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Intro. to Computer Graphic Systems

Textbooks:

e Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide, Fourth Edition, Gerald
Farin, September 1996

e Computer Aided Engineering Design, Anupam
Saxena, Birendra Sahay, Springer, 2005

e CAD/CAM Theory and Practice, Ibrahim Zeid,
McGraw Hill, 1991, Mastering CAD/CAM, ed. 2004

e The NURBS Book, Les Piegl, Springer-Verlag, 1997

e 3D CAD Principles and Applications, H Toriya,
Springer-Verlag, 1991



“geometric elements



https://www.google.com/url?sa=i&url=https://www.daviddarling.info/encyclopedia/H/helicoid.html&psig=AOvVaw0mrxsEzenebl7LEYXEu4CU&ust=1584603944466000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOjvooLEo-gCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https://www.pinterest.co.kr/pin/423831014929044185/&psig=AOvVaw1CQ1LiXXFz5YvXiXLoOAEh&ust=1584604684165000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKDq_dDGo-gCFQAAAAAdAAAAABAF
https://www.google.com/url?sa=i&url=https://www.lafsozluk.com/2013/06/hiperboloit-hiperboloid-nedir-ne.html&psig=AOvVaw1Iq19-qHzxEanIbKgL6Cr5&ust=1584604180651000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKDmmdzEo-gCFQAAAAAdAAAAABAJ
https://www.google.com/url?sa=i&url=https://commons.wikimedia.org/wiki/File:Triple_torus_illustration.png&psig=AOvVaw36jugrg1AK1OuX28s4OBpc&ust=1584605743817000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLiiqsvKo-gCFQAAAAAdAAAAABAT
https://www.google.com/url?sa=i&url=https://www.mathsisfun.com/definitions/tetrahedron.html&psig=AOvVaw3Ekxf8uaxotAYBp3vUGofI&ust=1584606023125000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJDonMvLo-gCFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https://hal.inria.fr/inria-00518326/document&psig=AOvVaw2Uen-Y4DNta4ROjYaZiRyK&ust=1584607107819000&source=images&cd=vfe&ved=0CAIQjRxqGAoTCMDxqNTPo-gCFQAAAAAdAAAAABClAQ

A 4 |
Geometric Modeling - -’sollds

A typical solid model is defined by solids, surfaces,
curves, and points.

 Solids are bounded by surfaces. They represent solid
objects. Analytic shape

* Surfaces are bounded by lines. Surfaces of solid
objects, or planar or shell objects.
Quadric surfaces, sphere, ellipsoid, torus

» Curves are bounded by points. Edges of objects.
Lines, polylines, curves

C>Points are locations in 3-D space. Vertices of objects.

triang lines, curves,
surfaces poI ‘ / points
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Modeling

Models 2D surfaces in 3D space
All points on surface are defined

useful for machining, visualization, etc. =~
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Surfaces have no thickness,
objects have no volume or solid properties.

Surfaces may be open and closed. n :
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Surfaces

Explicit : Value of dependent variable in terms of
independent variable(s), e.g. z=f(x,y)

Implicit: e.qg. f(x,y,z)=0

Parametric : Express value of each spatial variable in
terms of independent variables (the parameters)
e.g. for parameters uand win 3D:

X=X (U,wW)

y =y (uw)

z=2(u,w)



Surface Modeling

Extension of curve modeling
Parametric representation:

p = p(u,v)

which is equivalehfto
x=x(uyv) =
y =y(u,v)

z=12(u,v)




Trimmed surfaces return a polygon mesh
with the original boundary geometry

NURBS to mesh conversion is compatible with
untrimmed surfaces, since untrimmed surfaces
contain a rectangular isogrid that can be converted
into a set of quad meshes. Unlike untrimmed surfaces,
trimmed surfaces are not compatible with the NURBS
to mesh conversion method. Trimmed surfaces
converted using the Mesh Surface component\l",'.“_
return a polygon mesh that apprOX|mates the or\glnali
boundary geometry. | \ Ny
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Trimmed surfaces return a polygon mesh
with the original boundary geometry

A possible strategy to convert a trimmed surface into
a mesh is summarized as follows:
1. Adding an arbitrary point O;
2. Dividing the surface's boundary into N parts getting
N points P;
3. Creating a set of lines from O to the subdivision
points P.; &% A R
4. Dividing the lines into S
equal parts and connectin g N D)

the resulting points i N
with a set of polylines; =7 - -



med surfaces return a polygon mesh
with the original boundary geometry
but allows for thin triangles

5. Splitting the initial surface using the network of lines
obtained in step 3 and step 4, to generate a set of
trimmed sub-surfaces;

6 . Extract the sub-surfaces' vertices and create the

Trimmed Surface Mesh Surface
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Surface Modeling soop-&{i) S

In three-dimensional space,

S(0,0)

a surface would have the following parametric
description: x =x(u,v) y=y(u,v) z=2z(u,v)

where a point is defined by p(u,v), and u, v € [o, 1].

Some possible approaches to surface fitting to a set of

data points: Least-squares fit of a single surface,

Bezier and Spline fit of a number of patched surfaces.
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Surface, Explicit form

Value of dependent variable
in terms of independent
variables, e.qg. z=f(x,y)
Axis-dependent

Can be hard to represent
a transformed and bounded surface.
Sample surface-fitting procedure: determine a;
coefficients from data points:

Z(X,y) = Zmlzn:aijxiyi

i=0 j=0

An explicit

% surface.



Nl
General form: f(x,y,z) =0, f(x,y,z) is polynomial inx, y, z
such that: Axis-dependent Zi . aijkxiyizk -0
Examples: )
Plane: Equation is linearin all its variables.
Quadric: Second-degree equation.
Can represent using vectors, scalars and a type i&gtiﬁer.ﬁ
Right circular cylinder ’ :
e One vector gives a point on its axis
e One vector defines axis direction
e Scalar gives radius
Type testing requires robust floating-point computations.

Surface, Implicit form

A right circular cylinder.



Quadric Surfaces, Implicit form

Implicit form:
f(X,y,2z)=ax’+by* +cz®+2dxy +2eyz + 2 fxz + 2gx+2hy+2jz+k =0

Alternative to rational surfaces if only quadric surfaces are

being represented.
Particularly useful for molecular modeling.

Reasons to use them:

e easyto compute normal

e easy to test point inclusion

e easytocompute zgiven xandy

e easy to compute intersections of one surface with
another



Implicit Form: Quadric Surfaces

Type testing:

f(x,y,z)=0

AX* + By® +Cz° + 2Dxy + 2Eyz + 2Fxz + 2Gx + 2Hy +2Jz+ K =0

PQP™ =0
F)
A
Ky 21
F
@
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PT
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Z

For example,if A =B=C=-K=1 and
D=FE=F=G=H=J=(,then the
equation produccs a unit sphere at the origin.

A rigid-body motionis produced simply by
a 4 X 4 yransformation matrix T:

Q'= T QT

r, = rank of Q (maximum number of
linearly independent rows (or columns))



Surface intersection, Algebric calculation

A D F G|[= (N
_ D B E H y | _ - ]
@w)=la vz 1] 7 g g|]]]|=xex N\ g
G HJ K||1] S |
: . - \"i
quadratic surfaces defined by x@:;x" =0, xQx" =0 ML
Suppose « is an arbitrary real number, X(Q1— aQy)x” =0 ::H:%'

its intersection line becomes:  a(t)s? + b(t)s + c(t) = 0

When a quadratic surface forms a cylinder

z?+y? = r?, the functions a(t), b(t), and ¢(t) are given by
a(t) = C
b(t) = 2Ersint+ 2Frcost+ 2J
c(t) = Ar’cos’t+ Br?sin’t+ 2Dr?sintcost
+2Grcost + 2Hrsint + K



Sphere and line intersection

. . . PO
straight line P(t) = Py + Vt.-"\‘,' a(t)s? + b(t)s + c(t) = 0
When it forms a cone z% 4+ y? — m?22 = 0,

a(t) Am?cos’t + Bm?sin?t + C + 2Dm?*sint cost
4+2Emsint + 2Fmcost
2Gmcost + 2Hmsint + 2J

K

b(t)

\ c(t)

22 4 y? 4 22 = o2

o

Intersection calculation between a straight line and a sphere

P(t) = Py + vt L 2(t) | [ Pos | Vz |
y(t) | = Poy | +1[ vy
I2+y2+32=r2 | 2(t) | Po. | L Y

(Poz +tvz)" + (Poy + tvy)* + (Po, +tv,)* =17

This equation is a quadratic expression about t and can be easily solved.
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Surface intersection

5%

Recursive subdivision of surfaces

data in a quadtree

Calculating intersection between

(e) (f)

Intersection curves between a sphere and a cone

surfaces using the marching method



ersections

Intersection calculation algorithms used

straight line/straight line A-method
straight line/arc A-method
i arc/arc A-method
|ntersec'-t|0n curve/curve free-form curve/straight line A-method,
Calculations GNR-method
free-form curve/arc GNR-method
free-form curve/free-form curve GNR-method
. straight line/plane A-method
rEf' b 00 k . straight line/quadratic surface A-method
3 d CAD curve/surface | arc/quadratic surface A-method
free-form curve/quadratic surface GNR-method
Princi p | eésS an d all types of curves/free-form surface | GNR-method
i i plane/plane A-method
Appl |Cat|0n5, plane/ quadratic surface G-method
- surface/surface | quadratic surface/quadratic surface | G-method
Tori ya, 1993. free-form surface/plane M-method
free-form surface/quadratic surface | M-method
free-form surface/free-form surface | M-method

A-method : Algebraic method
GNR-method : Geometric Newton-Raphson method
G-method : Geometric method

M-method : Marching method



Quadric Surfaces of Revolution

Rotate conic curve about its axis. Center or vertex at
origin. Axes of symmetry coincide with coordinate axes.

X*+y*+Lz°+Mz+N =0 where LM =0

Surface Canonical Equation
Sphere X+ v+ 7' -N=0
Cylinder x'+y -N=0
Cone X+ v -L7°=0
Parabolotd XX+ v+ Mz=n

Prolaic ¢llipsoid

Oblare ellipsoid
Hyperboloid of one sheei
Hyperboloid of 1wo sheels

X+yv+ Lz -N=01L<]|
¥ +yv+ L2 N=01.>1
Xy - L7 -N=0
C+y - L7 +N=0



3'D Analytic
Surfaces

e Triangular meshes, 'p'o'l'ygoﬁnalmeshes N’

N
e Quadric surfaces, sphere, ellipsoid, torus J \/)

e Superquadric surfaces, superellipse, superellipsoid
e Blobby models, tetrahedron pyramid, hexahedron
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Surface, Parametric Form

Express value of each spatial variable in terms of
independent variables (the parameters)

P1

e.g. for parameters u, win 3D:
X =X (u,w)

y=yluw) == " .
g Pi
z=2z(u,w) iy =0
For a rectangular surface patch,
typically u,we[0]] Pl W,

Patches can be joined to form
composite parametric surfaces. 4 arametric surface patch.

T

u )
pri, nf;.)



Surface, Parametric Form

Sample patch: rectangular segment of x, y plane

X=(C-a)u+a
y=(d-b)w+b
=0

Here:

Curves of constant w are
horizontal lines.

Curves of constant U are
vertical lines.

d

b

0.1 w= | 1.1

il C
Parametric and X, y
coordinates of a plane.



Surface, Parametric Form

Parametric sphere and ellipsoid of radius r,
centered on (X_,Y,,Z,):

X=X, +FCOSUCOSW Y=Y, +rcosusinw z=z,+rsinu where ue|— , wel0,27]

X =X, +aCcosucosw y=y,+bcosusinw z=z,+csinu where ue|— , welo,27]

Note similarity to sphere formula.
Here lengths of ellipsoid’s axes,

Parallel = “7 replace sphere’s radius.
curve of constant # 4 /

U analogous to —_—

latitude

Meridian =

A curve of constant w Z A pa.ramt.etnc
ellipsoid.

W analogous to
longitude




Surface, Parametric Form

Parametric surface of revolution:

x=x(u)cosw y=x(u)sinw z=z(u) where ue[01], wel0,27]

revolving x(u), z(u) | \ 7 x(u), Z(u)
about z axis /

partial view

A parametric surface of revolution.



Bicubic surface patch
In Parameter Space

Bicubic surface patch’s components
¢ In parameter space

Bicubic surface patch
in model space '

plu, w)

Figure 6.8 The parameter space of a surface.

U= ME- curve

point, line, and planar patch in parameter space

X

(a)

)

(c)
point, line, and planar patch in model space

(b)

Figure 6.10 Three more special surfaces.



Curves on Surfaces

Isoparametric curve:
One parameter varies while the other is constant.

Parametric curve net on a patch

Two 1-parameter families of curves such that through
each point there passes just one of each family.

2 tangents of the curves at each point must be distinct.
Orthogonal tangents produce orthogonal net.

source: Mortenson
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Figure 6.13 Decomposition of a complex shape.
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Figure 6.12 Curves on surfaces.



Surface with Irreqular Boundary
':/:)
1 g ;&__ |
/}‘ NEER DT Point Classification:
4 ,} N gy count number of times
b, j,/ Ee \f\ : a line segment to
/g. 20> interior point g crosses
P51 i each boundary curve.
0 T
Trimmed Patch

Figure 6.14 Surface with irregular boundary.

b, =[u;(t) w;(t)] t [0,]] T
' trimmed parameter space ,L uz0 w20 b; 20
“ / i l-u20 1-w=0 by,=0
—=—=—b 1
b2 e J+

Figure 6.15 Irregular surface defined by the intersection of halfspaces.



Curves cross over outside
surface edge, therefore it
can not be created

Edge of surface

/ to be created\

rfaces from Curves

No cross overs outside
surface edge, therefore
surface can be created



4 Typical Types of Parametric Surface Patches
Control points influence surface shape.

e Interpolating
— Defined by rectangular array of control points.
— Surface patch passes through all control points.
e Hermite (bicubic)
— Defined by 4 corner points, tangent vectors at 4 boundary curves,
and “twist vectors” at corner points.
— Interpolates all its corner points.
— Not invariant under affine transformations.
e Bezier
— Defined by rectangular array of control points.
— Interpolates all its corner points.
— Starting and ending tangents of each boundary curve
are determined by control polyhedron at corner points.
— Invariant under affine transformations.
— Surface patch lies within convex hull of control polygon.
— Not necessarily variation-diminishing.
— Degrees of basis functions related to number of control points.
e B-Spline
— Defined by rectangular array of control points.
— Not guaranteed to interpolate control points.
— Invariant under affine transformations.
— Surface patch lies within convex hull of control polygon.
— Not necessarily variation-diminishing.
— Degrees of basis functions independent of number of control points.

— More local control than Bezier. Trimmed NURBS Surface:
source: Mortenson, Angel and more... courtesy of Silicon Graphics




Bezier Surface Patch

Quadratic case (left), Cubic case (right)

Geometric form: 2E R, S 11 [ e ] I O 0 I
m n NE Bl By N Byy
pu,w)=3 > PyBin(WB; (W) , PN ] 5 Ny e,
i=0 j=0 | D |
B _ m i m—i
Lm (U)— i u (1—U) 0 M I 0 u I

{a) (h)

Figure 4.6 Bézier basis functions for 3 points (a), and 4 points (b).

h’”!(u)—;!u"(l —~u) ZBi’m(u)zl
i—0

Bernstein polynomials.

Degree in U parameter=m

Degree in W parameter = n. i'(n— I}
Degree eIe\{atic_m to (Mm+1,n+1) is r.educed to Convex combination, so Bezier surface points
series of univariate degree elevation problems. all lie within convex hull of control polyhedron.

hl'p" B' (U)B' (W)

where h;; are projective space coordinates (weights) =

p(u,w) ==
source: Mortenson Z Z hIJ B ., (u) B, (w)

i=0 j=0



Bicubic Bezier Patch

p(u,w)=[1-u)® 3u@@-u)® 3u*(l-u) u’]

Bicubic Bezier Patch:
courtesy of ShuYe

U'= [H‘{
P P
P2 Pz
Pz Pa
Py Py

plu.0), w

= [} curve —

plu,w)=U"[M [P]M ,]'W

U

P13
P23
Pas
Pus

I'” B ] =

i l]

P14 |
P24
P34

Pas ||

= =

I 0

T
3w(l—w)?
3w’ (1-w)

Figure 8.1 Cubic Bézier patch.

source:

0 0
00

Mortenson

Pij



Composite Bezier Surface

Bezier surface patches can
provide G* continuity at patch
boundary curves.

For common boundary curve
defined by control points p_,,
P.,: Ps,. P,,, need collinearity
of:

{Pis P4 Pist 1€[1:4]

Two adjacent patches are C'
across their common boundary
if all rows of control net vertices
are interpretable as polygons of
C' piecewise Bezier curves.

5 -
TF‘ 11 P2 Pis P17
| | \
' : P Py7
P2y P2 : 26 2
'i Jln. ST I:l == = i {'l.
[ P3; P32 =P Bsr———Pss P36 P37
|
O ..L— _.;_—- 1 | = e & )
P4 Pse P47

Set of collinear points

p_pﬁ" T B Pus
L Points defining the

boundary curve

Figure 8.4 G' continuity across two Bézier patches.

source: Mortenson, Farin
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Bspline =

1 ’ﬁ ¢ 3 Y'Features: Local control and variation of degree By B ove B | [ N, (v) |
of s BSUSS: 2 | Po By« By || Nyy(v)
P(u,v)=[Ny,(u) N, (u) - N,,(u)] ; ; .
| f h 1_ = = .
B S p I n e S U r a Ce Patc { ” e ” l] PHU Pnl ' Pmn _fVm.!“ )

plu,w)=U"[M 1[P]M ,I'W
Geometric form (non-uniform, non-

rational case), where K controls degree 1
(K -1) of basis functions for parameter u
and L controls degree (L -1) of basis
functions for parameter w:

W) = Y PN,  (WN, (W)

Quadratic case (Ieft), Cubic case (right)
. ; A L P

i=0 j=0
Ny (o) = S, G R0 ooy s
Gis =8 e =g m
Z N i, K (U) =1

2 sets of knot vectors are required: 1 for each parameter.

Convex combination, so B-spline surface points

Cubic B-splines can provide C2 continuity
all lie within convex hull of control polyhedron.

at surface patch boundary curves.

Rational form (NURBS) is invariant under Z;Z(;hujpij Ni« (UN; (W)
perspective transformation, where h;; are p(u,w) =—-=

projective space coordinates (weights).
source: Mortenson =0 j=0
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Figure 9.6 Partially closed B-spline surface.
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Untrimmed NURBS Surface Patch

e Jason’'s NURBS surface

— Checkerboard texture map
— 8 control points in each dimension

— 12 uniformly spaced knots for each parameter
— u stride =8*3, vstride =3

2 different views of Jason’s patch



Untrimmed Surface Patch examples

Surfaces

Consists of:
- NURBS surfaces
- Checkerboard
- Gear (body: front and
back faces)
- Surfaces of revolution
using cubic Bezier curves
- Pawn
- Extrusion
-Gear's teeth and gaps




trimming curves.

Trimmed NURBS Surface Patch

Start with a NURBS Patch, as in Red Book:
GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 10, 1.0, 1.0};

Control points: GFfloat ctlpoints[4][4][3] (4 in each parametric direction) yield symmetric hill
ranging from -3.0to 3.0.

gluNurbsSurface(the Nurb, 8, knots, 8, knots, 4*3, 3, &ctlpoints[o][o][0], 4, 4,
GL_MAP2_VERTEX_3);

Add trimming curves (interior on left) before gluEndSurface(theNurb), agesrding to diagram on | L _ L
right: y g__..__‘___.;___,__ N
(0)0) (10)
gluBeginTrim(theNurb);

gluPwICurve(theNurb, 5, &edgePt[o][0], 2, GLU_MAP1_TRIM_2);
gluEndTrim(theNurb);

gluBeginTrim(theNurb);

gluNurbsCurve(theNurb, 8, curveKnots, 2, &curvePt[n1lnl » GI1II MAP1 TR|M_2);
gluPwlICurve(theNurb, 3, &pwlIPt[0][0], 2, GLU_MAP [z RIS

gluEndTrim(theNurb);

===

T

Note: From Jason’s experience, more
than 4 control points in each
dimension may be problematic for

L
HE'K-T‘

_jll

Trimmed NURBS Surface:
courtesy of Silicon Graphics checkerboard NURBS courtesy of Jason



Parametric bicubic surfaces

Major kinds of surfaces: Hermit, Bezier, B-spline

Displaying bicubic surfaces:

* brute-force iterative evaluation is very expensive
(the surface is evaluated 20,000 times if step in
parametersis 0.01)

* forward-difference methods are better, but still
expensive

» fastestis adaptive subdivision, but it might create
cracks



~ Polygon meshes

e well suited for representing flat-faced objects
e seldom satisfactory for curved-faced objects
e space inefficient '
e simpler algorithms

. hardwares

e




Surfaces from point cloud

Top row: low-resolution volumetric representations of the horse
(104 X 70 X 119, 195 X 120 X 228) and the head (69 x 69 x 76, 118 X 120 x 135).
Bottom row: respective implicit surfaces generated by algorithm.




I L

ocalized LS Smoothing/Sharpening

(left) Scan conversion errors near the teapot spout.
(middle) Placing a (red) superellipsoid around the

errors.
(right) The errors are smoothed away in 15 seconds.
The surface is constrained to only move outwards.



: 'I'f_ocalized LS Smoothing/Sharpening

No offset LS offset Mesh offset 7 5

(left) A cross-section of the teapot model near the spout.
(middle) No self-intersection occurs, by construction, when
performing a level set (LS) offset, i.e. dilation, of the
surface.

(riggt)I Self-intersections may occur when offsetting a mesh
model.




Regionally constrained smoothing

Left: Laser scan reconstruction with unwanted, pointed

artifacts in the eye.

Middle: Defining the region to be smoothed with a (red)
superellipsoid.

Right: Smoothing the surface within the superellipsoid.
The surface is constrained to only move inwards.



Point-Set Attraction and Embossing

Left: Three types of single point attractions/repulsions
using different ROI primitives and values.
Right: Utah teapot embossed with 7862 points sampling

the “SIGGRAPH 2002" logo.
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e permit multiple values for a single x ory
e represent infinite slopes

e easier to manipulate interactively

e can either interpolate or approximate

e space efficient

e more complex algorithms
e little hardware supportthis=— = —




Sculptured Surface

e General surface

e Composed of connected
surface patches




Surface Modeling

Surface models define only
the geometry, no topology.
Shading is possible.
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These surfaces are
topologically-equivalent
(homeomorphic) to a square.

These surfaces are
topologically-equivalent

&y y
b W

(homeomorphic) to a sphere.

B
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Homeomorphic surfaces

These surfaces are topologically-equivalent

(homeomorphic) to a torus.
a
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Surface modeling, approximation

Only a limited number of control points lie on the Bézier surface,
(e.g., (u,w)=[(0,0), (0,1), (1,0) and (1,1)]).

PBe——Ps

de Boor net ™

P20



Surface Modeling

P02

Control points ;

| & s
d .

Bezier, B-spline a“

P30

P03 P13

NURBS surface is a tensor product surface 4 7
and is the product of two curves. :

Surfaces are defined by a grid and
have two sets of parameters, gy, v)=
two sets of knots and so on.
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i=0 j=I0
n
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Surface Modeling jf

Curve-based design and

Surface deformation ﬁ

Freeform Phantom Arm
Designing by sculpturing




‘Surface Modeling

Surface Reconstruction by Recursive Subdivision




Surface Modeling

Surface subdivision
Subdivision models
The integrated way to look at the shape:
Object can be considered as a set of faces,
each face can be decomposed into a set of edges,
each edge can be decomposed into vertices




Surface Modeling

Finite Element Simulation
Subdivision to finite mesh
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Surface Modeling

Defining a surface with hole
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Trimming lines



Surface Patch

Tool Path

Isoparametric
curves

15

Poo
\ Isoparametric curves can be used
I P10 for tool path generation.



Linearly Blended Coons Patch

e Surfaceis defined by linearly interpolating between
the boundary curves

e Simple, but doesn’t allow adjacent patches to be
joined smoothly

SN SURFACE
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Linearly Blended Coons Patch~" %
T(v)
Pl(u,v) = (1 —u)-T(v) + u-R(v) /\ : )5 10
15 Su
P2(u,v) = (1 —v)-Q(u) + v-S(u)

P3(u,v) = (1 —-v)-[(1 —u)- T(0) + u-R(O)] + v-[(1 —u)-T(1) + u-R(1)]

P(u,v) =Pl(u,v) + P2(u,v) — P3(u,v)

(E(o)’E(l):E@)’(m’Yl’Zl) (E@,E(I),E(?)),(XZ,YZ,ZZ) (E(O),E(l) ,E(Q)),(XB,YB},Z})



Bicubic Patch

Extension of cubic curve
16 unknown coefficients — 16 boundary conditions

Tangents and “twists” at corners of patch can be used
Like Lagrange and Hermite curves, difficult to work with

P(u,v) = ZS:ZS:k u'v!

1=0 j=0
3(113 !

iﬁ'&(o,l)
SO0x S(l 1\ S(1,1) !

' 8,(0,0) 610

?’ $.0.0) L
S£(0,0) S(1,0) Sx(1,0)



plu,w)=U"[M  1[PIIM ,I'W -1 3 -31

: U'=lw’ u’ u l] M, ]=
Bezier Surfaces

e Bezier curves can be extended to surfaces
e Same problems as for Bezier curves:

— no local modification possible

— smooth transition between adjacent

patches difficult to achieve
n!

Cn,i = B(u,) = Cp,it-(1— )"

i'n—1

m n
P(u,v,r) == Z Z (i, j) -B(U,D-B(V, J)

i=0 j=o0 Isoparametric curves

used for tool path generation



plu,w)=U"[M ,1[P]IM ,I'W

P(u, v)=[Ny,(u) N, (u) -+ N,,(u)]

B-Spline Surfaces

{.ﬁ:[!f} u u l]

e Aswith curves, B-spline surfaces are a
generalization of Bezier surfaces

e The surface approximates a control polygon

e Open and closed surfaces can be represented

P(u,v):Z Z Pij-N

1=0 J=0

N

I, k—

LN )

Ni,k(u) = (u — ui)-

Yirk—1 ~

( 00 01 i an
1:)]0 Rl e })lm

1
‘\43‘,1)]'111: = g = 3 O

1

0 < U < Umax

B-5pline Surface

Nm (v)

N,,;(v)




B-Spline Surfaces
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urfaces from Curves

e Tabulated cylinder (extrusion)
e Ruled surface (lofting or spined)
e Surface of revolution
e Sweptsurface

e Sculptured surface




Tabulated Cylinder

* Project curve along a vector
e In SolidWorks, created by extrusion




> -Ruled Surface

e Linearinterpolation between two edge curves
e Created by lofting through cross sections

(u,wy)

 (u,,W,)

C2(v)

/7 4 4 F
’ 4 (uy,w,y) (U W,)

,P(u,v) = (2-v) Ca(u)+ vC2(u)  P(u,w)= p(u,0)(1—w)+ pul)w

~T "~ ,/\)r P(u,w)= pO,w)(1—u)+ p(l, w)u

Vs \ .7

-




Profile

\Mendlans

/\\

-
3
7

i
]
]

Revolve curve
about an axis

= ~ / Paral}els_
] T~ o S /
;- \ Axis of rotation ~——
1
/
! G(u) = P(u.0)
N O0<u
C2(u) 0<
//\\
-0 RN
P(u,v) = Ca(u)+ ~,
v (C1(u) — C2(u)) A ~—’
/7 F -~
X P(u, v) = r(u) cos vn,

+ r(u) sin vi,
+ zy(w)ii;



" Swept Surface

Defining curve swept along \
an arbitrary spine curve




Plofted Surface

Defining curve swept along Surface Pipe
an arbitrary spine curve



Spined Surface

Boundany 2

Boundary 1

Boundan 1

Boundary 2

Hf— Spine

Boundary 3

Crrive 1

Spine
Dirive

Crrive 2




Surface Manipulations \ /\

o Offset
e Blend
e Display

By subdividing the rows.

* Trimming
* Intersection
* Projection
e Transformati




Fillets and Blends

Often necessary to create a blend
between intersecting surfaces.

Most common application is a fillet

R
A———
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Fillet

Smm
2rmm
0.5mim
Haold linz

Face Blend

Face —=
sat 1

Face sat




Fillet between two selected surfaces

Spined fillet with drive curve




Surface functions

e Curve in surface
Intersection

o Offset Surface

e Planar development

n(u, w) = p;, (u, w)X P;, (u, w) Of Sp_rfaces

p(ll, W)oﬁ“ser = p(“’ W) +E(M’ W) = d

TIfT'."_
Rough ' -,
Machining i - i 3
urface % Ty !
inish Machining : >

Expected Surface Tiad




I Fillet between three surfaces

Corner fillet




Fillet between three curves

Triangular Surface ‘
Bezier patch ?

W = Wy
v
f o, Wy i;_
— wE— -
P(0.0.1) P00 (©00.1) v=0 n,n,m&
,.f' Parametric space
z Cariesian space P(u, v, w) = Z PiJ’k B; jvk, U, v, W)
: . i,j, k
Bernstein polynomials of degree n: 0<u<l0<v<l0<w<l

n!
u
iljlk!

_ i gk
Bijin= VW' Ghere i j,k>0,i+j+k=n



Subdividing a Bezier Patch  [r. o0 po. Pl

Poo Po,
< ;

By subdividing the rows.
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can be written as

SrPST
Sy PS}
SrPS}



_d

heet metal bending

e Unfolding

%
&
o,
663
Ang » 30 .
E =1




Offset curves on Surface

L1l E

Molding and silhouettes




Curved Surfaces

CSE167: Computer Graphics
Instructor: Steve Rotenberg
UCSD, Fall 2006



Bezier Surfaces

e Bezier surfaces are an extension to Bezier curves.

e Instead of the curve defined by a single parameter
variable t, we use two variables, s and t for surface.

e By definition, we choose to have s and t range from
o to 1 and we say that an s-tangent crossed with a
t-tangent will represent the normal n for the front of
the surface. 0.1

1,1
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Curved Surfaces

The Bezier parametric surface

is a surface that can be parameterized
by two variables, s and t (u and v). P L . |
Parametric surfaces have a rectangular topology.

In computer graphics, parametric surfaces are called
patches, curved surfaces, or just surfaces.

There are also some non-parametric surfaces used in
computer graphics, but we won't consider those now.



Control Mesh

Consider a bicubic Bezier surface (bicubic means that it
is a cubic function in both the s and t parameters).

A cubic curve has 4 control points, and a bicubic surface
has a grid of 4x4 control points, p, through p,. .




Surface Evaluation

The bicubic surface can be thought s \ \
of as 4 curves along the s parameter ~
(or alternately as 4 curves along the t parameter).

To compute the location of the surface for some
(s,t) pair, we can first solve each of the 4 s-curves
for the specified value of s .

Those 4 points now make up a new curve which
we evaluate at t . Alternately, we first may solve
the 4 t-curves by evaluating at s .

This gives a simple way to implement smooth
surfaces with little more than what is needed to
implement curves.



Matrix Form

e \We saw the matrix form for a 3D Bezier curve is

x=|t* t* t 1]

x=t-B. -G

X=t1-C

Bez Bez

o O O BB

0x

0

olx
02
D

>

3X

= o
< <

(@) (@& (@) (@)
N
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w
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o
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Matrix Form

e To simplify notation for surfaces, we will define a matrix
equation for each of the x, y, and z components, instead of
combining them into a single equation as for curves

e Forexample, to evaluate the x component of a Bezier curve,
we can use: . L

~1 3 -3 1][p,
3 -6 3 0||p
x=[t* t t 1] |
3 3 0 0||p,
1 0 0 0]|psy

XZt'BBez 0y
x=t-c,



Matrix Form

To evaluate the x component of 4 curves simultaneously,
we can combine 4 curves into a 4x4 matrix.

To evaluate a surface, we evaluate the 4 curves, and use
them to make a new curve which is then evaluated.

This can be written in a compact matrix form:

X(s,t)=s-Bg, -G, -Bf,, -t

Bez

Bez




Matrix Form

: . -1 3 -3 1]
X(s.t)= g I
) o > 1-3 3 0 O o
_S-CZ -1 | 1 0 0 0
C.=B.. -G.-B! | Dox  Pax  Pax plzx_
X ) Bez2 X = Bez G — D1y Psx Pox  Prsy
S=|S° S S 1] " Do Psx  Piox  Pray
t=[t> t* t 1] | Pax Pz Prx Pusx




.G.-BL_-t'

Bez X Bez

X(s,t)=s-B

Matrix Form __ 52 s 1

t=t* 2 t 1

C, stores the coefficients of the bicubic equation for x
G stores the geometry (x components of the control
points)
B;., is the basis matrix (Bezier basis)

s and t are the vectors formed from the exponents of
sandt

e The matrix form is a nice and compact notation and
leads to an efficient method of computation

e |t can also take advantage of 4x4 matrix support
which is built into modern graphics hardware



Tangents

e Tocompute the sand ttangent vectors at some (s, t)
location, we can use:

§ ds-C,-t"

_X: CS.C .tT S:

oS y T -
as-C, -t t =

5 s-C,-dt’ | ds=|

X _|s.c..dt™ | dt=

@t y : 5
s-C, -dt



Normals

e To compute the normal of the surface at some
location (s,t), we compute the two tangents at that
location and then take their cross product

e Usually, itis normalized as well

« OX OX

n =—x
os ot
n*

n_




Bezier Surface Properties

Like Bezier curves, Bezier surfaces retain the convexhull
property, so that any point on the actual surface will fall
within the convex hull of the control points

With Bezier curves, the curve will interpolate (pass through)
the first and last control points, but will only approximate
the other control points

With Bezier surfaces, the 4 corners will interpolate, and the
other 12 points in the control mesh are only approximated

The 4 boundaries of the Bezier surface are just Bezier curves
defined by the points on the edges of the surface

By matching these points, two Bezier surfaces can be
connected precisely



Tessellation

e Tessellation is the process of taking a complex surface
(like a bicubic patch) and approximating it with a set of
simpler surfaces (like triangles)

e In computer graphics, there are a lot of different types of
complex surfaces one might want to tessellate, such as:

— Parametric surfaces (such as Bezier surfaces)
— Displacement mapped surfaces

— Subdivision surfaces ( Ay}

— Fractals [

— Procedural models p,
-

— Implicit surfaces
* We WI” |OO|< at the fi rSt tWO tOd ay e Madel+ Meshsmooth Model+Meshsmooth (ISOLINE)



Uniform Tessellation

The most straightforward way to tessellate
a parametric surface is uniform tessellation
With this method, we simply choose some
resolution in s and t and uniformly divide up the
surface like a grid

This method is very efficient to compute, as the cost
of evaluating the surface reduces to approximately
the same cost as evaluating a curve

However, as the generated mesh is uniform, it may
have more triangles than it needs in flatter areas and
fewer than it needs in highly curved areas




Adaptive Tessellation

Very often, the goal of a tessellation is to provide
the fewest triangles necessary to accurately
represent the original surface

For a curved surface, this means that we want more
triangles in areas where the curvature is high, and
fewer triangles in areas where the curvature is low
We may also want more triangles in areas that are
closer to the camera, and fewer farther away
Adaptive tessellation schemes are designed to
address these requirements



Mixed Tessellation

e Some practical renderers use a mixed tessellation scheme

e First, the original surface patch is adaptively subdivided into
several subpatches, each approximately the same size (say
around 10 pixels on a side)

e Then, each of the subpatches (which is just a rectangular s, t
range within the larger o,1 rectangle) is uniformly tessellated
to some size (say 10 x 10)

e The resultis that the curved surface is tessellated into
triangles roughly the size of a single pixel

e The bulk of the cost of the algorithm is in the uniform
tessellation, which can be implemented in a very efficient

way



Displacement Mapping

e To add additional geometric detail to a tessellated surface, we
can use displacement mapping

e With this technique, a displacement map is stored, which is
much like a texture map that stores a height value per texel
instead of a color

e As with texture mapping, we can assign a texture coordinate to
each corner of the patch that allows us to position the
displacement map onto the surface

e This coordinate gets interpolated when we evaluate the position
and normal of the patch for some (s,t) value

e We can displace the position by the height value. The
displacement is usually done along the computed patch normal

e Once we've displaced our tessellated triangle mesh, we will need
to recompute accurate normals, as they will change based on
the displacements

e To avoid geometry aliasing, we should really perform some sort
of filtering on the height value (such as mipmapping)



Scan Conversion

e The serial scan conversion technique we looked at earlier in
the quarter requires expensive set-up computations in order
to make the per-pixel cost very low, thus making it efficient
for large triangles

e Some surface renderers ?enerate triangles smaller than a
single pixel, or the size of a few subpixels in an antialiased
rendering

e Fortriangles this small, it is usually better to use different
approaches in the scan conversion process

e Also, as these micropolygons are so usually generated from
uniform tessellations, other optimizations can be made to
aﬁcount for all of the shared vertices and edges between
them



Other Curve Types

e Curves
— Hermite curves
— Catmull-Rom curves
— B-Splines
— NURBS

e Surfaces
— B-Spline / NURBS
— Trim curves
— Subdivision surfaces
— Implicit surfaces



AD/CAE/CAM

 Part 5: Representation and
Manipulation of Surfaces



What Is It?

The ways and means to define and manipulate
3D surfaces, used by geometric modeling systems
to store surfaces such as faces in a B-Rep.



Types of Surface Equations

e Implicit
Describe a surface by equations relating to the X, Y, Z coordinates.
Advantages:

Compact; Easy to check if a point belongs to the surface.
Disadvantages:

e Difficult for surface evaluation.
e Difficult for partial surface definition (1/4 of a sphere).

e Parametric

Represent the X, Y, Z coords as a function of two parameter.
Advantages:

e Easy for surface evaluation.
e Convenient for partial surface definition.
e Many others such as easy for manipulation.
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Parametric Surfaces

S(u,v) = [x(u,v), y(u,v), z(uv)]

withu_ . <u <Upax and v, ;< v < Vimax

In most surfaces, the intervals for v and v are [0,1].
Surfaces can be modeled by a group of surface patches.
A surface patch has the following boundary conditions:

e 4 cornervectors —5(0,0), S(0,1), S(1,0), S(3,1)

e 8tangent vectors — 2 at each corner, S (u,v), S (u,v)
e 4 twist vectors at the corners-S, (u,V)

e 4 boundarycurves—u=o0,u=1,v=0,v=1.



Parametric Surfaces

Basic Terminologies of Parametric Surface S(u,v)

SV(O,l) S(a,1)

S(u,1)

Corner S(o,1) 5.(1) Su (U, V) — @
Corner S(z1,1) o ou (u,v)
S(o,v)
Sy(u,v) =2
ou (V)

_ S, (a,b)xS,(a,b)
IS, (a,b)xS,(a,b)|

S,(0,0)

Corner S(z,0)

1. S(u,b) and S(a,v) are iso-parametric curves
at v=Db and u=a respectively.

Corner S(o,0)

2. n s the unit normal vector at (u,v) = (a,b).
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Classification of Surfaces

Bi-linear Patch

Ruled Patch

Coons Patch

Bicubic Patch

Hermite Patch

Coons Patch with tangents

Bezier Patch

B-Spline Patch

Non-Uniform Rational B-Splines (NURBS)



Bi-linear Patch

The simplest surface defined by 4 points in space

* |Input

FourpointsP,,, Py, P.o/ Py

e QOutput

A surface S(u,v) with four corners

S(0,0), S(0,1), S(2,0), and S(z,1) at the four given points

e Definition
e Eachofthe X, Y, and Z components is a bi-linear
function of uand v

e Example




Ruled Surface

The simplest surface defined by two curves

*Input
Two curves Q (u) and Q_(u) (o<u<a)

*Qutput

A surface S(u,v) with its two boundary curves
S(u,0) and S(u,1)

identical to Q_(u) and Q_(u) respectively.

e Definition

e Example



Coons Patch
The simplest surface defined by four curves Q_(u), Q,(u), P,(v), P.(v)

e |nput and Output

e Definition
Step 1. Define a ruled surface S_(u,v) on two opposite curves
Step 2. Define aruled surface S,(u,v) on the other two opposite
curves
Step 3. Add two together and find the compensating patch

N PPN £ (v) R I T 0,0 Q[ 1-v
S, v) = [1\1 —u) u + [QD () Q(u) — [1\1 —u) U
P(v) v oL o v

e (Generalization
e Examples
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A bicubic patch 1s a surface represented by an equation in polynomial form of degree = in

Tt Bi-cubic Patch

3 i3 o

Suv) =3 Y auv (==l 0=vsl)
Ga®
T=ll 7

Or | 1in matnx form:
dog &gy oy oz || 1

dypy dyp gy dig ||V

Suwl=[1 uudu¥ 4

3

P
@zp 3y @z diz |V

where each ey 12 an algebraic vector with x, ¥, and z components.

x(1,v) 0.5+ 2v+v —wv” —du™v’
Example: Sl = [ v v) | = W? 45ty
z(1,7) 14 2.5 —1.5u"
0.5 2 0 1 0 il i i
e =| 0 | en=|0| ea=|3| &= |0, an=| 0 |, an=|0 | &1=|5|. &= 0
1 [l [l l 2.5 0 (] —1:5

All other ag are [0 0 O]T.



Hermite Patch

Similar to Hermite curve, non-intuitive algebraic coefficients
a; need to be replaced by geometric coefficients like corner
points and tangents. There are 16 unknowns a.,, so we need 16
boundary vectors in order to find them.
* 12 intuitive vectors
e 4 more boundary vectors (twist vectors)
(usually set to zero vectors if difficult to decide)
e Compute the Hermite form
1. Compute the derivatives of the bicubic surface
2. Plug in the 16 boundary vectors and solve the linear
equations for a;
3. Rearrange into the Hermite Form
* Major properties
— Boundary curves are Hermite
— Iso-parametric curves are Hermite
e Examples

ij/
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Drawbacks of Hermite Patch

It is not easy and not intuitive to predict surface
shape according to changes in magnitude of the
tangents (partial derivatives) at the four corners.

In addition, the four cross-derivatives
S,(0,0),S, (o,1)andS (3, 0)
most of time are not known.



Bezier Surface
Definition
S(u,v)= >> B, (w)B;, (V)P (0<u=zl,0<v<1)
i=0 j=0
P, the control points that form a (n+1) by (m+1)
control mesh
n: the degree of the surface in u direction
m: the degree of the surface in v direction
Examples
a 5x6 patch; a closed patch
Properties

How to evaluate




Drawbacks of Bezier Surface

High degree

The degree is determined by the number of control points which
tend to be large for complicated surfaces. This causes oscillation as
well as increases the computation burden.

Non-local modification control

When modifying a control point, the designer wants to see the shape
change locally around the moved control point. In Bezier patch case,
moving a control point affects the shape of the entire surface, and
thus the portions on the surface not intended to change.

Intractable linear equations

If we are interested in interpolation rather than just approximating a
shape, we will have to compute control points from points on the
surface. This leads to systems of linear equations, and solving such
systems can be impractical when the degree of the surface is large.
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B-Spline Surface
Definition

S(u, v) = E\T' N,, ()N, (v) P, ($, SU<S
i=0

M+l o 'rf—l SUWE ‘]Fm+1,]I

l

.
I
o]

P the control points that form a (n+1) by (m+1)
control mesh

k: the order of the basis functions in u direction
[: the order of the basis functions in v direction
U={s,, ..., 5,3 is the knots vector in u-direction
V={t, ..t }Iisthe knots vectorin v-direction
Examples
a 6 by 6 patch, a B-Spline Editor
Properties

— Local-modification property
— Degrees kand [independent of nand m
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http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
http://madmax.me.berkeley.edu/~fuchung/Bsurface.html

Implicit Surface Representations

——————

Implicit representation
@+y+22-R2=0
Problems:

e Surface evaluation. Say, to display this sohere on the screen, we need to
approximate 1t by 1000 triangles, equally sized. Hard to do.

e Partial surface. To define an octant of the sphere, not the entire sphere

which 15 closed. Difficult.
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Parametric Surface Representations

P

______

Parametric representation
x =RcosBsing, y=ERsinBsind, z= Rcosd (0=8<2r)and (0= ¢g=m).

e To compute 10000 equally spaced points on the sphere? Just evaluate the

above equations at (&, ¢;) = ((/1000)*27, (/1000)*27),1=0,1,2,..., 99, j=
12 e 99,

o To represent the sphere 1n the first octant? Just limit the range of (8, ¢) to
0=0<057,0<¢<0.57).
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Bi-Linear Surface

(The simplest surface defined by 4 points)
i

Define two linear boundary curves alengu=0andu=1

Py

10

PD.;IJ' = {1 -'J:l Puﬂ + EFPUJ

Pl;: = {1 -'J:l Pl,III + EFPLl

73 Define a linear curve along u direction between Pyy and Py,
Piu, v) = (1-u) Pyp + uPyy
3 Merge 1 and 2 together.

Piu, v) = ({1-w)(1-v)Pay +u(l-v)Pip + (1-u)wPy; + uvPi;

= BL{u,% (Pop, Prg, Pog, Pio)



Example of a Bi-linear Surface




Bi-linear Function

F(0,v)
Fu,u /
P
F
P 0,1
e
F(1,v)
F 1,1

«Y



Ruled Surface

/N )

! !
I S('Ll, "i.i":| ,-'l |I
; : :
’

!



Example of a Ruled Surface (Helicoid)




' Example of a Ruled Surface (shoe design)




Example of a Ruled Surface
on)

Section curves
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Coons Patch

(The simplest surface defined by 4 curves)

(iwven four boundary curves Qglu), Quiw), Po(v) and Pi(v) on which a patch S(u, v) needs
to be defined, such that the four boundary curves S(u,0), 50w, 1), S(0,v), and S(1,w) are
identical to the four curves Qgplu), Qq(u), Polv) and Piiv) respectively. Bi-linear surface
cat be viewed as a special case of this in which the four input curves are all linear.

Chiu)




Defining a Coons Patch: Step 1 and Step 2

Define aruled surface along u direction between Py(w) and Pi(v).

1.

S1(u,v) = (1-wPy{v) + ubyiv)

This surface 15 bounded by Polw) at u=10
and Ppiv) at u=1, as desired However,
the other pairs of boundary curves will
be straight line segments, not the desired

Quo(u) and Q{u).

Define a ruled surface along v direction between Quiu) and Qq(u).

2
r Chlu) .
, ‘ J Sa(u,v) = (1-v)Qofw) + vQ1(u)
I'I : ¢ 22y, V) jf rll This surface 15 bounded by Qq{u) at v=10
: IrJ Jf ,: y and Qi(u) at v=1, as desired Howewer,
I.' ; ] ; 2 the other pawrs of boundary curves will be
1 4 ;J o Jar straight line segments, not the desired
! / £ Polw) and Pi(w).
ST~



Defining a Coons Patch: Step 3

Add two together and find the compensating patch.
Piu,v) = 8i{u, v + Salu,v)

At the boundary:

P(0,v) = Fy(w) + (171 Qof{0) + w0, (0]

P(l,v) = Piv) + (1-w1Qo{1) + wOL (1]

Plu,0) = Qulu) + (1-wPp( + ul (0)

Piu, 1= Qp{u) + (1 -w) Pl 1 + ul4 (D)

The underlined are unwanted. They are the line segments connecting the four
corners. o if we define a bilinear patch on these four corners,

Sa(u,v) = BL{u,w) (Qo(0), Qi 1), Qu(07, Qui11,

and subtract it from P{u,v), the result 13 what we want, a Ceans’ patch:

Siu,v) =Plu,v) — Ss(u,v) = S1(u,v) + Sa(u,v) — Sziu,v).




Generalized Coons Patch

The terms (1-u) and u (similarly for v and (2-v)) in the Coons patch are
linear blending functions, as a direct result of the bi-linear construction
in Step 1 and Step 2. If we replace them by a pair {a (u), 1-a(u)}
(similarly for v), where a_(u) can be any continuous function, the
resulting surface still meets the boundary condition:

S(o,v) = P(v), S(3,v) = P,(v), S(u,0) =Q_(u), and S(u,1) = Q,(v).

0 0)[1-
S(e,v) = [(1- 1) M]{ J+[Q,J () QI(M)]|: } [(1-x) M][%{U: %{(1)}}{ ;}

(1-u) =2 o,(u)
u 21— o)

20 ] L T00 O @)
S, v)= [u (1) 1-« (u)]{ (J—F[QD() O (1 )]{ el }—[mn(u) 1 (;D(u)]{gﬂm QIUJL—HDWJ

Example: () =1 — 3 + 2@



Example of Coons Patch
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First 12 Boundary Conditions in a Patch

S01.10

501,10

: ST{]':EI:I

S(0.0)

é{l,D] S:(1.,0)

The four corner points S(0, 0, §(0, 13, 8§(1, 0, and 8(1, 1},

o The four tangent vectors along u direction at the four corners

D Sal0, O, 80, 13, 8u(1, 0, and Sy(1, 1),

The four tangent vectors along v direction at the four corners: S;00, 00, 8§;00, 13, 801, 01, and 81, 1).



Four more boundary conditions in a patch

The 2M_order cross-derivative iz defined as:

325w, v)

Sup(u, 7) = =

o  The 2™ order cross-derivatives at the four corners: S8g(0, 00, Sg(0, 13, S8g(1, ), and Sgi(1, 1.
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Derivatives of Bi-cubic Patch

| _ Gl
S, vl =1 uu? u?]

2
Dag gy gy dogz ||V
3
|z dyp dyz [V
g g1 Zgp @z || ] @pp @gp g @z
: e it et et v et c c i
10 11 12 13 10 11 12 13
AR ES IL[l u e . ju =[01 2u 3]
@ag g Hgy doz |V gy gy Hgy gz |V
3
(e gy dzy daz |V | dyp gy dag ||V
@og gy Fgy Dz || ] Bog @1 Hoa Hps 0
. it it it it P it ot ot ot 1
10 11 12 1z 10 11 12 1z
Sufu,v) = ([1 v w? ] Yo =110uu2w]
4 ;
Bag gy gy dgz ||V g g1 Hay dgg v
3 2
| Fap Hyy gy dag |V | Zap dmy Hap I1133__3""
oy @1 Hgr dpz || ] Pog Hgr Hpn g
- ot ot ot o 7 it it ot ot
10 11 12 13 10 11 12 13
S (1,7 = If\[[:l 1 2u 2uf] ! )U =[01 2u 3u?]
Bag oy Hga Az ||V Pag gy oy dog
3
| P3p dyy Hapy diz ||V 3y dy) dzy dag

LE]

A%

1 £A'a




Definition of Hermite Patch

[ 5(0,0) SO 8,00 SO AM]
S(1,0) S S0y S 4D | £(v)
S,0,0) S, (0D 5,00 S,0D| O
S, (L0 S, LD S, @10 S, 0D | A0

S(wv) = [f(u) f;(n) f(u) f:(u)]

(0<u<l,0=v<l)
where the blending functions f;(n), f;(n), f:(u), and f5(u) are Hermite functions:
fo(u) =1 — 3uz + 2u?
fi(u) = 3uz - 2w

t(u)=u- 2w+ uw
fi(u) = -uz + w.
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Example of Hermite Patch




Boundary Curves of a Hermite
Patch are Hermite Curves

5,00,1)

Each of the four boundary
Curves 15 a Hermite curve.

Example: S{0,v). After
substituting 0 for u into

=, v

)
00,0}

[ 500,00 ]

SC0.D)
5,000 |
LA, (0.0

S(0v) = [&iv) hiv) Liv) &v)]

S0, 0y and 80, 1) are the two corners and 8;(0, O and 8;(0, 1) are the tangent vectors of
a0, |1'-IZI = $,(0, 0, and A5(0, v

the patch along the v direction. Notice that

S.(0, 1).

|1n-1 =



Iso-parametric Curves of a Hermite
Patch are Hermite Curves

Any 1so-parametric curve S{u, w) or
Stug, v)1s a Hermite.

Example: S{u, wy). Substituting v = 1w
leads to:

S(D,D] 5(1,09

[500,) ]
S0
Gt |

- Ty () 3

S, wo) = [fo(u) hiw) fiw) Hiu)]

where:

Galwrn) = SulD, 00} + 8D, Do) + S (0. 0000 + 8 (0, i (m0)
Galwo) = Sul1.0Malwo) + Su(1, [f1(wo) + S (1,000} + S (1, 150w,

Mote that:

A5 (1, v s (1, v)

0,y = Galin)

(Lwd G-*(TJU)-



Control Points of a Bezier Surface




f,./’
_ A 5x6 Bezier Surface




A Closed Bezier Surface

ib} Closed v rdges (polygon and 4 = 4 shirface mesh)

Closed Bezics furface.
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Properties of Bezier Surface

The four control points Pag, Pog, P, and P lie on the surface and are its four
corners S{0.07, S(0,1), 8§{1,0, and S{1,1) respectively.

Any iso-parametric curve 15 a Bezier curve.
R b

(S{ug, v) = EE By, (@y) B, (v) Py 15 a Bezier curve, so 15 S{u, w), for any
im0 D
constant ug or vy.)

Convex Hull Property — The Bezier patch 15 inside the convesx hull of its
control points.

(To prowe: show that >° > B, ()5, () =1for any vand v.)
il jod)

The partial derivative Ga ) |I:|l|3|:| iz parallel to (P — Poa), and
& (14, V)

the partial derivative |iU.UJ 1z parallel to [Py — Pag).

(Similarly for the other three corners)

25 (1, ) S (84, V)

The partial dertvatives and are also Bezier surfaces

themselwes.



Evaluation of Bezier Surface

How to evaluate a Bezier patch at a point (u,, v;)? By applying the de Casteljau algorithm
recursively.

S(ulih Tv"u) = Z 2 Bz',.‘rz (”EI)BJ',m (TEI) Pij

i=0 j=0

|:?‘‘Ejll:l_;ﬁ’_;.'rn{q'I:I):|'BEIn{:”I:I)_i_|:‘>_|| L Jm("‘ﬂ):|Bln(”El)+ |: n,J jm(‘ :|Bn,n(”D)
j=0

J=0 j=0

¢ Using de Casteljau algorithm to evaluate C;= > P, iBim() (50,1,...n)

e

e,
[

o Using de Casteljau algorithm again to evaluate S(u,, v;) = ‘5_’ 2. C.B, ()
i EI
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Pictorial Illustration of Evaluating
a Cubic Bezier Surface




Control Mesh of a B-Spline Surface




A 6x6 B-Spline Surface

Both U and V are non-periodic and uniform (the patch passes all the four corners).

-



Properties of B-Spline Surface

The four control points Pog, Pon, Pun, and Pup lie on the surface and are 1ts four

cortiers Plaga, 1), Plae, twe), Pl tr), and Plsye, toa) respectively (For
non-periodic only.)

Conwvex Hull Property — The B-spline patch 15 inside the conwvex hull of itz

control points. (37> N, ()N, (v) = 1for all uand v
ey

Any izoparametric curve 15 a B-spline curve.
(=itmilar to that any 1soparametric curve of a Bezier patch 15 a bezier curve)

A (1, v)

The partial derivative |ED 0 1z parallel to (Pyg — Pyo), and

A (54, v)

the pattial derivative |(nm iz parallel to (Poy — Pag).

(=itnilar arguments hold for the other three corners.)

A1, V) 51,0

and

The partial derivatives are alse B-spline surfaces

themselves.

Local modification: when a P15 moved, only a local portion on the surface
corresponding to seme parameter subset [z, 1" = [v' "' | willikle affected.

thitp //madmazx me berkeley edu/~fuchung/Bsurface html)



http://madmax.me.berkeley.edu/~fuchung/Bsurface.html

Local-modification Control of
B-Spline Surface

Sy, € 3}
(\D n+.i') (bn+k* I:n+3)

Non-zero interval of N, (u)

] Non-zero mterval of N, (v)

] Non-zero mterval of N, wN, (V)

i+k (Sn+k‘ tl:l)

e <
P
L]
! =
-
[ =
|, [
L]
-
L]

N, (WN, (v) 1s the blending function before control pomnt P;. So when P,
moves, 1t will only effect the portion of the shape of the original B-spline
surface corresponding to the non-zero interval . :
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Catmull-Clark
surface (1978)

(a) Initial control mesh
(b) 13t level subdivision

(c) 27 |evel subdivision

(d) 3" level subdivision
(e) 4t level subdivision

(f) Limit surface

Subdivision Surface




The Basic Idea of Subdivision

e Chaikin's algorithm (1974)
— equivalent to a uniform quadratic B-spline curve

WSO\,

D Vir1

' 3.1
‘ Subdivision rule P=VitVin

1 3
q:ZW+ZWH




Catmull-Clark Surface Subdivision

@ Newly inserted face vertices

O Newly inserted edge vertices

o :
Updated old vertices
1 6 1
1 1 3 3 3 64 o 64 - 64 -
4 4 8 8 8
O O o O O
6 36 6
64 64 64
® ® Q o ®
O O O O O 1 6 1
1 1 3 3 1 64 64 64
4 4 8 8 16 O O O

(a) New face vertices (b) New edge vertices (c) Updated old vertices



rious Split
Schemes

1-3

Such as Loop

& Butterfly

Such as
Catmull-Clark

Such as
Doo-Sabin

1-2

4-8




Catmull-Clark Surfaces

Extension of bi-cubic
B-spline surfaces
(Catmull and Clark
1978)

One-to-four splitting:




Extension of bi-
guadratic B-spline
surfaces (Doo and
Sabin 1978)

Corner cutting:

Doo-Sabin Surfaces




Loop subdivision
(Loop 1987)
extension of 3D
box-splines

One-to-four
splitting:

Loop Subdivision

Asls
oo



A Few More Examples

(a) Catmull-Clark (b) Doo-Sabin




. Interpolatory Subdivision Surface

- All or specified points on the initial mesh are kept in the final limit surface-
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A Few Differential Geometry Topics
Related to Continuity



Local Curve Topics

Principal Vectors
— Tangent

— Normal

— Binormal

Osculating Plane and Circle

Frenet Frame

Curvature

Torsion

Revisiting the Definition of Geometric Continuity

source: Ch 12 Mortenson



Intrinsic Definition

e Noreliance on external frame of reference
e Requires 2 equations as functions of arc length* s:

1) Curvature: 1 — (s) *length measured along the curve
P :
2) Torsion: 7 =g(s) A

e Forplane curves, alternatively:

Torsion (in 3D) measures how much
curve deviates from a plane curve.
1 do | i 24

p dS Figure 2.1 Intrinsic definition of a curve.

Treated in more detail in Chapter 12 of Mortenson and Chapter 10 of Farin.

source: Mortenson




Calculating Arc Length

Approximation: For parametric interval u, to u,,
subdivide curve segment into N equal pieces.

L:ZIi where Iiz\/(pi—pi_l)-(pi—pi_l)
using pop:\p\z

L = j P ep du is more accurate.

source: Mortenson, p. 401



Tangent

Figure 12.1 Tangent vector and line.

_pi

unit tangent vector: {

s

source: Mortenson, p. 388



Normal Plane

Plane through p; perpendicularto t;

/ q

(X,Y,2)

Figure 12.2 Normal plane.
u u u u u u
XX+ Y Yy+22—(XX + V.Y +2.2.)=0

source: Mortenson, p. 388-389



Principal Normal Vector and Line

Moving slightly
along curve in

neighborhood of P

p; causes tangent
vector to move
in direction

specified by: p;m

Principal normal
vectoris on
intersection of
normal plane with
(osculating) plane
shown in (a).

Wi

op; =p;

p;+dp¥

(a)

n, =k /Ik|

(c)

Figure 12.3 Principal normal vector and line.

Use dot
product to find
projection

uu

of P; onto P;

Binormal
vector

b, =t. xn.

lies in normal
plane.

source: Mortenson, p. 389-391



Osculating Plane

Limiting position of

plane defined by p; p; - /

and two neighboring _J#_"F'_Jﬂ._.__ —

points p; and py, on Py | E;““'

the curve as these _ : Tangenfc |
neighboring points / vector I.|es In
independently . Normal vector osculating
approach p;. ' lies in osculating plane.

plane.

Note: p;, p; and p; Figure 12.4 Osculating plane.

cannot be collinear.
u uu

X=X X X
u uu

Y=Y Yi Yi|= 0
u uu

Z - Zi Zi Zi source: Mortenson, p- 392-393




Frenet Frame

Rectifying plane at p; X,
is the plane through
p; and perpendicular
to the principal
normal n;:

(Q-p;)en; =0

b;

Figure 12.5 The moving trihedron.

Note changes to Mortenson’s figure 12.5.
source: Mortenson, p. 393-394



Curvature

Radius of curvatureis p;
and curvature at point p;
on a curve is:
pi xp;"
3
o
uu .
Recall that vector Pi lies
in the osculating plane.

1
K = =

IPi

Curvature of a planar
curve in X, y plane:

1 d®y/dx’?

P [+ (dy/dx)? [

"~

Radius of
Curvature

Osculating
Plane

Center of curvature &

Figure 12.6 Curvature.

Curvature is intrinsic and does not change

with a change of parameterization.

source: Mortenson, p. 394-397




Torsion

Torsion at p; is limit of ratio of
angle between binormal at p;
and binormal at neighboring
point p,, to arc-length of curve
between p, and p; , as p;,
approaches p; along the curve.

Rectifying /

Planeh =i
u uu uuu u uu uuu S S
— [pl Pi- Pi ]_ P; ® (p, X P; ) Rcctuﬁmc
Ty = 2 — 5 Plane i

P xp;

P} xp}

Figure 12.7 Torsion.

Torsion is intrinsic and does not change
with a change of parameterization.

source: Mortenson, p. 394-397



Reparameterization Relationship

e Curve has G' continuity if an arc-length
reparameterization exists after which it has C’
continuity.

e Thisis equivalent to these 2 conditions:

— Cr2 continuity of curvature
— Cr3 continuity of torsion

Local properties torsion and curvature are
intrinsic and uniquely determine a curve.

source: Farin, Ch 10, p.189 & Ch 11, p. 200



Local Surface Topics

e Fundamental Forms
e Tangent Plane

e Principal Curvature

e Osculating Paraboloid

source: Ch 12 Mortenson



Local Properties of a Surface
Fundamental Forms

e Given parametric surface p(u,w)

e Form I:
dp e dp = Edu’ + 2Fdudw + Gdw?
E=p"ep” F=piep” G=p ep"
e Form ll:
—dp(u, w) edn(u, w) = Ldu® + 2Mdudw + Ndw*
pUXpW
L=p™ en M =p™en N=p™en n=
p p p puxpw‘

e Useful for calculating arc length of a curve on a
surface, surface area, curvature, etc.

Local properties first and second fundamental forms
are intrinsic and uniquely determine a surface.

source: Mortenson, p. 404-405



q

Local Properties of a Surface

Tangent Plane

p" =op(u,w)/ou
p" =op(u,w)/ow

(q-p)e(p*xp")=0

X—X X X
u W

Y=Yi ¥ Y

Z—-2. I, 1}

O e

Figure 12.9 Tangent plane.

p(U;,W;) components of parametric tangent

vectors pU(u;,w;) and p"(u;,w;)

source: Mortenson, p. 406



Local Properties of a Surface
Principal Curvature

Derive curvature of all parametric curves C on parametric
surface S passing through point p with same tangent line | at p.

n

contains |

normal curvature
vector k,, = projection
of curvature vector k
ontonatp

k., =(ken)n

in tangent plane
with parametric
direction dw/du

normal curvature: K, =Ken

. = L(du / dt)2 +2M (du / dt)(dW/ dt) +N (dW/ dt)2 Fiaure 12.10 Normal curvature.
" = E(du/dt)? + 2F (du/ dt)(dw/ dt) + G (dw/ dt)?

source: Mortenson, p. 407-410



Local Properties of a Surface
Principal Curvature (continued)

. S {) curvature
Rotatli ng i l (b) Elliptic point

a plane around ) Bt ol extrema:
p U / Directions principal norma[
the normal

N curvatures
changes the //~ f\

/A (¢) Spherical
; umbilical point

curvature x,,.

i( f p NG *{\}. - Constant

|/ / \“ |

Y/ \ e
T ' B

|/

(d) I-l}-'pf_:l'bulicl:rim/l./ - \
—

\ LN -M-<0 e

(e) Parabolic point
IN-M2=0 — typographical
Glis g error?

Figure 12.11 Principal curvature. source: Mortenson, p. 407-410



Local Properties of a Surface Osculating
Paraboloid

Second fundamental

form helps to measure
distance of surface
from tangent plane. . °

— |d|=(@-p)en

Figure 12.13 Osculating paraboloid at a point on a surface.

As q approaches p: d = fB(Ldu2 +2Mdudw + Ndwz)}

N /!
YT

Osculating Paraboloid source: Mortenson, p. 412




Local Properties of a Surface
Local Surface Characterization

a)LN —M?2 >0

Elliptic Point:
locally convex

b)LN — M

Hyperbolic Point:

“saddle point” C)LN-M?=0
L>+M*+N*=0
!

L=M=N=0

Planar Point
(not shown)

typographical
error?

Parabolic Point: single
line in tangent plane
along which d =o

source: Mortenson, p. 412-413



Chebyshev-net of equidistant points generated
on surface. 3d Mapping on Surface

To construct a tridimensional net, two generic curves
g1 and g2 are defined on a surface S and their
intersection (point o) is found.

0

g1



ebyshev-net of equidistant points generated
on surface. 3d Mapping on Surface

A sphere with radius (L) is drawn and intersected with
curves g1 and g2 to define pointa and point2.

@ B
h




"hebyshev-net of equidistant points generated
~on surface. 3d Mapping on Surface

Tridimensional
Geometric
Construction
uses a set

of spheres to
find equidistant
points
generated

on surface.



eByshev-net of equidistant points generated
- onsurface. 3d Mapping on Surface

A sphere (sphe
with radius (L)
is drawn and
intersected wi
curves ga and
to define poin
ersecting
and 2)

Point 3 is foun
two spheres (
with the surface.



Chebyshev-net of equidistant points generated
on surface. 3d Mapping on Surface

Point 3 is found by intersecting two spheres (2 and 2)
with radius (L) with the surface, generating curves
which are intersected to define point 3.



Chebyshev-net of eqU|d|stant pomts
3d Mapplng on Surface 5%

It is important to point out that

an equidistant point grid can be

flatten in a reqular square grid

as displayed below. This characteristic is
crucial to form freeform structures (gridshells)
starting from planar and deformable eIements
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