

Advanced CAD

Solids

Hikmet Kocabas
Prof. PhD.
Istanbul Technical University

Lectures, Outline of the course

1 Advanced CAD Technologies
2 Geometric Modeling
3 Transformations
4 Parametric Curves
5 Splines, NURBS
6 Parametric Surfaces
7 Solid Modeling
8 API programming

Face

Boundary

Textbooks

- Computer Aided Engineering Design, Anupam Saxena, Birendra Sahay, Springer, 2005
- CAD/CAM Theory and Practice, Ibrahim Zeid, McGraw Hill, 1991, Mastering CAD/CAM, ed. 2004
- The NURBS Book, Les Piegl, Springer-Verlag, 1997
- Solid Modeling with DESIGNBASE, Hiroaki Chiyokura, Addison-Wesley Pub., 1988
- 3D CAD Principles and Applications, H Toriya, Springer-Verlag, 1991

References

- Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Fourth Edition, Gerald Farin, September 1996
- Geometric Modeling, Second Edition, Michael E. Mortenson, John Wiley \& Sons, January 1997
- Mathematical Elements for Computer Graphics, Rogers, D.F., Adams, J.A., McGraw Hill, 1990.

3D Analytic Shape Representation

- Triangular meshes, polygonal meshes
- Analytic (commonly-used) shape
- Quadric surfaces, sphere, ellipsoid, torus

- Superquadric surfaces, superellipse, superellipsoid
- Blobby models, tetrahedron, pyramid, hexahedron

CLASSIFICATION OF GEOMETRIC ELEMENTS

Geometric Elements

Warped
Ruled
Nonruled
Freeform

Single Ruled
Helicoid Conoids Cylindroids Warped Cones Cow's Hor

Double Ruled

Hyperbolic Paraboloid Hyperboloid (1 nappe)

Sphere Ellipsoids

Prolate Oblate Paraboloid of Revolution Hyperboloid of Revolution Torus Serpentine Forms of Revolution

Geometric Modeling

A typical solid model is defined by solids, surfaces, curves, and points.

Solids are bounded by surfaces. They represent solid objects. Analytic shape

Surfaces are bounded by lines. They represent surfaces of solid objects, or planar or shell objects.

Curves are bounded by points. They represent edges of objects.

Geometric Modeling

There is a built-in hierarchy among solid model entities. Points are the foundation entities. Curves are built from the points, Surfaces from curves, Solids from surfaces.

Polyhedron

Surface Modeling

Bezier, B-spline and NURBS surface is a tensor product surface and is the product of two curves.

Surfaces are defined by grid and have two sets of parameters, two sets of knots, control points and so on.

Solid Modeling

Solid Models are complete, valid and unambiguous. Models have interior, volume, and mass properties.

While no representation can describe all possible solids, a representation should be able to represent a useful set of geometric objects.

Solid Modeling

A solid object is defined
 by the interior volume space contained within the defined boundary of the object.

A closed boundary is needed to define a solid object,

- informationally complete, compact, valid representation
- points in space to be classified relative to the object, if it is inside, outside, or on the object
- store both geometric and topological information, can verify whether two objects occupy the same space
- improves the quality of design, improves visualization, and has potential for functional automation and integration.

Solid Modeling

Support using volume information

- weight or volume calculation, centroids, moments of inertia calculation,
- stress analysis (finite elements analysis), heat conduction calculations, dynamic analysis,
- system dynamics analysis

Using volume and boundary information

- generation of CNC codes, robotic and assembly simulation

Solid Modeling

Solids models must satisfy the following criteria: Rigidity: Shape of object remains fixed when manipulated.
Homogeneity: All boundaries remain in contact.
Finiteness: No dimension can be infinite.
Divisibility: Model yields valid sub-volumes when divided.

Requirements for Solid Representation

Uniqueness

That is, there is only one way to represent a particular solid. If a representation is unique, then it is easy to determine if two solids are identical since one can just compare their representations. Accuracy
A representation is said accurate if no approximation is required.

Requirements for

Solid Representation

Validness

This means a representation should not create any invalid or impossible solids.

Closure

Solids will be transformed and used with other operations such as union and intersection. "Closure" means that transforming a valid solid always yields a valid solid

Requirements for Solid Representation

Compactness and Efficiency
A good representation should be compact enough for saving space and allow for efficient algorithms to determine desired physical characteristics

Requirements for Solid Representation

 Validity of the B-Rep (Boundary representation) Solid modelThe boundary of a face is made up of edges that are not allowed to intersect each other.

The faces of a model can only intersect in common edges or vertices.

Pyramid on base

Invalid

Solid modeling

 techniquesSurface Based 2-Manifolds Models, ${ }^{2 \cdot D}$ maniold
 Space Subdivision, Cell Decompositions, Octree Model,

(a) Solid

(b) Spatial occupancy

(c) Octree encoding

2-D non-manifold 3D Parametric Solid, Primitive Instantiation Primitive Instancing, \int

Solid modeling techniques

Sweeping, Half Spaces,

CSG, B-rep

Solid Modeling (cont.)

The most common solid-modeling techniques used by CAD systems are:

- Pre-defined geometric Primitive instancing,
- Sweeping in the form of extrusion and revolving
- Constructive Solid Geometry (CSG tree structure)
- Boundary representation (B-rep)
- Feature Based Modeling
(uses feature-based primitives)
- Parametric Modeling (ASM, uses 3D parametric solid)

Solid modeling approaches

Boundary Representation

Solids BRep:

7 Faces
8 Vertices
14 Edges
(B-rep)

Sweeps

Solids Swept:

- Operations:
union, intersection and difference.

1 Base block
1 Circular profile
1 Straight path to sweep the cutting circle through the block

Solid modeling approaches

Hybrid (Feature based modelers)


```
HOLE = {
    raduus = 5 inches
    height = 3 inches
    x_position = 1.5 inches
    y_position = 1.5 inches
    x_rotation = 90 degrees
    radius_tolerance }=0.001\mathrm{ inches
```

Octree Modeling

Octree

Parametric Solid

Analytical Solid Modeling (ASM, FEM)

$$
P(u, v, w)=\sum_{i=0}^{n} \sum_{j=0}^{m} \sum_{k=0}^{\prime} p_{i, j, k} B_{i, 4}(u) B_{j, 4}(v) B_{k, 4}(w)
$$

$$
x=x(u, v, w) y=y(u, v, w) \text { and } z=z(u, v, w)
$$

Primitive Instancing and Sweeping

Primitive instancing (Feature) refers to the scaling of simple geometrical models (primitives) by manipulating one or more of their descriptive parameters.

Most simple geometric primitives can be generated by a sweeping ("extrusion") process.

skinning

rotational

Cell decomposition of solid object

Space partitioning model Spatial-occupancy enumeration

(b) Spatial occupancy enumeration

Octree

(c) Octree encoding

Cell decomposition example

Feature-based modeling

Past Approach

The graphical information is represented using

(c) Pocket low level graphical elements such as points, lines, arcs, etc. The textual information is represented as texts, notes and symbols attached to a drawing.

Ideal/Present Approach - feature-based modeling To represent part geometry using high-level feature primitives such as holes, slots, pockets, etc. (consistent to the engineering practice), and to represent dimensions, tolerances, surface finishes, etc. as meaningful design entities.

Feature-Based Design

Features are specific geometrical shapes on a part that can be associated with certain fabrication processes.
Features can be classified as form (geometric elements), material, precision (tolerancing data), and technological (performance characteristics).
The primary objectives of design by features:

- Increase the efficiency of the designer during the geometric-modeling phase, and
- Provide a bridge (mapping) to engineering-analysis and process-planning phases of product development.

Feature-Based Design

Open slot Through hole

(a)

Chamfering

(c)

Pocket

(b)

Hole

(d)
fillet

Machining Features

Design by Features

A solid model is configured through a sequence of form-feature attachments to the primary representation of the part.
Features could be chosen from a library of pre-defined features or could be extracted from the solid models of earlier designs.

Feature Recognition

Currently, feature recognition refers to examination of parts' solid models for the identification of predefined features and for their extraction.
In the future, extraction methods will examine a part's solid model for the existence of geometric features that have not been predefined and extract them:

- Such features would, then, be classified and coded for possible future use in a Group technology GT-based CAD system - Namely, these features would be extractable based on a user-initiated search for the most-similar feature in the database via a GT-code.

Constructive Solid Geometry (CSG)

- Based on simple geometric primitives
- cube, parallelepiped, prism, pyramid, cone, sphere, torus, cylinder, solid by points etc.
- Primitives are positioned and combined using boolean operations
- union (addition)
- difference (subtraction)
- Intersection
- Represented as a boolean tree

CSG Primitives

Based on simple geometric primitives: cube, parallelepiped, prism, pyramid, cone, sphere, torus, cylinder, solid by points etc.

Half Spaces used in CSG modeling

Surface descriptions

(a) Piecewise linear loops

(b) Circular loops

(c) General curve loops

Block

Cylinder

Cone

Wedge

Spherical

Sphere

$\left(x^{2}+y^{2}+z^{2}-R_{2}^{2}-R_{1}^{2}<4 R_{2}^{2}\left(R_{1}^{2}-z^{2}\right)\right.$

- Infinite cylinder, $I: x^{\wedge} 2+y^{\wedge} 2-r^{\wedge} 2<=0$
- Infinite planar halfspace, P: Ax + By + Cz + D <= 0

CSG Half Spaces

- Planar half-space

$$
H=\{(x, y, z): z<0\}
$$

- Cylindrical half-space
- Cylinder with ends: I^{\wedge} P1^ P2

Block: $\{(x, y, z): 0<x<W, 0<y<H$, and $0<z<D\}$
Cylinder. $\left\{(x, y, z): x^{2}+y^{2}<R^{2}\right.$, and $\left.0<z<H\right\}$

CSG modeling by Half Spaces

The solid modeling technique is based upon the "half-space" concept using set operations.
The boundary of the model separates the interior and exterior of the modeled object. Half spaces form a basic representation scheme for bounded solids.
Example of Half Spaces:

$$
S=U\left(\bigcap_{i=0}^{n} H_{i}\right)
$$

Advantages and Disadvantages of Half Spaces

Advantages:
The main advantage is its conciseness of representation compared to other modeling schemes.
It is the lowest level representation available for modeling a solid object

Disadvantages:

$$
S=U\left(\bigcap_{i=0}^{n} H_{i}\right)
$$

The representation can lead to unbounded solid models as it depend on user manipulation of half spaces.
The modeling scheme is cumbersome for ordinary users

Boxed half space geometry

Boxed half space operands

Constructive Solid Geometry
CSG modelers allow designers to combine a set of primitives through Boolean operations:

- Operations:
union, intersection and difference.
- Primitives:
cuboids, cylinders, prisms, pyramids, spheres, cones.

CSG boolean tree Examples

CSG tree examples

 Union, U Intersection, nDifference, or Subtraction, -

CSG rendering

union

difference

intersection

OpenSCAD demos

Constructive Solid Geometry (CSG)

- A tree structure combining primitives via regularized boolean operations
- Primitives can be solids or half spaces

A Sequence of Boolean Operations

- Boolean operations
- Rigid transformations

The Induced CSG Tree

Can also be represented as a directed acyclic graph (DAG)

Issues with

Constructive Solid Geometry

- Non-uniqueness
- Choice of primitives
- How to handle more complex modeling?
- Sculpted surfaces? Deformable objects?

Non-Uniqueness
There is more than one way to model the same artifact. Hard to tell if A and B are identical.

Alternative Paths of Modeling

Difference, or Subtraction, -

(b) Possible solid model of the solid

Issues with CSG

- Minor changes in primitive objects greatly affect outcomes

(a)
- Shift up top solid face

(b) $A-{ }^{*} B$

(d)

(c) $A U^{\star} B$

(e)

Solid Object Definitions

Solids are point sets : Boundary and interior

Boundary points

Points where distance to the object and the object's complement is zero Interior points

All the other points in the object

Closure

Union of interior points and boundary points

Issues with 3D Set Operations

- Ops on 3D objects can create "non-3D objects" or objects with non-uniform dimensions
- Objects need to be "Regularized"
- Take the closure of the interior

Input set

(b)

Closure

(c)

Interior

Regularized

Regularized Boolean Operations

- 3D Example
- Two solids A and B
- Intersection leaves a "dangling wall"
- A 2D portion hanging off a 3D object
- Closure of interior gives a uniform 3D result

Boolean Operations

- Other Examples:
- (c) ordinary intersection
- (d) regularized intersection
- AB-objects on the same side
- CD - objects on different sides

Boolean Operations

CSG Building Operations

The main building operations are regularized set operations like union (U^{*}), intersection (Ω^{*}) and difference (-*).
Hence the CSG models are known as set-theoretic, boolean or combinatorial models.
The Boolean operations are based on the set theory and the closure property. These operations are considered higher-level operations than B-rep Euler operations.
Some implementations of solid modelers provide derived types of operations like ASSEMBLE and GLUE
\cap^{*} regularized set operation

CSG History Tree of Design

History Tree of Design

(2.1)

(3.1)

a History Tree
(3.3)
(3.2)

$$
C=A \cap B \quad C^{*}=A \cap^{*} B
$$

CSG History Tree of Design

Quadric Surface Intersection Curves

Figure-eight intersections.

Main algorithms in CSG Operations

1. Edge / Solid intersection algorithm
2. Computing set membership classification
a) Divide and conquer : It is like ray tracing. Instead of a ray an edge is used as a reference
b) Neighborhood : It deals with in, on and out decisions

When a point is in the interior of solid face then it is called face neighborhood
Edge neighborhood occurs when the point lies on the solid edge When a point is a vertex, vertex neighborhood occurs. This is a complex case because the point is shared between three solid faces.

Neighborhoods, vertex, edge, face merge

Edge-Neighborhood Merge, General Position

Edge-Neighborhood Merge Producing an Edge

Edge-Neighborhood Merge Producing a Face

Membership classification

Summary of a CSG algorithm

The following steps describe a general CSG algorithm based on divide and conquer (D \& C) approach:

1. Generate a sufficient number of t-faces, set of faces of participating primitives, say A and B.
2. Classify self edges of A w.r.t A including neighborhood.
3. Classify self edges of A w.r.t B using D \& C paradigm. If A or B is not primitive then this step is followed recursively. 4. Combine the classifications in step 2 and 3 via Boolean operations.
4. Regularize the 'on' segment that result from step 4 discarding the segments that belong to only one face of S.

Summary of a CSG algorithm

6. Store the final 'on' segments that result from step 5 as part of the boundary of S. Steps 2 to 6 is performed for each of t-edge of a given t-face of A.
7. Utilize the surface/surface intersection to find cross edges that result from intersecting faces of B (one at a time) with the same t-face mentioned in step 6.
8. Classify each cross edge w.r.t S by repeating steps 2 to 4 with the next self edge of A.
9. Repeat steps 5 and 6 for each cross edge 10. Repeat steps 2 to g for each t-face of A.
10. Repeat steps 2 to 6 for each t-face of B.

A CSG Example

Create the CSG model of the following solid

Geometry of the primitives
BLOCK A: $\quad x_{L}=a-d, y_{L}=d, z_{L}=c, P_{A}(x, y, z)=P_{A}(d, 0,-c)$
BLOCK B: $\quad x_{L}=d, y_{L}=b, z_{L}=c, P_{B}(x, y, z)=P_{B}(0,0,-c)$
CYLINDER C: $R=R, H=d, P_{C}(x, y, z)=P_{C}(d+a / 2, d,-c / 2)$

CSG example, Regularized set operations Neighborhoods, Memberships

Point-inside-solid test (for CSG)

function classify(P:point, n:nodeCSG) return InOnOut if isLeaf(n) then case (n.type)

Box: r:=classifyBox(P,n) Cylinder: $r:=c l a s s i f y C y l i n d e r(P, n)$ Sphere: r :=classifySphere (P, n)
else
rA: = classify (P, n.left)
rB:= classify (P, n.right)
$r:=$ combine(n.operation, rA, rB)
end
return r
end

Combina(op, A, B)

AUB	in	on	out
in	in	in	in
on	in	on	on
out	in	on	out
$\mathbf{A}^{\wedge} \mathbf{B}$	in	on	out
in	in	on	out
on	on	on	out
out	out	out	out
A-B	in	on	out
in	out	on	in
on	out	on	on
out	out	out	out

Line-solid classification

Solid A : [11,in] [12,out]
Solid B : [13,on] [14,out]

Resultat de la unió : [11,in] [12,on] [14,out] (s'han hagut de compactar dos intèrvals "in")

Resultat de la intersecció : [11,out] [13, on] [12,out] (s'han hagut de compactar dos intèrvals "out")

Unlone at top of tree

CSG

Normalization

$((((A \cap B)-C) \cup(((D \cap B) \cap G)-F) \cup H)$

1. $X-(Y \cup Z) \rightarrow(X-Y)-Z$
2. $X \cap(Y \cup Z) \rightarrow(X \cap Y) \cup(X \cap Z)$
3. $X-(Y \cap Z) \rightarrow(X-Y) \cup(X-Z)$
4. $X \cap(Y \cap Z) \rightarrow(X \cap Y) \cap Z$
5. $X-(Y-Z) \rightarrow(X-Y) \cup(X \cap Z)$

Push unions towards
6. $X \cap(Y-Z) \rightarrow(X \cap Y)-Z$
7. $(X-Y) \cap Z \rightarrow(X \cap Z)-Y$
8. $(X \cup Y)-Z \rightarrow(X-Z) \cup(Y-Z)$
9. $(X \cup Y) \cap Z \rightarrow(X \cap Z) \cup(Y \cap Z)$

Properties of CSG models

Advantages:
validity: CSG model is always valid;
conciseness: CSG tree is in principle concise; computational ease: primitives are easy to handle; unambiguity: every CSG tree unambiguously models a rigid solid.

Disadvantages:

non-uniqueness: a solid could have more than one representation. limit on primitives: free-form surfaces are excluded, and primitives are bounded by simple low order algebraic surfaces. redundancy of CSG tree: it may have redundant primitives in tree. no explicit boundary surface information: CSG needs to be evaluated.

Boundary Representation B-Rep Solid Modeling

Boundary representation, B -rep is that a 3D object model is enclosed by surfaces (faces) and has its own interior and exterior. It describes the shape as a collection of surfaces which seperate its interior from the external environment. It is suitable for complex designs, Polygon facets are one of the examples of boundary representation. Both polyhedra and curved objects can be modeled using the following topological primitive entities. Vertex : It is a point where two or more edges meet with another. Edge : It is a line or curve enclosed between two vertices.
Fin: A fin represents the oriented use of an edge by a loop.
Loop : It is a hole in a face.
Face : It is a surface or plane of a solid.
Body : It is an independent solid and has seperate shells. Genus : It is a through hole (handle) in a solid.

Boundary Representation B-Rep Solid Modeling

B-Rep Solid Modeling

BODY

REGION
Data storage structures

| Vertex\# | | Location | Edge\# | Vertices | Polygon\# |
| :--- | :--- | :--- | :--- | :--- | :--- | Edges 1 (1)

ATTRIB

Attributes can be connected to any of the entities shown

Vertex\#	Location	Polygon\#	Vertices
V1	$\mathbf{0 , 5 , 0}$	P1	V1,V2,V4
V2	$\mathbf{4 , 1 5 , 0}$	P2	V2,V3,V4
V3	$\mathbf{4 , 1 0 , 0}$		
V4	$\mathbf{8 , 0 , 0}$		

Relationships between
 Parasolid topological entities

Parasolid topological entities in a body

Topology Description

Face A face is a bounded subset of a surface, the) (the whose boundary is a collection of zero or more loops. A face with zero loops forms a closed entity, such as a full spherical face.
Loop A loop is a connected component of a face boundary. A loop can have: an ordered ring of distinct fins, a set of vertices
Fin A fin represents the oriented use of an edge by a loop.
Edge An edge is a bounded piece of a single curve. Its boundary is a collection of zero, one or two vertices.
Vertex A vertex represents a point in space. A vertex has a single point, which may be null.

Boundary Representation

B-Rep models describe solids topologically, comprising faces, edges and vertices - surface oriented models:

3D B-Rep Boundary Representation model

Three-dimensional boundary representation.

Boundary Representation

- The B-Rep method represents a solid as a collection of boundary surfaces. The database records both of the surface geometry and the topological relations among these surfaces.
- Boundary representation does not guarantee that a group of boundary surfaces (often polygons) form a closed solid.
- The data are also not in the ideal form for model calculations.
- This B-Rep representation is used mainly for graphical displays.

Boundary Representation (B-rep)

Object List -- giving object name, a list of all its boundary surfaces, and the relation to other objects of the model.
Surface List -- giving surface name, a list of all its component polygons, and the relation to other surfaces of the object. Polygon List -- giving polygon name, a list of all boundary segments that form this polygon, and the relation to other polygons of the surface.
Boundary List -- giving boundary name, a list of all line segments that for this boundary, and the relation to other boundary lines of the polygon.
Line List -- giving line name, the name of its two end points, and the relation to other lines of the boundary line.
Point List -- giving point name, the X, Y and Z coordinates of the point and, and the relation to other end point of the line.

Model Conversions, hybrid solid modelers

CSG models are quite concise and can be converted into B-Rep models, which in turn are useful for graphical outputs.
Many CAD systems have a hybrid data structure, using both CSG and B-rep at the same time.
Catia, Solidworks, I-DEAS and Pro-Engineer CAD software packages are hybrid solid modelers that allow user input, and subsequent data storage, in both CSG and B-Rep structures.

Graphical User Interface \rightarrowCSG Modeler \rightarrowCSG Tree B-Rep Modeler B-Rep Model \downarrow \downarrow		
	Application Program	Graphical Output

Solid Modeling

B-rep modeling data structure

14 Lines
2 Circles

Octree solid representation Manifold modeling

Solid Modeling

Shape Variation Due to Parameter Values
A CSG model design cannot be displayed or converted to Brep boundary representation, since different parameter assignments could lead to totally different shapes.

Extruding a Face

Error in Face Extrusion

Manifold and non-manifold modeling

Manifold, manifold-with-boundary, and non-manifold

2-D non-manifold

Non-Manifold / Open Parts

Manifold Parts

- Non-manifold parts have,
- vertices with less than 3 adjoining faces
- edges with more or less than two adjoining faces - etc.

Non two-manifold surface

Manifold and non-manifold modeling

Non-manifold Surfaces

A Non-manifold Object
Non-oriented
Manifolds

Klein bottle

Manifold and non-manifold modeling

The 2-manifold is a fundamental concept from algebraic topology and differential topology. It is a surface embedded in R^{3} such that the infinitesimal neighborhood around any point on the surface is topologically equivalent ('locally diffeomorphic') to a disk. Intuitively, the surface is 'watertight' and contains no holes or dangling edges. Typically, the manifold is bounded (or closed). For example, a plane is a manifold but is unbounded and thus not watertight in any physical sense. A manifold-with-boundary is a surface locally approximated by either a disk or a half-disk. All other surfaces are non-manifold.

Boundary Representation (B-Rep)

Solids represented by faces, edges and vertices
Topological rules must be satisfied to ensure valid objects

- faces bounded by loop of edges
- each edge shared by exactly two faces
- each edge has a vertex at each end
- at least 3 edges meet at each vertex

this is not valid solid object:

Brep and CSG polyhedral representations

the CSG polyhedral
 representation

The underlying structure to be recorded

 Brep

Principal exchange possibilities for solid models

	Receiving system type		
type of sending system	CSG	B-rep	polyhedron
CSG	exact	the CSG expression must be eval- uated into B-rep	the CSG primitives must be approximated by polyhedra; the approximate model must then be evaluated to produce a polyhedron model
B-rep	not possible	exact	curves and surfaces in the model must be approximated by straight lines and planes
polyhedron	not possible	exact	exact

Boundary Representation (B-Rep)

Closed Surface : One that is continuous without breaks.
Orientable Surface : One in which it is possible to distinguish two sides by using surface normals to point to the inside or outside of the solid under consideration.

Boundary Model : Boundary model of an object is comprised of closed and orientable faces, edges and vertices. A database of a boundary model contains both its topology and geometry.
Topology : Created by Euler operations
Geometry : Includes coordinates of vertices, rigid motions and transformations

Boundary Representation (B-Rep)

Involves surfaces that are

- closed, oriented manifolds embedded in 3-space

A manifold surface:

- each point is homeomorphic to a disc

A manifold surface is oriented if:

- any path on the manifold maintains the orientation of the normal An oriented manifold surface is closed if:
- it partitions 3-space into points inside, on, and outside the surface A closed, oriented manifold is embedded in 3-space if:
- Geometric (and not just topological) information is known

Object Modeling with B-rep

Both polyhedra and curved objects can be modeled using the following primitives

- Vertex : A unique point (ordered triplet) in space.
- Edge : A finite, non-self intersecting directed space curve bounded by two vertices that are not necessarily distinct.
- Face : Finite, connected, non-self intersecting region of a closed, orientable surface bounded by one or more loops.
- Loop : An ordered alternating sequence of vertices and edges. A loop defines non-self intersecting piecewise closed space curve which may be a boundary of a face.
- Body : An independent solid. Sometimes called a shell has a set of faces that bound single connected closed volume. A minimum body is a point (vortex) which topologically has one face one vortex and no edges. A point is therefore called a seminal or singular body.
- Genus : Hole or handle.

Boundary Representation

Euler Operations (Euler-Poincare' Law): The validity of resulting solids is ensured via Euler operations which can be built into CAD/CAM systems.
Volumetric Property calculation in B-rep: It is possible to compute volumetric properties such as mass properties (assuming uniform density) by virtue of Gauss divergence theorem which converts volume integrals to surface integrals.

Euler-Poincare Law

Leonhard Euler (1707-1783),Henri Poincaré (1854-1912)
Euler (1752) proved that polyhedra that are homeomorphic to a sphere are topologically valid if they satisfy the equation:
$F-E+V-L=2(B-G) \quad$ General
$F-E+V=2$
Simple Solids
$F-E+V-L=B-G$
Open Objects
$\begin{array}{lll}\text { F=Face } & \mathrm{E}=\text { Edge } & \mathrm{V}=\text { Vertices } \\ \mathrm{B}=\text { Bodies } & \mathrm{L}=\text { Faces' inner Loop } & \mathrm{G}=\text { Genus }\end{array}$
Polygonal Loops satisfy $(L)(V)-(L)\left(E_{l}\right)=0$

B-Rep of cylinder and circle

The extended Euler-Poincarré $F-E+V-L=2(B-G)$
formula allow test the topology for polyhedral solids :

Boundary Model of Sphere, manifold topology test:

$$
\begin{gathered}
\text { Faces }=\mathrm{F}=3 \\
\text { Vertices }=\mathrm{V}=0 \\
\text { Edges }=\mathrm{E}=2 \\
3+0-2-0 \neq 2(1-0)
\end{gathered}
$$

$$
F=1 \quad V=1 \quad E=1
$$

$$
1+1-1-0 \neq 2(1-0)
$$

$$
F=2 \quad V=1 \quad E=1
$$

$$
2+1-1-0=2(1-0)
$$

Cylinder with upper and lower cap: $F=3 \quad V=2 \quad E=2$

$$
F=3 \quad V=2 \quad E=3
$$

$$
3+2-2-1=2(1-0)
$$

Euler Operations

A connected structure of vertices, edges and faces that always satisfies Euler's formula is known as Euler object. The process that adds and deletes these boundary components is called an Euler operation.

Applicability of Euler formula to solid objects:

- At least three edges must meet at each vertex.
- Each edge must share two and only two faces
- All faces must be simply connected (homeomorphic to disk) with no holes and bounded by single ring of edges.
- The solid must be simply connected with no through holes

Validity Checking for Simple Solids

$$
F-E+V=2 \text { Simple Solids }
$$

Validity Checking for Simple Solids

$F-E+V=2$ Simple Solids

$E=3$
$V=2$
$F=3$
$3-3+2=2$
$E=2$
$V=2$
$F=2$
$2-2+2=2$

$$
\begin{aligned}
& E=2 \\
& V=2 \\
& F=2 \\
& 2-2+2=2
\end{aligned}
$$

B-rep Models

Suppose a solid with flat faces and no holes has F faces, E edges, and V vertices.

A tetrahedron is the simplest:
$F=4, E=6, V=4$
In this case $F+V-E=2$.
This is also true for a cuboid (try it). Is it true in general?

$$
\begin{aligned}
& E=12 \\
& V=8 \\
& F=6 \\
& 6-12+8=2
\end{aligned}
$$

B-rep Models

Suppose we have two solids, 1 and 2, and we know that the formula is true for each of them because we've counted. Suppose also that the solids each have a face which is the mirror image of the corresponding face on the other (the shaded pentagons). These faces don't have to be pentagons; say in general that they each have n edges.
What happens if we glue the solids together at the shaded faces to make a more complicated object, called 3?
The two faces disappear, so we know that: $\mathrm{F}_{3}=\mathrm{F}_{1}+\mathrm{F}_{2}-2$
Two sets of n vertices become one : $\quad V_{3}=V_{1}+V_{2}-n$
Two sets of n edges become one :

$$
E_{3}=E_{1}+E_{2}-n
$$

B-rep Models

The two faces disappear :

Two sets of n vertices become one: $\mathrm{V}_{3}=\mathrm{V}_{1}+\mathrm{V}_{2}-\mathrm{n}$
Two sets of n edges become one: $\quad E_{3}=E_{1}+E_{2}-n$
So $\quad F_{3}+V_{3}-E_{3}=F_{1}+F_{2}-2+V_{1}+V_{2}-n-\left(E_{1}+E_{2}-n\right)$
we can rearrange:

$$
F_{3}+V_{3}-E_{3}=\left(F_{1}+V_{1}-E_{1}\right)+\left(F_{2}+V_{2}-E_{2}\right)-n+n-2
$$

But we know that the first two parts in brackets both equal 2. The n terms cancel, leaving us with:

$$
F_{3}+V_{3}-E_{3}=2
$$

So the formula $F+V-E=2$ works for all solids without holes, because we can start with simple solids (like the tetrahedron).

B-rep Models

So the formula $F+V-E=2$ works for all solids without holes, because we can start with simple solids (like the tetrahedron) for which we know the formula is true, and build complicated solids by gluing faces together. $\mathrm{F}_{3}+\mathrm{V}_{3}-\mathrm{E}_{3}=\mathrm{F}_{1}+\mathrm{F}_{2}-2+\mathrm{V}_{1}+\mathrm{V}_{2}-\mathrm{n}-\left(\mathrm{E}_{1}+\mathrm{E}_{2}-\mathrm{n}\right)$ This is known as the Euler-Poincaré formula, after its discoverers. What about solids with holes? Most real engineering components have holes, so we have to be able to deal with them. Think about gluing together two objects such that they will make an object with a hole:
The argument in the proof above about edges and vertices stays the same, but now

$$
F_{3}=F_{1}+F_{2}-2(1+H)
$$

where there are H holes. This gives us: $F+V-E=2-2 H$

B-rep Models

So the formula $F+V-E=2$ works for all solids without holes, the formula where there are H holes $F+V-E=2(1+H)$
Check for this object: $F=16, E=32, V=16, H=1$ So it works for that.
What about this one?
$F=10, E=24, V=16, H=1$ WRONG!

The problem is caused by the flat faces with rings of edges and vertices 'floating' in them unconnected by edges to the other vertices.

B-rep Models
 $F=10, E=24, V=16, H=1$

WRONG! $F+V-E=2(1+H)$

2 Shells

The problem is caused by the flat faces with rings of edges and vertices 'floating' in them unconnected by edges to the other vertices.
If we fix that up (say there are R rings), and also allow for the fact that we may want to describe two or more completely separate objects (called shells; suppose there are S of them), we come to the final version of the Euler-Poincaré formula:
$F+V-E-R=2(S-H)$
The number of holes through an object, \boldsymbol{H}, is called the genus of the object.

Loops (rings),Genus \& Bodies

Genus zero

Genus one

Genus two

One inner loop

Validity Checking for Polyhedra with inner loops

$$
F-E+V-L=2(B-G) \quad \text { General }
$$

$$
\begin{aligned}
& E=36 \\
& F=16 \\
& V=24 \\
& L=2 \\
& B=1 \\
& G=0 \\
& 16-36+24-2=2(1-0)=2
\end{aligned}
$$

Validity Checking for Polyhedra with holes

Validity Checking for Polyhedra with through holes (handles)

Validity Checking for Open Objects

$$
F-E+V-L=B-G
$$

Wireframe polyhedra

Shell polyhedra

Lamina polyhedra

Exact vs. Faceted B-rep Schemes

Exact B-rep : If the curved objects are represented by way of equations of the underlying curves and surfaces, then the scheme is Exact B-rep.
Approximate or faceted B-rep : In this scheme of boundary representation any curved face divided into planar faces. It is also know as tessellation representation.

Exact B-rep: Cylinder and Sphere

Faceted cylinder and sphere

Data structure for B-rep models

IfcSeamCurve

SeamCurve entity definition in B-rep

Use of a
Seam Curve bounding a cylindrical surface

Advanced B-rep

The diagram shows the topological and geometric representation items that are used for advanced B-reps, based on IfcAdvancedFace.

OrientedEdge Advanced B-rep

Right circular cone and cylinder geometry

Swept disk geometry rectangular pyramid Sphere

Revolved area

Winged Edge Data structure

All the adjacency relations of each edge are described explicitly. An edge is adjacent to exactly two faces and hence it is component in two loops, one for each face.
As each face is orientable, edges of the loops are traversed in a given direction. The winged edge data structure is efficient in object modifications (addition, deletion of edges, Euler operations).

Building Operations

$$
F-E+V-L=2(B-G) \quad \text { General }
$$

The basis of the Euler operations is the above equation. M and K stand for Make and Kill respectively.

Operation	Operator	Complement	Description
Initiate Database and begin creation	MBFV	KBFV	Make Body Face Vertex
Create edges and vertices Create edges and faces	MEV MEKL MEF MEKBFL MFKLG	KEV KEML KEF KEMBFL KFMLG	Make Edge Vertex Make Edge Kill Loop Make Edge Face Make Edge Kill Loop Genus
Glue	KFEVMG KFEVB	MFEVKG MFEVB	Kill Face Edge Vertex Make Genus Kill Face Edge Vertex Body
Composite Operations	MME ESPLIT KVE	KME ESQUEEZE	Make Multiple Edges Edge Split Kill Vertex Edge

Transition States of Euler Operations

$$
F-E+V-L=2(B-G) \quad \text { General }
$$

While creating B -rep models at each stage we use Euler operators and ensure the validity.

Operator	F	E	V	L	B	G
MBFV	1	0	1	0	1	0
MEV	0	1	1	0	0	0
MEKL	0	1	0	-1	0	0
MEF	1	1	0	0	0	0
MEKBFL	-1	1	0	-1	-1	0
MFKLG	1	0	0	-1	0	-1
KFEVMG	-2	$-n$	$-n$	0	0	1
KFEVB	-2	$-n$	$-n$	0	-1	0
MME	0	n	n	0	0	9
ESPLIT	0	1	1	0	0	9
KVE	$-(n-1)$	$-n$	-1	0	0	9

Operator	Complement	Description		
MBFV	KBFV	Make Body Face Vertex		
MEV	KEV	Make Edge Vertex		
MEKL				
MEF				
MEKBFL	KEML	Make Edge Kill Loop		
MFKLG	KEMBFL	KFMLG		Make Edge Face
:---				
Make Edge Kill Body, Face Loop				
KFEVMG				
KFEVB				

Euler Operations

$$
F-E+V-L=2(B-G)
$$

Euler Operations

$$
F-E+V-L=2(B-G)
$$

Building operations

Merits and Demerits of Euler Operations

If the operator acts on a valid topology and the state transition it generates is valid, then the resulting topology is a valid solid. Therefore, Euler's law is never verified explicitly by the modeling system.

Merits:

- They ensure creating valid topology
- They provide full generality and reasonable simplicity
- They achieve a higher semantic level than that of manipulating faces, edges and vertices directly

Demerits:

- They do not provide any geometrical information to define a solid polyhedron
- They do not impose any restriction

Advantages and Disadvantages of B-rep

Advantages:

- It is historically a popular modeling scheme related closely to traditional drafting
- It is very appropriate tool to construct quite unusual shapes like aircraft fuselage and automobile bodies that are difficult to build using primitives
- It is relatively simple to convert a B-rep model into a wireframe model because its boundary definition is similar to the wireframe definitions
- In applications B-rep algorithms are reliable and competitive to CSG based algorithms
Disadvantages:
- It requires large storage space as it stores the explicit definitions of the model boundaries
- It is more verbose than CSG
- Faceted B-rep is not suitable for manufacturing applications

Boundary Representation (B-Rep)

- Euler's rule applies of a simple polyhedron:

$$
V-E+F=2
$$

where

$V=$ number of vertices,
$E=$ number of edges,
$F=$ number of faces.

- Euler-Poincare topological equation for solid with hole:
$V-E+F-(L-F)-2(S-G)=0$
where $L=$ number of edge loops, $S=$ number of shells,
$G=$ genus of solid (holes).
- Surface must be closed

Boundary Representation

 Boundary/surface contains oD vertices, 1D edges, 2D faces There are 5 regular polyhedrons.| p | v | $(\mathrm{p}-2)(\mathrm{v}-2)$ | Name | Description |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 3 | 1 | Tetrahedron | 3 triangles at each vertex |
| 4 | 3 | 2 | Cube | 3 squares at each vertex |
| 3 | 4 | 2 | Octahedron | 4 triangles at each vertex |
| 5 | 3 | 3 | Dodecahedron | 3 pentagons at each vertex |
| 3 | 5 | 3 | Icosahedron | 5 triangles at each vertex |

	Face polygons	vertices	Edges	Faces	Faces at a vertex
Tetrahedron	Triangles	4	6	4	3
Cube	Squares	8	12	6	3
Octahedron	Triangles	6	12	8	4
Dodecahedron	Pentagons	20	30	12	3
Icosahedron	Triangles	12	30	20	5

Euler's formula for regular polyhedra

We can determine all possible regular polyhedra; that is, those polyhedra with every face having the same number of edges, say, \mathbf{h}; with every vertex having the same number of edges emanating from it, say, $\mathbf{k}_{;}$and every edge having the same length. Since every edge has two vertices and belongs to exactly two faces, it follows that $\mathrm{Fh}=\mathbf{2 \mathrm { E } = \mathrm { Vk } \text { . Substitute this into Euler's }}$ formula: (page.294, Geometric modeling, Mortenson, 1996)

$$
\begin{gathered}
V-E+F=2 \\
\frac{2 E}{k}-E+\frac{2 E}{h}=2 \\
\frac{1}{E}=\frac{1}{h}+\frac{1}{k}-\frac{1}{2}
\end{gathered}
$$

$$
V-E+F=2 \quad \frac{2 E}{k}-E+\frac{2 E}{h}=2 \quad \frac{1}{E}=\frac{1}{h}+\frac{1}{k}-\frac{1}{2}
$$

Euler's formula for regular polyhedra

For a polyhedron, we safely assume that $\mathbf{h}, \mathbf{k} \geq 3$. On the other hand, both \mathbf{h} and \mathbf{k} were larger than 3 , then the above equation would imply that

$$
0<\frac{1}{E}=\frac{1}{h}+\frac{1}{k}-\frac{1}{2} \leq \frac{1}{4}+\frac{1}{4}-\frac{1}{2}=0
$$

which is obviously impossible. Therefore, either h or k equals 3 . If $\mathrm{h}=3$, then $0<\frac{1}{E}=\frac{1}{3}+\frac{1}{k}-\frac{1}{2}$ implies that $\mathbf{3} \leq \mathrm{k} \leq 5$. By symmetry, if $\mathrm{k}=3$, then $\mathbf{3} \leq \mathrm{h} \leq 5$. Thus, $(h, k, E)=(3,3,6),(4,3,12),(3,4,12),(5,3,30),(3,5,30)$ are only possibilities.

	Face polygons	vertices	Edges	Faces	Faces at a vertex	Tetrahedron (four faces)	Cube or hexahedron (six faces)	Octahedron (eight faces)	Dodecahedron (twelve faces)	Icosahedron (twenty faces)
Tetrahedron	Triangles	4	6	4	3		\bigcirc		1	-
Cube	Squares	8	12	6	3		\rightarrow	-	+	
Octahedron	Triangles	6	12	8	4		$1>$,		
Dodecahedron	Pentagons	20	30	12	3			1		
Icosahedron	Triangles	12	30	20	5					

Regular polyhedrons

Thus, $(h, k, E)=(3,3,6),(4,3,12),(3,4,12),(5,3,30),(3,5,30)$ are only possibilities. They are, in fact, realized by the tetrahedron, the cube (hexahedron), the octahedron, the dodecahedron, and the icosahedron, respectively.

Observe that we did not really use the fact that the edges of the polyhedron all have the same length. As long as the numbers h and k are constant, we still have only five possibilities (up to stretching or contracting).

Boundary Representation

 (B-Rep)- Euler's rule

$$
V-E+F=2
$$

- Euler-Poincare rule

(a) Simple polyhedra

$$
V-E+F-(L-F)-2(S-G)=0
$$

- The extended Euler-Poincarré formula allow test the topology for polyhedral solids:

Faces $=3$
Vertices = 0
Edges $=2$
3+0-2-0...2(1-0)

(c) Polyhedra with not through holes

(d) Polyhedra with handles (through holes)

Euler's rule for simple polyhedron

Euler's rule $V-E+F=2$ for simple polyhedron.
Applying this formula to a cube yields $8-12+6=2$ and to an octahedron yields $6-12+8=2$ To apply Euler's formula, other conditions must also be met:

1. All faces must be bounded by a single ring of edges, with no holes in the faces.
2. The polyhedron must have no holes through it. 3. Each edge is shared by exactly two faces and is terminated by a vertex at each end.
3. At least three edges must meet at each vertex.

Euler's rule

The polyhedra in Figure satisfy the four conditions and, therefore, Euler's formula applies.
$6-9+5=2, \quad 10-15+7=2$

$$
\begin{aligned}
& V=12 \\
& E=18 \\
& F=8
\end{aligned}
$$

Figure.
Vertices, edges, and faces satisfying Euler's formula.

$$
12-18+8=2
$$

Euler's rule

If we add vertices, edges, or faces to a polyhedron, we must do so in a way that satisfies Euler's formula and the four conditions. In Figure (a) we add an edge, joining vertex 1 to vertex 3 and dividing face $1,2,3,4$ into two separate faces. We have added one face and one edge. These additions produce no net change to Euler's formula (since $0-1+1=0$).

(a)

Euler's rule

In Figure (b) we add vertices 9 and 10 and join them with an edge. The new vertices divide edges $1,2,3,4$, and the new edge 9,10 divides face $1,2,3,4$. These changes, too, produce no net change to Euler's formula (since 2-3+1=0).

(b)

Euler's rule

In Figure (c) we add one vertex, four edges, and four faces, but we delete the existing Face $2,6,7,3$.

Again, this action produces no net change to Euler's formula (since 1-4+3=0).

(c)

Euler's rule

In Figure (d), where we attempt to add one vertex, two edges, and one face, the change is not acceptable. Although this change preserves Euler's formula (since $1-2+1=0$), it does not satisfy the conditions requiring each edge to adjoin exactly two faces and at least three edges to meet at each vertex.

(d)

Euler's rule

Two kinds of changes are illustrated in the figure. In Figures (a) and (b) the solid shape of the polyhedron (in this case a cube) is preserved, and only the network of vertices, edges, and faces is changed. In Figure (c) the solid shape itself is modified by the change in the network defining it.

(a)

(b)

(c)

(d)

B-rep

Body, Face, Polygon
(Edge Loop), Edge, Vertex Euler Operators

Operation	Operator	Complement	Descrip
Initialize database and begin creation	MBFV	KBFV	Make Body, Fi
Create edges and vertices	MEV	KEV	Make Edges, I
Create edges and faces	MEKL	KEML	Make Edge, K
	MEF	KEF	Make edge, Fa
	MEKBFL	KEMBFL	Make Edge, K
	MFKLG	KFMLG	Make Face, Ki
Glue	KFEVMG	MFEVKG	Kill Face, Edg
	KFEVB	MFEVB	Kill Face, Edg
Composite operations	MME	KME	Make Multipl
	ESPLIT	ESQUEEZE	Edge-Split
	KVE		Kill Vertex, E

M : Make, K : Kill
MEF (makes F)
MEF (makes F_{10})

Solid B-Rep Example

Complete part representation including topological and geometrical data
Geometry: shape and dimensions
Topology: the connectivity and associativity of the object entities; it determines the relational information between object entities

Topology vs Geometry

- Topology: faces, edges and vertices.
- Geometry: surfaces, curves and points.

Topology

Same geometry, different mesh topology

Same mesh topology, different geometry

Solid B-Rep

- Complete part representation including topological and geometrical data
- Able to transfer data directly from CAD to CAE and CAM.
- Support various engineering applications, such as mass properties, mechanism analysis, FEA/FEM and tool path creation for CNC, and so on.

Sphere Punched by Three Tunnels

The Genus is 2

Polyhedral Boundary Representations

 winged edge- focus is on edge - edge orientation is arbitrary half (twin) edge

twin edge [doubly connected edge list]
- represent edge as 2 halves
- lists: vertex, face, edge/twin
- more storage space
- facilitates face traversal
- can represent holes with face inner/outer edge pointer
- Topology: faces, edges and vertices.
- Geometry: surfaces, curves and points.

Winged Edge Data Structure

Topology and geometry

Winged Edge Data Structure

```
class Vertex {
    Vec3 pos;
public:
    Vertex() {pos= vl_0;}
    Vertex (double x, double y, double z) {pos = Vec3(x,y,z);}
    void setpos (double x, double y, double z) {pos = Vec3(x,y,z);}
    void printpos() {cout << pos << endl;}
};
class Edge {
    Vertex *vs, *ve;
    Face *fleft, *fright;
public:
    Edge() {fleft = fright = NULL;};
    Edge (Vertex *v1, Vertex *v2) {vs = v1, ve = v2, fleft = fright = NuLL;}
    void setLface(Face* f) {fleft = f;}
    void setRface(Face* f) {fright = f;}
    Vertex* startV() {return vs;}
    Vertex* endV() {return ve;}
    bool vertexInE (Vertex* v) {return (v == vs) || (v == ve);}
    void printedge();
};
Class Face {
    Edge* edges[3];
public:
    Face () {};
    void setEdge(int i, Edge* edge) {edges[i] = edge;}
CGT Edge* findPreE (Edge *e);
};
```


face-based, half-edge based, edge-based

 structureThere are many popular data structures used to represent polygonal meshes.
While face-based structures store their connectivity in faces referencing their vertices and neighbors, edge-based structures put the connectivity information into the edges. Each edge references its two vertices, the faces it belongs to and the two next edges in these faces. If one now splits the edges (i.e. an edge connecting vertex A and vertex B becomes two directed halfedges from A to B and vice versa) one gets a halfedge-based data structure. The following figure illustrates the way connectivity is stored in this structure:

Half-Edge Data Structure

used to represent polygonal meshes connectivity information in computer graphics.

- Each vertex references one outgoing halfedge, i.e. a halfedge that starts at this vertex (1).
- Each face references one of the halfedges bounding it (2).
- Each halfedge provides a handle to
- the vertex it points to (3),
- the face it belongs to (4)
- the next halfedge inside the face (ordered counter-clockwise) (5),
- the opposite halfedge (6),
- (optionally: the previous halfedge in the face (7)).

Half-Edge Data Structure

Used in Computer Graphics programs.

Key idea: two half-edges act as "glue" between mesh elements

Each vertex, edge and face points to one of its half edges
Use twin and next pointers to move around mesh
Process vertex, edge and/or face pointers
struct Halfedge \{ Halfedge *twin, Halfedge *next;

Vertex *vertex;
Edge *edge;
Face *face;

\}

struct Vertex \{
Point pt;
Halfedge *halfedge;
\}
struct Edge \{
Halfedge *halfedge;

\}

struct Face \{
Halfedge *halfedge;

Half-Edge Facilitates

 Mesh Traversal```
Halfedge* h = f->halfedge;
do {
 process(h->vertex);
 h = h->next;
}
while(h != f->halfedge);
```

Basic operations for linked list: insert, delete
Basic ops for half-edge mesh: flip, split, collapse edges


Allocate / delete elements; reassign pointers
(Care needed to preserve mesh manifold property)

## Radial Edge non-manifold data structure

Radial Edge representation of two faces joining along a common edge showing how the four edge uses of the common edge (each side of each face uses the edge) are connected



## Radial Edge non-manifold data structure

Cross-sections of three and five faces sharing a common edge in the Radial Edge representation.


CSG vs. B-Rep
$B$-Rep is appropriate to construct solid models of unusual shapes.

## CSG

- Simple representation
- Limited to simple objects
- Stored as binary tree
- Difficult to calculate
- Used in CAD systems as hybrid modeler


## B-Rep

- Flexible and powerful representation
- Stored explicitly
- Can be generated from CSG representation
- Used in CAD systems as hybrid modeler


## CSG vs. B-Rep

- Solid modeling systems

Comparison between CSG and B-rep representations.

|  | Storage of Model | Detail Level |
| :---: | :---: | :---: |
| CSG | Implicit | Low |
| B-rep | Explicit | High |

Advantages (A) and Disadvantages (D) comparisons.

|  | Complexity | Uniqueness | History of <br> Construction | Use in <br> Interactive <br> Environment | Local <br> Operations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CSG | A | D | A | D | D |
| B-rep | D | A | D | A | A |

CSG vs. B-Rep

1. B-rep uses Euler operators in modeling.
2. CSG needs low storage due to the simple tree structure and primitives.
3. CSG primitives are constructed from the half-space concept.
4. Directed surfaces, Euler operations and Euler's law fundamentally distinguish the B-rep from wireframe modeling.
5. Traditionally, CSG cannot model sculptured objects and thus is limited in modeling capability. (This is no longer true for Adv. CAD systems, such as Pro/E)

## CSG vs. B-Rep

6. It is easier to convert a CSG model to a wireframe model than to convert a B-rep model to a wireframe model.
7. Because both CSG and B-rep use face direction (half-space or surface normal), they can have a full "body knowledge."
8. Generally speaking, most high-end CAD tools have the B-rep (or hybrid) method.
9. B-Rep requires more storage.
10. B-Rep manipulation is slow with respect to CSG.

## New Challenges to Geometric Modeling

Modeling Porous Medium
Modeling Non-homogeneous Materials

- varying density
- changing composition
- multiple phases (solid, liquid)

Biomedical Applications (geometry, materials, motion and mechanics)

- Medical Images (surgical operation
- simulator, training and planning)
- Computer models from CT scans
- (quantify motion in actual knees)



## Solid Modeling

## Ref. Mantyla

 IntroductionAim of modeling:

- The search of a media of communication



## Introduction (cont)

Geometric modeling

- Which parts of the objects are visible to the viewer?

Colors?


## Introduction

- Solid modeling



## Taxonomy

## Geometric Modeling



OpenMesh

## Point Inclusion Test for CSG

1. Classify against leaf primitives
2. Propagate the result in the tree


## Volumetric Representation



## Octree


(a) -
(c)


(b)

## Boundary Model



Figure 6.2 Basic constituents of boundary models.


## Validity of Boundary Model



- should not intersect each other unless at their boundary.


## Definition of Manifold

For every point on the boundary, its neighborhood on the boundary is homeomorphic (topologically equivalent) to an open disc.


## Topologically Equivalent



## Examples of Non-Manifold Models


(c)

Figure 3.4 Solids with nonmanifold surfaces.


## Plane Models

Edge identification


Cylinder


Mobius strip

## Plane Model



Each edge (of a polygon) is assigned an orientation from one endpoint to the other
Every edge is identified with exactly to one other edge
For each collection of identified vertices, the polygons identified at that collection can be arranged in a cycle such that each consecutive pair of polygons in a cycle is identified at an edge adjacent to a vertex from the collection.

## Orientable Solids

A plane model is orientable if the directions of its polygons can be chosen so that for each pair of identified edges, one edge occurs in its positive orientation, and the other one in its negative orientation

## Euler-Poincaré Formula (ref)

$$
V-E+F-(L-F)=2(S-G)
$$

V: the number of vertices
$E$ : the number of edges
$F$ : the number of faces
G: the number of holes that penetrate the solid, usually referred to as genus in topology
S: the number of shells. A shell is an internal void of a solid. A shell is bounded by a 2-manifold surface. Note that the solid itself is counted as a shell. Therefore, the value for $\mathbf{S}$ is at least 1.
L: the number of loops, all outer and inner loops of faces are counted.

## Examples

Box: V-E+F-(L-F)-2(S-G) $=8$-12+6-(6-6)-2(1-0)=0 Open Box: V-E+F-(L-F)-2(S-G) $=8-12+5-(5-5)-2(0-0)=1$ Box w/ through hole:
V-E+F-(L-F)-2(S-G) $=16-24+10-(12-10)-2(1-1)=0$ Box w/ blind hole:
V-E+F-(L-F)-2(S-G) $=16-24+11-(12-11)-2(1-0)=0$
$\mathrm{V}-\mathrm{E}+\mathrm{F}-(\mathrm{L}-\mathrm{F})-2(\mathrm{~S}-\mathrm{G})=10-15+7-(7-7)-2(1-0)=0$ Invalid nonmanifold solid yet still yields ZERO!
The equation for Open objects is
$\mathrm{V}-\mathrm{E}+\mathrm{F}-(\mathrm{L}-\mathrm{F})-(\mathrm{S}-\mathrm{G})=10-15+7-0-(1-0)=1$
$F-E+V-L=B-G$

## Count Genus Correctly



$$
G=\text { ? }
$$

$$
G=3 ?
$$

$$
G=2!
$$

## Euler Operators



(a)

KEMR


(b) $\uparrow$

(a)
(b)

## MEF


(c)

## Global Operators


(a)

(b)

## Example:

## Euler Operators



(g)

(j)

(b)

(k)

(i)

(1)

Figure 9.11 Example of Euler operators.

## Winged-Edge Data Structure

- Commonly used to describe polygon models
- Quick traversal between faces, edges, vertices
- Linked structure of the network
- Assume there is no holes in each face


## Winged-Edge Data Structure



- vertices of this edge
- its left and right faces
- the predecessor and successor when traversing its left face
- the predecessor and successor when traversing its right face.


## Winged-Edge Data Structure



| Edge | Vertices |  | Faces |  | Left Traverse |  | Right Traverse |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Start | End | Left | Right | Pred | Succ | Pred | Succ |
| a | X | Y | 1 | 2 | d | b | c | e |

Edge Table

## Winged-Edge Data Structure



| Edge | Vertices |  | Faces |  | Left Traverse |  | Right Traverse |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Start | End | Left | Right | Pred | Succ | Pred | Succ |
| a | A | D | 3 | 1 | f | e | c | b |
| b | A | B | 1 | 4 | a | c | d | f |
| c | B | D | 1 | 2 | b | a | e | d |
| d | B | C | 2 | 4 | c | e | f | b |
| e | C | D | 2 | 3 | d | c | a | f |
| f | A | C | 4 | 3 | b | d | e | a |

## Winged-Edge Data Structure

- the vertex table and the face table

| Vertex Name | Incident Edge |
| :---: | :---: |
| A | a |
| B | b |
| C | d |
| D | c |


| Face Name | Incident Edge |
| :---: | :---: |
| 1 | a |
| 2 | c |
| 3 | a |
| 4 | b |

## Winged-Edge Data Structure



| Edge <br> Name | Vertices |  | Faces |  | Clockwise |  | Counterclockwise |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | 1 | 2 | A | D | $d$ | $e$ | $f$ | $b$ |
| $b$ | 2 | 3 | B | D | $e$ | $c$ | $a$ | $f$ |
| $f$ | 3 | 1 | C | D | $c$ | $d$ | $b$ | $a$ |
| c | 3 | 4 | B | C | $b$ | $e$ | $f$ | d |
| $d$ | 1 | 4 | C | A | $f$ | $c$ | $a$ | $e$ |
| $e$ | 2 | 4 | A | B | $a$ | d | $b$ | c |

Edge Table of the Tetrahedron, Winged-Edge Methodology


[^0]Winged-Edge Data Structure

## Winged Edge Data Structure

 (Baumgart 1975)| $e_{d g e}$ | vatart | $v_{n d}$ | $n c w$ | $n c c w$ |
| :---: | :---: | :---: | :---: | :---: |
| $e_{1}$ | $v_{1}$ | $v_{2}$ | $e_{2}$ | $e_{5}$ |
| $e_{2}$ | $v_{2}$ | $v_{3}$ | $e_{3}$ | $e_{6}$ |
| $e_{3}$ | $v_{3}$ | $v_{4}$ | $e_{4}$ | $e_{7}$ |
| $e_{4}$ | $v_{4}$ | $v_{1}$ | $e_{1}$ | $e_{8}$ |
| $e_{5}$ | $v_{1}$ | $v_{5}$ | $e_{9}$ | $e_{4}$ |
| $e_{6}$ | $v_{2}$ | $v_{6}$ | $e_{10}$ | $e_{1}$ |
| $e_{7}$ | $v_{9}$ | $v_{7}$ | $e_{11}$ | $e_{2}$ |
| $e_{5}$ | $v_{4}$ | $v_{8}$ | $e_{12}$ | $e_{3}$ |
| $e_{9}$ | $v_{5}$ | $v_{6}$ | $e_{6}$ | $e_{12}$ |
| $e_{10}$ | $v_{6}$ | $v_{7}$ | $e_{7}$ | $e_{9}$ |
| $e_{11}$ | $v_{7}$ | $v_{5}$ | $e_{6}$ | $e_{10}$ |
| $e_{12}$ | $v_{8}$ | $v_{5}$ | $e_{5}$ | $e_{11}$ |


| vertex | coordinates |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $v_{1}$ | $x_{1} y_{1} z_{1}$ | face | first edge | sign |
| $v_{2}$ | $x_{2} y_{2} z_{2}$ | $f_{1}$ | $e_{1}$ | + |
| $v_{3}$ | $x_{3} y_{3} z_{3}$ | $f_{2}$ | $e_{9}$ | + |
| $v_{4}$ | $x_{4} y_{4} z_{4}$ | $f_{3}$ | $e_{6}$ | + |
| $v_{5}$ | $x_{5} y_{5} z_{5}$ | $f_{4}$ | $e_{7}$ | + |
| $v_{6}$ | $x_{6} y_{8} z_{6}$ | $f_{5}$ | $e_{12}$ | + |
| $v_{7}$ | $x_{7} y_{7} z_{7}$ | $f_{6}$ | $e_{9}$ | - |
| $v_{8}$ | $x_{5} y_{8} z_{8}$ |  |  |  |

Figure 6.6 The winged-edge data structure.

Winged Edge


Figure 6.3 A sample object.

edge vstart vend few few new pew necw pecw

| $e_{1}$ | $v_{1}$ | $v_{2}$ | $f_{1}$ | $f_{2}$ | $e_{2}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $e_{2}$ | $v_{2}$ | $v_{3}$ | $f_{1}$ | $f_{3}$ | $e_{3}$ | $e_{1}$ | $e_{6}$ | $e_{7}$ |
| $e_{3}$ | $v_{3}$ | $v_{4}$ | $f_{1}$ | $f_{4}$ | $e_{4}$ | $e_{2}$ | $e_{7}$ | $e_{8}$ |
| $e_{4}$ | $v_{4}$ | $v_{1}$ | $f_{1}$ | $f_{5}$ | $e_{1}$ | $e_{3}$ | $e_{8}$ | $e_{5}$ |
| $e_{5}$ | $v_{1}$ | $v_{5}$ | $f_{2}$ | $f_{5}$ | $e_{9}$ | $e_{1}$ | $e_{4}$ | $e_{12}$ |
| $e_{6}$ | $v_{2}$ | $v_{6}$ | $f_{3}$ | $f_{2}$ | $e_{10}$ | $e_{2}$ | $e_{1}$ | $e_{9}$ |
| $e_{7}$ | $v_{3}$ | $v_{7}$ | $f_{4}$ | $f_{3}$ | $e_{11}$ | $e_{3}$ | $e_{2}$ | $e_{10}$ |
| $e_{8}$ | $v_{4}$ | $v_{8}$ | $f_{5}$ | $f_{4}$ | $e_{12}$ | $e_{4}$ | $e_{3}$ | $e_{11}$ |
| $e_{9}$ | $v_{5}$ | $v_{6}$ | $f_{2}$ | $f_{6}$ | $e_{6}$ | $e_{5}$ | $e_{12}$ | $e_{10}$ |
| $e_{10}$ | $v_{6}$ | $v_{7}$ | $f_{3}$ | $f_{6}$ | $e_{7}$ | $e_{6}$ | $e_{9}$ | $e_{11}$ |
| $e_{11}$ | $v_{7}$ | $v_{8}$ | $f_{4}$ | $f_{6}$ | $e_{8}$ | $e_{7}$ | $e_{10}$ | $e_{12}$ |
| $e_{12}$ | $v_{8}$ | $v_{5}$ | $f_{5}$ | $f_{6}$ | $e_{5}$ | $e_{5}$ | $e_{11}$ | $e_{9}$ |

vertex first edge coordinates

| $v_{1}$ | $e_{1}$ | $z_{1} y_{1} z_{1}$ | face | first edge |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $v_{2}$ | $e_{2}$ | $x_{2} y_{2} z_{2}$ | $f_{1}$ | $e_{1}$ |
| $v_{3}$ | $e_{3}$ | $x_{3} y_{3} z_{3}$ | $f_{2}$ | $e_{9}$ |
| $v_{4}$ | $e_{4}$ | $x_{4} y_{4} z_{4}$ | $f_{3}$ | $e_{6}$ |
| $v_{5}$ | $e_{9}$ | $z_{5} y_{5} z_{5}$ | $f_{4}$ | $e_{7}$ |
| $v_{6}$ | $e_{10}$ | $z_{6} y_{6} z_{6}$ | $f_{5}$ | $e_{12}$ |
| $v_{7}$ | $e_{11}$ | $x_{7} y_{7} z_{7}$ | $f_{6}$ | $e_{9}$ |
| $v_{8}$ | $\epsilon_{12}$ | $x_{8} y_{8} z_{8}$ |  |  |

Figure 6.7 The full winged-edge data structure.

## Winged Edge Data Structure

```
class Vertex {
 Vec3 pos;
```

public:
Vertex() \{pos = vl_0;\}
Vertex (double $x$, double $y$, double $z$ ) \{pos $=$ Vec3( $x, y, z$ );
void setpos (double $x$, double $y$, double $z$ ) \{pos $=$ Vec3( $x, y, z$ );\}
void printpos() \{cout $\ll$ pos $\ll$ endl;\}
\};
class Edge \{
Vertex *vs, *ve;
Face *fleft, *fright;
public:
Edge() \{fleft $=$ fright $=$ HULL; ; ;
Edge (Vertex *v1, Vertex *v2) $\{v s=v 1$, $v e=v 2$, fleft $=$ fright $=$ HULL;
void setLface(Face* f) \{fleft = f;\}
void setRface(Face* f) \{fright = f;\}
Vertex* startV() \{return vs;\}
Vertex* endV() \{return ve;
bool vertexInE (Vertex* v ) \{return ( $\mathrm{v}==\mathrm{vs}$ ) $\| \mathrm{l}$ ( $\mathrm{v}==\mathrm{ve}$ );\}
void printedge();
\};
class Face \{
Edge* edges[3];
public:
Face () \{\};
void setEdge(int i, Edge* edge) \{edges[i] = edge;\}
Edge* findPreE (Edge *e);

```
class Model {
public:
 vector<Vertex*> vs;
 vector<Edge*> es;
 vector<Face*> fs;
};
```

\};

## Winged-Edge Data Structure

For a face with inner loops are ordered clockwise.


Adding an auxiliary edge between each inner loop and the outer loop


## Halfedge Data Structure

- Modification of winged edge
- Since every edge is used twice, devise "halfedge" for this use
- Can have loop to account for multiply connected face (face with multiple boundaries)
- Can handle
- Manifold models
- Face with boundary

- OpenMesh: a specialized halfedge

Fig. 1 implementation (for triangular meshes)

## Half-Edge Data Structure

- Doubly connected edge list


```
struct VertexData;
struct EdgeData;
struct PolygonData;
struct HalfData
{
 HalfData* next;
 HalfData* previous;
 HalfData* pair:
 VertexData* origin;
 PolygonData* left;
 EdgeData* edge;
};
struct VertexData
|
 HalfData* half:
};
struct EdgeData
&
 HalfData* half:
};
struct PolygonData
f
 HalfData* half;
};
```


## Object File Format (OFF)

- Storing a description a 2D or 3D object
- Simple extension can handle 4D objects
- 4D: $(x, y, z, w)$
- OFF File Characteristics
- ASCII (there is also a binary version)
- Color optional
- 3D
- No compression


## Object File Format(OFF) <br> [ST] [C] [N] [4] [n]OFF <br> \# Header keyword

[Ndim]
NVertices NFaces NEdges
$\mathrm{x}[0] \quad \mathrm{y}[0] \quad \mathrm{z}[0]$

```
 # colors, and/or Lexture coordinates, in that order,
 # if the prefixes N, C, ST
 # are present.
 # If 4OFF, each vertex has 4 components,
 # including a final homogeneous component.
 # If nOFF, each vertex has Ndim components.
 # If 4nOFF, each vertex has Ndim+1 components.
```

\# Space dimension of vertices, present only if nOFF
\# NEdges not used or checked
\# Vertices, possibly with normals,
x[NVertices-1] $y[N V e r t i c e s-1] ~ z[N V e r t i c e s-1] ~$
\# Faces
\# Nv $=$ \# vertices on this face
\# v[0] ... v[Nv-1]: vertex indices
\# in range 0..NVertices-1
Nv $\mathrm{v}[0] \mathrm{v}[1]$... $\mathrm{v}[\mathrm{Nv}-1]$ colorspec
\# colorspec continues past $\mathrm{v}[\mathrm{Nv}-1]$
\# to end-of-line; may be 0 to 4 numbers
\# nothing: default
\# integer: colormap index
\# 3 or 4 integers: RGB[A] values 0.. 255
\# 3 or 4 floats: RGB[A] values $0 . .1$

## Object File Format(OFF)

```
OFF
#
cube.off
A cube.
There is extra RGBA color information specified for the faces.
#
8 6 12
1.632993 0.000000 1.154701
0.000000 1.632993 1.154701
-1.632993 0.000000 1.154701
0.000000 -1.632993 1.154701
1.632993 0.000000-1.154701
0.000000 1.632993-1.154701
-1.632993 0.000000 -1.154701
0.000000 -1.632993-1.154701
4 0 1 2 3 1.000 0.000 0.000 0.75
4 7 4 0 3 0.300 0.400 0.000 0.75
4 4 5 1 0 0.200 0.500 0.100 0.75
4 5 6 2 1 0.100 0.600 0.200 0.75
4 3 267 0.000 0.700 0.300 0.75
4 6 547 0.000 1.000 0.000 0.75
```


## Polygon File Format

- Stanford Triangle Format
- Store 3-d data from 3D scanners
- Properties can be stored including

- color and transparency
- surface normals
- texture coordinates
- data confidence values


100 faces (30 sec)

## Stanford 3D Scanning Repository (url)



Cyberware 3D Scanners (url)


Large models also avaiable at GeogiaTech

## Polygon File Format

- PLY structure
- Header
- Vertex List
- Face List
- (lists of other elements)


Strip: 43785314276521
Triangulating a cube
for one sequential strip.

## Polygon File Format

```
ply
format ascii 1.0
comment made by anonymous
comment this file is a cube
element vertex 8
property float32 x
property float32 y
property float32 z
element face 6
property list uint8 int32 vertex_index
end_header
0 0
0 1
0 1 1
0 1 0
10}
1 0 1
1 1 1
1 10
40123
47654
40451
4 1 5 6 2
4267 3
43740
```

```
{ ascii/binary, format version number }
```

{ ascii/binary, format version number }
{ comments keyword specified, like all lines }
{ comments keyword specified, like all lines }
{ define "vertex" element, 8 of them in file }
{ define "vertex" element, 8 of them in file }
{ vertex contains float "x" coordinate }
{ vertex contains float "x" coordinate }
{ y coordinate is also a vertex property }
{ y coordinate is also a vertex property }
{ z coordinate, too }
{ z coordinate, too }
{ there are 6 "face" elements in the file }
{ there are 6 "face" elements in the file }
{ "vertex_indices" is a list of ints }
{ "vertex_indices" is a list of ints }
{ delimits the end of the header }
{ delimits the end of the header }
{ start of vertex list }
{ start of vertex list }
{ start of face list }

```
{ start of face list }
```


## Scaling Transformations

 affect geometry but not topology of object primitive shapes


- Topology: faces, edges and vertices.
- Geometry: surfaces, curves and points.


## Differential Scaling Transformations



Fiaure 10.15 Instances of a "Z" section.

## Differential Scaling Transformations



Figure 10.16 Parameterized shape.
Sample restrictions: $a, b, h, l, t>0, \quad b \leq a, \quad a>2 t, \quad h>4 t$

## Parameterized Shape of Variable Topology



Figure 10.17 Parameterized shape of variable topology.

## Sweep Solids

Moving an object along a path.

- Generator = sweeping object: curve, surface, or solid
- Director = path

Common for modeling constant cross-section mechanical parts. Translational sweep (extrusion): moving a planar curve or planar shape along a straight line normal to plane of curve. More generally, sweep one curve along another.

Rotational sweep: rotating a planar curve or shape (with finite area) about an axis.

(c)

## Sweep Solids

## some problematic situations




Invalid Sweep

Figure 10.20 Dimensionally nonhomogeneous sweep representations.

## Loss and Eshleman (1974) Position and Direction Specification for Swept Solids



Figure 10.21 Outline surface of a constant cross-section solid.


Figure 10.22 Characteristics of a PD curve.

$$
\mathbf{l}=\frac{\mathbf{p}_{i}^{u}}{\left|\mathbf{p}_{i}^{u}\right|}, \quad \mathbf{m}=\frac{\mathbf{d}_{i} \times \mathbf{p}_{i}^{u}}{\left|\mathbf{d}_{i} \times \mathbf{p}_{i}^{u}\right|}, \quad \mathbf{n}=\mathbf{l} \times \mathbf{m}
$$

## Loss and Eshleman (1974) Position and Direction Specification for Swept Solids



Figure 10.22 Characteristics of a PD curve.
$\mathbf{l}=\frac{\mathbf{p}_{i}^{u}}{\left|\mathbf{p}_{i}^{u}\right|}, \quad \mathbf{m}=\frac{\mathbf{d}_{i} \times \mathbf{p}_{i}^{u}}{\left|\mathbf{d}_{i} \times \mathbf{p}_{i}^{u}\right|}, \quad \mathbf{n}=\mathbf{l} \times \mathbf{m}$


Figure 10.23 A constant cross-section part that curves and twists.


Figure 10.24 Components of a PD curve.

## Surfaces of Revolution

Example: z-axis of rotation

$$
\mathbf{p}(u)=\mathbf{x}(u)+\mathbf{z}(u)
$$

$$
\mathbf{p}(u, \theta)=\mathbf{x}(u) \cos \theta+\mathbf{x}(u) \sin \theta+\mathbf{z}(u)
$$



Figure 10.25 Surface of revolution.

## Surfaces of Revolution

More general example using cubic Hermite curve: goal is to find a Hermite patch describing the surface.



Figure 10.27 Circumferential tangent vectors of a surface of revolution.

Figure 10.28 Axial tangent vectors of a surface of revolution.

## Geometric Modeling 91.580.201

Mortenson
Chapter 11


Complex Model Construction

## Topics

- Topology of Models
- Connectivity and other intrinsic properties
- Graph-Based Models
- Emphasize topological structure
- Boolean Models
- Set theory, set membership classification, Boolean operators
- Boolean Model Construction
- Constructive Solid Geometry
- Boundary Models (B-Rep)


## Model Topology



Figure 11.1 Examples of nonsimple polyhedra.
Euler's Formula for 3D Polyhedra: $\quad V-E+F=2$
Poincare's Generalization to $n$ Dimensional Space:

$$
\begin{aligned}
& N_{0}-N_{1}+N_{2}-\ldots=1-(-1)^{n} \\
& \text { typo fixed }
\end{aligned}
$$

Euler-Poincare Formula:
( $G$ = genus = number of "handles")

$$
V-E+F-2(1-G)=0
$$

## Model Topology

 (continued)
## Topological Atlas and Orientability

The simplest data structure keeps track of adjacent edges. Such a data structure is called an atlas.


Topological Atlas of a Tetrahedron


A


## Model Topology (continued)

2 ways to join a pair of edges (match numbers)

(b)

Topological Atlas and Orientability :

(a)

Figure 11.3 Orientation.

The orientability indicated with arrows or numbers as shown above. We see that the orientation preserving arrows are in two opposite rotational directions i.e., clockwise and anticlockwise.
While orientation reversing arrows are in the same rotational directions.

## Schlegel Diagrams

A common form of embedding graphs on planar faces is called Schlegel Diagram. It is a projection of its combinatorial equivalent of the vertices, edges and faces of the embedded boundary graph on to its surface. Here the edges may not cross except at their incident vertices and vertices may not coincide.


Schlegel Diagram of a Cube


## Atlas of Cube

An atlas of a cube can also be given by the arrangement of its faces as shown below


## Model Topology (continued)

Atlas of a cube


Edge o of face 1 matched with edge o of face $2 . .$.


Figure 11.4 Atlas of a cube.

$$
\begin{aligned}
& {[(1,0)(2,0)][(1,1)(5,0)][(1,2)(4,0)][(1,3)(3,0)]} \\
& {[(2,1)(3,3)][(2,2)(6,2)][(2,3)(5,1)][(3,1)(4,3)]} \\
& {[(3,2)(6,3)][(4,1)(5,3)][(4,2)(6,0)][(5,2)(6,1)]}
\end{aligned}
$$

\section*{Model Topology (continued) <br> 

## Some examples of Atlases



Torus:
orientable


Mobius strip: non-orientable, open surface


Figure 11.5 Atlas of: (a) a cylinder; (b) a torus;
(c) a Möbius strip; and (d) a Klein bottle.

Klein bottle: non-orientable and does not fit into 3D without self-intersections


Orientability is intrinsically defined: left and right are never reversed. Non-orientable: right \& left are not intrinsically defined.

## Model Topology (continued)


(a)

Klein bottle: non-orientable


(c)

(b)

(d)

Torus: orientable

Projective plane: non-orientable

Figure 11.6 Atlas and transition parity of: (a) a sphere; (b) a torus; (c) a Klein bottle; and (d) a projective plane.

Transition Parity $=1$ means match up normally. Transition Parity $=-1$ means match up in reverse.

## Model Topology (continued)

- Curvature of piecewise flat surfaces
- Curvature concentrated at vertices
- Sum up angle "excesses" of small paths around each vertex. Let:
- $E_{i}$ be excess of a path around vertex $i$.
- $T_{i}$ be total turning of a path around vertex $i$.
$K=\sum_{i=1}^{V} E_{i}=\sum_{i=1}^{V}\left(2 \pi-T_{i}\right)=2 \pi V-\sum_{i=1}^{V} T_{i}=2 \pi V-\sum_{i=1}^{F} f_{i}=2 \pi(V-E+F)$ $f_{i}=$ sum of interior angles of face $i$.
- where last part is for closed, piecewise flat surface

Note this does not require knowledge of how edges are joined.

$$
\chi=V-E+F \quad \text { so } \quad K=2 \pi \chi
$$

$\chi=$ Euler characteristic, which is an intrinsic, topological invariant.

## Model Topology (continued)

- Topology of Closed, Curved Surfaces
- Net = arbitrary collection of simple arcs (terminated at each end by a vertex) that divide the surface everywhere into topological disks.
- All valid nets on the same closed surface have the same Euler characteristic.
- 2 elementary net transformations
- Adding (or deleting) a face by modifying an edge
- Adding (or deleting) a vertex
$\chi$ is invariant under these net transformations.


## Model Topology (continued)

- Euler Operators
- Euler Object = connected network of faces, vertices, edges
- All valid nets on the same closed surface have the same Euler characteristic.
- Euler's formula for polyhedra requires:
- All faces are topological disks. Euler's formula: $V-E+F=2$
- Object's complement is connected.
- Each edge adjoins 2 faces with vertex at each end.
- At least 3 edges meet at each vertex.


Figure 11.7 Euler's formula and simple polyhedra.

## Model Topology (continued)

- Spherical net example
- Nets are proper:
- collection of simple arcs (edges)
- terminated at each end by a vertex
- divide surface into topological disks
- Curving edges preserves validity of Euler's formula

(a)

(b)

Figure 11.8 Euler's formula applied to a spherical net.

## Model Topology (continued)



Figure 11.10 Modification of an Euler net on a sphere. valid modifications to spherical nets

## Model Topology (continued)


valid modifications of (a) and (b)

(c)
invalid modification of (c)

## Model Topology (continued)



$$
\begin{aligned}
& V-E+F-C=1 \\
& 9-20+18-6=1
\end{aligned}
$$

Figure 11.11 Euler's formula and polyhedral cells.

$$
C=\text { number of polyhedral cells in 3D }
$$

## Model Topology (continued)

(a) Object with hole.

External faces of hole are inadmissible.
$H$ = \# holes in faces
$P=\#$ holes entirely through object
B = \# separate objects
(b) Edges added to correct inadmissibility.
(c) Acceptable concavity.
(c)

(d) Adding edges satisfies original Euler formula.
(a)

(d)

$V-E+F=2$
$16-24+10=2$
$V-E+F-H+2 P=2 B$ formula
$16-24+10-2+2=2$ modification
$V-E+F=2$
$16-32+16=0$
$V-E+F-H+2 P=2 B$
$16-32+16-0+2=2$
$V-E+F-H+2 P=2 B$
$16-24+11-1+0=2$

Figure 11.12 Multiply-connected polyhedra and a modified Euler formula.

## Model Topology (continued)

Adjacency Topology in B-rep


EV


EE


FE
 EF


Figure 11.13 Topological relationships between pairs of polyhedron elements.
9 classes of topological relationships between pairs of 3 types of elements

## Graph-Based Models

- Geometric model emphasizing topological structure
- Data pointers link object's faces, edges, vertices
- Trade-off:
redundancy yields search speed

|  | $V_{1}$ | $E_{1}$ | $F_{1}$ |
| :---: | :---: | :---: | :---: |
|  | $V_{2}, V_{3}, V_{4}$ | $V_{1}, V_{2}$ | $V_{1}, V_{2}, V_{3}$ |
|  | $E_{1}, E_{2}, E_{3}$ | $E_{2}, E_{3}, E_{4}, E_{6}$ | $E_{1}, E_{4}, E_{2}$ |
|  | $F_{1}, F_{2}, F_{4}$ | $F_{1}, F_{4}$ | $F_{2}, F_{3}, F_{4}$ |
| -- | $V_{2}$ | $E_{2}$ | $F_{2}$ |
| $V_{2}<-\gg$ | $V_{1}, V_{3}, V_{4}$ | $V_{1}, V_{3}$ | $V_{1}, V_{3}, V_{4}$ |
|  | $E_{1}, E_{4}, E_{6}$ | $E_{1}, E_{3}, E_{4}, E_{5}$ | $E_{2}, E_{5}, E_{3}$ |
| $V_{3}$ | $F_{1}, F_{3}, F_{4}$ | $F_{1}, F_{2}$ | $F_{1}, F_{3}, F_{4}$ |
|  | $V_{3}$ | $E_{3}$ | $F_{3}$ |
|  | $V_{1}, V_{2}, V_{4}$ | $V_{1}, V_{4}$ | $V_{4}, V_{3}, V_{2}$ |
|  |  | $E_{1}, E_{2}, \ldots$ |  |

Figure 11.14 A graph-based model.

## Graph-Based Models (continued)

- For planar-faced polyhedra connectivity (adjacency) matrices can be used.


Vertex

|  |  |  |  | 3 | 4 |  | 5 | 6 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | [0 |  |  | 0 | 1 |  |  |  |  |  |
| 2 | 1 |  | 0 | 1 | 0 |  |  | 1 |  | 0 |
|  | 0 |  | 1 | 0 | 1 |  |  | 0 |  | 0 |
|  | 1 | 0 | 0 | 1 | 0 |  |  | 0 |  | 1 |
| $\stackrel{\circ}{\circ} 5$ | 1 | 1 | 0 | 0 | 0 |  |  | 1 |  | 1 |
| 6 | 0 |  |  | 0 | 0 |  |  | 0 |  | 0 |
| 7 |  |  |  | 1 |  |  |  | 1 |  | 1 |
|  | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |  |  |

Face


Figure 11.15 Connectivity matrices for a polyhedron.

## Graph-Based Models (continued)

This is the connectivity matrix for Figure 11.16b:
$A$
$A$
$A$
$A$
$B$
$C$
$C$
$E$$\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

(b)



Figure 11.16 Examples of graphs.

## Boolean

Models
Table 11.1 Properties of Operations on Sets

## Union Properties:

1. $A \cup B$ is a set.
2. $A \cup B=B \cup A$

Closure property
Commutative property
3. $(A \cup B) \cup C=A \cup(B \cup C)$ Associative property
4. $A \cup \varnothing=A \quad$ Identity property
5. $A \cup A=A \quad$ Idempotent property
$6 \wedge A \cup c A=E$
Complement property

Intersection Properties

1. $A \cap B$ is a set.
Closure property
2. $A \cap B=B \cap A$
Commutative property
3. $(A \cap B) \cap C=A \cap(B \cap C)$
Associative property
4. $A \cap E=A$
Identity property
5. $A \cap A=A$
Idempotent property
6. $A \cap c A=\varnothing$
Complement property

## Distributive Properties

1. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \quad$ Union is distributive over intersecion
2. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \quad$ Intersection is distributive over unon

## Complementation Properties

1. $c E=\varnothing \quad$ The complement of the universal set is the empty set.
2. $c \varnothing=E \quad$ The complement of the empty set is the universal set.
3. $c(c A)=A \quad$ The complement of a complement of a set $A$ is $A$.
4. $c(A \cup B)=c A \cap c B$ DeMorgan's law.
5. $c(A \cap B)=c A \cup c B$ DeMorgan's law.

## Boolean Models (continued)

Set Membership Classification

$$
X=b X \cup i X
$$

- Goal: define regularized set
- closure of interior
- no "dangling edges" or disconnected lowerdimensional parts
- Set membership classification differentiates between 3 subsets of any regularized set $X$ :
- bX: boundary of $X$
$-i X$ : interior of $X$
$-c X$ : complement of $X$


## Boolean Models (continued)

Set Membership Classification

- Some similar geometric modeling problems:
- Point inclusion: point inside or outside a solid?
- Line/polygon clipping: line segment vs. polygon
- Polygon intersection: 2 polygons
- Solid interference: 2 solids


## Boolean Models (continued)

## Set Membership Classification

(a) 2 points same or different?

(b)
(b) point vs. curve: 3 cases
(c) point vs. curve or polygon

(c)

(d)
(d) point vs. curved or polyhedral object

Figure 11.22 Point classification.

## Boolean Models (continued)

Set Membership Classification
applicable to topological disc

$\frac{\text { Winding number }=+1 \quad \text { Winding number }=-1}{\text { Inside }}$
Figure 11.23 The winding number and the inside-outside classification.

## Boolean Models (continued)

## Set Membership Classification

(a) point vs. sphere as parametric surface (assumes knowledge of closest point q)

(b) point vs parallelepiped defined as Boolean intersection of half-spaces

(b)
(a)

Figure 11.24 Inside and outside a solid.

## Boolean Models (continued)



Figure 11.25 Curve and line segment classification.

## Boolean Models (continued)

edge of $B$ intersects $A$ in 4 ways


Figure 11.26 Line and polygon classifications.
2 regularized polygons $A$ and $B$

## Boolean Models (continued)

Point 2 is problematic with respect to intersection of $A$ and $B$.


Figure 11.27 Tangent vector convention for two-dimensional objects.

## Boolean Models (continued)

Outward pointing normals can aid intersection of 3D solids $A$ and $B$.


Figure 11.28 Normal vector convention for three-dimensional solids.

## Boolean Models (continued)


(a)

(b)

Figure 11.29 Problems for set-membership classification.

## Boolean Models (continued)



Degenerate intersection of 2 well-defined 2D objects.

## Boolean Models (continued)

Find intersection points. Segment intersected edges.
For Union:

- Find point on boundary of A outside $B$.
- Trace around loop of edges.
- Trace additional loops if needed.


Union: $A \cup B$


Difference: $A-B$


Intersection: $A \cap B$

Figure 11.31 Union, difference, and intersection of two simple polygons.

## Boolean Models (continued)

 Intersection

Set-theoretic and regularized Boolean intersections.

## Boolean Models (continued) Intersection

Need to distinguish between segments 1 \& 2 (see next slide).



Boundary points can become interior points. Interior points cannot become boundary points.

(c) $b A \cap i B$

Figure 11.33 Candidate components of a regularized Boolean intersection.

$$
C=(b A \cap b B) \cup(i A \cap b B) \cup(b A \cap i B) \cup(i A \cap i B)
$$

## Boolean Models (continued)

 Intersection

| Segment 1 | In $A$ | In $B$ |
| :---: | :---: | :---: |
| $\mathbf{p}_{R}$ | 0 | 1 |
| $\mathbf{p}_{L}$ | 1 | 0 |


| Segment 2 | In $A$ | In $B$ |
| :---: | :---: | :---: |
| $\mathbf{p}_{R}$ | 0 | 0 |
| $\mathbf{p}_{L}$ | 1 | 1 |

Note: $1=$ Yes, $2=$ No directions and tangent vector directions.

Figure 11.34 Regularized boundary test.
Summarizing overall intersection approach...

$$
C^{*}=b C^{*} \cup i C^{*}=\operatorname{Valid}_{b}(b A \cap b B) \cup(i A \cap b B) \cup(b A \cap i B) \cup(i A \cap i B)
$$

## Boolean Models (continued)

Union


Candidate components of a regularized Boolean union.

$$
\begin{gathered}
C=(b A \cup b B) \cup(i A \cup b B) \cup(b A \cup i B) \cup(i A \cup i B)=b A \cup b B \cup i A \cup i B \\
i C^{*}=i A \cup i B \cup\left[\operatorname{Valid}_{i}(b A \cap b B)\right] \\
b C^{*}=b A \cup b B-\left[(b A \cap i B) \cup(b B \cap i A) \cup \operatorname{Valid}_{b}(b A \cap b B)\right]
\end{gathered}
$$

## Boolean Models (continued)

 Difference
(a)

(c) \& (d)

(c)

(b)

(d)

Candidate components of a regularized Boolean difference.
$C^{*}=(b A-b B-i B) \cup(i A \cap b B) \cup \operatorname{Valid}(b A \cap b B) \cup(i A-b B-i B)$

## Boolean Models (continued)

A encloses $B$.


(a) $A \cup B$

(b) $A \cap B$

(c) $A-B$

Useful for modeling holes.

Figure 11.37 Examples of Boolean operations.

## Boolean Models (continued)



Figure 11.38 Order dependence on Boolean operations.

## Boolean Models (continued)


(a)

(b)

(c)

Coincidences problem
(a) - (c) produce standard results. (d) - (f) produce invalid results. Regularizing (d) - (f) yields null results.

(d)



A intersection $B$

(e)
(f)


Figure 11.39 Boolean operations on a three-dimensional solid.

## Boolean Models

Coincidences problem

## Pseudo manifolds



## Algorithms for Boolean operations

Based on face classification (Algorithm 1) Based on vertex classification (Algorithm 2) Algorithm 2


## Algorithm 2 (vertex classification)

Algorithm Boolean Op (vertex classification)
// 1. Classify existing vertices
addVertices(A, B, LV); // add to LV vertices from A classified wrt B addVertices(B, A, LV); // add to LV vertices from B classified wrt A
// 2. Compute new vertices Foreach edge e from A foreach face ffrom $B$

if intersect( $f, e$ ) add (intersectionVertex ( $(\mathrm{f}, \mathrm{e}), \mathrm{LV}$ )
Foreach edge e from $B$ foreach face from $A$
if intersect(f,e) add( intersectionVertex (f,e),LV)

## Algorithm 2

// 3. Select output vertices according to the boolean operation foreach vertex v in LV
if v.type=NEW add(result,v) otherwise
case
union: if v.type $=$ deAoutB or v.type $=$ deBoutA add(result,v) inters: if v.type $=$ deAinB or v.type $=$ deBinA add(result, v) $A-B$ : if v.type $=$ deAoutB or v.type $=$ deBinA add(result, v) $B-A$ : if v.type $=$ deAinB or v.type $=$ deBoutA add(result, v) end
// 4. Build F:\{V\} from V:\{F\}
buildFaces(C) // change from reverse rep. to hierarchical rep. end

## Example 1: A-B




Objecte A
Cares
1: $\{3,4,8,7\}$
$2:\{2,6,8,4\}$
$3:\{1,5,6,2\}$
$4:\{1,3,7,5\}$
5: $\{5,7,8,6\}$
$6:\{1,2,4,3\}$
Vertexs
1: ( $0,0,0$ )
2: $(3,0,0)$
$3:(0,0,3)$
$4:(3,0,3)$
5: $(0,3,0)$
$6:(3,3,0)$
$7:(0,3,3)$
$8:(3,3,3)$


Objecte B

Cares
$7:\{11,12,16,15\}$
$8:\{10,14,16,12\}$
$9:\{9,13,14,10\}$
$10:\{9,11,15,13\}$
$11:\{13,15,16,14\}$
$12:\{9,10,12,11\}$
: $(2,4,2)$
15: $(1,4,5)$
$16:(2,4,5)$

## Step 1: Classify vertices

$$
\text { Exemple } 1
$$

| V 1: xyz, | $\{4,3,6\}$, | deAoutB |
| :---: | :---: | :---: |
| V 2: xyz, | $\{3,2,6\}$, | deAoutB |
| V 3: xyz, | $\{1,4,6\}$, | deAoutB |
| V 4: xyz, | $\{2,1,6\}$, | deAoutB |
| V 5: xyz, | $\{5,3,4\}$, | deAoutB |
| V 6: xyz, | $\{5,2,3\}$, | deAoutB |
| V 7: xyz, | \{ $1,5,4\}$, | deAoutB |
| V 8: xyz, | \{2, 5, 1\}, | deAoutB |
| V 9: xyz, | $\{9,10,12\}$, | deBinA |
| V10: xyz, | $\{9,8,12\}$, | deBinA |
| V11: xyz, | $\{7,10,12\}$, | deBoutA |
| V12: xyz, | $\{8,7,12\}$, | deBoutA |
| V13: xyz, | $\{11,9,10\}$, | deBoutA |
| V14: xyz, | $\{11,8,9\}$, | deBoutA |
| V15: xyz, | $\{7,11,10\}$, | deBoutA |
| V16: xyz, | $\{8,11,7\}$, | deBoutA |



## Step 3: Select output vertices



## Step 4: Build faces



## Step 4: Build faces

```
V 3: xyz, {4,1,6}, deAoutB
V 4: xyz, {2,1,6}, deAoutB
V 7: xyz, {4,1,5}, deAoutB
V 8: xyz, {5,1,2}, deAoutB
V19: xyz, {10,1,5}, Nou
V20: xyz, {8,1,5}, Nou
V21: xyz, {12,1,10},Nou
V22: xyz, {8,1,12}, Nou
```




## Step 4: Build faces

V19: xyz, {10, ,5, , Nou
V19: xyz, {10, ,5, , Nou
V20: xyz, {8,1,5}, Nou
V20: xyz, {8,1,5}, Nou
V21: xyz, {12,1,10},Nou
V21: xyz, {12,1,10},Nou
V22: xyz, {8,1,12}, Nou
V22: xyz, {8,1,12}, Nou



## Step 4: Build faces

To solve the indetermination:


1. Sort the vertices involved according to the parameter of the supporting line: V8, V20, V19, V7
2. Group forming pairs (will become edges of the result): ( $\mathrm{V} 8, \mathrm{~V}_{20}$ ) $\left(\mathrm{V}_{19}, \mathrm{~V}_{7}\right)$.



V3 <------ V7 <--
Cara 4

## Example 2. Still A-B

The domino algorithm can detect more than one cycle (faces with internal loops) ${ }_{v 7} \longleftarrow{ }^{\text {vs }}$

$\begin{array}{ccccccc}\text { V3 } \\ \text { Cara 6 } & \text { cara 2 } & \text { Cara 5 } & & \text { Cara } 4\end{array}$


## Geometric tests

- Point inside solid
- Convexity of an edge

- Sorting faces around a vertex
- Classify cycles as interior/exterior


## Point inside solid



PuntDinsSolid



## Sorting faces around a vertex



Classify cycles as in/out


## Classify cycles as in/out

 parity=trueC:=set of loops while C is not empty do D:= Ø
for each loop cx in C fer
 if $c x$ is inside to some loop cy in $C$ then classify cx as an internal loop of cy else $D:=D+\{c x\}$
if parity then loops in $D$ are exterior loops of faces else the loops in D are interior loops parity:=not parity C:=C-D
end

## Boolean Model Construction

Boolean Model: combination of >1 simpler solid objects.
Boolean Model is procedural: shows how to combine parts.


Figure 11.40 A simple procedural model.


Figure 11.41 The binary tree for $D=(A \cup B)-C$.

# Boolean Model <br> Construction (continued) 



## Coincidences problem



Figure 11.42 Examples of union and difference.

## Boolean Model Construction (continued)



Figure 11.43 The intersection operation.

## Boolean Model Construction (continued)

(a) union of disjoint $A$ and $B$

(a)

(b)
(c) union of $A$ encompassing $B$ (d) difference of $A$ encompassing B: A - B

(c)

(f)

(g)

(h)
(g) -(h): union of $A$ and $B$
(h) makes concavity
Figure 11.44 A variety of Boolean modeling situations.

## Boolean Model Construction (continued)

(a) 2 intersecting, closed, planar curves intersect an even number of times.

(a)

(c)

(b) If curves A and $B$ do not intersect \& a point of $B$ is inside curve $A$, then $B$ is inside $A$.
(d) Plane P intersects bounding surface of S in 3 disjoint, closed loops.

Figure 11.45 Four general properties of Boolean models.

## Constructive Solid Geometry (CSG)

CSG: Modeling methods defining complex solids as compositions of simpler solids.
Root node represents final result.

Internal nodes represent Boolean operations \& their results.

Leaves are primitive shapes.

$\Pi=$ primitive solid
Figure 11.46 Constructive solid geometry representation.

## Constructive Solid Geometry (continued)



Figure 11.47 Primitive solids.

## Constructive Solid Geometry (continued)



Figure 11.48 Primitives as intersections of halfspaces.

## Constructive Solid Geometry (continued)



Figure 11.49 Boundary evaluation.

## Constructive Solid Geometry (continued)

Refer to Figure 11.49

Neighborhood of segment 2 of $e_{a b}$


Figure 11.50 Neighborhood model.

## Constructive Solid Geometry (continued)



Figure 11.51 Combining neighborhood models.

## Boundary Models

Boundary Model: complete representation of a solid as an organized collection of surfaces.

Boundary of a solid must be:

- closed
- orientable
- non-self-intersecting
- bounding
- connected


Region $R^{n}$ is finite, bounded portion of $E^{n}$.

$$
R=\left[R_{i}, R_{b}\right]
$$

Figure 11.52 A plane figure and its boundaries.

## Boundary Models (continued)

Boundary Representation (B-Rep)

- B-Rep minimal face conditions:
- Number of faces is finite.
- Face is subset of solid's boundary.

(a)
- Union of faces defines boundary.
- Face is subset of more extensive surface (e.g. plane).
- Face has finite area.
- Face is dimensionally homogeneous (regularized).

(b)

Figure 11.53 Faces defining the boundary of a solid.

## Boundary Models (continued)

Boundary Representation (B-Rep)


Figure 11.54 Face boundary convention.
Curved boundary faces require inside/outside convention.

# Boundary Models (continued) 

Boundary Representation (B-Rep)


Boundary representations are not unique.

## Boundary Models (continued)

Boundary Representation (B-Rep)

Merging vertex 1 with vertex 2 makes object invalid.


Figure 11.56 Interdependence of topology and geometry.

## Boundary Models (continued)

Boundary Representation (B-Rep)

Powerful B-rep systems view solid as union of general faces (e.g. parametric curves).


Figure 11.57 Boundary intersection.

## Boundary Models (continued)

Boundary Representation (B-Rep)


2-step $A \cup B$ : -Locate $U_{11} U_{2}$ -Identify active parametric regions.

Include $C$.


Figure 11.58 Two-dimensional boundary representation.

## Boundary Models (continued) Boundary Representation (B-Rep)



## Introductory Notes on Geometric Aspects of Topology

PART I: Experiments in Topology
1964
Stephen Barr
(with some additional material from
Elementary Topology by Gemignani)
PART II: Geometry and Topology for Mesh Generation
Combinatorial Topology
2006
Herbert Edelsbrunner

## PART I: Experiments in Topology

What is Topology?

- Rooted in:
- Geometry (our focus)
- Topology here involves properties preserved by transformations called homeomorphisms.
- Analysis: study of real and complex functions
- Topology here involves abstractions of concepts generalized from analysis
- Open sets, continuity, metric spaces, etc.
- Types of Topologists:
- Point set topologists
- Differential topologists
- Algebraic topologists...


## Towards Topological Invariants

- Geometrical topologists work with properties of an object that survive distortion and stretching.
- e.g. ordering of beads on a string is preserved
- Substituting elastic for string
- Tying string in knots


Fig. 1

## Towards Topological Invariants

- Distortions are allowed if you don't* Secaveaton nextslide.
- disconnect what was connected
- e.g. make a cut or a hole (or a "handle")
- connect what was not connected
- e.g. joining ends of previously unjoined string or filling in a hole


Fig. 2


Legal continuous bending and stretching transformations of torus into cup.
Torus and cup are homeomorphic to each other.

## Towards Topological Invariants

Can make a break if we rejoin it afterwards in the same way as before.


Fig. 3

Trefoil knot and curve are homeomorphic to each other.
They can be continuously deformed, via bending and stretching, into each other in 4 -dimensional space*.

- Barr states this as a conjecture; another source states is as a fact.


## Connectivity

- Lump of clay is simply connected.
- One piece
- No holes
- Any closed curve on it divides the whole surface into 2 parts*:
- inside
- outside


Fig. 4
*Jordan Curve Theorem is difficult to prove.

## Connectivity (continued)

- For 2 circles on simply connected surface, second circle is either
- tangent to first circle
- is disjoint from first circle
- intersects first circle in 2 places
- For 2 circles on torus


Fig. 5

- line need not divide surface into 2 pieces
- 2 circles can cross each other at one point


Fig. 6


## Connectivity (continued)

- On a "lump of clay", given a closed curve joined at two distinct points to another closed curve
- Homeomorphism cannot change the fact that there are two joints.
- No new joints can appear.
- Neither joint can be removed.



## Connectivity (continued)

- Preserving topological entities:
"pulling" the curves onto this side preserves



## Revisiting Euler's Formula for Polyhedra

- $\mathrm{V}-\mathrm{E}+\mathrm{F}=2$
- Proof generalizes formula and shows it remains true under certain operations.


Fig. 11

- Before the proof, verify formula for distorted embedding of tetrahedron onto sphere, which is a simply connected surface.


Fig. 12

## Revisiting Euler's Formula for Polyhedra

 (continued)- "Pull" arrangement of line segments around to front and verify formula.
- This gives us a vehicle for discussing operations on a drawing on a simply connected surface.
- Explore operations before giving the proof...


Fig. 12

Fig. 13

## Revisiting Euler's Formula for Polyhedra

 (continued)- Operations must abide by rules:
- Vertices must retain identity
as marked points in same order.
- ${ }^{\circ}$ connectivity is preserved

- Figure is drawn on a simply connected surface.
- Every curve segment has a vertex
- at its free end if there are any free ends
- where it touches or crosses another curve segment
- Any enclosure counts as a face.


## Revisiting Euler's Formula for Polyhedra

 (continued)- For a single curve segment:
- 1 unbounded face
- 2 vertices
- $\mathrm{V}-\mathrm{E}+\mathrm{F}=2-1+1=2$


Fig. 15


Fig. 16

- Connecting the 2 ends preserves formula.


# Revisiting Euler's Formula for Polyhedra 

(continued)
Also we can put any number of arbitrary vertices on an edge: and each would divide the line into new edges, giving, in Fig. 17, I F-4 $\mathrm{E}+5 \mathrm{~V}=2$.

Alternatively, cross first line with another.


Fig. 17
When a new line, or edge, meets a loop (a selfconnected edge) at its vertex, we get $2 \mathrm{~F}-2$ $\mathrm{E}+2 \mathrm{~V}=2$. If not at the vertex we would have $2 \mathrm{~F}-3 \mathrm{E}+3 \mathrm{~V}=2$. Likewise a line meeting a loop at 2 points gives $3 \mathrm{~F}-3 \mathrm{E}+2 \mathrm{~V}=2$ (Fig. 18).



Fig. 18

The only way to obtain a new face is by adding at least one edge. Edge must either connect with both its ends or be itself a loop.

## Revisiting Euler's Formula for Polyhedra

 (continued)- Proof claims that the following 8 cases are exhaustive:
I. If we add a vertex to an edge between vertices, it divides it: making I edge into 2 , thus it adds I E , canceling the new V , in the expression F $\mathrm{E}+\mathrm{V}$.


Fig. 19
2. Add an edge that meets a vertex-its own yertex on the free end cancels the new edge (in F$\mathrm{E}+\mathrm{V})$.


Fig. 20
3. Add an edge that meets an edge between vertics: it adds 2 E and 2 V (having divided the old edge). These cancel as before.


## Revisiting Euler's Formula for Polyhedra

 (continued)4. Add an edge with each end meeting a vertex: it adds I F and I E (but no V) and they cancel.


Fig. 22
5. Add an edge with both ends meeting the same V : it adds I F and I E , which cancel.


Fig. 23
8. Add an edge with both ends meeting at one V in one edge: it adds I F, 2 E , and I V , which cancel.


Fig. 26
6. Add an edge that meets I V and I E: it adds I $\mathrm{F}, 2 \mathrm{E}$, and I V , which cancel ( $\mathrm{I} \mathrm{F}-2 \mathrm{E}+$ I $\mathrm{V}=0$ ) .


Fig. 24
7. Add an edge that meets 2 edges: it adds $I F$, 3 E , and 2 V , which cancel ( $1 \mathrm{~F}-3 \mathrm{E}+2 \mathrm{~V}=0$ ).


Fig. 25
-These are all the legal ways of adding edges and vertices.
-Thus we can draw any such connected figure on a simply connected surface while preserving Euler's formula. -Must also apply to polyhedra.

## PART II: Geometry and Topology for Mesh Generation <br> CombinatorialTopology 2006 Herbert Edelsbrunner



## Goals

- Introduce standard topological language to facilitate triangulation and mesh dialogue.
- Understand space:
- how it is connected;
- how we can decompose it.
- Form bridge between continuous and discrete geometric concepts.
- Discrete context is convenient for computation.


Parametric Hole in Mesh Geometry

## Simplicial Complexes: Simplices

- Fundamental discrete representation of continuous space.
- Generalize triangulation.
- Definitions:
- Points are affinely independent if no affine space of dimension $i$ contains more than $i+1$ of the points.
- $k$-simplex is convex hull of a collection of $k+1$ affinely independent points.
- Face of $\sigma$ : $\sigma=\operatorname{conv} S$

$$
\tau \leq \sigma
$$

- 

0


1


2


3

Figure 3.1. A 0 -simplex is a point or vertex, a 1 -simplex is an edge, a 2 -simplex is a triangle, and a 3 -simplex is a tetrahedron.

The 4 types of nonempty simplices in $\boldsymbol{R}^{3}$.

## Simplicial Complexes

- Definition: A simplicial complex is collection of faces of a finite number of simplices, any 2 of which are either disjoint or meet in a common face.

$$
\begin{aligned}
& \text { i) }(\sigma \in K) \wedge(\tau \leq \sigma) \Rightarrow(\tau \in K) \text { and } \\
& \text { ii) } \sigma, v \in K \Rightarrow(\sigma \cap v) \leq \sigma, v
\end{aligned}
$$



Figure 3.2. To the left, we are missing an edge and two vertices. In the middle, the triangles meet along a segment that is not an edge of either triangle. To the right, the edoe crosses the triangle at an interior point.

Violations of the definition.

## Simplicial Complexes: Stars and Links

- Use special subsets to discuss local structure of a simplicial complex.
- Definitions:
- Star of a simplex $\tau$ consists of all simplices that contain $\tau$.
- Link consists of all faces of simplices in the star that don't intersect $\tau$.

$$
\begin{aligned}
& \text { St } \tau=\{\sigma \in K \mid(\tau \leq \sigma)\}, \\
& \operatorname{Lk} \tau=\{\sigma \in(\operatorname{ClSt} \tau) \mid \sigma \cap \tau \neq \emptyset\}
\end{aligned}
$$



Figure 3.3. Star and link of a vertex. To the left, the solid edges and shaded triangles belong to the star of the solid vertex. To the right, the solid edges and vertices belong to the link of the hollow vertex.

Star is generally not closed. Link is always a simplicial complex.

## Simplicial Complexes: Abstract Simplicial Complexes

- Eliminate geometry by substituting set of vertices for each simplex.
- Focus on combinatorial structure.
- Definition: A finite system $A$ of finite sets is an abstract simplicial complex if:

$$
(\alpha \in A \text { and } \beta \subseteq \alpha) \Rightarrow \beta \in A
$$

Vert $A$ is union of vertex sets.
$A$ is subsystem of power set of Vert $A$.
$A$ is a subcomplex of an $n$-simplex, where $n+1=\operatorname{card}$ Vert $A$.


Figure 3.4. The onion is the power set of Vert $A$. The area below the waterline is an abstract simplicial complex.

## Simplicial Complexes:

## Posets

- Definition: Set system with inclusion relation forms partially ordered set (poset), denoted: (A, $\subseteq$ )
- Hasse diagram:
- Sets are notes
- Smaller sets are below larger ones
- Inclusions are edges (implied includes not shown)


Figure 3.5. From left to right, the poset of a vertex, an edge, a triangle, and a tetrahedron.

## Simplicial Complexes: Nerves

- One way to construct abstract simplicial complex uses nerve of arbitrary finite set $C$ :

$$
\operatorname{Nrv} C=\{\alpha \subseteq C \mid I \alpha \neq \emptyset\}
$$

$$
\text { If } C=\beta \subseteq \alpha \text { then I } \alpha \subseteq \mathrm{I} \beta \text {. Hence }(\alpha \in \operatorname{Nrv} C) \Rightarrow(\beta \in \operatorname{Nrv} C)
$$

Nerve is therefore an abstract simplicial complex.

## Example:

$C$ is union of elliptical regions.
Each set in covering corresponds to a vertex.
$k+1$ sets with nonempty intersection define a $k$-simplex.


Figure 3.6. A covering with eight sets to the left and a geometric realization of its nerve to the right. The sets meet in triplets but not in quadruplets, which implies that the nerve is two dimensional.

## Subdivision:

## Barycentric Coordinates

- Two ways to refine complexes by decomposing simplices into smaller pieces are introduced later.
- Both ways rely on barycentric coordinates.
- Non-negative coefficients $\gamma_{i}$ such that $x=\Sigma_{i} \gamma_{i} p_{i}$.

$$
\Sigma_{i} \gamma_{i}=1
$$



Standard $k$-simplex $=$ convex hull of
endpoints of $k+1$ unit vectors.

Figure 3.7. The standard triangle connects points $(1,0,0),(0,1,0)$, and $(0,0,1)$.

## Subdivision: Barycentric Subdivision

- Subdivision connecting barycenters of simplices.
- Example:


Figure 3.8. Barycentric subdivision of a triangle. Each barycenter is labeled with the dimension of the corresponding face of the triangle.

## Subdivision: Dividing an Interval

- Barycentric subdivision can have unattractive numerical behavior.
- Alternative: try to preserve angles.
- Distinguish different ways to divide [0,1]:
- ( $k+1$ )-division associates point $x$ with division of $[0,1]$ into pieces of lengths $\gamma_{11}$ $\gamma_{21}, \ldots, \gamma_{k}$

Cut $[0,1]$ into 2 halves:


Figure 3.9. Three generic 3-divisions.

$$
\begin{aligned}
& \gamma_{2} \geq \frac{1}{2} \\
& \gamma_{0} \geq \frac{1}{2} \\
& \gamma_{0}, \gamma_{2} \leq \frac{1}{2}
\end{aligned}
$$

$$
\downarrow
$$



Figure 3.10. Two pairs of generic 2-divisions.

# Subdivision: <br> Edgewise Subdivision 

| 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 2 | 2 |
| 2 | 2 | 3 | 3 |

Figure 3.11. Stack of 4-division, cut into three equal intervals.

## Subdivision: <br> Edgewise Subdivision



Figure 3.12. 8-division of a tetrahedron with shape vectors indicated by arrowheads.

## Example

Consider the edgewise subdivision of a tetrahedron for $j=2$. There are eight generic color schemes, namely

$$
\begin{gathered}
{\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 2 & 3 & 3
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 2 & 2 & 3
\end{array}\right],} \\
{\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
2 & 3 & 3 & 3
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 3
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 2 \\
2 & 2 & 3 & 3
\end{array}\right],} \\
{\left[\begin{array}{llll}
0 & 1 & 2 & 2 \\
2 & 2 & 2 & 3
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 3 & 3 & 3
\end{array}\right],}
\end{gathered}
$$

They divide the tetrahedron into four tetrahedra near the vertices and four tetrahedra dividing the remaining octahedron, as shown in Figure 3.12. Note that the way the tetrahedron is subdivided depends on the ordering of the four original vertices. The distinguishing feature is the diagonal of the octahedron used in the subdivision. It corresponds to the two-by-two color scheme with colors $0,1,2,3$. The diagonal is therefore the edge connecting the midpoints of $p_{0} p_{2}$ and $p_{1} p_{3}$.

## Topological Spaces: Topology

- Topological notion of space (from point set topology)


## - and important special case of manifolds

- Definition: A topological space is a point set $\mathbf{X}$ together with a system $X$ of subsets $A \subseteq \mathbf{X}$ that satisfies:
i.
ii. $\quad \emptyset, \mathbf{X} \subseteq X$
iii. $Z \subseteq X \Rightarrow \mathrm{UZ} \in X$
- System $X$ is a topology.

$$
Z \subseteq X \text { and } Z \text { finite } \Rightarrow I Z \in X
$$

- Its sets are the open sets in $\mathbf{X}$.
- Example: $d$-dimensional Euclidean space: $\mathbf{R}^{d}$.
- Use Euclidean distance to define open ball as set of all points closer than some given distance from a given point.
- Topology of $\mathbf{R}^{d}$ is the system of open sets, where each open set is a union of open balls.


## Bijection (review)



## Topological Spaces: Homeomorphisms

- Topological spaces are considered same or of same type if they are connected in same way.
- Homeomorphism is a function $f: \mathbf{X} \rightarrow \mathbf{Y}$ that is bijective, continuous, and has a continuous inverse.
- "Continuous" in this context: preimage of every open set is open.
- If homeomorphism exists, then $\mathbf{X}$ and $\mathbf{Y}$ are homeomorphic:
- Equivalence relation: $\mathbf{X}$ and $\mathbf{Y}$ are topologically equivalent:

$$
X \approx Y
$$



Figure 3.13. From left to right, the open interval, the closed interval, the half-open interval, the circle, a bifurcation.

## Topological Spaces: Triangulation

- Typically a simplicial complex
- Polyhedron in $\mathbf{R}^{d}$ is the underlying space of a simplicial complex.
- Triangulation of a topological space $\mathbf{X}$ is a simplicial complex whose underlying space is homeomorphic to $\mathbf{X}$.


Figure 3.14. Triangulation of the closed disk. The homeomorphism maps each vertex, edge, and triangle to a homeomorphic subset of the disk.

## Topological Spaces: Manifolds

- Defined locally:
- Neighborhood of point $x \in$ is an open set containing $x$.
- Topological space $\mathbf{X}$ is a $k$-manifold if every has a neighborhood homeomorphic to $\mathbf{R}^{k}$.

$$
x \in X
$$

- Examples:
- $k$-sphere: $\quad \mathbf{S}^{k}=\left\{x \in \mathbf{R}^{k+1} \mid\|x\|=1\right\}$


Figure 3.15. The 0 -sphere is a pair of points, the 1 -sphere is a circle, and the 2 -sphere is what we usually call a sphere.

## Topological Spaces:

## Manifolds with Boundary

- Now allow 2 types of neighborhoods to obtain more general class of spaces:
- $2^{\text {nd }}$ type is half an open ball: $\quad \mathbf{H}^{k}=\left\{x=\left(x_{1}, x_{2}, \mathrm{~K} \quad x_{k}\right) \in \mathbf{R}^{k} \mid x_{1} \geq 0\right\}$
- Space $\mathbf{X}$ is a $k$-manifold with boundary if every point $x \in X$ has a neighborhood homeomorphic to $\mathbf{R}^{k}$ or to $\mathbf{H}^{k}$.
- Boundary is set of points with a neighborhood homeomorphic to $\mathbf{H}^{k}$.
- Examples:
- $k$-ball:

Figure 3.16. The 0 -ball is a point, the 1 -ball is a closed interval, and the 2 -ball is a closed disk.

## Topological Spaces: Orientability

- Global property.
- Envision ( $k+1$ )-dimensional ant walking on $k$-manifold.
- At each moment ant is on one side of local neighborhood it is in contact with.
- Manifold is nonorientable if there's a walk that brings ant back to same neighborhood, but on the other side.
- It is orientable if no such path exists.
- Orientable examples:
- Manifold: $k$-sphere
- Manifold with boundary: $k$-ball
- Nonorientable examples



## Euler Characteristic: Alternating Sums

Euler characteristic of a triangulated space. Euler Characteristic: Shelling


Figure 3.18. The numbers specify a shelling of the triangulation.

## Euler Characteristic: Shelling


(a)

(d)

(b)

(e)

(c)





(m)

Figure 3.19. The 13 ways a triangle can intersect with the complex of its predecessors.
Only cases (a), (b), and (c) occur in a shelling.

## Euler Characteristic: Cell Complexes



Figure 3.20. The dunce cap to the left consists of one 2-cell, one edge, and one vertex. Its triangulation to the right consists of 27 triangles, 39 edges, and 13 vertices.

## Euler Characteristic: 2-Manifolds



Figure 3.21. Edges with the same label are glued so their arrows agree. After gluing we have two edges and one vertex.


Figure 3.22. The nolvgonal schema of the double torus.

## Parasolid 3D Geometric Modeling

3D geometric modeling needs continuous innovation to meet the requirements of additive manufacturing, generative design, and other cutting-edge design and manufacturing techniques.

At the same time, geometric modelers should take advantage of new and improved computing environments.

Parasolid v3o.0
3D Geometric Modeling Engine
New version extends classic B-rep and facet B-rep modeling towards realizing the full power of Convergent Modeling Parasolid v30.0 delivers enhancements to classic B-rep to enable application developers to deliver sophisticated functionality more effectively to their end-users.

Deformation of Mesh Faces


## Mesh-specific function

Several enhancements with mesh data including :

- Added mesh enquiry functions and identification of subsets of a mesh.
- Creation of trimmed surfaces from a mesh and generation of polylines from isoclines.
- Improved control over repair of mesh foldovers.
- Improved performance of mesh-based operations.

A trimmed surface (yellow) created from a mesh (red)


## Facet B-rep modeling

Facet related tools enhancements have been provided.

- Creation of edge blends for facet models.
- Addition of direct modeling operations for deform, offset and replace of mesh faces.
- Creation of B-curves from polylines and finding chains of smoothly connected edges.
- Identification and deletion of redundant topologies and copying of construction and orphan geometry.
- Calculation of the minimum distance between classic B-rep models and facet B-rep models.


## Parasolid v30.0

Facet B-rep enhancements cover modeling with facets and imported facet data repair, model editing. All Parasolid operations in future releases will support models containing arbitrary combinations of classic B-rep geometry and facet B-rep geometry.
Enhancements have been added to classic B-rep blending and Boolean operations


## Rotational transform:

- Improved control over the direction of rotational transforms in order to add or remove material.
- Increased body tapering operations
- Improved the accuracy of minimum radii calculations on B-surfaces.
- Improved detection of clashes in mirror transforms of topologies.

Rotating a face (Blue)
to either add material (Left) or remove material (Right)

## B-rep blending and Boolean operations

- Trimmed solution on a periodic surface blend.
- Identification of underlying surfaces that have curvature similar to an edge blend being applied.
- Improved behavior when topology tolerances are involved in Boolean auto-matching operations.
- Imprinting and merging on complex grid-like faces.



[^0]:    ccw - pred

