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 A typical solid model is defined by solids, surfaces, 
curves, and points. 

• Solids are bounded by surfaces. They represent solid 
objects. Analytic shape 

• Surfaces are bounded by lines. Surfaces of solid 
objects, or planar or shell objects.  

 Quadric surfaces, sphere, ellipsoid, torus 
 

• Curves are bounded by points.  Edges of objects. 
Lines, polylines, curves 

• Points are locations in 3-D space. Vertices of objects.  

Geometric Modeling solids 

surfaces 
lines, curves, 

points 
triangles 

polygons 



 
 
 
 
 
 
 
 
 
       Wire-frame models       Surface model     Solid model 

Geometric  
Modeling 



Surface  
Modeling 

Models 2D surfaces in 3D space 
All points on surface are defined 
   useful for machining, visualization, etc.   
Surfaces have no thickness,  
objects have no volume or solid properties. 
Surfaces may be open and closed. 
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Explicit : Value of dependent variable in terms of 
independent variable(s), e.g.   z = f (x,y) 
Implicit :  e.g.  f (x,y,z) = 0 
Parametric : Express value of each spatial variable in 
terms of independent variables (the parameters) 
e.g.  for parameters u and w in 3D: 
x = x (u,w) 
y = y (u,w) 
z = z (u,w) 

Surfaces 



Extension of curve modeling 
Parametric representation: 
  p = p(u,v) 
 
which is equivalent to 
  x = x(u,v) 
  y = y(u,v) 
  z = z(u,v) 

 

Surface Modeling 



NURBS to mesh conversion is compatible with 
untrimmed surfaces, since untrimmed surfaces 
contain a rectangular isogrid that can be converted 
into a set of quad meshes. Unlike untrimmed surfaces, 
trimmed surfaces are not compatible with the NURBS 
to mesh conversion method. Trimmed surfaces 
converted using the Mesh Surface component will 
return a polygon mesh that approximates the original 
boundary geometry.  

Trimmed surfaces return a polygon mesh  
with the original boundary geometry 



A possible strategy to convert a trimmed surface into 
a mesh is summarized as follows: 
1. Adding an arbitrary point O; 
2. Dividing the surface's boundary into N parts getting 

N points P; 
3. Creating a set of lines from O to the subdivision 

points P.; 
4. Dividing the lines into  
 equal parts and connecting  
 the resulting points  
 with a set of polylines; 
 

Trimmed surfaces return a polygon mesh  
with the original boundary geometry 



 
5. Splitting the initial surface using the network of lines 

obtained in step 3 and step 4, to generate a set of 
trimmed sub-surfaces; 

6 . Extract the sub-surfaces' vertices and create the 
mesh relying on topology method. 

Trimmed surfaces return a polygon mesh  
with the original boundary geometry  
but allows for thin triangles 



In three-dimensional space,  

a surface would have the following parametric 
description:   x = x(u,v)   y = y(u,v)    z = z(u,v) 

where a point is defined by p(u,v) , and u, v ∈ [0, 1]. 

Some possible approaches to surface fitting to a set of 
data points:  Least-squares fit of a single surface , 
Bézier and Spline fit of a number of patched surfaces. 

Surface Modeling 
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Value of dependent variable  
in terms of independent  
variables,  e.g.  z = f (x,y) 
Axis-dependent 
Can be hard to represent  
a transformed and bounded surface. 
Sample surface-fitting procedure: determine aij 
coefficients from data points: 

Surface, Explicit form 
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General form:  f (x,y,z) = 0 , f (x,y,z) is polynomial in x, y, z 
such that: Axis-dependent 
Examples: 
Plane: Equation is linear in all its variables.  
Quadric: Second-degree equation. 
Can represent using vectors, scalars and a type identifier. 

Right circular cylinder 
• One vector gives a point on its axis 
• One vector defines axis direction 
• Scalar gives radius 

Type testing requires robust floating-point computations. 

Surface, Implicit form 
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Quadric Surfaces, Implicit form 
Implicit form: 

 
 

Alternative to rational surfaces if only quadric surfaces are 
being represented.  
Particularly useful for molecular modeling. 

 
Reasons to use them: 
• easy to compute normal 
• easy to test point inclusion 
• easy to compute z given x and y 
• easy to compute intersections of one surface with 

another 
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Type testing:       f (x,y,z) = 0 
 
 
 
 
 
 
 
 
 
r1 = rank of Q (maximum number of  
linearly independent rows (or columns)) 

Implicit Form: Quadric Surfaces 
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. 

Surface intersection, Algebric calculation 



. 

Sphere and line intersection 



. 

Surface intersection 



Intersection  
Calculations 
 
ref. book: 
3d CAD  
Principles and  
Applications, 
Toriya, 1993. 

Intersections 



Rotate conic curve about its axis. Center or vertex at 
origin. Axes of symmetry coincide with coordinate axes.  

Quadric Surfaces of Revolution 

0   where0222 ==++++ LMNMzLzyx



 
 
• Triangular meshes, polygonal meshes 
• Quadric surfaces, sphere, ellipsoid, torus 
• Superquadric surfaces, superellipse, superellipsoid 
• Blobby models, tetrahedron, pyramid, hexahedron 

 

 
3D Analytic  
Surfaces 
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Express value of each spatial variable in terms of 
independent variables (the parameters) 
e.g.  for parameters u, w in 3D: 
x = x (u,w) 
y = y (u,w) 
z = z (u,w) 
For a rectangular surface patch,  
typically  
Patches can be joined to form  
composite parametric surfaces. 

Surface, Parametric Form 
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Sample patch: rectangular segment of x, y plane 
x = (c - a)u + a 
y = (d - b)w + b 
z = 0 
 
Here: 
Curves of constant w are  
horizontal lines. 
Curves of constant u are  
vertical lines. 
 

Surface, Parametric Form 



Parametric sphere and ellipsoid  of radius r,  
centered on (x0,y0,z0): 

Surface, Parametric Form 
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u analogous to 
latitude 

w analogous to 
longitude 

Note similarity to sphere formula. 
Here lengths of ellipsoid’s axes 
replace sphere’s radius. 



Parametric surface of revolution:   
 
 
 
 
 
 
partial view 
 

Surface, Parametric Form 
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revolving x(u), z(u) 
about z axis 



. Bicubic surface patch’s components 
in parameter space 

Bicubic surface patch 
in model space 

Bicubic surface patch  
in Parameter Space 

point, line, and planar patch in parameter space 

point, line, and planar patch in model space 



Curves on Surfaces 
Isoparametric curve: 
One parameter varies while the other is constant. 
 
Parametric curve net on a patch 
 
Two 1-parameter families of curves such that through 
each point there passes just one of each family. 
 
2 tangents of the curves at each point must be distinct. 
Orthogonal tangents produce orthogonal net. 
 

source: Mortenson 



 
Conjugate net 

Curves on Parametric Surfaces  



. 

Surface with Irregular Boundary 
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Trimmed Patch 

Point Classification: 
count number of times 
a line segment to 
interior point q crosses 
each boundary curve. 



Surfaces from Curves  
Edge of surface

to be created

Curves cross over outside
surface edge, therefore it

can not be created

No cross overs outside
surface edge, therefore
surface can be created



4 Typical Types of Parametric Surface Patches 

• Interpolating 
– Defined by rectangular array of control points. 
– Surface patch passes through all control points. 

• Hermite (bicubic) 
– Defined by 4 corner points, tangent vectors at 4 boundary curves,  
 and “twist vectors” at corner points. 
– Interpolates all its corner points. 
– Not invariant under affine transformations. 

• Bezier 
– Defined by rectangular array of control points. 
– Interpolates all its corner points. 
– Starting and ending tangents of each boundary curve  
 are determined by control polyhedron at corner points. 
– Invariant under affine transformations. 
– Surface patch lies within convex hull of control polygon. 
– Not necessarily variation-diminishing. 
– Degrees of basis functions related to number of control points. 

• B-Spline 
– Defined by rectangular array of control points. 
– Not guaranteed to interpolate control points. 
– Invariant under affine transformations. 
– Surface patch lies within convex hull of control polygon. 
– Not necessarily variation-diminishing. 
– Degrees of basis functions independent of number of control points. 
– More local control than Bezier. 

Control points influence surface shape. 

source: Mortenson, Angel and more… 

Bicubic Bezier Patch 

Bicubic Interpolating Patch 

Trimmed NURBS Surface: 
courtesy of Silicon Graphics 



Bezier Surface Patch 
Geometric form: 
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Bernstein polynomials. 

Degree in u parameter = m. 

Degree in w parameter = n. 

Degree elevation to (m+1,n+1) is reduced to 
series of univariate degree elevation problems. 

Convex combination, so Bezier surface points 
all lie within convex hull of control polyhedron. 
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Rational form is invariant under perspective transformation: 
where hij are projective space coordinates (weights) 
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Quadratic case (left), Cubic case (right) 



Bicubic Bezier Patch  
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source: 
Mortenson Bicubic Bezier Patch: 

courtesy of Shu Ye 



Composite Bezier Surface 
• Bezier surface patches can 

provide G1 continuity at patch 
boundary curves. 

• For common boundary curve 
defined by control points p14 , 
p24 , p34 , p44 , need collinearity 
of: 
 
 

• Two adjacent patches are Cr 
across their common boundary 
if all rows of control net vertices 
are interpretable as polygons of 
Cr piecewise Bezier curves.    
 source: Mortenson, Farin 

]4:1[   }, ,,{ 5,4,3, ∈iiii ppp



B-Spline Surface Patch 
Geometric form (non-uniform, non-
rational case), where K  controls degree 
(K -1) of basis functions for parameter u 
and L  controls degree (L -1) of basis 
functions for parameter w: 

 
 
 
 
 

Cubic B-splines can provide C2 continuity 
at surface patch boundary curves. 

Convex combination, so B-spline surface points 
all lie within convex hull of control polyhedron. 

Rational form (NURBS) is invariant under 
perspective transformation, where hij are 
projective space coordinates (weights). 

source: Mortenson 
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2 sets of knot vectors are required: 1 for each parameter. 

Features: Local control and variation of degree 
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Partially Closed (Periodic)  
B-Spline Surface 

source: Mortenson 



Untrimmed NURBS Surface Patch 

• Jason’s NURBS surface 
– Checkerboard texture map 
– 8 control points in each dimension 
– 12 uniformly spaced knots for each parameter 
– u stride = 8*3, v stride = 3 

2 different views of Jason’s patch 



Untrimmed Surface Patch examples 

Consists of: 
- NURBS surfaces 

- Checkerboard 
- Gear (body: front and 
back faces) 

- Surfaces of revolution 
using cubic Bezier curves 

- Pawn 
- Extrusion 

-Gear’s teeth and gaps 



Trimmed NURBS Surface Patch 
Start with a NURBS Patch, as in Red Book: 
 
GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 10, 1.0, 1.0}; 
 
Control points: GFfloat  ctlpoints[4][4][3] (4 in each parametric direction) yield symmetric hill 
ranging from -3.0 to 3.0. 
 
gluNurbsSurface(the Nurb, 8, knots, 8, knots, 4*3, 3, &ctlpoints[0][0][0], 4, 4, 
GL_MAP2_VERTEX_3); 
 
Add trimming curves (interior on left) before gluEndSurface(theNurb), according to diagram on 
right: 
 
   gluBeginTrim(theNurb); 
        gluPwlCurve(theNurb, 5, &edgePt[0][0], 2, GLU_MAP1_TRIM_2); 
   gluEndTrim(theNurb); 
 
   gluBeginTrim(theNurb); 
        gluNurbsCurve(theNurb, 8, curveKnots, 2, &curvePt[0][0], 4, GLUI_MAP1_TRIM_2); 
        gluPwlCurve(theNurb, 3, &pwlPt[0][0], 2, GLU_MAP1_TRIM_2); 
   gluEndTrim(theNurb); 
 
 
 

checkerboard NURBS courtesy of Jason 

Note: From Jason’s experience, more 
than 4 control points in each 
dimension may be problematic for 
trimming curves. 

Trimmed NURBS Surface: 
courtesy of Silicon Graphics 



Parametric bicubic surfaces 
Major kinds of surfaces:  Hermit, Bezier, B-spline 
 
Displaying bicubic surfaces: 
• brute-force iterative evaluation is very expensive 

(the surface is evaluated 20,000 times if step in 
parameters is 0.01) 

• forward-difference methods are better, but still 
expensive 

• fastest is adaptive subdivision, but it might create 
cracks 



Polygon meshes 
• well suited for representing flat-faced objects 
• seldom satisfactory for curved-faced objects 
• space inefficient 
• simpler algorithms 
• hardware support 



Top row: low-resolution volumetric representations of the horse                            
(104 x 70 x 119, 195 x 120 x 228) and the head (69 x 69 x 76, 118 x 120 x 135).  
Bottom row: respective implicit surfaces generated by algorithm. 

Surfaces from point cloud 



 
 
 
 
 
(left) Scan conversion errors near the teapot spout. 
(middle) Placing a (red) superellipsoid around the 
errors.  
(right) The errors are smoothed away in 15 seconds. 
The surface is constrained to only move outwards. 

Localized LS Smoothing/Sharpening 



 
 
 
 
 
 
 
(left) A cross-section of the teapot model near the spout. 
(middle) No self-intersection occurs, by construction, when 
performing a level set (LS) offset, i.e. dilation, of the 
surface.  
(right) Self-intersections may occur when offsetting a mesh 
model. 

Localized LS Smoothing/Sharpening 



 
 
 
 
 
Left: Laser scan reconstruction with unwanted, pointed 
artifacts in the eye.  
Middle: Defining the region to be smoothed with a (red) 
superellipsoid. 
Right: Smoothing the surface within the superellipsoid. 
The surface is constrained to only move inwards. 

Regionally constrained smoothing 



 
 
 
 
 
 
 
 
Left: Three types of single point attractions/repulsions 
using different ROI primitives and  values.  
Right: Utah teapot embossed with 7862 points sampling 
the ”SIGGRAPH 2002” logo. 

Point-Set Attraction and Embossing 



Piecewise cubic curves and bicubic surfaces 

• permit multiple values for a single x or y 
• represent infinite slopes 
• easier to manipulate interactively 
• can either interpolate or approximate 
• space efficient 
• more complex algorithms 
• little hardware support this 



• General surface 
 
• Composed of connected  
 surface patches 

 

Sculptured Surface 



Surface models define only  
the geometry, no topology.  
Shading is possible.                               Analytical Surface 
Free-form, Curved, Sculptured Surfaces.  
 

 
 

Parameterization 

Surface Modeling 



These surfaces are  
topologically-equivalent  
(homeomorphic) to a square. 
 
These surfaces are  
topologically-equivalent  
(homeomorphic) to a sphere. 

Homeomorphic surfaces 



Homeomorphic surfaces 
These surfaces are topologically-equivalent 
(homeomorphic) to a torus. 
 
 
 
 
Homeomorphic to a double torus.  
 
 

??? 
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Surface fitting methods  

Interpolation and Approximation 



Only a limited number of control points lie on the Bézier surface, 
(e.g., (u,w)=[(0,0), (0,1), (1,0) and (1,1)]). 

Surface modeling, approximation 
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Control points 
 
Bezier, B−spline and  
NURBS surface is a tensor product surface  
and is the product of two curves. 
 
Surfaces are defined by a grid and  
have two sets of parameters,  
two sets of knots and so on. 
 

Surface Modeling 



Curve-based design and  
Surface deformation 
 
 
Freeform Phantom Arm 
Designing by sculpturing 
   

Surface Modeling 



Surface Modeling 
Surface Reconstruction by Recursive Subdivision 



Surface subdivision 
Subdivision models 
The integrated way to look at the shape:  
Object can be considered as a set of faces,  
each face can be decomposed into a set of edges,  
each edge can be decomposed into vertices 

Surface Modeling 



Finite Element Simulation 
Subdivision to finite mesh 

 

Surface Modeling 



Defining a surface with hole 

Surface Modeling 



 
 
 
 
 
 
 

 
Isoparametric curves can be used  

for tool path generation.  

Surface Patch 
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Isoparametric 
curves 



• Surface is defined by linearly interpolating between 
the boundary curves 

• Simple, but doesn’t allow adjacent patches to be 
joined smoothly 
 

Linearly Blended Coons Patch 

Q(u) 

R(v) 

S(u) 

T(v) 
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P1(u,v) P2(u,v) P3(u,v) P(u,v) 

Linearly Blended Coons Patch 



Extension of cubic curve 
16 unknown coefficients – 16 boundary conditions 
Tangents and “twists” at corners of patch can be used 
Like Lagrange and Hermite curves, difficult to work with 

 

Bicubic Patch 

∑∑
= =

=
3

0

3

0
,),(

i j

ji
ji vuvu kP



Bezier Surfaces 
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• Bezier curves can be extended to surfaces 
• Same problems as for Bezier curves: 

– no local modification possible 
– smooth transition between adjacent  
 patches difficult to achieve 
 
 
 

Isoparametric curves  
used for tool path generation  
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• As with curves, B-spline surfaces are a 
generalization of Bezier surfaces 

• The surface approximates a control polygon 
• Open and closed surfaces can be represented 

B-Spline Surfaces 
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B-Spline Surfaces 



• Tabulated cylinder (extrusion) 
• Ruled surface (lofting or spined) 
• Surface of revolution 
• Swept surface 
• Sculptured surface 

Surfaces from Curves 



• Project curve along a vector 
• In SolidWorks, created by extrusion 

 

Tabulated Cylinder 

Generating 
curve  C 

P(u,v) = C(u)+ V(v) 

v 

u 

V(v) 

C(u) 

Vector V 



• Linear interpolation between two edge curves 
• Created by lofting through cross sections 

 

Ruled Surface 

u 

v 

C1(u) 

C2(u) 

P(u,v) = (1-v) C1(u)+ v C2(u) 

Edge curve 2 

Edge curve 1 Linear 
interpolation 



Revolve curve  
about an axis 

 

Surface of Revolution 

Axis Curve 

u 

v 

C1(u) 

P(u,v) = C1(u)+  
  v (C1(u) – C2(u)) 

C2(u) 

u 



Defining curve swept along  
an arbitrary spine curve 

 

Swept Surface 

u 

v 

C1(u) 
Defining 
curve 

C2(v) 

P(u,v) = C1(u)+ C2(v) 

Spine 



Defining curve swept along                               Surface Pipe  
an arbitrary spine curve 
 

Lofted Surface 

Defining 
curves 

Spine 



. 
 

Spined Surface 



Surface Manipulations 
• Offset 
• Blend 
• Display 
• Segmentation (division) 
• Trimming 
• Intersection 
• Projection 
• Transformation 



Often necessary to create a blend  
between intersecting surfaces. 
 
Most common application is a fillet 

 

Fillets and Blends 

Fillet required here 



  . 

Face Blend      Fillet 



Spined fillet with drive curve  
 

Fillet between two selected surfaces 



Surface functions 
• Curve in surface  
 intersection 
 
• Offset Surface  

 
• Planar development  

of surfaces 



Corner fillet 

Fillet between three surfaces  



Triangular  Surface  
Bezier patch 

Fillet between three curves  
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Subdividing a Bézier Patch 



. 

Subdivided  Patch 



 
 
 
 

• Unfolding 

Sheet metal bending 



 
 
 
 
 
Molding and silhouettes  

Offset curves on Surface 
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Curved Surfaces 



• Bezier surfaces are an extension to Bezier curves.  
• Instead of the curve defined by a single parameter 

variable t, we use two variables, s and t for surface.  
• By definition, we choose to have s and t range from  
 0 to 1 and we say that an s-tangent crossed with a    

t-tangent will represent the normal n for the front of 
the surface.  

Bezier Surfaces 

1,1 

s 

t 

0,0 

1,0 

0,1 

n 

s 

t 



The Bezier parametric surface  
is a surface that can be parameterized  
by two variables, s and t (u and v).  
 
Parametric surfaces have a rectangular topology.  
In computer graphics, parametric surfaces are called 
patches, curved surfaces, or just surfaces.  
 
There are also some non-parametric surfaces used in 
computer graphics, but we won’t consider those now.  

Curved Surfaces 



Consider a bicubic Bezier surface (bicubic means that it 
is a cubic function in both the s and t parameters).  
A cubic curve has 4 control points, and a bicubic surface 
has a grid of 4x4 control points, p0 through p15 .  

Control Mesh 

p0 p1 

p2 

p3 

p4 p5 

p6 

p7 

p8 p9 

p10 
p11 

p12 p13 

p14 p15 

s 

t 



The bicubic surface can be thought                                     
of as 4 curves along the s parameter                                      
(or alternately as 4 curves along the t parameter).  
To compute the location of the surface for some 
(s,t) pair, we can first solve each of the 4 s-curves   
for the specified value of s .  
Those 4 points now make up a new curve which    
we evaluate at t . Alternately, we first may solve  
the 4 t-curves by evaluating at s .  
This gives a simple way to implement smooth 
surfaces with little more than what is needed to 
implement curves.  

Surface Evaluation 
s 

t 
(0.2, 0.6) 



• We saw the matrix form for a 3D Bezier curve is 

Matrix Form 
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• To simplify notation for surfaces, we will define a matrix 
equation for each of the x, y, and z components, instead of 
combining them into a single equation as for curves 

• For example, to evaluate the x component of a Bezier curve, 
we can use: 

Matrix Form 
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To evaluate the x component of 4 curves simultaneously, 
we can combine 4 curves into a 4x4 matrix.  
To evaluate a surface, we evaluate the 4 curves, and use 
them to make a new curve which is then evaluated.  
 
This can be written in a compact matrix form: 

Matrix Form 
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Matrix Form 
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Cx stores the coefficients of the bicubic equation for x 
Gx stores the geometry (x components of the control 
points) 
BBez is the basis matrix (Bezier basis) 
s and t are the vectors formed from the exponents of 
s and t 

 
• The matrix form is a nice and compact notation and 

leads to an efficient method of computation 
• It can also take advantage of 4x4 matrix support 

which is built into modern graphics hardware 

Matrix Form 
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• To compute the s and t tangent vectors at some (s,t) 
location, we can use: 

Tangents 
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• To compute the normal of the surface at some 
location (s,t), we compute the two tangents at that 
location and then take their cross product 

• Usually, it is normalized as well 

Normals 
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• Like Bezier curves, Bezier surfaces retain the convex hull 
property, so that any point on the actual surface will fall 
within the convex hull of the control points 
 

• With Bezier curves, the curve will interpolate (pass through) 
the first and last control points, but will only approximate 
the other control points 
 

• With Bezier surfaces, the 4 corners will interpolate, and the 
other 12 points in the control mesh are only approximated 
 

• The 4 boundaries of the Bezier surface are just Bezier curves 
defined by the points on the edges of the surface 
 

• By matching these points, two Bezier surfaces can be 
connected precisely 

Bezier Surface Properties s 
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• Tessellation is the process of taking a complex surface 
(like a bicubic patch) and approximating it with a set of 
simpler surfaces (like triangles) 

• In computer graphics, there are a lot of different types of 
complex surfaces one might want to tessellate, such as: 
– Parametric surfaces (such as Bezier surfaces) 
– Displacement mapped surfaces 
– Subdivision surfaces 
– Fractals 
– Procedural models 
– Implicit surfaces 

• We will look at the first two today 

Tessellation 



• The most straightforward way to tessellate                   
a parametric surface is uniform tessellation 

• With this method, we simply choose some 
resolution in s and t and uniformly divide up the 
surface like a grid 

• This method is very efficient to compute, as the cost 
of evaluating the surface reduces to approximately 
the same cost as evaluating a curve 

• However, as the generated mesh is uniform, it may 
have more triangles than it needs in flatter areas and 
fewer than it needs in highly curved areas 

Uniform Tessellation 



• Very often, the goal of a tessellation is to provide 
the fewest triangles necessary to accurately 
represent the original surface 

• For a curved surface, this means that we want more 
triangles in areas where the curvature is high, and 
fewer triangles in areas where the curvature is low 

• We may also want more triangles in areas that are 
closer to the camera, and fewer farther away 

• Adaptive tessellation schemes are designed to 
address these requirements 

Adaptive Tessellation 



• Some practical renderers use a mixed tessellation scheme 
• First, the original surface patch is adaptively subdivided into 

several subpatches, each approximately the same size (say 
around 10 pixels on a side) 

• Then, each of the subpatches (which is just a rectangular s,t 
range within the larger 0,1 rectangle) is uniformly tessellated 
to some size (say 10 x 10) 

• The result is that the curved surface is tessellated into 
triangles roughly the size of a single pixel 

• The bulk of the cost of the algorithm is in the uniform 
tessellation, which can be implemented in a very efficient 
way 

Mixed Tessellation 



• To add additional geometric detail to a tessellated surface, we 
can use displacement mapping 

• With this technique, a displacement map is stored, which is 
much like a texture map that stores a height value per texel 
instead of a color 

• As with texture mapping, we can assign a texture coordinate to 
each corner of the patch that allows us to position the 
displacement map onto the surface 

• This coordinate gets interpolated when we evaluate the position 
and normal of the patch for some (s,t) value 

• We can displace the position by the height value. The 
displacement is usually done along the computed patch normal 

• Once we’ve displaced our tessellated triangle mesh, we will need 
to recompute accurate normals, as they will change based on 
the displacements 

• To avoid geometry aliasing, we should really perform some sort 
of filtering on the height value (such as mipmapping) 

Displacement Mapping 



• The serial scan conversion technique we looked at earlier in 
the quarter requires expensive set-up computations in order 
to make the per-pixel cost very low, thus making it efficient 
for large triangles 

• Some surface renderers generate triangles smaller than a 
single pixel, or the size of a few subpixels in an antialiased 
rendering 

• For triangles this small, it is usually better to use different 
approaches in the scan conversion process 

• Also, as these micropolygons are so usually generated from 
uniform tessellations, other optimizations can be made to 
account for all of the shared vertices and edges between 
them 

Scan Conversion 



• Curves 
– Hermite curves 
– Catmull-Rom curves 
– B-Splines 
– NURBS 
 

• Surfaces 
– B-Spline / NURBS 
– Trim curves 
– Subdivision surfaces 
– Implicit surfaces 

Other Curve Types 
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CAD/CAE/CAM 

Part 5: Representation and 
Manipulation of Surfaces 
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What Is It? 
The ways and means to define and manipulate   
3D surfaces, used by geometric modeling systems 
to store surfaces such as faces in a B-Rep. 
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Types of Surface Equations 
• Implicit  
 Describe a surface by equations relating to the X, Y, Z coordinates. 
 Advantages: 
  Compact; Easy to check if a point belongs to the surface. 
 Disadvantages: 
  •  Difficult for surface evaluation.  
  •  Difficult for partial surface definition (1/4 of a sphere). 
 
• Parametric 
 Represent the X, Y, Z coords as a function of two parameter. 
 Advantages: 
  •  Easy for surface evaluation.  
  •  Convenient for partial surface definition. 
  •  Many others such as easy for manipulation.  
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Parametric Surfaces 
 S(u,v) = [x(u,v), y(u,v), z(u,v)]T     
 
with umin< u <umax and vmin< v < vmax 

 
In most surfaces, the intervals for u and v are [0,1].  
Surfaces can be modeled by a group of surface patches.  
A surface patch has the following boundary conditions:  
 
• 4 corner vectors – S(0,0), S(0,1), S(1,0), S(1,1) 
• 8 tangent vectors – 2 at each corner, Su(u,v), Sv(u,v) 
• 4 twist vectors at the corners - Suv(u,v) 
• 4 boundary curves – u = 0, u = 1, v = 0, v = 1.  
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Parametric Surfaces 
Basic Terminologies of Parametric Surface S(u,v) 
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Classification of Surfaces 
• Bi-linear Patch 
• Ruled Patch 
• Coons Patch 
• Bicubic Patch 
• Hermite Patch 
• Coons Patch with tangents 
• Bezier Patch 
• B-Spline Patch 
• Non-Uniform Rational B-Splines (NURBS) 
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Bi-linear Patch 
 The simplest surface defined by 4 points in space 
 
• Input 
Four points P0,0 , P0,1 , P1,0 , P1,1 
 
• Output 
A surface S(u,v) with four corners  
S(0,0), S(0,1), S(1,0), and S(1,1) at the four given points 
 
• Definition 
• Each of the X, Y, and Z components is a bi-linear 

function of u and v 
 

• Example 
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Ruled Surface 
 The simplest surface defined by two curves 
 
•Input 
Two curves Q0(u) and Q1(u)  (0≤u≤1) 
 
•Output 
A surface S(u,v) with its two boundary curves         
S(u,0) and S(u,1)  
identical to Q0(u) and Q1(u) respectively. 
 
• Definition 
 
• Example 
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Coons Patch 
 The simplest surface defined by four curves Q0(u), Q1(u), P0(v), P1(v) 
  
• Input and Output 
 
• Definition 
 Step 1.  Define a ruled surface S1(u,v) on two opposite curves 
 Step 2.  Define a ruled surface S2(u,v) on the other two opposite 

curves 
 Step 3.  Add two together and find the compensating patch 
 
 
 
• Generalization 
• Examples 
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Bi-cubic Patch 
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Hermite Patch 
Similar to Hermite curve, non-intuitive algebraic coefficients 
aij need to be replaced by geometric coefficients like corner 
points and tangents. There are 16 unknowns aij, so we need 16 
boundary vectors in order to find them. 
• 12 intuitive vectors 
• 4 more boundary vectors (twist vectors) 
 (usually set to zero vectors if difficult to decide) 
• Compute the Hermite form 
 1. Compute the derivatives of the bicubic surface 
 2. Plug in the 16 boundary vectors and solve the linear 

equations for aij 
 3. Rearrange into the Hermite Form 
• Major properties 

– Boundary curves are Hermite 
– Iso-parametric curves are Hermite 

• Examples 



118 

Drawbacks of Hermite Patch 
It is not easy and not intuitive to predict surface 
shape according to changes in magnitude of the 
tangents (partial derivatives) at the four corners.  
 
In addition, the four cross-derivatives  
Suv(0, 0), Suv(0, 1) and Suv(1, 0)  
most of time are not known. 
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Bezier Surface 
• Definition 
  
  
 Pij:  the control points that form a (n+1) by (m+1) 

control mesh 
    n:  the degree of the surface in u direction 
   m:  the degree of the surface in v direction 
• Examples 
  a 5x6 patch; a closed patch 
• Properties 
• How to evaluate 
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Drawbacks of Bezier Surface  
• High degree 
 The degree is determined by the number of control points which 

tend to be large for complicated surfaces. This causes oscillation as 
well as increases the computation burden.  

 
• Non-local modification control  
 When modifying a control point, the designer wants to see the shape 

change locally around the moved control point. In Bezier patch case, 
moving a control point affects the shape of the entire surface, and 
thus the portions on the surface not intended to change.  
 

• Intractable linear equations  
 If we are interested in interpolation rather than just approximating a 

shape, we will have to compute control points from points on the 
surface. This leads to systems of linear equations, and solving such 
systems can be impractical when the degree of the surface is large. 
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B-Spline Surface  
• Definition 
  
  
  Pij:  the control points that form a (n+1) by (m+1) 

control mesh 
    k:  the order of the basis functions in u direction 
     l:  the order of the basis functions in v direction 
  U = {s0, …, sn+k} is the knots vector in u-direction 
  V = {t0, …, tn+l} is the knots vector in v-direction 
• Examples 
  a 6 by 6 patch, a B-Spline Editor 
• Properties 

–  Local-modification property 
–  Degrees k and l independent of n and m 

http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
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Implicit Surface Representations 
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Parametric Surface Representations 
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Bi-Linear Surface 
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Example of a Bi-linear Surface 
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Bi-linear Function 
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Ruled Surface 

. 

S(u,v) = (1-v)•Q0(u) + v•Q1(u) 
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Example of a Ruled Surface (Helicoid) 

. 
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Example of a Ruled Surface (shoe design) 
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Example of a Ruled Surface 
(geometric reconstruction) 

Point cloud Section curves 

Ruled surfaces Shaded image 
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Coons Patch 
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Defining a Coons Patch: Step 1 and Step 2 
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Defining a Coons Patch: Step 3 
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Generalized Coons Patch 
The terms (1-u) and u (similarly for v and (1-v)) in the Coons patch are 
linear blending functions, as a direct result of the bi-linear construction 
in Step 1 and Step 2. If we replace them by a pair {α0(u), 1-α0(u)} 
(similarly for v), where a0(u) can be any continuous function, the 
resulting surface still meets the boundary condition:  
S(0,v) = P0(v), S(1,v) = P1(v), S(u,0) = Q0(u), and S(u,1) = Q1(u). 
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Example of Coons Patch 
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. 

First 12 Boundary Conditions in a Patch  
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Four more boundary conditions in a patch  

. 
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Derivatives of Bi-cubic Patch  

. 
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Definition of Hermite Patch 
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Example of Hermite Patch 
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Boundary Curves of a Hermite 
Patch are Hermite Curves 
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Iso-parametric Curves of a Hermite 
Patch are Hermite Curves 
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Control Points of a Bezier Surface 
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A 5x6 Bezier Surface 
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A Closed Bezier Surface 
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Properties of Bezier Surface 
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Evaluation of Bezier Surface 
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Pictorial Illustration of Evaluating 
a Cubic Bezier Surface 
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Control Mesh of a B-Spline Surface  
. 
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A 6x6 B-Spline Surface  

. 
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Properties of B-Spline Surface  

. 

(link) 

http://madmax.me.berkeley.edu/~fuchung/Bsurface.html
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. 

Local-modification Control of 
B-Spline Surface  
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Subdivision Surface 

Catmull-Clark 
surface (1978) 
 
(a) Initial control mesh 
(b) 1st level subdivision 
(c) 2nd level subdivision 
 
(d) 3rd level subdivision 
(e) 4th level subdivision 
(f) Limit surface 
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The Basic Idea of Subdivision 
• Chaikin's algorithm (1974)  

– equivalent to a uniform quadratic B-spline curve 
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Subdivision rule 
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Catmull-Clark Surface Subdivision 

(a) New face vertices (b) New edge vertices (c) Updated old vertices 

4
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Newly inserted face vertices 

Newly inserted edge vertices 

Updated old vertices 
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Various Split 
Schemes 

 

2

4-8 

Mid-edge 

 

3

Such as Loop 
& Butterfly 

Such as 
Catmull-Clark 

Such as 
Doo-Sabin 

1-4 1-2 

1-3 
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Catmull-Clark Surfaces 

Extension of bi-cubic 
B-spline surfaces 
(Catmull and Clark 
1978) 
 
One-to-four splitting: 
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Doo-Sabin Surfaces 

Extension of bi-
quadratic B-spline 
surfaces (Doo and 
Sabin 1978) 
 
Corner cutting: 
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Loop Subdivision 
Loop subdivision 
(Loop 1987) 
extension of 3D 
box-splines 
 
One-to-four 
splitting: 
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A Few More Examples 

   

(a) Catmull-Clark  (b) Doo-Sabin  
(c) Loop  
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Interpolatory Subdivision Surface 
 

- All or specified points on the initial mesh are kept in the final limit surface-  



A Few Differential Geometry Topics 
Related to Continuity 



Local Curve Topics 
• Principal Vectors 

– Tangent 
– Normal 
– Binormal 

• Osculating Plane and Circle 
• Frenet Frame 
• Curvature 
• Torsion 
• Revisiting the Definition of Geometric Continuity 

 

source: Ch 12 Mortenson 



Intrinsic Definition 
• No reliance on external frame of reference 
• Requires 2 equations as functions of arc length* s: 

1) Curvature:  
 

2) Torsion:  
 

• For plane curves, alternatively: 

)(1 sf=
ρ

source: Mortenson 

)(sg=τ

*length measured along the curve 

Torsion (in 3D) measures how much 
curve deviates from a plane curve. 

Treated in more detail in Chapter 12 of Mortenson and Chapter 10 of Farin. 

ds
dθ

ρ
=

1



Calculating Arc Length 

Approximation: For parametric interval u1 to u2 , 
subdivide curve segment into n equal pieces. 

∑
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is more accurate. 



Tangent 
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pt =unit tangent vector: 

source: Mortenson, p. 388 



Normal Plane 

Plane through pi perpendicular to ti 
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source: Mortenson, p. 388-389 



Moving slightly 
along curve in 
neighborhood of 
pi causes tangent 
vector to move  
in direction 
specified by:  

Use dot  
product to find 
projection  

 of         onto         

Binormal 
vector 

 

lies in normal 
plane.         

Principal Normal Vector and Line 

u
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source: Mortenson, p. 389-391 

Principal normal 
vector is on 
intersection of 
normal plane with 
(osculating) plane 
shown in (a). 
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Osculating Plane 
Limiting position of 
plane defined by pi 
and two neighboring 
points pj and ph on 
the curve as these 
neighboring points 
independently 
approach pi .   

Note: pi, pj and ph 
cannot be collinear.     

Tangent 
vector lies in 
osculating 
plane.     
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source: Mortenson, p. 392-393 

Normal vector 
lies in osculating 
plane.     



Frenet Frame 
Rectifying plane at pi 
is the plane through 
pi and perpendicular 
to the principal 
normal ni :  

0)( =•− ii npq
i 

i 

i 

source: Mortenson, p. 393-394 
Note changes to Mortenson’s figure 12.5. 



Radius of curvature is ρi 
and curvature at point pi 
on a curve is:    

Curvature 

3
1
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i
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p

pp ×
==

ρ
κ

source: Mortenson, p. 394-397 [ ] 2/32

22

)/(1
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dxdy
dxyd

+
=

ρ

Curvature of a planar 
curve in x, y plane: Curvature is intrinsic and does not change 

with a change of parameterization. 

Recall that vector             lies 
in the osculating plane. 
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Torsion 
Torsion at pi is limit of ratio of 
angle between binormal at pi  
and binormal at neighboring 
point ph to arc-length of curve 
between ph and pi , as ph 
approaches pi along the curve. 

source: Mortenson, p. 394-397 

[ ] ( )
22

       
uu
i

u
i

uuu
i

uu
i

u
i

uu
i

u
i

uuu
i

uu
i

u
i

i
pp

ppp

pp

ppp

×

×•
=

×
=τ

Torsion is intrinsic and does not change 
with a change of parameterization. 



Reparameterization Relationship 
• Curve has Gr continuity if an arc-length 

reparameterization exists after which it has Cr 
continuity. 

• This is equivalent to these 2 conditions: 
– Cr-2 continuity of curvature 
– Cr-3 continuity of torsion 

source: Farin, Ch 10, p.189 & Ch 11, p. 200 

Local properties torsion and curvature are 
intrinsic and uniquely determine a curve. 



Local Surface Topics 
• Fundamental Forms 
• Tangent Plane 
• Principal Curvature 
• Osculating Paraboloid 
 

 

source: Ch 12 Mortenson 



Local Properties of a Surface  
Fundamental Forms 

• Given parametric surface p(u,w) 
• Form I: 

 
 

• Form II: 
 
 
 

• Useful for calculating arc length of a curve on a 
surface, surface area, curvature, etc. 
 

22 2 GdwFdudwEdudd ++=• pp

Local properties first and second fundamental forms 
are intrinsic and uniquely determine a surface. 

source: Mortenson, p. 404-405 
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Local Properties of a Surface  
Tangent Plane 
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source: Mortenson, p. 406 

uwuu ∂∂= /),(pp

wwuw ∂∂= /),(pp

q p(ui,wi) components of parametric tangent 
vectors pu(ui,wi) and pw(ui,wi) 



Local Properties of a Surface  
Principal Curvature 

Derive curvature of all parametric curves C on parametric 
surface S passing through point p with same tangent line l at p. 

nnkk )( •=n

source: Mortenson, p. 407-410 

in tangent plane 
with parametric 
direction dw/du 

contains l 

normal curvature 
vector kn = projection 
of curvature vector k 
onto n at p  

nk •=nκnormal curvature: 

22

22

)/()/)(/(2)/(
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dtdwGdtdwdtduFdtduE
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n ++
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source: Mortenson, p. 407-410 

typographical 
error? 

Rotating              
a plane around 
the normal 
changes the 
curvature κn. 

curvature 
extrema: 
principal normal 
curvatures 

Local Properties of a Surface  
Principal Curvature (continued)  



Local Properties of a Surface Osculating 
Paraboloid 
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
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source: Mortenson, p. 412 

Second fundamental 
form helps to measure 
distance of surface 
from tangent plane. 

npq •−= )(|| d

As q approaches p: 

Osculating Paraboloid 



Local Properties of a Surface      
Local  Surface Characterization  

0) 2 =− MLNc

0) 2 <− MLNb

0) 2 >− MLNa
Elliptic Point: 
locally convex 

Hyperbolic Point: 
“saddle point” 

0222 ≠++ NML

source: Mortenson, p. 412-413 

typographical 
error? 

0=== NML
Planar Point 
(not shown) 

Parabolic Point: single 
line in tangent plane 
along which d =0 



Chebyshev-net of equidistant points generated 
on surface. 3d Mapping on Surface 

To construct a tridimensional net, two generic curves 
g1 and g2 are defined on a surface S and their 
intersection (point 0) is found. 

 



Chebyshev-net of equidistant points generated 
on surface. 3d Mapping on Surface 

 
A sphere with radius (L) is drawn and intersected with 
curves g1 and g2 to define point 1 and point 2.  

 



Chebyshev-net of equidistant points generated 
on surface. 3d Mapping on Surface 

Tridimensional  
Geometric  
Construction  
uses a set  
of spheres to  
find equidistant  
points  
generated  
on surface.  

 



Chebyshev-net of equidistant points generated 
on surface. 3d Mapping on Surface  

A sphere (sphere 0)  
with radius (L)  
is drawn and  
intersected with  
curves g1 and g2  
to define point 1 and 2.  
 
Point 3 is found by intersecting  
two spheres (sphere 1 and 2)  
with the surface.   

 



 
 
 
 
 
 
 
Point 3 is found by intersecting two spheres (1 and 2) 
with radius (L) with the surface, generating curves 
which are intersected to define point 3. 

Chebyshev-net of equidistant points generated 
on surface. 3d Mapping on Surface 

 



Chebyshev-net of equidistant points  
 3d Mapping on Surface 

 
 
 
 
It is important to point out that  
an equidistant point grid can be  
flatten in a regular square grid  
as displayed below. This characteristic is  
crucial to form freeform structures (gridshells)  
starting from planar and deformable elements. 
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