

Advanced CAD Surfaces

Prof. PhD. Hikmet Kocabas

 Istanbul Technical Univ.Lectures, Outline of the course

1 Adv. CAD Techs
2 Geom. Modeling 3 Transformations
4 Curves
5 Splines, NURBS
6 Surfaces
7 Solid Modeling 8 API prog.

Intro. to Computer Graphic Systems

Textbooks:

- Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Fourth Edition, Gerald Farin, September 1996
- Computer Aided Engineering Design, Anupam Saxena, Birendra Sahay, Springer, 2005
- CAD/CAM Theory and Practice, Ibrahim Zeid, McGraw Hill, 1991, Mastering CAD/CAM, ed. 2004
- The NURBS Book, Les Piegl, Springer-Verlag, 1997
- 3D CAD Principles and Applications, H Toriya, Springer-Verlag, 1991

geometric elements

Geometric Modeling

A typical solid model is defined by solids, surfaces, curves, and points.

- Solids are bounded by surfaces. They represent solid objects. Analytic shape
- Surfaces are bounded by lines. Surfaces of solid objects, or planar or shell objects.
Quadric surfaces, sphere, ellipsoid, torus
- Curves are bounded by points. Edges of objects. Lines, polylines, curves
- Points are locations in 3-D space. Vertices of objects.

Geometric Modeling

Wiarefrants
monde.
Wire-frame models

Surface
Surface model

Solid model

Solid model

Surface Modeling

Models 2D surfaces in 3D space
All points on surface are defined useful for machining, visualization, etc. Surfaces have no thickness, objects have no volume or solid properties. Surfaces may be open and closed.

Surfaces

Explicit : Value of dependent variable in terms of independent variable(s), e.g. $z=f(x, y)$
Implicit : e.g. $f(x, y, z)=0$
Parametric : Express value of each spatial variable in terms of independent variables (the parameters) e.g. for parameters u and w in $3 D$:
$x=x(u, w)$
$y=y(u, w)$
$z=z(U, W)$

Surface Modeling

Extension of curve modeling
 Parametric representation:

$$
p=p(u, v)
$$

which is equivalent to

$$
\begin{aligned}
& x=x(u, v) \\
& y=y(u, v) \\
& z=z(u, v)
\end{aligned}
$$

Trimmed surfaces return a polygon mesh with the original boundary geometry

NURBS to mesh conversion is compatible with untrimmed surfaces, since untrimmed surfaces contain a rectangular isogrid that can be converted into a set of quad meshes. Unlike untrimmed surfaces, trimmed surfaces are not compatible with the NURBS to mesh conversion method. Trimmed surfaces converted using the Mesh Surface component will return a polygon mesh that approximates the original boundary geometry.

Mesh Brep

Trimmed surfaces return a polygon mesh with the original boundary geometry

A possible strategy to convert a trimmed surface into a mesh is summarized as follows:

1. Adding an arbitrary point O ;
2. Dividing the surface's boundary into N parts getting N points P;
3. Creating a set of lines from O to the subdivision points P.;
4. Dividing the lines into equal parts and connecting the resulting points with a set of polylines;

Trimmed surfaces return a polygon mesh with the original boundary geometry but allows for thin triangles
5. Splitting the initial surface using the network of lines obtained in step 3 and step 4, to generate a set of trimmed sub-surfaces;
6 . Extract the sub-surfaces' vertices and create the mesh relying on topology method.

Mesh Surface

Surface Modeling

In three-dimensional space,

a surface would have the following parametric description: $x=x(u, v) \quad y=y(u, v) \quad z=z(u, v)$
where a point is defined by $\mathbf{p}(u, v)$, and $u, v \in[0,1]$.
Some possible approaches to surface fitting to a set of data points: Least-squares fit of a single surface, Bézier and Spline fit of a number of patched surfaces.

Surface, Explicit form

Value of dependent variable in terms of independent variables, e.g. $\mathbf{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ Axis-dependent
Can be hard to represent a transformed and bounded surface. An explicit
surface. Sample surface-fitting procedure: determine \mathbf{a}_{ij} coefficients from data points:

$$
z(x, y)=\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i j} x^{i} y^{i}
$$

Surface, Implicit form

General form: $f(x, y, z)=0, f(x, y, z)$ is polynomial in x, y, z such that: Axis-dependent $\quad \sum_{i, j, k} a_{i j k} x^{i} y^{j} z^{k}=0$ Examples:
Plane: Equation is linear in all its variables.
Quadric: Second-degree equation.
Can represent using vectors, scalars and a type identifier. Right circular cylinder

- One vector gives a point on its axis
- One vector defines axis direction
- Scalar gives radius

Type testing requires robust floating-point computations.

Quadric Surfaces, Implicit form

Implicit form:
$f(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 d x y+2 e y z+2 f x z+2 g x+2 h y+2 j z+k=0$
Alternative to rational surfaces if only quadric surfaces are being represented.
Particularly useful for molecular modeling.
Reasons to use them:

- easy to compute normal
- easy to test point inclusion
- easy to compute z given x and y
- easy to compute intersections of one surface with another

Implicit Form: Quadric Surfaces

Type testing: $\quad \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$

$$
A x^{2}+B y^{2}+C z^{2}+2 D x y+2 E y z+2 F x z+2 G x+2 H y+2 J z+K=0
$$

$$
P Q P^{T}=0
$$

For example, if $A=B=C=-K=1$ and
$P \quad P^{T} \quad D=E=F=G=H=J=0$, then the
$\left[\begin{array}{llll}x & y & z & 1\end{array}\right]\left[\begin{array}{cccc}A & D & F & G \\ D & B & E & H \\ F & E & C & J \\ G & H & J & K\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]=0 \quad \begin{gathered}\text { A rigid-body motion is produced simply by } \\ \text { a } 4 \times 4 \text { iransformation matrix } \mathbf{T}: \\ \mathbf{Q}^{\prime}=\mathbf{T}^{-1} \mathbf{Q}\left[\mathbf{T}^{-1}\right]^{T}\end{gathered}$
$\boldsymbol{r}_{1}=$ rank of \boldsymbol{Q} (maximum number of linearly independent rows (or columns))

Surface intersection, Algebric calculation

$q(x, y, z)=\left[\begin{array}{llll}x & y & z & 1\end{array}\right]\left[\begin{array}{llll}A & D & F & G \\ D & B & E & H \\ F & E & C & J \\ G & H & J & K\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right] \equiv \mathbf{x} Q \mathbf{x}^{T}$ quadratic surfaces defined by $\mathbf{x} Q_{1} \mathbf{x}^{T}=0, \quad \mathbf{x} Q_{2} \mathbf{x}^{T}=0$ Suppose α is an arbitrary real number, $\mathbf{x}\left(Q_{1}-\alpha Q_{2}\right) \mathbf{x}^{T}=0$

its intersection line becomes: $a(t) s^{2}+b(t) s+c(t)=0$
When a quadratic surface forms a cylinder $x^{2}+y^{2}=r^{2}$, the functions $a(t), b(t)$, and $c(t)$ are given by

$$
\begin{aligned}
a(t)= & C \\
b(t)= & 2 E r \sin t+2 F r \cos t+2 J \\
c(t)= & A r^{2} \cos ^{2} t+B r^{2} \sin ^{2} t+2 D r^{2} \sin t \cos t \\
& +2 G r \cos t+2 H r \sin t+K
\end{aligned}
$$

Sphere and line intersection

$$
\begin{aligned}
& a(t) s^{2}+b(t) s+c(t)=0 \\
& \text { When it forms a cone } x^{2}+y^{2}-m^{2} z^{2}=0 \text {, } \\
& a(t)=A m^{2} \cos ^{2} t+B m^{2} \sin ^{2} t+C+2 D m^{2} \sin t \cos t \\
& +2 E m \sin t+2 F m \cos t \\
& b(t)=2 G m \cos t+2 H m \sin t+2 J \\
& c(t)=K
\end{aligned}
$$

Intersection calculation between a straight line and a sphere

$$
\begin{aligned}
& \mathbf{P}(t)=\mathbf{P}_{0}+\mathbf{v} t \\
& x^{2}+y^{2}+z^{2}=r^{2}
\end{aligned} \quad\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{l}
\mathbf{P}_{0 x} \\
\mathbf{P}_{o y} \\
\mathbf{P}_{0 z}
\end{array}\right]+t\left[\begin{array}{l}
\mathbf{v}_{x} \\
\mathbf{v}_{y} \\
\mathbf{v}_{z}
\end{array} \begin{array}{l}
\left(\mathbf{P}_{0 x}+t \mathbf{v}_{x}\right)^{2}+\left(\mathbf{P}_{0 y}+t \mathbf{v}_{y}\right)^{2}+\left(\mathbf{P}_{0 z}+t \mathbf{v}_{z}\right)^{2}=r^{2}
\end{array}\right.
$$

This equation is a quadratic expression about t and can be easily solved.

Surface intersection

Recursive subdivision of surfaces

data in a quadtree

(a)

(b)

(c)

(d)

Intersection curves between a sphere and a cone
Calculating intersection between surfaces using the marching method

Intersections

Intersection calculation algorithms used

Intersection Calculations

ref. book: 3d CAD Principles and Applications, Toriya, 1993.

curve/curve	straight line/straight line	A-method
	straight line/arc	A-method
	arc/arc	A-method
	free-form curve/straight line	A-method, GNR-method
	free-form curve/arc	GNR-method
	free-form curve/free-form curve	GNR-method
curve/surface	straight line/plane	A-method
	straight line/quadratic surface	A-method
	arc/quadratic surface	A-method
	free-form curve/quadratic surface	GNR-method
	all types of curves/free-form surface	GNR-method
surface/surface	plane/plane	A-method
	plane/ quadratic surface	G-method
	quadratic surface/quadratic surface	G-method
	free-form surface/plane	M-method
	free-form surface/quadratic surface	M-method
	free-form surface/free-form surface	M-method

A-method: Algebraic method
GNR-method: Geometric Newton-Raphson method
G-method: Geometric method
M-method : Marching method

Quadric Surfaces of Revolution

Rotate conic curve about its axis. Center or vertex at origin. Axes of symmetry coincide with coordinate axes.

$$
x^{2}+y^{2}+L z^{2}+M z+N=0 \text { where } L M=0
$$

Surface

Sphere
Cylinder
Cone
Paraboloid
Prolate ellipsoid
Oblate ellipsoid
Hyperboloid of one shee 1
Hyperboloid of 1 wo sheevs

Canonical Equation

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}-N=0 \\
& x^{?}+y^{2}-N=0 \\
& x^{2}+y^{2}-L z^{2}=0 \\
& x^{2}+y^{2}+M z=11 \\
& x^{2}+y^{2}+L z^{2}-N=0, L<1 \\
& x^{2}+y^{2}+L z^{2}-N=0, l,>1 \\
& x^{2}+y^{2}-L z^{2}-N=0 \\
& x^{2}+y^{2}-L z^{2}+N=0
\end{aligned}
$$

3D Analytic

Surfaces

- Triangular meshes, polygonal meshes
- Quadric surfaces, sphere, ellipsoid, torus
- Superquadric surfaces, superellipse, superellipsoid
- Blobby models, tetrahedron, pyramid, hexahedron

Surface, Parametric Form

Express value of each spatial variable in terms of independent variables (the parameters)
e.g. for parameters \mathbf{u}, \mathbf{w} in 3D:
$\mathrm{x}=\mathrm{x}(\mathrm{u}, \mathrm{w})$
$y=y(u, w)$
$z=z(u, w)$

For a rectangular surface patch, typically $u, w \in[0,1]$
Patches can be joined to form composite parametric surfaces.

Surface, Parametric Form

Sample patch: rectangular segment of x, y plane $x=(c-a) u+a$
$y=(d-b) w+b$
$z=0$

Here:
Curves of constant ware horizontal lines.
Curves of constant \boldsymbol{u} are vertical lines.

Surface, Parametric Form

Parametric sphere and ellipsoid of radius r, centered on ($x_{0}, y_{0} z_{0}$):

$x=x_{0}+r \cos u \cos w \quad y=y_{0}+r \cos u \sin w \quad z=z_{0}+r \sin u \quad$ where $u \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad w \in[0,2 \pi]$ $x=x_{0}+a \cos u \cos w \quad y=y_{0}+b \cos u \sin w \quad z=z_{0}+c \sin u \quad$ where $u \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad w \in[0,2 \pi]$
 Note similarity to sphere formula. Here lengths of ellipsoid's axes replace sphere's radius.

Surface, Parametric Form

Parametric surface of revolution:

$$
x=x(u) \cos w \quad y=x(u) \sin w \quad z=z(u) \quad \text { where } u \in[0,1], \quad w \in[0,2 \pi]
$$

A parametric surface of revolution.

Bicubic surface patch in Parameter Space

Bicubic surface patch's components

Bicubic surface patch in model space

(b)

(c)
point, line, and planar patch in model space

(a)

(b)

(c)

Figure 6.10 Three more special surfaces.

Curves on Surfaces

Isoparametric curve:
One parameter varies while the other is constant.
Parametric curve net on a patch
Two 1-parameter families of curves such that through each point there passes just one of each family.

2 tangents of the curves at each point must be distinct. Orthogonal tangents produce orthogonal net.

Curves on Parametric Surfaces

Figure 6.13 Decomposition of a complex shape.

Figure 6.12 Curves on surfaces.

Surface with Irregular Boundary

Point Classification: count number of times a line segment to interior point q crosses each boundary curve.

Figure 6.14 Surface with irregular boundary.

Figure 6.15 Irregular surface defined by the intersection of halfspaces.

Surfaces from Curves

4 Typical Types of Parametric Surface Patches

Control points influence surface shape.

- Interpolating
- Defined by rectangular array of control points.
- Surface patch passes through all control points.
- Hermite (bicubic)
- Defined by 4 corner points, tangent vectors at 4 boundary curves, and "twist vectors" at corner points.
- Interpolates all its corner points.
- Not invariant under affine transformations.
- Bezier
- Defined by rectangular array of control points.
- Interpolates all its corner points.
- Starting and ending tangents of each boundary curve are determined by control polyhedron at corner points.
- Invariant under affine transformations.
- Surface patch lies within convex hull of control polygon.
- Not necessarily variation-diminishing.
- Degrees of basis functions related to number of control points.

Bicubic Interpolating Patch

Bicubic Bezier Patch

- B-Spline
- Defined by rectangular array of control points.
- Not guaranteed to interpolate control points.
- Invariant under affine transformations.
- Surface patch lies within convex hull of control polygon.
- Not necessarily variation-diminishing.
- Degrees of basis functions independent of number of control points.
- More local control than Bezier.

Trimmed NURBS Surface: courtesy of Silicon Graphics

Bezier Surface Patch

Geometric form:

$$
\begin{gathered}
\mathbf{p}(u, w)=\sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{i j} B_{i, m}(u) B_{j, n}(w) \\
B_{i, m}(u)=\binom{m}{i} u^{i}(1-u)^{m-i}
\end{gathered}
$$

Bernstein polynomials.
Figure 4.6 Bézier basis functions for 3 points (a), and 4 points (b).
Degree in u parameter $=m$.
Degree in w parameter $=n$.

$$
B_{i, n}(u)=\frac{n!}{i!(n-i)!} u^{i}(1-u)^{n-i} \quad \sum_{i=0}^{m} B_{i, m}(u)=1
$$

Degree elevation to ($m+1, n+1$) is reduced to series of univariate degree elevation problems.

Convex combination, so Bezier surface points all lie within convex hull of control polyhedron.

Rational form is invariant under perspective transformation: where $h_{i j}$ are projective space coordinates (weights)

$$
\mathbf{p}(u, w)=\frac{\sum_{i=0} \sum_{j=0} h_{i j} \mathbf{p}_{i j} B_{i, m}(u) B_{j, n}(w)}{\sum_{i=0}^{m} \sum_{j=0}^{n} h_{i j} B_{i, m}(u) B_{j, n}(w)}
$$

$$
\begin{aligned}
& p(u, w)=U^{T}\left[M_{B}\right][P]\left[M_{B}\right]^{T} W \\
& \text { Patch }{ }_{\left[M_{B}\right]}=\left[\begin{array}{rrrr}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$\mathbf{p}(u, w)=\left[\begin{array}{llll}(1-u)^{3} & 3 u(1-u)^{2} & 3 u^{2}(1-u) & u^{3}\end{array}\right]\left[\begin{array}{llll}\mathbf{p}_{11} & \mathbf{p}_{12} & \mathbf{p}_{13} & \mathbf{p}_{14} \\ \mathbf{p}_{21} & \mathbf{p}_{22} & \mathbf{p}_{23} & \mathbf{p}_{24} \\ \mathbf{p}_{31} & \mathbf{p}_{32} & \mathbf{p}_{33} & \mathbf{p}_{34} \\ \mathbf{p}_{41} & \mathbf{p}_{42} & \mathbf{p}_{43} & \mathbf{p}_{44}\end{array}\right]\left[\begin{array}{c}(1-w)^{3} \\ 3 w(1-w)^{2} \\ 3 w^{2}(1-w) \\ w^{3}\end{array}\right]$

Bicubic Bezier Patch: courtesy of Shu Ye

Composite Bezier Surface

- Bezier surface patches can provide G^{1} continuity at patch boundary curves.
- For common boundary curve defined by control points $\mathbf{p}_{14,}$, $\mathbf{p}_{24}, \mathbf{p}_{34}, \mathrm{p}_{44}$, need collinearity of:

$$
\left\{\mathbf{p}_{i, 3}, \mathbf{p}_{i, 4}, \mathbf{p}_{i, 5}\right\}, \quad i \in[1: 4]
$$

- Two adjacent patches are C^{r} across their common boundary if all rows of control net vertices are interpretable as polygons of C^{r} piecewise Bezier curves.

Figure $8.4 \mathrm{G}^{1}$ continuity across two Bézier patches.
source: Mortenson, Farin

$\mathrm{M}_{\text {Bspline }}=\frac{1}{6}\left[\begin{array}{cccc}-1 & 3 & -3 & 3 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0\end{array}\right]$
 Features: Local control and variation of degree
 B-Spline Surface Patch $v^{2}=\vec{b}$
 $p(u, w)=U^{T}\left[M_{B}\right][P]\left[M_{B}\right]^{T} W$
 $$
P(u, v)=\left[\begin{array}{llll} N_{0, k}(u) & N_{1, k}(u) & \cdots & N_{n, k}(u) \end{array}\right]
$$
 $\left[\begin{array}{cccc}P_{00} & P_{01} & \cdots & P_{0 m} \\ P_{10} & P_{11} & \cdots & P_{1 m} \\ \vdots & \vdots & & \vdots \\ P_{n 0} & P_{n 1} & \cdots & P_{n m}\end{array}\right]\left[\begin{array}{c}N_{0, l}(v) \\ N_{1, l}(v) \\ \vdots \\ N_{m, l}(v)\end{array}\right]$

Geometric form (non-uniform, non-
Quadratic case (left), Cubic case (right)
rational case), where K controls degree ($K-1$) of basis functions for parameter u and L controls degree ($L-1$) of basis functions for parameter w :
$\mathbf{p}(u, w)=\sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{i j} N_{i, K}(u) N_{j, L}(w)$

Figure 5.7 Uniform B-spline basis functions on the unit interval for $K=3$ and $K=4$.
$N_{i, k}(u)=\frac{\left(u-t_{i}\right) N_{i, k-1}(u)}{t_{i+k-1}-t_{i}}+\frac{\left(t_{i+k}-u\right) N_{i+1, k-1}(u)}{t_{i+k}-t_{i+1}}$

$$
\sum_{i=0}^{m} N_{i, K}(u)=1
$$

Cubic B-splines can provide C^{2} continuity at surface patch boundary curves.
Rational form (NURBS) is invariant under perspective transformation, where $h_{i j}$ are projective space coordinates (weights).

Convex combination, so B-spline surface points all lie within convex hull of control polyhedron.

$$
\mathbf{p}(u, w)=\frac{\sum_{i=0}^{m} \sum_{j=0}^{n} h_{i j} \mathbf{p}_{i j} N_{i, K}(u) N_{j, L}(w)}{\sum_{i=0}^{m} \sum_{j=0}^{n} h_{i j} N_{i, K}(u) N_{j, L}(w)}
$$

Partialiyciosea(periodic) B-Spline Surface
 $$
\begin{aligned} & K=4 \\ & L=3 \end{aligned}
$$

(b)

(c) source: Mortenson

Figure 9.6 Partially closed B-spline surface.

Untrimmed NURBS Surface Patch

- Jason's NURBS surface
- Checkerboard texture map
- 8 control points in each dimension
- 12 uniformly spaced knots for each parameter
- u stride $=8 * 3, v$ stride $=3$

2 different views of Jason's patch

Untrimmed Surface Patch examples

e Surfaces $\quad \square \square$

Consists of:

- NURBS surfaces
- Checkerboard
- Gear (body: front and back faces)
- Surfaces of revolution using cubic Bezier curves
- Pawn
- Extrusion
-Gear's teeth and gaps

Trimmed NURBS Surface Patch

Start with a NURBS Patch, as in Red Book:

GLfloat knots[8] = \{0.0, 0.0, 0.0, 0.0, 1.0, 10, 1.0, 1.0\};

Control points: GFfloat ctlpoints[4][4][3] (4 in each parametric direction) yield symmetric hill ranging from -3.0 to 3.0.
gluNurbsSurface(the Nurb, 8, knots, 8, knots, 4*3, 3, \&ctlpoints[o][0][0], 4, 4, GL_MAP2_VERTEX_3);

Add trimming curves (interior on left) before gluEndSurface(theNurb), according to diagram on right:
gluBeginTrim(theNurb);
gluPwlCurve(theNurb, 5, \&edgePt[o][0], 2, GLU_MAP1_TRIM_2); gluEndTrim(theNurb);
gluBeginTrim(theNurb);
gluNurbsCurve(theNurb, 8, curveKnots, 2, \&curvePt[n][n1 / GIIII MAP1 TRIM_2);
gluPwlCurve(theNurb, 3, \&pwIPt[o][o], 2, GLU_MAP gluEndTrim(theNurb);

Note: From Jason's experience, more than 4 control points in each dimension may be problematic for trimming curves.

Trimmed NURBS Surface: courtesy of Silicon Graphics
checkerboard NURBS courtesy of Jason

Parametric bicubic surfaces

Major kinds of surfaces: Hermit, Bezier, B-spline
Displaying bicubic surfaces:

- brute-force iterative evaluation is very expensive (the surface is evaluated 20,000 times if step in parameters is 0.01)
- forward-difference methods are better, but still expensive
- fastest is adaptive subdivision, but it might create cracks

Polygon meshes

- well suited for representing flat-faced objects
- seldom satisfactory for curved-faced objects
- space inefficient
- simpler algorithms
- hardware support

Surfaces from point cloud

Top row: low-resolution volumetric representations of the horse $(104 \times 70 \times 119,195 \times 120 \times 228)$ and the head ($69 \times 69 \times 76,118 \times 120 \times 135$). Bottom row: respective implicit surfaces generated by algorithm.

Localized LS Smoothing/Sharpening

(left) Scan conversion errors near the teapot spout. (middle) Placing a (red) superellipsoid around the errors.
(right) The errors are smoothed away in 15 seconds.
The surface is constrained to only move outwards.

Localized LS Smoothing/Sharpening

LS offset

Mesh offset

(left) A cross-section of the teapot model near the spout. (middle) No self-intersection occurs, by construction, when performing a level set (LS) offset, i.e. dilation, of the surface.
(right) Self-intersections may occur when offsetting a mesh model.

Regionally constrained smoothing

Left: Laser scan reconstruction with unwanted, pointed artifacts in the eye.
Middle: Defining the region to be smoothed with a (red) superellipsoid.
Right: Smoothing the surface within the superellipsoid. The surface is constrained to only move inwards.

Point-Set Attraction and Embossing

Left: Three types of single point attractions/repulsions using different ROI primitives and values.
Right: Utah teapot embossed with 7862 points sampling the "SIGGRAPH 2002" logo.

Piecewise cubic curves and bicubic surfaces

- permit multiple values for a single x or y
- represent infinite slopes
- easier to manipulate interactively
- can either interpolate or approximate
- space efficient
- more complex algorithms
- little hardware support this

Sculptured Surface

- General surface
- Composed of connected surface patches

Surface Modeling

Surface models define only the geometry, no topology. Shading is possible.

Klein
bottle

Analytical Surface Free-form, Curved, Sculptured Surfaces.

Parameterization

Homeomorphic surfaces

These surfaces are topologically-equivalent (homeomorphic) to a square.

These surfaces are topologically-equivalent (homeomorphic) to a sphere.

Homeomorphic surfaces

These surfaces are topologically-equivalent (homeomorphic) to a torus.

Homeomorphic to a double torus.

Interpolation and Approximation

Surface fitting methods

Surface modeling, approximation

Only a limited number of control points lie on the Bézier surface, (e.g., $(u, w)=[(0,0),(0,1),(1,0)$ and $(1,1)])$.

Surface Modeling

Control points

NURBS surface is a tensor product surface and is the product of two curves.

Surfaces are defined by a grid and have two sets of parameters, $\quad \mathbf{S}(\mathrm{u}, \mathrm{v})=\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i, n}(u) B_{j, n}(v) \mathbf{P}_{\mathrm{ij}}$
two sets of knots and so on.

$$
\mathbf{S}(\mathrm{u}, \mathrm{v})=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i, k}(u) N_{j, l}(v) \mathbf{P}_{\mathrm{ij}}
$$

Surface Modeling

Curve-based design and Surface deformation

Freeform Phantom Arm

Designing by sculpturing

Surface Modeling

Surface Reconstruction by Recursive Subdivision

Surface Modeling

Surface subdivision Subdivision models
 Object can be considered as a set of faces, each face can be decomposed into a set of edges, each edge can be decomposed into vertices

Surface Modeling

Finite Element Simulation Subdivision to finite mesh

Surface Modeling

Defining a surface with hole

Surface Patch

Linearly Blended Coons Patch

- Surface is defined by linearly interpolating between the boundary curves
- Simple, but doesn't allow adjacent patches to be joined smoothly

Linearly Blended Coons Patch

$$
\begin{aligned}
& \mathrm{P} 1(\mathbf{u}, \mathbf{v}):=(1-\mathbf{u}) \cdot \mathrm{T}(\mathrm{v})+\mathrm{u} \cdot \mathrm{R}(\mathrm{v}) \\
& \mathrm{P} 2(\mathbf{u}, \mathbf{v}):=(1-\mathrm{v}) \cdot \mathrm{Q}(\mathrm{u})+\mathrm{v} \cdot \mathrm{~S}(\mathrm{u})
\end{aligned}
$$

$$
\mathrm{P} 3(u, v):=(1-v) \cdot[(1-u) \cdot T(0)+u \cdot R(0)]+v \cdot[(1-u) \cdot T(1)+u \cdot R(1)]
$$

$$
\mathrm{P}(\mathrm{u}, \mathrm{v}):=\mathrm{P} 1(\mathrm{u}, \mathrm{v})+\mathrm{P} 2(\mathrm{u}, \mathrm{v})-\mathrm{P} 3(\mathrm{u}, \mathrm{v})
$$

$\left(\varepsilon_{\varepsilon}^{(0)}, \varepsilon_{1}^{\left.(1), E^{(2)}\right),\left(x_{2}, v 2,22\right)}\right.$

Bicubic Patch

Extension of cubic curve 16 unknown coefficients - 16 boundary conditions Tangents and "twists" at corners of patch can be used Like Lagrange and Hermite curves, difficult to work with

$$
\mathbf{P}(u, v)=\sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{k}_{i, j} u^{i} v^{j}
$$

$$
\begin{aligned}
& p(u, w)=U^{T}\left[M_{B}\right][P]\left[M_{B}\right]^{T} W \\
& \\
& \text { ces } \quad U^{T}=\left[\begin{array}{lll}
u^{3} & u^{2} & u \\
& & 1
\end{array}\right] \quad\left[M_{B}\right]=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
& 4.1
\end{aligned}
$$

- Bezier curves can be extended to surfaces
- Same problems as for Bezier curves:
- no local modification possible
- smooth transition between adjacent patches difficult to achieve

$$
C_{n, i}:=\frac{n!}{i!\cdot n-i!} \quad B(u, i):=C_{n, i} \cdot u^{i} \cdot(1-u)^{n-i}
$$

$$
P(u, v, r):=\sum_{i=0}^{m} \sum_{j=0}^{n}\left(p_{i}, j\right)_{r} \cdot B(u, i) \cdot B(v, j)
$$

 used for tool path generation

B-Spline Surfaces

$p(u, w)=U^{T}\left[M_{B}\right][P]\left[M_{B}\right]^{T} W$	$\left[P_{00} P_{01} \cdots P_{0 m}\right.$	
	$P_{10} P_{11} \cdots P_{1 m}$	$N_{1,2}$
	?	!
$U^{T}=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right]$	$P_{n 0} P_{n 1} \cdots P_{n n}$	$N_{m, 1}(v)$

- As with curves, B-spline surfaces are a generalization of Bezier surfaces

$$
M_{\text {Bppipe }}=\frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 3 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]
$$

- The surface approximates a control polygon
- Open and closed surfaces can be represented

$$
\begin{aligned}
& P(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} P_{i j} \cdot N_{i, k}(u) \cdot N{ }_{j, l}(v) \quad 0 \leq u \leq u_{m a x} \\
& N_{i, k}(u)=\left(u-u_{i}\right) \cdot \frac{N_{i, k-1}}{u_{i+k-1}-u_{i}}+\left(u_{i+k}-u\right) \cdot \frac{N_{i+1, k-1}}{u_{i+k}-u_{i+1}}
\end{aligned}
$$

B-Spline Surfaces

Surfaces from Curves

- Tabulated cylinder (extrusion)
- Ruled surface (lofting or spined)
- Surface of revolution
- Swept surface
- Sculptured surface

Tabulated Cylinder

- Project curve along a vector
- In SolidWorks, created by extrusion

Ruled Surface

- Linear interpolation between two edge curves
- Created by lofting through cross sections

Surface of Revolution

Revolve curve about an axis

Swept Surface

Defining curve swept along an arbitrary spine curve

Lofted Surface

Defining curve swept along an arbitrary spine curve

Surface Pipe

Spined Surface

Surface Manipulations

- Offset
- Blend
- Display
- Segmentation (division)
- Trimming
- Intersection
- Projection
- Transformation

Fillets and Blends

Often necessary to create a blend between intersecting surfaces.

Most common application is a fillet

Face Blend

Fillet

Fillet between two selected surfaces

Spined fillet with drive curve

Surface functions

- Curve in surface intersection
- Offset Surface

$\bar{p}(u, w)_{\text {offset }}=\bar{p}(u, w)+\bar{n}(u, w) * d$
- Planar development

Fillet between three surfaces

Corner fillet

Fillet between three curves

Triangular Surface

 Bezier patch

Bernstein polynomials of degree n : $n!\quad 0 \leq u \leq 1,0 \leq v \leq 1,0 \leq w \leq 1$

$$
B_{i, j, k, n}=\frac{n!}{i!j!k!} u^{i} v^{j} w^{k} \quad \begin{aligned}
& 0 \leq u \leq 1,0 \leq v \leq 1,0 \leq w \leq 1 \\
& \text { where } i, j, k \geq 0, i+j+k=n
\end{aligned}
$$

Subdividing a Bézier Patch

$$
P=\left[\begin{array}{llll}
\mathbf{P}_{0,0} & \mathbf{P}_{0,1} & \mathbf{P}_{0,2} & \mathbf{P}_{0,3} \\
\mathbf{P}_{1,0} & \mathbf{P}_{1,1} & \mathbf{P}_{1,2} & \mathbf{P}_{1,3} \\
\mathbf{P}_{2,0} & \mathbf{P}_{2,1} & \mathbf{P}_{2,2} & \mathbf{P}_{2,3} \\
\mathbf{P}_{3,0} & \mathbf{P}_{3,1} & \mathbf{P}_{3,2} & \mathbf{P}_{3,3}
\end{array}\right]
$$

$$
\mathbf{P}\left(\frac{u}{2}, v\right)=\left[\begin{array}{llll}
1 & \left(\frac{u}{2}\right) & \left(\frac{u}{2}\right)^{2} & \left(\frac{u}{2}\right)^{3}
\end{array}\right] M\left[\begin{array}{llll}
\mathbf{P}_{0,0} & \mathbf{P}_{0,1} & \mathbf{P}_{0,2} & \mathbf{P}_{0,3} \\
\mathbf{P}_{1,0} & \mathbf{P}_{1,1} & \mathbf{P}_{1,2} & \mathbf{P}_{1,3} \\
\mathbf{P}_{2,0} & \mathbf{P}_{2,1} & \mathbf{P}_{2,2} & \mathbf{P}_{\mathbf{P}_{2,3}} \\
\mathbf{P}_{3,0} & \mathbf{P}_{3,1} & \mathbf{P}_{3,2} & \mathbf{P}_{3,3}
\end{array}\right] M^{T}\left[\begin{array}{c}
1 \\
v \\
v^{2} \\
v^{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
1 & u & u^{2} & u^{3}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{4} & 0 \\
0 & 0 & 0 & \frac{1}{8}
\end{array}\right] M\left[\begin{array}{llll}
\mathbf{P}_{0,0} & \mathbf{P}_{0,1} & \mathbf{P}_{0,2} & \mathbf{P}_{0,3} \\
\mathbf{P}_{1,0} & \mathbf{P}_{1,1} & \mathbf{P}_{1,2} & \mathbf{P}_{1,3} \\
\mathbf{P}_{2,0} & \mathbf{P}_{2,1} & \mathbf{P}_{2,2} & \mathbf{P}_{2,3} \\
\mathbf{P}_{3,0} & \mathbf{P}_{3,1} & \mathbf{P}_{3,2} & \mathbf{P}_{3,3}
\end{array}\right] M^{T}\left[\begin{array}{c}
1 \\
v \\
v^{2} \\
v^{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
1 & u & u^{2} & u^{3}
\end{array}\right] M S_{L}\left[\begin{array} { l l l l }
{ \mathbf { P } _ { 0 , 0 } } & { \mathbf { P } _ { 0 , 1 } } & { \mathbf { P } _ { 0 , 2 } } & { \mathbf { P } _ { 0 , 3 } } \\
{ } & { } & { } & { }
\end{array} \mathbf { P } _ { 1 , 0 } \mathbf { P } _ { 1 , 1 } \mathbf { P } _ { \mathbf { P } _ { 1 , 2 } } \mathbf { P } _ { 1 , 3 } \left[\begin{array} { l }
{ \mathbf { P } _ { 2 , 0 } }
\end{array} \mathbf { P } _ { 2 , 1 } \mathbf { P } _ { 2 , 2 } \mathbf { P } _ { 2 , 3 } \left[\begin{array}{c}
1 \\
\mathbf{P}_{3,0}
\end{array} \mathbf{P}_{3,1} \mathbf{P}_{3,2} \quad \mathbf{P}_{3,3}\left[\begin{array}{c}
v \\
v^{2} \\
v^{3}
\end{array}\right]\right.\right.\right.
$$

$$
\mathbf{P}\left(\frac{u}{2}, v\right)=\left[\begin{array}{llll}
1 & u & u^{2} & u^{3}
\end{array}\right] M S_{L} P M^{T}\left[\begin{array}{c}
1 \\
v \\
v^{2} \\
v^{3}
\end{array}\right] \quad P=\left[\begin{array}{llll}
\mathbf{P}_{0,0} & \mathbf{P}_{0,1} & \mathbf{P}_{0,2} & \mathbf{P}_{0,3} \\
\mathbf{P}_{1,0} & \mathbf{P}_{1,1} & \mathbf{P}_{1,2} & \mathbf{P}_{1,3} \\
\mathbf{P}_{2,0} & \mathbf{P}_{2,1} & \mathbf{P}_{2,2} & \mathbf{P}_{2,3} \\
\mathbf{P}_{3,0} & \mathbf{P}_{3,1} & \mathbf{P}_{3,2} & \mathbf{P}_{3,3}
\end{array}\right]
$$

Subdivided Patch

Sheet metal bending

- Unfolding

Offset curves on Surface

Molding and silhouettes

Curved Surfaces

CSE167: Computer Graphics Instructor: Steve Rotenberg UCSD, Fall 2006

Bezier Surfaces

- Bezier surfaces are an extension to Bezier curves.
- Instead of the curve defined by a single parameter variable t, we use two variables, s and t for surface.
- By definition, we choose to have s and t range from o to 1 and we say that an s-tangent crossed with a \boldsymbol{t}-tangent will represent the normal \mathbf{n} for the front of the surface.

Curved Surfaces ${ }^{\text {* }}$

The Bezier parametric surface is a surface that can be parameterized by two variables, s and $t(u$ and v).

Parametric surfaces have a rectangular topology. In computer graphics, parametric surfaces are called patches, curved surfaces, or just surfaces.

There are also some non-parametric surfaces used in computer graphics, but we won't consider those now.

Control Mesh

Consider a bicubic Bezier surface (bicubic means that it is a cubic function in both the s and t parameters).
A cubic curve has 4 control points, and a bicubic surface has a grid of 4×4 control points, p_{0} through p_{15}.

Surface Evaluation

The bicubic surface can be thought of as 4 curves along the s parameter (or alternately as 4 curves along the t parameter). To compute the location of the surface for some (s, t) pair, we can first solve each of the 4 s -curves for the specified value of s.
Those 4 points now make up a new curve which we evaluate at t. Alternately, we first may solve the 4 t -curves by evaluating at s .
This gives a simple way to implement smooth surfaces with little more than what is needed to implement curves.

Matrix Form

- We saw the matrix form for a 3D Bezier curve is

$$
\begin{aligned}
& \mathbf{x}= {\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
p_{0 x} & p_{0 y} & p_{0 z} \\
p_{1 x} & p_{1 y} & p_{1 z} \\
p_{2 x} & p_{2 y} & p_{2 z} \\
p_{3 x} & p_{3 y} & p_{3 z}
\end{array}\right] } \\
& \mathbf{x}=\mathbf{t} \cdot \mathbf{B}_{B e z} \cdot \mathbf{G}_{B e z} \\
& \mathbf{x}=\mathbf{t} \cdot \mathbf{C}
\end{aligned}
$$

Matrix Form

- To simplify notation for surfaces, we will define a matrix equation for each of the x, y, and z components, instead of combining them into a single equation as for curves
- For example, to evaluate the x component of a Bezier curve,

$$
\begin{aligned}
& \text { we can use: } \\
& \begin{array}{llll}
x=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
p_{0 x} \\
p_{1 x} \\
p_{2 x} \\
p_{3 x}
\end{array}\right] \\
x=\mathbf{t} \cdot \mathbf{B}_{B e z} \cdot \mathbf{g}_{x} \\
x & =\mathbf{t} \cdot \mathbf{c}_{x}
\end{array}
\end{aligned}
$$

Matrix Form

To evaluate the x component of 4 curves simultaneously, we can combine 4 curves into a 4×4 matrix.
To evaluate a surface, we evaluate the 4 curves, and use them to make a new curve which is then evaluated.

This can be written in a compact matrix form:

$$
\begin{aligned}
& x(s, t)=\mathbf{s} \cdot \mathbf{B}_{\text {Bez }} \cdot \mathbf{G}_{x} \\
& \mathbf{s}=\left[\begin{array}{llll}
s^{3} & s^{2} & s & 1
\end{array}\right] \\
& \mathbf{t}=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]
\end{aligned}
$$

$$
x(s, t)=\mathbf{s} \cdot \mathbf{B}_{B e z} \cdot \mathbf{G}_{x} \cdot \mathbf{B}_{B e z}^{T} \cdot \mathbf{t}^{T}
$$

Matrix Form

$$
\begin{aligned}
& \mathbf{s}=\left[\begin{array}{llll}
s^{3} & s^{2} & s & 1
\end{array}\right] \\
& \mathbf{t}=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]
\end{aligned}
$$

$\mathbf{x}(s, t)=\left[\begin{array}{l}\mathbf{s} \cdot \mathbf{C}_{x} \cdot \mathbf{t}^{T} \\ \mathbf{s} \cdot \mathbf{C}_{y} \cdot \mathbf{t}^{T} \\ \mathbf{s} \cdot \mathbf{C}_{z} \cdot \mathbf{t}^{T}\end{array}\right]$
$\mathbf{C}_{x}=\mathbf{B}_{\text {Bez }} \cdot \mathbf{G}_{x} \cdot \mathbf{B}_{\text {Bez }}^{T}$
$\mathbf{s}=\left[\begin{array}{llll}s^{3} & s^{2} & s & 1\end{array}\right]$
$\mathbf{t}=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]$
$\mathbf{B}_{\text {Bez }}=\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]=\mathbf{B}_{\text {Bez }}^{T}$
$\mathbf{G}_{x}=\left[\begin{array}{llll}p_{0 x} & p_{4 x} & p_{8 x} & p_{12 x} \\ p_{1 x} & p_{5 x} & p_{9 x} & p_{13 x} \\ p_{2 x} & p_{6 x} & p_{10 x} & p_{14 x} \\ p_{3 x} & p_{7 x} & p_{11 x} & p_{15 x}\end{array}\right]$

$$
x(s, t)=\mathbf{s} \cdot \mathbf{B}_{B e z} \cdot \mathbf{G}_{x} \cdot \mathbf{B}_{B e z}^{T} \cdot \mathbf{t}^{T}
$$

Matrix Form

$$
\begin{aligned}
& \mathbf{s}=\left[\begin{array}{llll}
s^{3} & s^{2} & s & 1
\end{array}\right] \\
& \mathbf{t}=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]
\end{aligned}
$$

C_{x} stores the coefficients of the bicubic equation for x G_{x} stores the geometry (x components of the control points)
$\mathrm{B}_{\text {Bez }}$ is the basis matrix (Bezier basis)
\mathbf{s} and \mathbf{t} are the vectors formed from the exponents of s and t

- The matrix form is a nice and compact notation and leads to an efficient method of computation
- It can also take advantage of 4×4 matrix support which is built into modern graphics hardware

Tangents

- To compute the s and t tangent vectors at some (s, t) location, we can use:

$$
\begin{aligned}
& \frac{\partial \mathbf{x}}{\partial s}=\left[\begin{array}{ll}
d \mathbf{s} \cdot \mathbf{C}_{x} \cdot \mathbf{t}^{T} \\
d \mathbf{s} \cdot \mathbf{C}_{y} \cdot \mathbf{t}^{T} \\
d \mathbf{s} \cdot \mathbf{C}_{z} \cdot \mathbf{t}^{T}
\end{array}\right] \quad \begin{array}{llll}
\mathbf{s}=\left[\begin{array}{llll}
s^{3} & s^{2} & s & 1
\end{array}\right] \\
\mathbf{t}=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \\
\frac{\partial \mathbf{x}}{\partial t}=\left[\begin{array}{ll}
\mathbf{s} \cdot \mathbf{C}_{x} \cdot d \mathbf{t}^{T} \\
\mathbf{s} \cdot \mathbf{C}_{y} \cdot d \mathbf{t}^{T} \\
\mathbf{s} \cdot \mathbf{C}_{z} \cdot d \mathbf{t}^{T}
\end{array}\right] & \begin{array}{l}
\mathbf{s}=\left[\begin{array}{llll}
3 s^{2} & 2 s & 1 & 0
\end{array}\right] \\
d \mathbf{t}=\left[\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right]
\end{array}
\end{array} . \begin{array}{l}
\text { and }
\end{array}
\end{aligned}
$$

Normals

- To compute the normal of the surface at some location (s, t), we compute the two tangents at that location and then take their cross product
- Usually, it is normalized as well

$$
\begin{aligned}
& \mathbf{n}^{*}=\frac{\partial \mathbf{x}}{\partial s} \times \frac{\partial \mathbf{x}}{\partial t} \\
& \mathbf{n}=\frac{\mathbf{n}^{*}}{\left|\mathbf{n}^{*}\right|}
\end{aligned}
$$

Bezier Surface Properties

- Like Bezier curves, Bezier surfaces retain the convex hull property, so that any point on the actual surface will fall within the convex hull of the control points
- With Bezier curves, the curve will interpolate (pass through) the first and last control points, but will only approximate the other control points
- With Bezier surfaces, the 4 corners will interpolate, and the other 12 points in the control mesh are only approximated
- The 4 boundaries of the Bezier surface are just Bezier curves defined by the points on the edges of the surface
- By matching these points, two Bezier surfaces can be connected precisely

Tessellation

- Tessellation is the process of taking a complex surface (like a bicubic patch) and approximating it with a set of simpler surfaces (like triangles)
- In computer graphics, there are a lot of different types of complex surfaces one might want to tessellate, such as:
- Parametric surfaces (such as Bezier surfaces)
- Displacement mapped surfaces
- Subdivision surfaces
- Fractals
- Procedural models
- Implicit surfaces
- We will look at the first two today

Model

Uniform Tessellation

- The most straightforward way to tessellate a parametric surface is uniform tessellation
- With this method, we simply choose some resolution in s and t and uniformly divide up the surface like a grid
- This method is very efficient to compute, as the cost of evaluating the surface reduces to approximately the same cost as evaluating a curve
- However, as the generated mesh is uniform, it may have more triangles than it needs in flatter areas and fewer than it needs in highly curved areas

Adaptive Tessellation

- Very often, the goal of a tessellation is to provide the fewest triangles necessary to accurately represent the original surface
- For a curved surface, this means that we want more triangles in areas where the curvature is high, and fewer triangles in areas where the curvature is low
- We may also want more triangles in areas that are closer to the camera, and fewer farther away
- Adaptive tessellation schemes are designed to address these requirements

Mixed Tessellation

- Some practical renderers use a mixed tessellation scheme
- First, the original surface patch is adaptively subdivided into several subpatches, each approximately the same size (say around 10 pixels on a side)
- Then, each of the subpatches (which is just a rectangular s, t range within the larger 0,1 rectangle) is uniformly tessellated to some size (say 10×10)
- The result is that the curved surface is tessellated into triangles roughly the size of a single pixel
- The bulk of the cost of the algorithm is in the uniform tessellation, which can be implemented in a very efficient way

Displacement Mapping

- To add additional geometric detail to a tessellated surface, we can use displacement mapping
- With this technique, a displacement map is stored, which is much like a texture map that stores a height value per texel instead of a color
- As with texture mapping, we can assign a texture coordinate to each corner of the patch that allows us to position the displacement map onto the surface
- This coordinate gets interpolated when we evaluate the position and normal of the patch for some (s, t) value
- We can displace the position by the height value. The displacement is usually done along the computed patch normal
- Once we've displaced our tessellated triangle mesh, we will need to recompute accurate normals, as they will change based on the displacements
- To avoid geometry aliasing, we should really perform some sort of filtering on the height value (such as mipmapping)

Scan Conversion

- The serial scan conversion technique we looked at earlier in the quarter requires expensive set-up computations in order to make the per-pixel cost very low, thus making it efficient for large triangles
- Some surface renderers generate triangles smaller than a single pixel, or the size of a few subpixels in an antialiased rendering
- For triangles this small, it is usually better to use different approaches in the scan conversion process
- Also, as these micropolygons are so usually generated from uniform tessellations, other optimizations can be made to account for all of the shared vertices and edges between them

Other Curve Types

- Curves
- Hermite curves
- Catmull-Rom curves
- B-Splines
- NURBS
- Surfaces
- B-Spline / NURBS
- Trim curves
- Subdivision surfaces
- Implicit surfaces

CAD/CAE/CAM

Part 5: Representation and Manipulation of Surfaces

What Is It?

The ways and means to define and manipulate 3D surfaces, used by geometric modeling systems to store surfaces such as faces in a B-Rep.

Types of Surface Equations

- Implicit

Describe a surface by equations relating to the X, Y, Z coordinates. Advantages:

Compact; Easy to check if a point belongs to the surface.
Disadvantages:

- Difficult for surface evaluation.
- Difficult for partial surface definition (1/4 of a sphere).
- Parametric

Represent the X, Y, Z coords as a function of two parameter.
Advantages:

- Easy for surface evaluation.
- Convenient for partial surface definition.
- Many others such as easy for manipulation.

Parametric Surfaces

$S(u, v)=[x(u, v), y(u, v), z(u, v)]^{\top}$
with $u_{\text {min }}<u<u_{\text {max }}$ and $v_{\text {min }}<v<v_{\text {max }}$
In most surfaces, the intervals for u and v are $[0,1]$.
Surfaces can be modeled by a group of surface patches.
A surface patch has the following boundary conditions:

- 4 corner vectors - S(0,0), S(0,1), S(1,0), S(1,1)
- 8 tangent vectors - 2 at each corner, $\mathbf{S}_{u}(u, v), \mathbf{S}_{v}(u, v)$
- 4 twist vectors at the corners - $\mathrm{S}_{u v}(u, v)$
- 4 boundary curves $-u=0, u=1, v=0, v=1$.

Parametric Surfaces

Basic Terminologies of Parametric Surface S(u,v)

1. $\mathrm{S}(\mathrm{u}, \mathrm{b})$ and $\mathrm{S}(\mathrm{a}, \mathrm{v})$ are iso-parametric curves at $\mathrm{v}=\mathrm{b}$ and $\mathrm{u}=\mathrm{a}$ respectively.
2. \mathbf{n} is the unit normal vector at $(u, v)=(a, b)$.

Classification of Surfaces

- Bi-linear Patch
- Ruled Patch
- Coons Patch
- Bicubic Patch
- Hermite Patch
- Coons Patch with tangents
- Bezier Patch
- B-Spline Patch
- Non-Uniform Rational B-Splines (NURBS)

Bi-linear Patch

The simplest surface defined by 4 points in space

- Input

Four points $P_{0,0}, P_{0,1}, P_{1,0}, P_{1,1}$

- Output

A surface $S(u, v)$ with four corners
$S(0,0), S(0,1), S(1,0)$, and $S(1,1)$ at the four given points

- Definition
- Each of the X, Y, and Z components is a bi-linear function of u and v
- Example

Ruled Surface

The simplest surface defined by two curves

- Input

Two curves $\mathrm{Q}_{0}(\mathrm{U})$ and $\mathrm{Q}_{1}(\mathrm{U})(0 \leq \mathrm{u} \leq 1)$

- Output

A surface $S(\mathrm{u}, \mathrm{v})$ with its two boundary curves
$S(u, 0)$ and $S(u, 1)$
identical to $\mathrm{Q}_{0}(\mathrm{U})$ and $\mathrm{Q}_{1}(\mathrm{U})$ respectively.

- Definition
- Example

Coons Patch

The simplest surface defined by four curves $\mathrm{Q}_{0}(\mathrm{u}), \mathrm{Q}_{1}(\mathrm{u}), \mathrm{P}_{0}(\mathrm{v}), \mathrm{P}_{1}(\mathrm{v})$

- Input and Output
- Definition

Step 1. Define a ruled surface $\mathrm{S}_{1}(\mathrm{u}, \mathrm{v})$ on two opposite curves Step 2. Define a ruled surface $\mathrm{S}_{2}(\mathrm{U}, \mathrm{v})$ on the other two opposite curves
Step 3. Add two together and find the compensating patch

- Generalization
- Examples

A bicubic patch is a surface represented by an equation in polynomial form of degree 3 in the parameters u and v as in:

Bi-cubic Patch

$$
S(u, v)=\sum_{i=0}^{3} \sum_{j=0}^{3} a_{i j} u^{i} v^{j} \quad(0 \leq u \leq 1,0 \leq v \leq 1)
$$

Or, in matrix form:

$$
\mathbf{S}(u, v)=\left[1 u u^{2} u^{3}\right]\left[\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{20} & a_{21} & a_{22} & a_{23} \\
a_{30} & a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
1 \\
v \\
v^{2} \\
v^{3}
\end{array}\right] \quad(0 \leq u \leq 1,0 \leq v \leq 1)
$$

where each a_{ij} is an algebraic vector with x, y, and z components.
Example: $\quad S(u, v)=\left[\begin{array}{c}x(u, v) \\ y(u, v) \\ z(u, v)\end{array}\right]=\left[\begin{array}{c}0.5+2 v+v^{3}-u v^{2}-4 u^{3} v^{3} \\ 3 v^{2}+5 u^{2} v \\ 1+2.5 u-1.5 u^{2} v^{3}\end{array}\right]$
$\boldsymbol{a}_{00}=\left[\begin{array}{c}0.5 \\ 0 \\ 1\end{array}\right], \boldsymbol{a}_{01}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right], \boldsymbol{a}_{02}=\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right], \boldsymbol{a}_{03}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \boldsymbol{a}_{10}=\left[\begin{array}{c}0 \\ 0 \\ 2.5\end{array}\right], \boldsymbol{a}_{12}=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right], \boldsymbol{a}_{21}=\left[\begin{array}{l}0 \\ 5 \\ 0\end{array}\right], \boldsymbol{a}_{23}=\left[\begin{array}{c}0 \\ 0 \\ -1.5\end{array}\right], \boldsymbol{a}_{33}=\left[\begin{array}{c}-4 \\ 0 \\ 0\end{array}\right]$
All other $\boldsymbol{a}_{\mathrm{ij}}$ are $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$.

Hermite Patch

Similar to Hermite curve, non-intuitive algebraic coefficients a_{ij} need to be replaced by geometric coefficients like corner points and tangents. There are 16 unknowns $\boldsymbol{a}_{\mathrm{ij}}$, so we need 16 boundary vectors in order to find them.

- 12 intuitive vectors
- 4 more boundary vectors (twist vectors)
(usually set to zero vectors if difficult to decide)
- Compute the Hermite form

1. Compute the derivatives of the bicubic surface
2. Plug in the 16 boundary vectors and solve the linear equations for $\boldsymbol{a}_{\mathrm{ij}}$
3. Rearrange into the Hermite Form

- Major properties
- Boundary curves are Hermite
- Iso-parametric curves are Hermite
- Examples

Drawbacks of Hermite Patch

It is not easy and not intuitive to predict surface shape according to changes in magnitude of the tangents (partial derivatives) at the four corners.

In addition, the four cross-derivatives
$S_{u v}(0,0), S_{u v}(0,1)$ and $S_{u v}(1,0)$ most of time are not known.

Bezier Surface

- Definition

$$
\mathbf{S}(\mathrm{u}, \mathrm{v})=\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i, n}(u) B_{j, m}(v) \mathbf{P}_{\mathrm{ij}} \quad(0 \leq u \leq 1,0 \leq v \leq 1)
$$

$P_{i j}$: the control points that form a $(\mathrm{n}+1)$ by $(\mathrm{m}+1)$ control mesh
n : the degree of the surface in u direction m : the degree of the surface in v direction

- Examples
a 5×6 patch; a closed patch
- Properties
- How to evaluate

Drawbacks of Bezier Surface

- High degree

The degree is determined by the number of control points which tend to be large for complicated surfaces. This causes oscillation as well as increases the computation burden.

- Non-local modification control When modifying a control point, the designer wants to see the shape change locally around the moved control point. In Bezier patch case, moving a control point affects the shape of the entire surface, and thus the portions on the surface not intended to change.
- Intractable linear equations

If we are interested in interpolation rather than just approximating a shape, we will have to compute control points from points on the surface. This leads to systems of linear equations, and solving such systems can be impractical when the degree of the surface is large.

B-Spline Surface

- Definition

$$
\mathbf{S}(\mathrm{u}, \mathrm{v})=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i, k}(u) N_{j, l}(v) \mathbf{P}_{\mathrm{ij}} \quad\left(s_{k-1} \leq u \leq s_{n+1}, \quad t_{l-1} \leq v \leq t_{m+1}\right)
$$

$P_{i j}$: the control points that form a $(n+1)$ by $(m+1)$ control mesh
k : the order of the basis functions in u direction
l : the order of the basis functions in v direction
$U=\left\{s_{0}, \ldots, s_{n+k}\right\}$ is the knots vector in u-direction
$V=\left\{t_{0}, \ldots, t_{n+1}\right\}$ is the knots vector in v-direction

- Examples
a 6 by 6 patch, a B-Spline Editor
- Properties
- Local-modification property
- Degrees k and $l i n d e p e n d e n t ~ o f ~ n a n d ~ m ~$

Implicit Surface Representations

Implicit representation

$$
\mathrm{x}^{2}+\mathrm{y}^{2}+z^{2}-\mathrm{R}^{2}=0
$$

Problems:

- Surface evaluation. Say, to display this sohere on the screen, we need to approximate it by 1000 triangles, equally sized. Hard to do
- Partial surface. To define an octant of the sphere, not the entire sphere which is closed. Difficult.

Parametric Surface Representations

Parametric representation

$$
x=R \cos \theta \sin \phi, \quad y=R \sin \theta \sin \phi, \quad z=R \cos \phi \quad(0 \leq \theta \leq 2 \pi) \text { and }(0 \leq \phi \leq \pi)
$$

- To compute 10000 equally spaced points on the sphere? Just evaluate the above equations at $\left(\Theta_{\mathrm{i}}, \phi_{\mathrm{j}}\right)=\left((\mathrm{i} / 1000)^{*} 2 \pi,(\mathrm{j} / 1000)^{*} 2 \pi\right), \mathrm{i}=0,1,2, \ldots, 99, \mathrm{j}=$ $1,2, \ldots, 99$.
- To represent the sphere in the first octant? Just limit the range of (θ, ϕ) to ($0 \leq \theta \leq 0.5 \pi, 0 \leq \phi \leq 0.5 \pi$).

Bi-Linear Surface

(The simplest surface defined by 4 points)

1. Define two linear boundary curves along $\mathrm{u}=0$ and $\mathrm{u}=1$

$$
\begin{aligned}
& \mathbf{P}_{0, \pi}=(1-\mathrm{v}) \mathbf{P}_{0,0}+\mathrm{vP}_{0,1} \\
& \mathbf{P}_{1,5}=(1-\mathrm{v}) \mathrm{P}_{1,0}+{ }_{\mathrm{vP}}^{1,1}
\end{aligned}
$$

2. Define a linear curve along u direction between $\mathbf{P}_{0 \pi}$ and $\mathbf{P}_{1 \pi}$.

$$
\mathbf{P}(u, v)=(1-u) \mathbf{P}_{0, \pi}+u \mathbf{P}_{1, \pi}
$$

3. Merge 1 and 2 together.

$$
\begin{aligned}
\mathbf{P}(\mathrm{u}, \mathrm{v}) & =(1-\mathrm{u})(1-\mathrm{v}) \mathrm{P}_{0,0}+\mathrm{u}(1-\mathrm{v}) \mathrm{P}_{1,0}+(1-\mathrm{u}) \mathrm{v} \mathrm{P}_{0,1}+\mathrm{uv} \mathrm{P}_{1,1} \\
& =B L(\mathrm{u}, \mathrm{v})\left(\mathbf{P}_{0,0}, \mathbf{P}_{1,0}, \mathbf{P}_{0,1}, \mathbf{P}_{1,1}\right)
\end{aligned}
$$

Example of a Bi-linear Surface

Bi-linear Function

Ruled Surface

Example of a Ruled Surface (Helicoid)

Example of a Ruled Surface (shoe design)

Example of a Ruled Surface (geometric reconstruction)

Coons Patch

(The simplest surface defined by 4 curves)
Given four boundary curves $\mathrm{Q}_{0}(\mathrm{u}), \mathrm{Q}_{1}(\mathrm{u}), \mathrm{P}_{0}(\mathrm{v})$ and $\mathrm{P}_{1}(\mathrm{v})$ on which a patch $\mathrm{S}(\mathrm{u}, \mathrm{v})$ needs to be defined, such that the four boundary curves $S(u, 0), S(u, 1), S(0, v)$, and $S(1, v)$ are identical to the four curves $\mathrm{Q}_{0}(\mathrm{u}), \mathrm{Q}_{1}(\mathrm{u}), \mathrm{P}_{0}(\mathrm{v})$ and $\mathrm{P}_{1}(\mathrm{v})$ respectively. Bi-linear surface can be viewed as a special case of this in which the four input curves are all linear.

Defining a Coons Patch: Step 1 and Step 2

1. Define a ruled surface along u direction between $\mathbf{P}_{0}(\mathrm{v})$ and $\mathbf{P}_{1}(\mathrm{v})$.

$$
S_{1}(u, v)=(1-u) P_{0}(v)+u P_{1}(v)
$$

This surface is bounded by $P_{0}(v)$ at $u=0$ and $P_{1}(v)$ at $u=1$, as desired. However, the other pairs of boundary curves will be straight line segments, not the desired $\mathrm{Q}_{0}(\mathrm{u})$ and $\mathrm{Q}_{1}(\mathrm{u})$.
2. Define a ruled surface along v direction between $\mathrm{Q}_{0}(\mathrm{u})$ and $\mathrm{Q}_{1}(\mathrm{u})$.

$S_{2}(u, v)=(1-v) Q_{0}(u)+v Q_{1}(u)$
This surface is bounded by $Q_{0}(u)$ at $v=0$ and $\mathrm{Q}_{1}(\mathrm{u})$ at $\mathrm{v}=1$, as desired. However, the other pairs of boundary curves will be straight line segments, not the desired $P_{0}(\mathrm{v})$ and $\mathrm{P}_{1}(\mathrm{v})$.

Defining a Coons Patch: Step 3

3. Add two together and find the compensating patch.

$$
P(u, v)=S_{1}(u, v)+S_{2}(u, v)
$$

At the boundary:

$$
\begin{aligned}
& P(0, v)=P_{0}(v)+(1-v) Q_{0}(0)+v Q_{1} \underline{(0)} \\
& \left.P(1, v)=P_{1}(v)+\underline{(1-v)} Q_{0}(1)+v Q_{1} \underline{1}\right) \\
& P(u, 0)=Q_{0}(u)+(1-u) P_{0}(0)+u P_{1}(0) \\
& P(u, 1)=Q_{1}(u)+(1-u) P_{0}(1)+u P_{1}(1)
\end{aligned}
$$

The underlined are unwanted. They are the line segments connecting the four corners. So if we define a bilinear patch on these four corners,

$$
\mathrm{S}_{3}(\mathrm{u}, \mathrm{v})=B L(\mathrm{u}, \mathrm{v})\left(\mathrm{Q}_{0}(0), \mathrm{Q}_{0}(1), \mathrm{Q}_{1}(0), \mathrm{Q}_{1}(1)\right),
$$

and subtract it from $\mathbf{P}(\mathrm{u}, \mathrm{v})$, the result is what we want, a Coons' patch:

$$
S(u, v)=P(u, v)-S_{3}(u, v)=S_{1}(u, v)+S_{2}(u, v)-S_{3}(u, v) .
$$

Generalized Coons Patch

The terms (1-u) and u (similarly for v and ($1-\mathrm{v}$)) in the Coons patch are linear blending functions, as a direct result of the bi-linear construction in Step 1 and Step 2. If we replace them by a pair $\left\{\alpha_{0}(U), 1-\alpha_{0}(U)\right\}$ (similarly for v), where $a_{0}(u)$ can be any continuous function, the resulting surface still meets the boundary condition:

$$
S(0, v)=P_{0}(v), S(1, v)=P_{1}(v), S(u, o)=O_{0}(u) \text {, and } S(u, 1)=Q_{1}(u) \text {. }
$$

$$
S(u, v)=\left[\begin{array}{ll}
(1-u) & u
\end{array}\right]\left[\begin{array}{l}
P_{0}(v) \\
P_{1}(v)
\end{array}\right]+\left[\begin{array}{ll}
Q_{0}(u) & Q_{1}(u)
\end{array}\right]\left[\begin{array}{c}
1-v \\
v
\end{array}\right]-\left[\begin{array}{ll}
(1-u) & u
\end{array}\right]\left[\begin{array}{ll}
Q_{0}(0) & Q_{1}(0) \\
Q_{0}(1) & Q_{1}(1)
\end{array}\right]\left[\begin{array}{c}
1-v \\
v
\end{array}\right]
$$

$$
\begin{aligned}
(1-\mathrm{u}) & \rightarrow \alpha_{0}(\mathrm{u}) \\
\mathrm{u} & \rightarrow 1-\alpha_{0}(\mathrm{u})
\end{aligned}
$$

$S(u, v)=\left[\begin{array}{ll}\alpha_{0}(u) & 1-\alpha_{0}(u)\end{array}\right]\left[\begin{array}{c}P_{0}(v) \\ P_{1}(v)\end{array}\right]+\left[\begin{array}{ll}Q_{0}(u) & Q_{1}(u)\end{array}\right]\left[\begin{array}{c}\alpha_{0}(v) \\ 1-\alpha_{0}(v)\end{array}\right]-\left[\begin{array}{ll}\alpha_{0}(u) & 1-\alpha_{0}(u)\end{array}\right]\left[\begin{array}{cc}Q_{0}(0) & Q_{1}(0) \\ Q_{0}(1) & Q_{1}(1)\end{array}\right]\left[\begin{array}{c}\alpha_{0}(v) \\ 1-\alpha_{0}(v)\end{array}\right]$

$$
\alpha_{0}(\mathrm{u})=1-3 \mathrm{u}^{2}+2 \mathrm{u}^{3}
$$

Example of Coons Patch

First 12 Boundary Conditions in a Patch

- The four corner points $\mathbf{S}(0,0), \mathbf{S}(0,1), \mathbf{S}(1,0)$, and $\mathbf{S}(1,1)$.
- The four tangent vectors along u direction at the four corners: $\mathbf{S}_{\mathrm{u}}(0,0), \mathrm{S}_{\mathrm{u}}(0,1), \mathrm{S}_{\mathrm{u}}(1,0)$, and $\mathbf{S}_{u}(1,1)$.
- The four tangent vectors along v direction at the four corners: $\mathbf{S}_{\mathbf{\pi}}(0,0), \mathbf{S}_{\mathrm{w}}(0,1), \mathbf{S}_{\mathrm{\pi}}(1,0)$, and $\mathbf{S}_{\mathrm{w}}(1,1)$.

Four more boundary conditions in a patch

The $2^{\text {nd }}$-order cross-derivative is defined as:

$$
\mathrm{S}_{\mathrm{um}}(\mathrm{u}, \mathrm{v})=\frac{\partial^{2} S(u, v)}{\partial u \partial v}
$$

Derivatives of Bi-cubic Patch

$\mathbf{S}(\mathrm{u}, \mathrm{v})=\left[1 \mathrm{uru}^{2} \mathrm{u}^{3}\right]\left[\begin{array}{llll}a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{c}1 \\ v \\ v^{2} \\ v^{3}\end{array}\right]$
$S_{u}(u, v)=\left(\left[1 u u^{2} u^{3}\right]\left[\begin{array}{llll}a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{c}1 \\ v \\ v^{2} \\ v^{3}\end{array}\right]\right)_{u}=\left[\begin{array}{lllll}0 & 1 & 2 \mathrm{u} & 3 \mathrm{u}^{2}\end{array}\right]\left[\begin{array}{llll}a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{c}1 \\ v \\ v^{2} \\ v^{3}\end{array}\right]$
$S_{\mathrm{T}}(\mathrm{u}, \mathrm{v})=\left(\left[1 \mathrm{u} \mathrm{u}^{2} \mathrm{u}^{3}\right]\left[\begin{array}{llll}a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{c}1 \\ v \\ v^{2} \\ v^{3}\end{array}\right]\right)_{v}=\left[1 \mathrm{ul}^{2} u^{3}\right]\left[\begin{array}{llll}a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{c}0 \\ 1 \\ 2 v \\ 3 v^{2}\end{array}\right]$
$\mathbf{S}_{\mathbf{u T}}(\mathrm{u}, \mathrm{v})=\left(\left[\begin{array}{llll}0 & 1 & 2 \mathrm{u} & 3 \mathrm{u}^{2}\end{array}\right]\left[\begin{array}{llll}a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{c}1 \\ v \\ v^{2} \\ v^{3}\end{array}\right]\right)_{\sigma}=\left[\begin{array}{llll}0 & 1 & 2 \mathrm{u} 3 \mathrm{u}^{2}\end{array}\right]\left[\begin{array}{llll}a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{c}0 \\ 1 \\ 2 v \\ 3 v^{2}\end{array}\right]$

Definition of Hermite Patch

$$
\begin{aligned}
& \mathbf{S}(\mathrm{u}, \mathrm{v})=\left[\begin{array}{lllll}
\mathrm{f}_{0}(\mathrm{u}) & \mathrm{f}_{1}(\mathrm{u}) & \mathrm{f}_{2}(\mathrm{ul}) \mathrm{f}_{3}(\mathrm{u})
\end{array}\right] {\left[\begin{array}{cccc}
S(0,0) & S(0,1) & S_{v}(0,0) & S_{v}(0,1) \\
S(1,0) & S(1,1) & S_{v}(1,0) & S_{v}(1,1) \\
S_{u}(0,0) & S_{u}(0,1) & S_{u v}(0,0) & S_{u v}(0,1) \\
S_{u}(1,0) & S_{u}(1,1) & S_{u v}(1,0) & S_{u v}(1,1)
\end{array}\right]\left[\begin{array}{l}
f_{0}(v) \\
f_{1}(v) \\
f_{2}(v) \\
f_{3}(v)
\end{array}\right] } \\
&(0 \leq u \leq 1,0 \leq v \leq 1)
\end{aligned}
$$

where the blending functions $\mathrm{f}_{0}(\mathrm{u}), \mathrm{f}_{1}(\mathrm{u}), \mathrm{f}_{2}(\mathrm{u})$, and $\mathrm{f}_{3}(\mathrm{u})$ are Hermite functions:

$$
\begin{aligned}
& \mathrm{f}_{0}(\mathrm{u})=1-3 \mathrm{u}^{2}+2 \mathrm{u}^{3} \\
& \mathrm{f}_{1}(\mathrm{u})=3 \mathrm{u}^{2}-2 \mathrm{u}^{3} \\
& \mathrm{f}_{2}(\mathrm{u})=\mathrm{u}-2 \mathrm{u}^{2}+\mathrm{u}^{3} \\
& \mathrm{f}_{3}(\mathrm{u})=-\mathrm{u}^{2}+\mathrm{u}^{3} .
\end{aligned}
$$

Example of Hermite Patch

Boundary Curves of a Hermite Patch are Hermite Curves

Each of the four boundary curves is a Hermite curve.

Example: $\mathbf{S}(0, \mathrm{v})$. After substituting 0 for u into $S(\mathrm{u}, \mathrm{v})$:
$\mathbf{S}(0, v)=\left[\begin{array}{lll}\mathrm{f}_{0}(\mathrm{v}) & \mathrm{f}_{1}(\mathrm{v}) & \mathrm{f}_{2}(\mathrm{v}) \\ \mathrm{f}_{3}(v)\end{array}\right]\left[\begin{array}{c}S(0,0) \\ S(0,1) \\ S_{v}(0,0) \\ S_{v}(0,1)\end{array}\right]$
$S(0,0)$ and $S(0,1)$ are the two corners and $S_{\pi}(0,0)$ and $S_{\pi}(0,1)$ are the tangent vectors of the patch along the v direction. Notice that $\left.\frac{\partial S(0, v)}{\partial v}\right|_{v-0}=S_{\pi}(0,0)$, and $\left.\frac{\partial S(0, v)}{\partial v}\right|_{v-1}=$ $S_{\mathrm{T}}(0,1)$.

Iso-parametric Curves of a Hermite Patch are Hermite Curves

Any iso-parametric curve $\mathbf{S}\left(\mathrm{u}, \mathrm{v}_{0}\right)$ or $S\left(u_{0}, v\right)$ is a Hermite.

Example: $\mathbf{S}\left(u, v_{0}\right)$. Substituting $v=v_{0}$ leads to:

$$
\mathbf{S}\left(\mathrm{u}, \mathrm{v}_{0}\right)=\left[\begin{array}{lll}
\mathrm{f}_{0}(\mathrm{u}) & \mathrm{f}_{1}(\mathrm{u}) & \mathrm{f}_{2}(\mathrm{u}) \\
\mathrm{f}_{3}(\mathrm{u})
\end{array}\right]\left[\begin{array}{c}
S\left(0, v_{0}\right) \\
S\left(1, v_{0}\right) \\
G_{3}\left(v_{0}\right) \\
G_{4}\left(v_{0}\right)
\end{array}\right] .
$$

where:

$$
\begin{aligned}
& \mathrm{G}_{3}\left(\mathrm{v}_{0}\right)=S_{\mathrm{u}}(0,0) \mathrm{f}_{0}\left(\mathrm{v}_{0}\right)+\mathrm{S}_{\mathrm{u}}(0,1) \mathrm{f}_{1}\left(\mathrm{v}_{0}\right)+\mathrm{S}_{\mathrm{uw}}(0,0) \mathrm{f}_{2}\left(\mathrm{v}_{0}\right)+\mathrm{S}_{\mathrm{u} w}(0,1) \mathrm{f}_{3}\left(\mathrm{v}_{0}\right) \\
& \mathrm{G}_{4}\left(\mathrm{v}_{0}\right)=S_{\mathrm{u}}(1,0) \mathrm{f}_{0}\left(\mathrm{v}_{0}\right)+\mathrm{S}_{\mathrm{u}}(1,1) \mathrm{f}_{1}\left(\mathrm{v}_{0}\right)+\mathrm{S}_{\mathrm{uw}}(1,0) \mathrm{f}_{2}\left(\mathrm{v}_{0}\right)+\mathrm{S}_{\mathrm{um}}(1,1) \mathrm{f}_{3}\left(\mathrm{v}_{0}\right) .
\end{aligned}
$$

Note that:

$$
\left.\frac{\partial S(u, v)}{\partial u}\right|_{\left(0, v_{0}\right)}=\left.G_{3}\left(v_{0}\right) \quad \frac{\partial S(u, v)}{\partial u}\right|_{\left(1 v_{0}\right)}=G_{4}\left(v_{0}\right) .
$$

Control Points of a Bezier Surface

A 5×6 Bezier Surface

A Closed Bezier Surface

Closed Bexitt surface.

Properties of Bezier Surface

- The four control points $\mathbf{P}_{00}, \mathbf{P}_{0 \mathrm{~m}}, \mathbf{P}_{\mathrm{n} 0}$, and \mathbf{P}_{rm} lie on the surface and are its four corners $\mathbf{S}(0,0), \mathbf{S}(0,1), \mathbf{S}(1,0)$, and $\mathbf{S}(1,1)$ respectively.
- Any iso-parametric curve is a Bezier curve.
$\left(\mathbf{S}\left(\mathrm{u}_{0}, \mathrm{v}\right)=\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i, n}\left(u_{0}\right) B_{j, m}(v) \mathbf{P}_{\mathrm{ij}}\right.$ is a Bezier curve, so is $\mathbf{S}\left(\mathrm{u}, \mathrm{v}_{0}\right)$, for any constant u_{0} or v_{0}.)
- Convex Hull Property - The Bezier patch is inside the convex hull of its control points.
(To prove: show that $\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i, n}(u) B_{j m}(v)=1$ for any u and v.)
- The partial derivative $\left.\frac{\partial S(u, v)}{\partial u}\right|_{(0,0)}$ is parallel to $\left(\mathbf{P}_{10}-\mathbf{P}_{00}\right)$, and the partial derivative $\left.\frac{\partial S(u, v)}{\partial v}\right|_{(0,0)}$ is parallel to $\left(\mathbf{P}_{01}-\mathbf{P}_{00}\right)$.
(Similarly for the other three corners)
- The partial derivatives $\frac{\partial S(u, v)}{\partial u}$ and $\frac{\partial S(u, v)}{\partial v}$ are also Bezier surfaces themselves.

Evaluation of Bezier Surface

How to evaluate a Bezier patch at a point ($\mathrm{u}_{0}, \mathrm{v}_{0}$) ? By applying the de Casteljau algorithm recursively.

$$
\begin{aligned}
\mathbf{S}\left(\mathrm{u}_{0}, \mathrm{v}_{0}\right) & =\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i, n}\left(u_{0}\right) B_{j, m}\left(v_{0}\right) \mathbf{P}_{\mathrm{ij}} \\
& =\left[\sum_{j=0}^{m} P_{0, j} B_{j, m}\left(v_{0}\right)\right] B_{0, n}\left(u_{0}\right)+\left[\sum_{j=0}^{m} P_{1, j} B_{j, m}\left(v_{0}\right)\right] B_{1, n}\left(u_{0}\right)+\ldots+\left[\sum_{j=0}^{m} P_{n, j} B_{j, m}\left(v_{0}\right)\right] B_{n, n}\left(u_{0}\right)
\end{aligned}
$$

- Using de Casteljau algorithm to evaluate $C_{\mathrm{i}}=\sum_{j=0}^{m} P_{\mathrm{i}, j} B_{j, m}\left(v_{0}\right)(\mathrm{i}=0,1, \ldots, \mathrm{n})$
- Using de Casteljau algorithm again to evaluate $\mathbf{S}\left(\mathrm{u}_{0}, \mathrm{v}_{0}\right)=\sum_{i=0}^{n} C_{i} B_{i, n}\left(u_{0}\right)$

Pictorial Illustration of Evaluating a Cubic Bezier Surface

Control Mesh of a B-Spline Surface

A 6x6 B-Spline Surface

$$
\begin{aligned}
\mathrm{n} & =\mathrm{m}=5 \\
k=3, \text { knot vector (u-direction) } \mathrm{U} & =\{0,0,0,0.25,0.5,0.75,1,1,1\} \\
l=4, \text { knot vector (v-direction) } \mathrm{V} & =\{0,0,0,0,0.33,0.66,1,1,1,1\}
\end{aligned}
$$

Both U and V are non-periodic and uniform (the patch passes all the four corners).

Properties of B-Spline Surface

- The four control points $\mathbf{P}_{00}, \mathbf{P}_{0 \mathrm{~m}}, \mathrm{P}_{\mathrm{n} 0}$, and \mathbf{P}_{rm} lie on the surface and are its four corners $\mathbf{P}\left(s_{k-1}, t_{1-1}\right), \mathbf{P}\left(s_{k-1}, t_{m+1}\right), \mathbf{P}\left(s_{n+1}, t_{1-1}\right)$, and $\mathbf{P}\left(s_{n+1}, t_{m+1}\right)$ respectively. (For non-periodic only.)
- Convex Hull Property - The B-spline patch is inside the convex hull of its control points. ($\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i, k}(u) N_{j, l}(v)=1$ for all u and $\left.v.\right)$
- Any isoparametric curve is a B-spline curve.
(Similar to that any isoparametric curve of a Bezier patch is a bezier curve)
- The partial derivative $\left.\frac{\partial P(u, v)}{\partial t}\right|_{(0,0)}$ is parallel to $\left(\mathbf{P}_{10}-\mathbf{P}_{00}\right)$, and the partial derivative $\left.\frac{\partial P(u, v)}{\partial v}\right|_{(0,0)}$ is parallel to $\left(\mathbf{P}_{01}-\mathbf{P}_{00}\right)$.
(Similar arguments hold for the other three corners.)
- The partial derivatives $\frac{\partial P(u, v)}{\partial u}$ and $\frac{\partial P(u, v)}{\partial v}$ are also B -spline surfaces themselves.
- Local modification: when a $P_{i j}$ is moved, only a local portion on the surface corresponding to some parameter subset $\left[u^{\prime}, u^{\prime \prime}\right] \times\left[v^{\prime}, v^{\prime \prime}\right]$ willidan affected. (http $/ / /$ madmax me.berkeley.edu/ $/ \sim$ fuchung/Bsurface.html)

Local-modification Control of B-Spline Surface

$N_{\mathrm{i}, k}(\mathbf{u}) N_{\mathrm{j}, 2}(\mathrm{v})$ is the blending function before control point \mathbf{P}_{ij}. So when \mathbf{P}_{ij} moves, it will only effect the portion of the shape of the original B-spline surface corresponding to the non-zero interval \square.

Subdivision Surface

Catmull-Clark surface (1978)

(a) Initial control mesh
(b) $1^{\text {st }}$ level subdivision
(c) $2^{\text {nd }}$ level subdivision
(d) $3^{\text {rd }}$ level subdivision
(e) $4^{\text {th }}$ level subdivision
(f) Limit surface

The Basic Idea of Subdivision

- Chaikin's algorithm (1974)
- equivalent to a uniform quadratic B-spline curve

Subdivision rule $\quad \begin{aligned} p & =\frac{3}{4} v_{i}+\frac{1}{4} v_{i+1} \\ q & =\frac{1}{4} v_{i}+\frac{3}{4} v_{i+1}\end{aligned}$

Catmull-Clark Surface Subdivision

- Newly inserted face vertices

O Newly inserted edge vertices

- Updated old vertices

(a) New face vertices

(b) New edge vertices

(c) Updated old vertices

Various Split

Schemes

1-3

$\sqrt{2}$

1-2

Catmull-Clark Surfaces

Doo-Sabin Surfaces

Extension of biquadratic B-spline surfaces (Doo and Sabin 1978)

Corner cutting:

Loop Subdivision

Loop subdivision (Loop 1987)
extension of 3D box-splines

One-to-four splitting:

A Few More Examples

Interpolatory Subdivision Surface

- All or specified points on the initial mesh are kept in the final limit surface-

A Few Differential Geometry Topics Related to Continuity

Local Curve Topics

- Principal Vectors
- Tangent
- Normal
- Binormal
- Osculating Plane and Circle
- Frenet Frame
- Curvature
- Torsion
- Revisiting the Definition of Geometric Continuity

Intrinsic Definition

- No reliance on external frame of reference
- Requires 2 equations as functions of arc length* s :

1) Curvature: $\frac{1}{\rho}=f(s)$
*length measured along the curve
2) Torsion: $\tau=g(s)$

- For plane curves, alternatively:

Torsion (in 3D) measures how much curve deviates from a plane curve.

$$
\frac{1}{\rho}=\frac{d \theta}{d s}
$$

Calculating Arc Length

Approximation: For parametric interval u_{1} to u_{2}, subdivide curve segment into n equal pieces.

$$
\begin{gathered}
L=\sum_{i=1}^{n} l_{i} \quad \text { where } l_{i}=\sqrt{\left(\mathbf{p}_{i}-\mathbf{p}_{i-1}\right) \bullet\left(\mathbf{p}_{i}-\mathbf{p}_{i-1}\right)} \\
\text { using } \mathbf{p} \bullet \mathbf{p}=|\mathbf{p}|^{2} \\
L=\int_{u_{1}}^{u_{2}} \sqrt{\mathbf{p}^{u} \bullet \mathbf{p}^{u}} d u \quad \text { is more accurate. }
\end{gathered}
$$

Tangent

Figure 12.1 Tangent vector and line.
unit tangent vector: $\quad \mathbf{t}_{i}=\frac{\mathbf{p}_{i}^{u}}{\left|\mathbf{p}_{i}^{u}\right|}$

Normal Plane

Plane through \mathbf{p}_{i} perpendicular to \mathbf{t}_{i}

Figure 12.2 Normal plane.

$$
x_{i}^{u} x+y_{i}^{u} y+z_{i}^{u} z-\left(x_{i} x_{i}^{u}+y_{i} y_{i}^{u}+z_{i} z_{i}^{u}\right)=0
$$

Principal Normal Vector and Line

Moving slightly along curve in neighborhood of \mathbf{p}_{i} causes tangent vector to move in direction specified by: $\mathbf{p}_{i}^{u u}$

(b)

Binormal vector $\mathbf{b}_{i}=\mathbf{t}_{i} \times \mathbf{n}_{i}$
lies in normal plane.
Figure 12.3 Principal normal vector and line.
Use dot product to find projection of \mathbf{p}_{i}^{u} onto $\mathbf{p}_{i}^{u u}$

Osculating Plane

Limiting position of plane defined by \mathbf{p}_{i} and two neighboring points \mathbf{p}_{j} and \mathbf{p}_{h} on the curve as these neighboring points independently approach \mathbf{p}_{i}.

Note: $\mathbf{p}_{i /} \mathbf{p}_{j}$ and \mathbf{p}_{h} cannot be collinear.

$$
\left|\begin{array}{lll}
x-x_{i} & x_{i}^{u} & x_{i}^{u u} \\
y-y_{i} & y_{i}^{u} & y_{i}^{u u} \\
z-z_{i} & z_{i}^{u} & z_{i}^{u u}
\end{array}\right|=0
$$

Frenet Frame

Figure 12.5 The moving trihedron.
Note changes to Mortenson's figure 12.5.

Curvature

Radius of curvature is ρ_{i} and curvature at point \mathbf{p}_{i} on a curve is:

$$
\kappa_{i}=\frac{1}{\rho_{i}}=\frac{\left|\mathbf{p}_{i}^{u} \times \mathbf{p}_{i}^{u u}\right|}{\left|\mathbf{p}_{i}^{u}\right|^{3}}
$$

Recall that vector $\mathbf{p}_{i}^{\text {uu }}$ lies in the osculating plane.

Curvature of a planar curve in x, y plane:

$$
\frac{1}{\rho}=\frac{d^{2} y / d x^{2}}{\left[1+(d y / d x)^{2}\right]^{3 / 2}}
$$

Figure 12.6 Curvature.
Curvature is intrinsic and does not change with a change of parameterization.

Torsion

Torsion at \mathbf{p}_{i} is limit of ratio of angle between binormal at \mathbf{p}_{i} and binormal at neighboring point \mathbf{p}_{h} to arc-length of curve between \mathbf{p}_{h} and \mathbf{p}_{i}, as \mathbf{p}_{h} approaches \boldsymbol{p}_{i} along the curve.

Figure 12.7 Torsion.

Torsion is intrinsic and does not change with a change of parameterization.

Reparameterization Relationship

- Curve has G^{r} continuity if an arc-length reparameterization exists after which it has C^{r} continuity.
- This is equivalent to these 2 conditions:
$-C^{r-2}$ continuity of curvature
$-C^{r-3}$ continuity of torsion

Local properties torsion and curvature are intrinsic and uniquely determine a curve.

Local Surface Topics

- Fundamental Forms
- Tangent Plane
- Principal Curvature
- Osculating Paraboloid

Local Properties of a Surface

 Fundamental Forms- Given parametric surface $\mathbf{p}(u, w)$
- Form I:

$$
\begin{gathered}
d \mathbf{p} \bullet d \mathbf{p}=E d u^{2}+2 F d u d w+G d w^{2} \\
E=\mathbf{p}^{u} \bullet \mathbf{p}^{u} \quad F=\mathbf{p}^{u} \bullet \mathbf{p}^{w} \quad G=\mathbf{p}^{w} \bullet \mathbf{p}^{w}
\end{gathered}
$$

- Form II:

$$
\begin{aligned}
&-d \mathbf{p}(u, w) \bullet d \mathbf{n}(u, w)=L d u^{2}+2 M d u d w+N d w^{2} \\
& L=\mathbf{p}^{w u} \bullet \mathbf{n} \quad M=\mathbf{p}^{u w} \bullet \mathbf{n} \quad N=\mathbf{p}^{w w} \bullet \mathbf{n} \quad \mathbf{n}=\frac{\mathbf{p}^{u} \times \mathbf{p}^{w}}{\left|\mathbf{p}^{u} \times \mathbf{p}^{w}\right|}
\end{aligned}
$$

- Useful for calculating arc length of a curve on a surface, surface area, curvature, etc.

Local properties first and second fundamental forms are intrinsic and uniquely determine a surface.

Local Properties of a Surface Tangent Plane

$$
\begin{aligned}
& \mathbf{p}^{u}=\partial \mathbf{p}(u, w) / \partial u \\
& \mathbf{p}^{w}=\partial \mathbf{p}(u, w) / \partial w \\
& (\mathbf{q}-\mathbf{p}) \cdot\left(\mathbf{p}^{u} \times \mathbf{p}^{w}\right)=0 \\
& \left.\underbrace{\mathrm{p}\left(u_{i}, w_{i}\right)}_{\mathrm{q}} \underbrace{x-x_{i}}_{\text {components of parametric tangent }} \begin{array}{ccc}
x_{i}^{u} & x_{i}^{w} \\
y-y_{i} & y_{i}^{u} & y_{i}^{w} \\
z-z_{i} & z_{i}^{u} & z_{i}^{w}
\end{array} \right\rvert\,=0 \\
& \text { vectors } \mathbf{p}^{u}\left(u_{i}, w_{i}\right) \text { and } \mathbf{p}^{w}\left(u_{i}, w_{i}\right)
\end{aligned}
$$

Figure 12.9 Tangent plane.

Local Properties of a Surface Principal Curvature

Derive curvature of all parametric curves \boldsymbol{C} on parametric surface \boldsymbol{S} passing through point \mathbf{p} with same tangent line \boldsymbol{I} at \mathbf{p}.
normal curvature vector $\mathbf{k}_{n}=$ projection of curvature vector \mathbf{k} onto n at p

$$
\mathbf{k}_{n}=(\mathbf{k} \bullet \mathbf{n}) \mathbf{n}
$$

normal curvature: $\boldsymbol{\kappa}_{n}=\mathbf{k} \bullet \mathbf{n}$
$\kappa_{n}=\frac{L(d u / d t)^{2}+2 M(d u / d t)(d w / d t)+N(d w / d t)^{2}}{E(d u / d t)^{2}+2 F(d u / d t)(d w / d t)+G(d w / d t)^{2}} \quad$ Fiaure 12.10 Normal curvature.
in tangent plane with parametric direction $d w / d u$

Local Properties of a Surface Principal Curvature (continued)

Rotating a plane around the normal changes the curvature κ_{n}.
(a)

Figure 12.11 Principal curvature.

Local Properties of a Surface Osculating Paraboloid

Second fundamental form helps to measure distance of surface from tangent plane.

$$
|d|<|d|=(\mathbf{q}-\mathbf{p}) \bullet \mathbf{n}
$$

Figure 12.13 Osculating paraboloid at a point on a surface.
As q approaches p: $\quad d=f\left[\frac{1}{2}\left(L d u^{2}+2 M d u d w+N d w^{2}\right)\right]$

Osculating Paraboloid

Local Properties of a Surface Local Surface Characterization

Chebyshev-net of equidistant points generated on surface. 3d Mapping on Surface

To construct a tridimensional net, two generic curves g 1 and g 2 are defined on a surface S and their intersection (point o) is found.

Chebyshev-net of equidistant points generated on surface. 3d Mapping on Surface

A sphere with radius (\mathbf{L}) is drawn and intersected with curves g1 and g2 to define point $\mathbf{1}$ and point $\mathbf{2}$.

Chebyshev-net of equidistant points generated on surface. 3d Mapping on Surface

Tridimensional
Geometric
Construction uses a set of spheres to find equidistant points generated on surface.
\square spheeo
 $\rightarrow \longrightarrow$

Chebyshev-net of equidistant points generated on surface. 3 d Mapping on Surface
A sphere (sphere o) with radius (L)
is drawn and intersected with curves $\mathbf{g l}_{1}$ and \mathbf{g}_{2} to define point $\mathbf{1}$ and $\mathbf{2}$.

Point 3 is found by intersecting two spheres (sphere 1 and 2)
with the surface.

Chebyshev-net of equidistant points generated on surface. 3d Mapping on Surface

Point 3 is found by intersecting two spheres (1 and 2) with radius (L) with the surface, generating curves which are intersected to define point 3.

Chebyshev-net of equidistant points

 3d Mapping on Surface

It is important to point out that an equidistant point grid can be flatten in a regular square grid as displayed below. This characteristic is crucial to form freeform structures (gridshells) starting from planar and deformable elements.

