 
V - E + F = 2 

https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI


Euler’s formula for regular polyhedra 
We can determine all possible regular polyhedra; that 
is, those polyhedra with every face having the same 
number of edges, say, h; with every vertex having the 
same number of edges emanating from it, say, k; and 
every edge having the same length. Since every edge 
has two vertices and belongs to exactly two faces, it 
follows that Fh=2E=Vk . Substitute this into Euler’s 
formula: (page.294, Geometric modeling, Mortenson, 
1996) 
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Euler’s formula for regular polyhedra 
For a polyhedron, we safely assume that h, k ≥ 3. On 
the other hand, both h and k were larger than 3, then 
the above equation would imply that 
 
 
 
which is obviously impossible. Therefore, either h or k 
equals 3. If h=3, then   
 
implies that 3≤k≤ 5 . By symmetry, if k=3, then 3≤h≤5 . 
Thus, (h,k,E) =(3,3,6), (4,3,12), (3,4,12), (5,3,30), (3,5,30) 
are only possibilities. 
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Thus, (h,k,E) =(3,3,6), (4,3,12), (3,4,12), (5,3,30), (3,5,30) 
are only possibilities. They are, in fact, realized by the 
tetrahedron, the cube (hexahedron), the octahedron, 
the dodecahedron, and the icosahedron, respectively.  
 
Observe that we did not really use the fact that the 
edges of the polyhedron all have the same length. As 
long as the numbers h and k are constant, we still have 
only five possibilities (up to stretching or contracting).  
 

Regular  
polyhedrons 
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• Euler’s rule 
 
 V-E+F=2  
  
• Euler-Poincare rule 

 
 V-E+F-(L-F)-2(S-G)=0 

Boundary Representation  
(B-Rep) 

https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI


Euler’s rule V – E + F = 2  for simple polyhedron.  
Applying this formula to a cube yields 8 - 12 + 6 = 2 and 
to an octahedron yields 6 - 12 + 8 = 2.  
To apply Euler's formula,  
other conditions must also be met: 
1. All faces must be bounded by a single ring of edges, 

with no holes in the faces. 
2. The polyhedron must have no holes through it. 
3. Each edge is shared by exactly two faces and is 

terminated by a vertex at each end. 
4. At least three edges must meet at each vertex.      ??? 

 

Euler’s rule for simple polyhedron 
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Euler’s rule 
The polyhedra in Figure satisfy the four conditions and, 
therefore, Euler's formula applies.  
6 - 9 + 5 = 2   ,    10 - 15 + 7 = 2  
 
 
 
                                                            Figure. 

Vertices, edges, and faces 
satisfying Euler's formula. 

                          12 - 18 + 8 = 2   



Euler’s rule 
If we add vertices, edges, or faces to a polyhedron,  
we must do so in a way that satisfies Euler's formula 
and the four conditions. In Figure (a) we add an edge, 
joining vertex 1 to vertex 3 and dividing face 1, 2, 3, 4 
into two separate faces. We have added one face and 
one edge. These additions produce no net change to 
Euler's formula (since 0 - 1 + 1 = 0). 



Euler’s rule 
In Figure (b) we add vertices 9 and 10 and join them 
with an edge. The new vertices divide edges 1, 2, 3, 4, 
and the new edge 9, 10 divides face 1, 2, 3, 4. These 
changes, too, produce no net change to Euler's 
formula (since 2 - 3 + 1 = 0). 
 



Euler’s rule 
In Figure (c) we add one vertex, four edges, and four 
faces, but we delete the existing Face 2, 6, 7, 3.  
 
Again, this action produces no net change to Euler's 
formula (since 1- 4 + 3 = 0). 



Euler’s rule 
In Figure (d), where we attempt to add one vertex, two 
edges, and one face, the change is not acceptable. 
Although this change preserves Euler's formula (since 
1- 2 + 1 = 0), it does not satisfy the conditions requiring 
each edge to adjoin exactly two faces and at least 
three edges to meet at each vertex. 



Two kinds of changes are illustrated in the figure. In 
Figures (a) and (b) the solid shape of the polyhedron (in 
this case a cube) is preserved, and only the network 
of vertices, edges, and faces is changed. In Figure (c) 
the solid shape itself is modified by the change in the 
network defining it. 

Euler’s rule 



 
 
 
Body, Face, Polygon  
(Edge Loop), Edge, Vertex 
Euler Operators 
MBFV: Make body, face, vertex 
MME: Make multi edges 
MEF: Make edge, face 
KEML: Kill edge, make loop 
KFMLG: Kill face, make loop, genus 

B-rep 



Complete part representation including topological 
and geometrical data 
Geometry: shape and dimensions 
Topology: the connectivity and associativity of the 
object entities; it determines the relational information 
between object entities 

Solid B-Rep Example 

Faces 

Edges Vertices 



 
 
Topology 

 
Same Geometry,  

Different Topology 
 
 

Different Geometry,  
Same Topology 

Topology vs Geometry 

L2 

L1 

L3 

C1 P1 

R 

L2 

L1 

L3 

C1 P1 

R 

L2 

L1 

L3 

C1 P1 

R 

L2 

L1 

L3 

C1 P1 

R 



• Complete part representation including topological 
and geometrical data  

• Able to transfer data directly from CAD to CAE and 
CAM. 

• Support various engineering applications, such as 
mass properties, mechanism analysis, FEA/FEM and 
tool path creation for CNC, and so on. 

Solid B-Rep 



 

Sphere Punched by Three Tunnels 



winged edge    half (twin) edge   
 
 
 
 

 
twin edge [ doubly connected edge list] 

Polyhedral Boundary Representations 

f0 

f1 e 

e1
+ 

e1
- 

e0
+ 

e0
- 

v1 

v0 

- focus is on edge 

- edge orientation 
is arbitrary 

- represent edge as 2 halves 
- lists: vertex, face, edge/twin 
- more storage space  
- facilitates face traversal 
- can represent holes with face inner/outer edge pointer 

f0 

f1 e 

e4,0
 

v1 

v0 

e’s 
twin 

v2 

v7 

v6 

v5 

v3 

v4 

e0,1
 



Topology and geometry 

Winged Edge Data Structure 

Vertex 

Topology 
Object 

Genus 
Face 

Loop 

Edge 

Geometry 

Underlying 
Surface 
equation 

Curve 
equation 

Point 
coordinates 

Body F1 F2 E 

predecessor 2 

successor 2 

successor 1 

predecessor 1 

V2 

V1 



CGTopics (S10) 

Winged Edge Data Structure 

vs 

ve 

fleft fright 



There are many popular data structures used to represent 
polygonal meshes.  
While face-based structures store their connectivity in 
faces referencing their vertices and neighbors,  
edge-based structures put the connectivity information 
into the edges. Each edge references its two vertices, the 
faces it belongs to and the two next edges in these faces. 
If one now splits the edges (i.e. an edge connecting vertex 
A and vertex B becomes two directed halfedges from   
A to B and vice versa) one gets a halfedge-based data 
structure. The following figure illustrates the way 
connectivity is stored in this structure: 

face-based, half-edge based, edge-based 
structure 



used to represent polygonal  
meshes connectivity  
information  
in computer graphics.  

Half-Edge Data Structure 



Used in Computer Graphics programs. 

Half-Edge Data Structure 



. 

Half-Edge Facilitates  
Mesh Traversal 



Radial Edge representation of two faces joining along a 
common edge showing how the four edge uses of the 
common edge (each side of each face uses the edge) 
are connected  

Radial Edge non-manifold data structure 



Cross-sections of three and five faces sharing  
a common edge in the Radial Edge representation.  

Radial Edge non-manifold data structure 



B-Rep is appropriate to construct solid models of 
unusual shapes. 

CSG vs. B-Rep 

CSG 
• Simple representation 
• Limited to simple objects 
• Stored as binary tree 
• Difficult to calculate 
• Used in CAD systems as 

hybrid modeler 

B-Rep 
• Flexible and powerful 

representation 
• Stored explicitly 
• Can be generated from 

CSG representation 
• Used in CAD systems 

as hybrid modeler 



. 

CSG vs. B-Rep 



1. B-rep uses Euler operators in modeling. 
2. CSG needs low storage due to the simple tree 

structure and primitives. 
3. CSG primitives are constructed from the half-space 

concept. 
4. Directed surfaces, Euler operations and Euler’s law 

fundamentally distinguish the B-rep from wireframe 
modeling. 

5. Traditionally, CSG cannot model sculptured objects 
and thus is limited in modeling capability. (This is no 
longer true for Adv. CAD systems, such as Pro/E) 

CSG vs. B-Rep 



6.  It is easier to convert a CSG model to a wireframe 
model than to convert a B-rep model to a wireframe 
model. 

7.  Because both CSG and B-rep use face direction 
(half-space or surface normal), they can have a full 
“body knowledge.” 

8.  Generally speaking, most high-end CAD tools have 
the B-rep (or hybrid) method. 

9.   B-Rep requires more storage. 
10. B-Rep manipulation is slow with respect to CSG. 

CSG vs. B-Rep 



Modeling Porous Medium  
Modeling Non-homogeneous Materials  
• varying density 
• changing composition 
• multiple phases (solid, liquid) 
… 
Biomedical Applications (geometry,  
materials, motion and mechanics) 
• Medical Images (surgical operation  
• simulator, training and planning) 
• Computer models from CT scans  
• (quantify motion in actual knees) 

New Challenges to Geometric Modeling 



Solid Modeling                        Ref. Mantyla 

Introduction 
Aim of modeling: 
• The search of a media of communication 



Introduction (cont) 
Geometric modeling 
• Which parts of the objects are visible to the viewer? 

Colors? 



Introduction 
• Solid modeling 



Geometric Modeling 

Surface Modeling Solid Modeling 

CSG Voxels B-rep 

Winged Edge Halfedge 

OpenMesh 

{Alias Designer} 

Taxonomy 



Point Inclusion Test for CSG  
1. Classify against leaf primitives 
2. Propagate the result in the tree 

 

IN out 

IN IN 

out 



Volumetric Representation 



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=
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ijkv solid 
otherwise 



Octree 



Boundary Model 

Face, Edge, Vertex 

v 
e 

f 

0 1 

3 2 

4 5 

7 6 



Validity of Boundary Model 

Elements of the model  
•  should not self-intersect 
•  should not intersect each other unless at their boundary. 

Self-intersecting non-manifold (next page) 



Definition of Manifold 
For every point on the boundary,  
its neighborhood on the boundary is homeomorphic 
(topologically equivalent) to an open disc. 

disc 



Topologically Equivalent 



Examples of Non-Manifold Models 



Plane Models 

Mobius strip 

Torus 

Cylinder 

Edge identification 



Plane Model 

 
 

Each edge  (of a polygon) is assigned an orientation 
from one endpoint to the other 

Every edge is identified with exactly to one other edge 

For each collection of identified vertices, the polygons 
identified at that collection can be arranged in a cycle 
such that each consecutive pair of polygons in a cycle 
is identified at an edge adjacent to a vertex from the 
collection.  



Orientable Solids 
A plane model is orientable if the directions of its 
polygons can be chosen so that for each pair of 
identified edges, one edge occurs in its positive 
orientation, and the other one in its negative 
orientation 



Euler-Poincaré Formula (ref) 

V: the number of vertices 
E: the number of edges 
F: the number of faces 
G: the number of holes that penetrate the solid, usually referred 
to as genus in topology 
S: the number of shells. A shell is an internal void of a solid. A 
shell is bounded by a 2-manifold surface. Note that the solid 
itself is counted as a shell. Therefore, the value for S is at least 1. 
L: the number of loops, all outer and inner loops of faces are 
counted. 

( ) ( )GSFLFEV −=−−+− 2

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/euler.html


Examples 
Box: V-E+F-(L-F)-2(S-G) = 8-12+6-(6-6)-2(1-0)=0 
Open Box: V-E+F-(L-F)-2(S-G) = 8-12+5-(5-5)-2(0-0)=1 
Box w/ through hole:  
V-E+F-(L-F)-2(S-G) = 16-24+10-(12-10)-2(1-1)=0 
Box w/ blind hole:  
V-E+F-(L-F)-2(S-G) = 16-24+11-(12-11)-2(1-0)=0 
 
V-E+F-(L-F)-2(S-G) = 10-15+7-(7-7)-2(1-0)=0 
Invalid nonmanifold solid yet still yields ZERO! 
The equation for Open objects is  
V-E+F-(L-F)-(S-G) = 10-15+7-0-(1-0)=1 
 
 
 



Count Genus Correctly 

G = 3? 

G = 2!  

G = ? 



Euler Operators 

MVFS MEV 

MEF KEMR 

(Ring: loop) 



Global Operators 



Example:  
Euler Operators 



Winged-Edge Data Structure 

• Commonly used to describe polygon models 
• Quick traversal between faces, edges, vertices 
• Linked structure of the network 
• Assume there is no holes in each face 



Winged-Edge Data Structure 

• vertices of this edge 
• its left and right faces 
• the predecessor and successor when traversing its left face 
• the predecessor and successor when traversing its right face.  



Winged-Edge Data Structure 

Edge  Vertices  Faces  Left Traverse  Right Traverse  

Name  Start  End  Left  Right  Pred  Succ  Pred  Succ  

a  X  Y  1  2  d  b  c  e 

Edge Table 



Winged-Edge Data Structure 

Edge  Vertices  Faces  Left Traverse  Right Traverse  
Name  Start  End  Left  Right  Pred  Succ  Pred  Succ  

a  A  D  3 1 f e c b 
b  A  B  1 4 a c d f 
c  B  D  1 2 b a e d 
d  B  C  2 4 c e f b 
e  C  D  2 3 d c a f 
f  A  C  4 3 b d e a 



Winged-Edge Data Structure 

Vertex Name  Incident Edge  

A  a  

B  b  

C  d  

D  c  

• the vertex table and the face table 

Face Name  Incident Edge  

1  a  

2  c  

3  a  

4  b  



Winged-Edge Data Structure 
. 



Winged Edge Data Structure  
(Baumgart 1975) 

http://www.baumgart.org/winged-edge/winged-edge.html


Winged Edge  



Winged Edge Data Structure 
vs 

ve 

fleft fright 



Winged-Edge Data Structure 

For a face with inner loops 
are ordered clockwise. 
 
 
 
Adding an auxiliary edge 
between each inner loop 
and the outer loop  



Halfedge Data Structure 
• Modification of winged edge 
• Since every edge is used twice, 
 devise “halfedge” for this use 
• Can have loop to account  
 for multiply connected face 
 (face with multiple boundaries) 
• Can handle 

– Manifold models 
– Face with boundary 

• OpenMesh: a specialized halfedge 
implementation (for triangular meshes) 



Half-Edge Data Structure 
• Doubly connected edge list 



Object File Format (OFF) 
• Storing a description a 2D or 3D object 
• Simple extension can handle 4D objects 

– 4D: (x,y,z,w) 
 

• OFF File Characteristics 
– ASCII (there is also a binary version) 
– Color optional 
– 3D 
– No compression 

 



Object File Format(OFF) 



Object File Format(OFF) 



Polygon File Format 
• Stanford Triangle Format 
• Store 3-d data from 3D scanners 
• Properties can be stored including 

– color and transparency 
– surface normals 
– texture coordinates 
– data confidence values 



Stanford 3D Scanning Repository (url) 

Cyberware 3D Scanners (url) 

Large models also 
avaiable at GeogiaTech 

http://graphics.stanford.edu/data/3Dscanrep/
http://www.cyberware.com/
http://www.cc.gatech.edu/projects/large_models/


Polygon File Format 
• PLY structure 

– Header  
– Vertex List  
– Face List  
– (lists of other elements)  



Polygon File Format 



Scaling Transformations 
affect geometry but  
not topology of object 
 
                                            primitive shapes 

Source: Mortenson, Ch 10 



. 

Differential Scaling Transformations 

restrictions 

Source: Mortenson, Ch 10 



. 

Differential Scaling Transformations 

Sample restrictions:  thtaabtlhba 4,2,,0,,,, >>≤>

Source: Mortenson, Ch 10 



. 

Parameterized Shape of  
Variable Topology 

Source: Mortenson, Ch 10 



Moving an object along a path. 
• Generator = sweeping object: curve, surface, or solid 
• Director = path 
Common for modeling constant cross-section mechanical parts. 
Translational sweep (extrusion): moving a planar curve  
or planar shape along a straight line normal to plane of curve. 
More generally, sweep one curve  
along another. 
 
Rotational sweep: rotating a planar  
curve or shape (with finite area)  
about an axis. 

Sweep Solids 

Source: Mortenson, Ch 10 



some problematic situations  

Sweep Solids 

Source: Mortenson, Ch 10 



. 

Loss and Eshleman (1974) Position and 
Direction Specification for Swept Solids 

trimming  

Source: Mortenson, Ch 10 



. 

Loss and Eshleman (1974) Position and 
Direction Specification for Swept Solids 

Source: Mortenson, Ch 10 



 
 
 
 
Example: z-axis of rotation  

Surfaces of Revolution 

)(sin)(cos)(),( uuuu zxxp ++= θθθ

)()()( uuu zxp +=

Source: Mortenson, Ch 10 



More general example using  
cubic Hermite curve: goal is  
to find a Hermite patch  
describing the surface. 

Surfaces of Revolution 
axis of rotation  

Hermite curve  

angle of 
rotation  

Source: Mortenson, Ch 10 



Complex Model Construction 

Mortenson 
 Chapter 11 

  

Geometric Modeling 
91.580.201 



Topics 
• Topology of Models 

– Connectivity and other intrinsic properties 
• Graph-Based Models  

– Emphasize topological structure 
• Boolean Models 

– Set theory, set membership classification, Boolean 
operators 

• Boolean Model Construction 
• Constructive Solid Geometry 
• Boundary Models (B-Rep) 

 



Euler’s Formula for 3D Polyhedra: 2=+− FEV

Poincare’s Generalization to   n-
Dimensional Space: 

( )nNNN 11...210 −−=−+−

Euler-Poincare Formula:  
(G = genus = number of “handles”) 

0)1(2 =−−+− GFEV

 typo fixed 

Model Topology 



Model Topology  
(continued) 

https://www.google.com/url?sa=i&url=https://stackoverflow.com/questions/3154269/creating-and-intersecting-hexahedrons-with-cgal?rq=1&psig=AOvVaw2gBzEcMPsuh9Z9yvSrhJ6Y&ust=1585234328047000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIjar53wtegCFQAAAAAdAAAAABAq
https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI


2 ways to join a pair of  
edges (match numbers) 
 
                              preserves                                                                                 reverses  
                              orientation                                                                              orientation 
 
 
 
Topological Atlas  
and Orientability :  
The orientability indicated with arrows or numbers as shown above.  
We see that the orientation preserving arrows are in two opposite 
rotational directions i.e., clockwise and anticlockwise.  
While orientation reversing arrows are in the same rotational directions. 

Model Topology (continued) 



Schlegel Diagrams 
A common form of embedding graphs on planar faces 
is called Schlegel Diagram. It is a projection of its 
combinatorial equivalent of the vertices, edges and 
faces of the embedded boundary graph on to its 
surface. Here the edges may not cross except at their 
incident vertices and vertices may not coincide. 



Atlas of Cube 
An atlas of a cube can also be given by the 
arrangement of its faces as shown below 



Atlas of a cube  
 

Model Topology (continued) 

[(1,0) (2,0)] [(1,1) (5,0)] [(1,2) (4,0)] [(1,3) (3,0)] 
 
[(2,1) (3,3)] [(2,2) (6,2)] [(2,3) (5,1)] [(3,1) (4,3)] 
 
[(3,2) (6,3)] [(4,1) (5,3)] [(4,2) (6,0)] [(5,2) (6,1)] 

Edge 0 of face 1 
matched with 
edge 0 of face 2… 



Some examples of Atlases 
 
 

Model Topology  
(continued) 

Cylinder: 
orientable 

Mobius strip: 
non-orientable, 
open surface  

Klein bottle: non-orientable 
and does not fit into 3D 
without self-intersections 

Orientability is intrinsically defined: left and right are never reversed.  
Non-orientable: right & left are not intrinsically defined. 

Torus: 
orientable 



Model Topology (continued) 

Torus: 
orientable 

Klein bottle: 
non-orientable Projective plane: 

non-orientable 

Transition Parity = 1 means match up normally. 
Transition Parity = -1 means match up in reverse. 

Sphere: 
orientable 



Model Topology (continued) 
• Curvature of piecewise flat surfaces 

– Curvature concentrated at vertices 
– Sum up angle “excesses” of small paths around each 

vertex.  Let:  
• Ei be excess of a path around vertex i. 
• Ti be total turning of a path around vertex i. 

 
 
 

• where last part is for closed, piecewise flat surface 
 

∑∑∑∑
====

+−=−=−=−==
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1111
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πχχ 2    so     =+−= KFEV
χ = Euler characteristic, which is an intrinsic, topological invariant. 

fi = sum of interior angles of face i. 

Note this does not require knowledge of how edges are joined. 



Model Topology (continued) 

• Topology of Closed, Curved Surfaces 
– Net = arbitrary collection of simple arcs (terminated 

at each end by a vertex) that divide the surface 
everywhere into topological disks. 

– All valid nets on the same closed surface have the 
same Euler characteristic. 
 

• 2 elementary net transformations 
– Adding (or deleting) a face by modifying an edge 
– Adding (or deleting) a vertex 
χ is invariant under these net transformations. 

 



Model Topology (continued) 
• Euler Operators 

– Euler Object = connected 
network of faces, vertices, edges  

– All valid nets on the same closed 
surface have the same Euler 
characteristic. 

– Euler’s formula for polyhedra 
requires: 

– All faces are topological disks. 
– Object’s complement is 

connected. 
– Each edge adjoins 2 faces with 

vertex at each end. 
– At least 3 edges meet at each 

vertex. 



Model Topology (continued) 
• Spherical net example 

• Nets are proper:  
• collection of simple arcs (edges) 
• terminated at each end by a vertex 
• divide surface into topological disks 

• Curving edges preserves validity of Euler’s formula 
 
 



Model Topology (continued) 

 valid modifications to spherical nets 



Model Topology (continued) 

 valid modifications of (a) and (b) invalid modification of (c) 



Model Topology (continued) 

 C = number of polyhedral cells in 3D 



Model Topology (continued) 
 (a) Object with hole.    
External faces of hole are 
inadmissible.  

 (b) Edges added to correct 
inadmissibility. 

 H = # holes in faces 

 P = # holes entirely through object 

 B = # separate objects 

 formula 
modification 

 (c) Acceptable concavity. 

 (d) Adding edges satisfies 
original Euler formula. 



Model Topology  
(continued) 

 9 classes of topological relationships between pairs of 3 types of elements 

V 



Graph-Based Models 
• Geometric model 

emphasizing 
topological 
structure  

• Data pointers link 
object’s faces, 
edges, vertices 

• Trade-off: 
redundancy 
yields search 
speed 



Graph-Based Models (continued) 

• For planar-faced 
polyhedra 
connectivity 
(adjacency) 
matrices can be 
used. 



Graph-Based Models (continued) 



Boolean  
Models 



Boolean Models (continued) 
Set Membership Classification 

• Goal: define regularized set 
– closure of interior 
– no “dangling edges” or disconnected lower-

dimensional parts 
• Set membership classification differentiates 

between 3 subsets of any regularized set X: 
– bX: boundary of X 
– iX: interior of X 
– cX: complement of X 

 
 

iXbXX ∪=



Boolean Models (continued) 
Set Membership Classification 

• Some similar geometric modeling problems: 
– Point inclusion: point inside or outside a solid? 
– Line/polygon clipping: line segment vs. polygon 
– Polygon intersection: 2 polygons 
– Solid interference: 2 solids 



Boolean Models (continued) 

 Set Membership Classification 

 (a) 2 points 
same or 
different?  

 (b) point vs. 
curve: 3 cases  

 (c) point vs. 
curve or 
polygon  

 (d) point vs. 
curved or 
polyhedral 
object 



Boolean Models (continued) 

 Set Membership Classification 

 applicable to topological disc 



Boolean Models (continued) 

 Set Membership Classification 

 (a) point vs. 
sphere as 
parametric 
surface 
(assumes 
knowledge of 
closest point q) 

 (b) point vs. 
parallelepiped 
defined as 
Boolean 
intersection of 
half-spaces 



Boolean Models (continued) 



Boolean Models (continued) 

 2 regularized polygons A and B 

 edge of B 
intersects A in 
4 ways 

4th  way: intersection is a point 



Boolean Models (continued) 

 Point 2 is problematic with respect to intersection of A and B. 



Boolean Models (continued) 

 Outward pointing  
normals can aid  
intersection of  
3D solids A and B. 



Boolean Models (continued) 



Boolean Models (continued) 

 Degenerate intersection of 2 well-defined 2D objects. 
 



Boolean Models (continued) 

 Find intersection points. 
 Segment intersected edges. 

For Union: 

 - Find point on boundary of 
A outside B. 
- Trace around loop of edges. 
- Trace additional loops if 
needed. 



Boolean Models (continued) 
Intersection 

Set-theoretic and regularized Boolean intersections. 



Boolean Models (continued) 

 Intersection 

)()()()( iBiAiBbAbBiAbBbAC ∩∪∩∪∩∪∩=

bBbA∩ bBiA ∩

iBbA∩ iBiA ∩

 Boundary points can 
become interior points.  
Interior points cannot 

become boundary 
points. 

 Need to distinguish 
between segments 

1 & 2 (see next 
slide). 



Boolean Models (continued) 

 Intersection 

 Simpler test would use 
consistent 

parameterization 
directions and tangent 

vector directions. 

)()()()(*** iBiAiBbAbBiAbBbAValidiCbCC b ∩∪∩∪∩∪∩=∪=
 Summarizing overall intersection approach… 



Boolean Models (continued) 
Union 

iBiAbBbAiBiAiBbAbBiAbBbAC ∪∪∪=∪∪∪∪∪∪∪= )()()()(
Candidate components of a regularized Boolean union. 

)]([* bBbAValidiBiAiC i ∩∪∪=

)]()()[(* bBbAValidiAbBiBbAbBbAbC b ∩∪∩∪∩−∪=



Boolean Models (continued) 
Difference 

Candidate components of a regularized Boolean difference. 

)()()()(* iBbBiAbBbAValidbBiAiBbBbAC −−∪∩∪∩∪−−=

(c) & (d) 
appear 
same! 



Boolean Models (continued) 

 A encloses B. 

 Useful for 
modeling 
holes. 



Boolean Models (continued) 



Boolean Models (continued) 

 (a) – (c) produce standard results. 
 (d) – (f) produce invalid results. 
  Regularizing (d) – (f) yields null results. 



Boolean Models 
Coincidences problem 
 
 
Pseudo manifolds 



Algorithms for Boolean operations 
Based on face classification (Algorithm 1) 
Based on vertex classification (Algorithm 2)  
Algorithm 2 



Algorithm 2 (vertex classification) 
Algorithm Boolean Op (vertex classification) 
// 1. Classify existing vertices 
addVertices(A, B, LV); // add to LV vertices from A classified wrt B 
addVertices(B, A, LV); // add to LV vertices from B classified wrt A 
 
// 2. Compute new vertices 
Foreach edge e from A 
     foreach face f from B 
       if intersect(f,e)  add( intersectionVertex (f,e),LV) 
 
Foreach edge e from B 
     foreach face f from A 
        if intersect(f,e)  add( intersectionVertex (f,e),LV) 



Algorithm 2 
// 3. Select output vertices according to the boolean operation 
foreach vertex v in LV 
  if v.type=NEW  add(result,v) otherwise 
  case 
    union: if v.type = deAoutB or v.type = deBoutA  add(result,v) 
    inters: if v.type = deAinB or v.type = deBinA  add(result,v) 
    A-B : if v.type = deAoutB or v.type = deBinA  add(result,v) 
    B-A : if v.type = deAinB or v.type = deBoutA  add(result,v) 
  end 
  // 4. Build F:{V} from V:{F} 
  buildFaces(C) // change from reverse rep. to hierarchical rep. 
end 



Example 1: A-B 
. 



Step 1: Classify vertices 
. 



Step 3: Select output vertices 
. 



Step 4: Build faces 
. 



Step 4: Build faces 
. 



Step 4: Build faces 
 
 
. 



Step 4: Build faces 
To solve the indetermination: 
1. Sort the vertices involved according  
to the parameter of the supporting  
line: V8, V20, V19, V7 
2. Group forming pairs (will become  
edges of the result):  (V8, V20) (V19, V7). 



Example 2. Still A-B 
The domino algorithm can detect  
more than one cycle (faces with  
internal loops) 



Geometric tests 
• Point inside solid 

 
• Convexity of an edge 
• Sorting faces around a vertex 
• Classify cycles as interior/exterior 



Point inside solid 
. 



Sorting faces around a vertex 
. 



Classify cycles as in/out 
. 



Classify cycles as in/out 
parity=true 
C:=set of loops 
while C is not empty do 
        D := Ø 
       for each loop cx in C fer 
           if cx is inside to some loop cy in C then 
                 classify cx as an internal loop of cy 
           else D := D + {cx} 
         if parity then loops in D are exterior loops of faces 
         else the loops in D are interior loops 
         parity:=not parity 
         C:=C-D 
end 



Boolean Model Construction  
 Boolean Model: combination of  > 1 simpler solid objects. 

 Assume 
regularization. 

 Boolean Model is procedural: shows how to combine parts. 



Boolean Model  
Construction  (continued) 



Boolean Model Construction  (continued) 



Boolean Model Construction  (continued) 

(a) union of 
disjoint  A and B 

(b) difference of 
disjoint  A and B: 
A - B 

(c) union of A 
encompassing B 

(d) difference of A 
encompassing B: A - B 

(e)  B - A 

(f)  A – B yields 
2 objects 

(g) –(h): union of 
A and B 
 
(h) makes 
concavity 



Boolean Model Construction  (continued) 

(a) 2 intersecting, 
closed, planar 
curves intersect an 
even number of 
times. 

(b) If curves A and 
B do not intersect 
& a point of B is 
inside curve A, 
then B is inside A. 

(c) Closed, planar 
curve intersects 
3D solid an even 
number of times. 

(d) Plane P 
intersects bounding 
surface of S in 3 
disjoint, closed 
loops. 



Constructive Solid Geometry (CSG)  
CSG: Modeling methods defining complex solids as compositions of simpler solids. 

Leaves are 
primitive shapes. 

Internal nodes 
represent Boolean 
operations & their 
results. 

Root node 
represents final 
result. 



Constructive Solid Geometry  (continued) 



Constructive Solid Geometry  (continued) 



Constructive Solid Geometry  (continued) 



Constructive Solid Geometry  (continued) 
Refer to Figure 11.49 
on previous slide. 



Constructive Solid Geometry  (continued) 

 B  



Boundary Models 
 Boundary Model: complete representation of a solid as an organized 
collection of surfaces. 

 Boundary of a solid must be: 
 - closed 
 - orientable 
 - non-self-intersecting 
 - bounding 
 - connected 

 Region Rn is finite, 
bounded portion of En. 

],[ bi RRR =



Boundary Models (continued) 
Boundary Representation (B-Rep) 

• B-Rep minimal face 
conditions: 

– Number of faces is finite. 
– Face is subset of solid’s 

boundary. 
– Union of faces defines boundary. 
– Face is subset of more extensive 

surface (e.g. plane). 
– Face has finite area. 
– Face is dimensionally 

homogeneous (regularized). 



Boundary Models (continued) 
 Boundary Representation (B-Rep) 

Curved boundary faces require inside/outside convention. 
 



Boundary Models (continued) 
 Boundary Representation (B-Rep) 

Boundary representations are not unique. 
 



Boundary Models (continued) 
 Boundary Representation (B-Rep) 

 Merging vertex 1 with vertex 2 makes object invalid. 



Boundary Models (continued) 
 Boundary Representation (B-Rep) 

 
 Powerful B-rep systems view solid as union of general faces 
(e.g. parametric curves). 



Boundary Models (continued) 
 Boundary Representation (B-Rep) 

 U  

 0 value of 
parametric 
variable 

 2-step A U B: 
-Locate u1, u2 
-Identify active 
parametric 
regions. 

 Include C. 



Boundary Models (continued) 
 Boundary Representation (B-Rep) 

 Union of sphere with 
skew-truncated cylinder 



 
Introductory Notes on Geometric 

Aspects of Topology 
PART I: Experiments in Topology 

1964 
Stephen Barr 

(with some additional material from  
Elementary Topology by Gemignani) 

 
PART II: Geometry and Topology for Mesh Generation 

Combinatorial Topology 
2006 

Herbert Edelsbrunner 



PART I: Experiments in Topology 
What is Topology? 
• Rooted in: 

• Geometry (our focus) 
• Topology here involves properties preserved by transformations 

called homeomorphisms.  
• Analysis: study of real and complex functions 

• Topology here involves abstractions of concepts generalized from 
analysis 
• Open sets, continuity, metric spaces, etc. 

• Types of Topologists:  
• Point set topologists 
• Differential topologists 
• Algebraic topologists… 

 
 

Source: Gemignani 



Towards Topological Invariants 
• Geometrical topologists work with properties of an 

object that survive distortion and stretching. 
• e.g. ordering of beads on a string is preserved 

• Substituting elastic for string 
• Tying string in knots  

Source: Barr 



• Distortions are allowed if you don’t* 
• disconnect what was connected 

• e.g. make a cut or a hole (or a “handle”) 
• connect what was not connected 

• e.g. joining ends of previously unjoined string or filling 
in a hole 

 

Towards Topological Invariants 

Source: Barr 

Legal continuous bending and stretching transformations of torus into cup. 

Torus and cup are homeomorphic to each other. 

See caveat on next slide. 



Towards Topological Invariants 

Can make a break if we rejoin it afterwards in the same 
way as before.  
 
 
 
 
 
Trefoil knot and curve are homeomorphic to each other.   
They can be continuously deformed, via bending and stretching, into each 
other in 4-dimensional space*. 
 
• Barr states this as a conjecture; another source states is as a fact.  

Source: Barr 



Connectivity 
• Lump of clay is simply connected. 

• One piece 
• No holes 
• Any closed curve on it divides the whole surface  
 into 2 parts*: 

• inside 
• outside 
 
 
*Jordan Curve Theorem is difficult to prove. 

Source: Barr 



Connectivity (continued) 

• For 2 circles on simply connected surface, second circle is 
either 
• tangent to first circle 
• is disjoint from first circle 
• intersects first circle in 2 places 

• For 2 circles on torus 
• line need not divide surface into 2 pieces 
• 2 circles can cross each other at one point 

 

Source: Barr 



Connectivity (continued) 

• On a “lump of clay”, given a closed curve joined at 
two distinct points to another closed curve 
• Homeomorphism cannot change the fact that there are 

two joints. 
• No new joints can appear. 
• Neither joint can be removed. 

Source: Barr 



Connectivity (continued) 

• Preserving topological entities: 

Source: Barr 

3 connected 
curve 
segments 
partition 
surface of 
sphere into     
3 regions.  

“pulling” the 
curves onto this 
side preserves 
number of curve 
segments, 
regions, and 
connection 
points 

further 
distortion 
preserves 
topological 
entities 

2 connection 
points 



Revisiting Euler’s Formula for Polyhedra 
• V – E + F = 2 
 
• Proof generalizes 

formula and shows it 
remains true under 
certain operations. 

• Before the proof, verify 
formula for distorted 
embedding of 
tetrahedron onto 
sphere, which is a simply 
connected surface. 

Source: Barr 



Revisiting Euler’s Formula for Polyhedra 
(continued) 

• “Pull” arrangement of line 
segments around to front 
and verify formula. 

• This gives us a vehicle for 
discussing operations on a 
drawing on a simply 
connected surface. 

• Explore operations before 
giving the proof… 

Source: Barr 



Revisiting Euler’s Formula for Polyhedra 
(continued) 

• Operations must abide by rules: 
• Vertices must retain identity  
 as marked points in same order. 
• C0 connectivity is preserved 

 
• Figure is drawn on a simply connected surface. 
• Every curve segment has a vertex 

•  at its free end if there are any free ends 
• where it touches or crosses another curve segment 

• Any enclosure counts as a face. 

Source: Barr 



Revisiting Euler’s Formula for Polyhedra 
(continued) 

• For a single curve segment: 
• 1 unbounded face 
• 2 vertices  
• V – E + F = 2 – 1 + 1 = 2 

 
 
 

• Connecting the 2 ends preserves formula. 

Source: Barr 



Revisiting Euler’s Formula for Polyhedra 
(continued) 

Source: Barr 

Alternatively, 
cross first line 
with another. 

The only way to obtain a new face is by adding at least one edge. 
Edge must either connect with both its ends or be itself a loop. 



Revisiting Euler’s Formula for Polyhedra 
(continued) 

• Proof claims that the following 8 cases are 
exhaustive: 

Source: Barr 



Revisiting Euler’s Formula for Polyhedra 
(continued) 

Source: Barr 

-These are all the legal ways of adding 
edges and vertices. 
-Thus we can draw any such connected 
figure on a simply connected surface 
while preserving Euler’s formula. 
-Must also apply to polyhedra. 



PART II: Geometry and Topology 
for Mesh Generation 

Combinatorial Topology 
2006   Herbert Edelsbrunner 



Goals 
• Introduce standard topological language to facilitate 

triangulation and mesh dialogue. 
• Understand space: 

– how it is connected; 
– how we can decompose it. 

• Form bridge between continuous and discrete 
geometric concepts. 
– Discrete context is convenient for computation. 

Source: Edelsbrunner 



Simplicial Complexes: Simplices 
• Fundamental discrete representation of continuous space. 

– Generalize triangulation. 
• Definitions:   

– Points are affinely independent if no affine space of dimension i contains more 
than i +1 of the points. 

– k-simplex is convex hull of a collection of k +1 affinely independent points. 
 

– Face of σ :  
 
 
 
 
 

 
 
The 4 types of nonempty simplices in R3. 

 

Sconv=σ

Source: Edelsbrunner 
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Simplicial Complexes 

Source: Edelsbrunner 
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• Definition:  A simplicial complex is collection of faces of a finite number of 
simplices, any 2 of which are either disjoint or meet in a common face. 

 

Violations of the definition. 



Simplicial Complexes:  
Stars and Links 

Source: Edelsbrunner 
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• Use special subsets to discuss local structure of a simplicial complex. 
• Definitions:   

– Star of a simplex τ consists of all simplices that contain τ. 
– Link consists of all faces of simplices in the star that don’t intersect τ. 

Star is generally not closed.  Link is always a simplicial complex. 



Simplicial Complexes:  
Abstract Simplicial Complexes 

• Eliminate geometry by substituting set of vertices for 
each simplex. 
– Focus on combinatorial structure. 

• Definition: A finite system A of finite sets is an abstract 
simplicial complex if:  

Source: Edelsbrunner 

( ) AA ∈⇒⊆∈ βαβα  and 

Vert A is union of vertex sets. 

A is subsystem of power set of 
Vert A. 

A is a subcomplex of an n-simplex, 
where n+1 = card Vert A. 



Simplicial Complexes:  
Posets 

Source: Edelsbrunner 

• Definition: Set system with inclusion relation forms 
partially ordered set (poset), denoted: 

• Hasse diagram: 
– Sets are notes 
– Smaller sets are below larger ones 
– Inclusions are edges (implied includes not shown)  

),( ⊆A



Simplicial Complexes: Nerves 
• One way to construct abstract simplicial complex uses 

nerve of arbitrary finite set C: 
{ }0| Nrv /≠⊆= αα ICC

Source: Edelsbrunner 

( ) ( )CCC  Nrv Nrv Hence  . then  If ∈⇒∈⊆⊆= βαβααβ II
Nerve is therefore an abstract simplicial complex. 

Example: 
C is union of elliptical regions. 
Each set in covering corresponds 
to a vertex. 
k+1 sets with nonempty 
intersection define a k-simplex. 



Subdivision:  
Barycentric Coordinates 
• Two ways to refine complexes by decomposing 

simplices into smaller pieces are introduced later. 
• Both ways rely on barycentric coordinates. 

• Non-negative coefficients γi such that x = Σi γipi. 
   Σi γi=1 

Source: Edelsbrunner 
Barycenter (centroid) : all barycentric coordinates = 1/(k+1) 

Standard k-simplex = 
convex hull of 
endpoints of k+1 unit 
vectors. 



Subdivision:  
Barycentric Subdivision 
• Subdivision connecting barycenters of simplices. 
• Example: 

Source: Edelsbrunner 



Subdivision:  
Dividing an Interval 

• Barycentric subdivision can have unattractive numerical behavior. 
• Alternative: try to preserve angles. 

– Distinguish different ways to divide [0,1]: 
• (k+1)-division associates point x with division of [0,1] into pieces of lengths γ1, 

γ2, …,γk 

2
1

2 ≥γ

Source: Edelsbrunner 

Cut [0,1] into 2 
halves: 

2
1

0 ≥γ

2
1, 20 ≤γγ

Subdividing the rhombus: 2 
cases for dividing line of γ2 
with respect to separator of 
γ0 from γ1. 



Subdivision:  
Edgewise Subdivision 
. 

Source: Edelsbrunner 



Subdivision:  
Edgewise Subdivision 

Source: Edelsbrunner 



Topological Spaces: Topology 
• Topological notion of space (from point set topology) 

– and important special case of manifolds 
• Definition: A topological space is a point set X together with a 

system X of subsets                  that satisfies: 
i.     
ii.     
iii.      

• System X is a topology. 
– Its sets are the open sets in X. 

• Example: d-dimensional Euclidean space: Rd . 
– Use Euclidean distance to define open ball as set of all points closer 

than some given distance from a given point. 
– Topology of Rd is the system of open sets, where each open set is a 

union of open balls. 

X⊆A

Source: Edelsbrunner 
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Bijection (review) 

Source: Wolfram MathWorld 



Topological Spaces: 
Homeomorphisms 

• Topological spaces are considered same or of same type if they are 
connected in same way. 

• Homeomorphism is a function                         that is bijective, continuous, 
and has a continuous inverse. 

– “Continuous” in this context: preimage of every open set is open. 
• If homeomorphism exists, then X and Y are homeomorphic: 

– Equivalence relation: X and Y are topologically equivalent: 

YX →:f

Source: Edelsbrunner 
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Topological Spaces: Triangulation 
• Typically a simplicial complex 
• Polyhedron in Rd is the underlying space of a 

simplicial complex. 
• Triangulation of a topological space X is a simplicial 

complex whose underlying space is homeomorphic 
to X. 

Source: Edelsbrunner 



Topological Spaces: Manifolds 
• Defined locally: 

– Neighborhood of point              is an open set containing x. 
– Topological space X is a k-manifold if every           has a 

neighborhood homeomorphic to Rk. 
• Examples: 

– k-sphere: 

Xx ∈

Source: Edelsbrunner 
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Topological Spaces:  
Manifolds with Boundary 
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Source: Edelsbrunner 

• Now allow 2 types of neighborhoods to obtain more 
general class of spaces: 
– 2nd type is half an open ball: 

• Space X is a k-manifold with boundary if every point          
has a neighborhood homeomorphic to Rk or to Hk. 
– Boundary is set of points with a neighborhood 

homeomorphic to Hk. 

• Examples: 
– k-ball: 

Xx ∈



Topological Spaces: Orientability 
• Global property. 
• Envision (k+1)-dimensional ant walking on k-manifold. 

– At each moment ant is on one side of local neighborhood 
it is in contact with. 

– Manifold is nonorientable if there’s a walk that brings ant 
back to same neighborhood, but on the other side. 

– It is orientable if no such path exists. 
• Orientable examples: 

– Manifold: k-sphere 
– Manifold with boundary: k-ball 

• Nonorientable examples 
 

Source: Edelsbrunner 



Euler Characteristic: Alternating Sums 

Euler characteristic of a triangulated space. 
Euler Characteristic: Shelling 

Source: Edelsbrunner 



Euler Characteristic: Shelling 
. 

Source: Edelsbrunner 



 
 
 
 
 
 
. 

Euler Characteristic: Cell Complexes 

Source: Edelsbrunner 



Euler Characteristic: 2-Manifolds 

Source: Edelsbrunner 



3D geometric modeling needs continuous innovation 
to meet the requirements of  
additive manufacturing,  
generative design,  
and other cutting-edge design  
and manufacturing techniques.  
 
At the same time, geometric modelers should take 
advantage of new and improved computing 
environments. 

Parasolid 3D Geometric Modeling 



New version extends classic B-rep and facet B-rep 
modeling towards realizing the full power of 
Convergent Modeling Parasolid v30.0 delivers 
enhancements to classic B-rep to enable application 
developers to deliver sophisticated functionality more 
effectively to their end-users.  
 
Deformation of Mesh Faces 
 

Parasolid v30.0  
3D Geometric Modeling Engine 



Several enhancements with mesh data including :  
• Added mesh enquiry functions and identification of 

subsets of a mesh. 
• Creation of trimmed surfaces from a mesh and 

generation of polylines from isoclines. 
• Improved control over repair of mesh foldovers. 
• Improved performance of mesh-based operations. 
A trimmed surface (yellow) created from a mesh (red) 

Mesh-specific functionality 



Facet related tools enhancements have been provided.  
• Creation of edge blends for facet models. 
• Addition of direct modeling operations for deform, 

offset and replace of mesh faces. 
• Creation of B-curves from polylines and finding 

chains of smoothly connected edges. 
• Identification and deletion of redundant topologies 

and copying of construction and orphan geometry. 
• Calculation of the minimum distance between 

classic B-rep models and facet B-rep models. 

Facet B-rep modeling 



Facet B-rep enhancements cover modeling with facets 
and imported facet data repair, model editing.   
All Parasolid operations in future releases will support 
models containing arbitrary combinations of  
classic B-rep geometry and facet B-rep geometry.  
Enhancements have been added to classic B-rep 
blending and Boolean operations 

Parasolid v30.0 



• Improved control over the direction of rotational 
transforms in order to add or remove material. 

• Increased body tapering operations 
• Improved the accuracy of minimum radii 

calculations on B-surfaces. 
• Improved detection of clashes in mirror transforms 

of topologies.  
 
Rotating a face (Blue)  
to either add material (Left) or remove material (Right) 

Rotational transform: 



• Trimmed solution on a periodic surface blend. 
• Identification of underlying surfaces that have 

curvature similar to an edge blend being applied. 
• Improved behavior when topology tolerances are 

involved in Boolean auto-matching operations. 
• Imprinting and merging on complex grid-like faces. 

B-rep blending and Boolean operations 
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