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Part II
Converter Dynamics and Control

7. AC equivalent circuit modeling
8. Converter transfer functions
9. Controller design
10. Ac and dc equivalent circuit modeling of the 

discontinuous conduction mode
11. Current programmed control
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Chapter 7.  AC Equivalent Circuit Modeling

7.1. Introduction

7.2. The basic ac modeling approach

7.3. Example: A nonideal flyback converter

7.4. State-space averaging

7.5. Circuit averaging and averaged switch modeling

7.6. The canonical circuit model

7.7. Modeling the pulse-width modulator

7.8. Summary of key points
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7.1. Introduction

+
–

+

v(t)

–

vg(t)

Switching converterPower
input

Load

–+

R

compensator

Gc(s)

vref
voltage

reference

v

feedback
connection

pulse-width
modulator

vc

transistor
gate driver

δ(t)

δ(t)

TsdTs t t

vc(t)

Controller

A simple dc-dc regulator system, employing a 
buck converter

Objective: maintain v(t)
equal to an accurate, 
constant value V.

There are 
disturbances:

• in vg(t)

• in R

There are 
uncertainties:

• in element 
values

• in Vg

• in R
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Applications of control in power electronics

Dc-dc converters

Regulate dc output voltage.

Control the duty cycle d(t) such that v(t) accurately follows a reference 
signal vref.

Dc-ac inverters

Regulate an ac output voltage. 

Control the duty cycle d(t) such that v(t) accurately follows a reference 
signal vref (t).

Ac-dc rectifiers

Regulate the dc output voltage.

Regulate the ac input current waveform.

Control the duty cycle d(t) such that ig (t) accurately follows a reference 
signal iref (t), and v(t) accurately follows a reference signal vref.
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Objective of Part II

Develop tools for modeling, analysis, and design of converter control 
systems

Need dynamic models of converters:

How do ac variations in vg(t), R, or d(t) affect the output voltage 
v(t)?

What are the small-signal transfer functions of the converter?

• Extend the steady-state converter models of Chapters 2 and 3, to 
include CCM converter dynamics (Chapter 7)

• Construct converter small-signal transfer functions (Chapter 8)

• Design converter control systems (Chapter 9)

• Model converters operating in DCM (Chapter 10)

• Current-programmed control of converters (Chapter 11)



Fundamentals of Power Electronics Chapter 7: AC equivalent circuit modeling6

Modeling

• Representation of physical behavior by mathematical means

• Model dominant behavior of system, ignore other insignificant 
phenomena

• Simplified model yields physical insight, allowing engineer to design 
system to operate in specified manner

• Approximations neglect small but complicating phenomena

• After basic insight has been gained, model can be refined (if it is 
judged worthwhile to expend the engineering effort to do so), to 
account for some of the previously neglected phenomena
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Neglecting the switching ripple

t

t

gate
drive

actual waveform v(t)
including ripple

averaged waveform <v(t)>Tswith ripple neglected

d(t) = D + Dm cos ωmt

Suppose the duty cycle 
is modulated 
sinusoidally:

where D and Dm are 
constants, | Dm | << D , 
and the modulation 
frequency ωm is much 
smaller than the 
converter switching 
frequency ωs = 2πfs.

The resulting variations in transistor gate 
drive signal and converter output voltage:
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Output voltage spectrum
with sinusoidal modulation of duty cycle

spectrum
of v(t)

ωm ωs ω

{modulation
frequency and its

harmonics {switching
frequency and

sidebands {switching
harmonics

Contains frequency components at:
• Modulation frequency and its 

harmonics

• Switching frequency and its 
harmonics

• Sidebands of switching frequency

With small switching ripple, high-
frequency components (switching 
harmonics and sidebands) are small.

If ripple is neglected, then only low-
frequency components (modulation 
frequency and harmonics) remain.
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Objective of ac converter modeling

• Predict how low-frequency variations in duty cycle induce low-
frequency variations in the converter voltages and currents

• Ignore the switching ripple

• Ignore complicated switching harmonics and sidebands

Approach:

• Remove switching harmonics by averaging all waveforms over one 
switching period
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Averaging to remove switching ripple

L
d iL(t) Ts

dt
= vL(t) Ts

C
d vC(t)

Ts

dt
= iC(t)

Ts

xL(t) Ts
= 1

Ts
x(τ) dτ

t

t + Ts

where

Average over one switching 
period to remove switching 
ripple:

Note that, in steady-state,

vL(t) Ts
= 0

iC(t)
Ts

= 0

by inductor volt-second 
balance and capacitor charge 
balance.
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Nonlinear averaged equations

L
d iL(t) Ts

dt
= vL(t) Ts

C
d vC(t)

Ts

dt
= iC(t)

Ts

The averaged voltages and currents are, in general, nonlinear 
functions of the converter duty cycle, voltages, and currents. Hence, 
the averaged equations

constitute a system of nonlinear differential equations.

Hence, must linearize by constructing a small-signal converter model.
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Small-signal modeling of the BJT

iB
βFiB

βRiB
B

C

E

iB

B

C

E

βFiB

rE

Nonlinear Ebers-Moll model Linearized small-signal model, 
active region
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Buck-boost converter:
nonlinear static control-to-output characteristic

D

V

–Vg

0.5 10
0

actual
nonlinear

characteristic

linearized
function

quiescent
operating
point Example: linearization 

at the quiescent 
operating point

D = 0.5
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Result of averaged small-signal ac modeling

+
– I d(t)vg(t)

+–

L
Vg – V d(t)

+

v(t)

–

RCI d(t)

1 : D D' : 1

Small-signal ac equivalent circuit model

buck-boost example
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7.2.  The basic ac modeling approach

+
–

L
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1 2
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Buck-boost converter example
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Switch in position 1

vL(t) = L
di(t)
dt

= vg(t)

iC(t) = C
dv(t)

dt
= –

v(t)
R

iC(t) = C
dv(t)

dt
≈ –

v(t)
Ts

R

vL(t) = L
di(t)
dt

≈ vg(t) Ts

Inductor voltage and capacitor 
current are:

Small ripple approximation: replace waveforms with their low-frequency 
averaged values:

+
– L C R

+

v(t)

–

i(t)

vg(t)
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Switch in position 2

Inductor voltage and capacitor 
current are:

Small ripple approximation: replace waveforms with their low-frequency 
averaged values:

+
– L C R

+

v(t)

–

i(t)

vg(t)
vL(t) = L

di(t)
dt

= v(t)

iC(t) = C
dv(t)

dt
= – i(t) –

v(t)
R

vL(t) = L
di(t)
dt

≈ v(t)
Ts

iC(t) = C
dv(t)

dt
≈ – i(t)

Ts
–

v(t)
Ts

R
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7.2.1  Averaging the inductor waveforms

Inductor voltage waveform

t

vL(t)

dTs Ts
0

v(t)
Ts

vg(t) Ts

vL(t)
Ts

= d vg(t) Ts
+ d' v(t)

Ts

Low-frequency average is 
found by evaluation of

xL(t) Ts
= 1

Ts
x(τ)dτ

t

t + Ts

Average the inductor voltage 
in this manner:

vL(t) Ts
= 1

Ts
vL(τ)dτ

t

t + Ts

≈ d(t) vg(t) Ts
+ d'(t) v(t)

Ts

Insert into Eq. (7.2):

L
d i(t)

Ts

dt
= d(t) vg(t) Ts

+ d'(t) v(t)
Ts

This equation describes how 
the low-frequency components 
of the inductor waveforms 
evolve in time.
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7.2.2  Discussion of the averaging approximation

t

vL(t)

dTs Ts
0

v(t)
Ts

vg(t) Ts

vL(t)
Ts

= d vg(t) Ts
+ d' v(t)

Ts

vg Ts

L

v Ts

L

t

i(t)

i(0)

i(dTs)

i(Ts)

dTs Ts0

Inductor voltage and current 
waveforms

Use of the average inductor voltage 
allows us to determine the net change 
in inductor current over one switching 
period, while neglecting the switching 
ripple.

In steady-state, the average inductor 
voltage is zero (volt-second balance), 
and hence the inductor current 
waveform is periodic: i(t + Ts) = i(t).
There is no net change in inductor 
current over one switching period.

During transients or ac variations, the 
average inductor voltage is not zero in 
general, and this leads to net variations 
in inductor current.
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Net change in inductor current is correctly 
predicted by the average inductor voltage

L
di(t)
dt

= vL(t)
Inductor equation:

Divide by L and integrate over one switching period:

di
t

t + Ts

= 1
L vL(τ)dτ

t

t + Ts

Left-hand side is the change in inductor current. Right-hand side can 
be related to average inductor voltage by multiplying and dividing by Ts

as follows:
i(t + Ts) – i(t) = 1

L
Ts vL(t) Ts

So the net change in inductor current over one switching period is 
exactly equal to the period Ts multiplied by the average slope 〈 vL 〉Ts /L.
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Average inductor voltage correctly predicts 
average slope of iL(t)

The net change in inductor current over one switching period is exactly 
equal to the period Ts multiplied by the average slope 〈 vL 〉Ts /L.

vg(t)
L

v(t)
L

t

i(t)

i(0) i(Ts)

dTs Ts0

d vg(t) Ts
+ d' v(t)

Ts

L

i(t)
Ts

Actual waveform,
including ripple

Averaged waveform
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d i(t)
Ts

dt

We have

i(t + Ts) – i(t) = 1
L

Ts vL(t) Ts

Rearrange:

L
i(t + Ts) – i(t)

Ts
= vL(t) Ts

Define the derivative of 〈 i 〉Ts  as (Euler formula):

d i(t)
Ts

dt
=

i(t + Ts) – i(t)
Ts

Hence,

L
d i(t)

Ts

dt
= vL(t) Ts
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Computing how the inductor current changes 
over one switching period

vg Ts

L

v Ts

L

t

i(t)

i(0)

i(dTs)

i(Ts)

dTs Ts0

With switch in 
position 1:

i(dTs) = i(0) + dTs

vg(t) Ts

L

(final value) = (initial value) + (length of interval) (average slope)

i(Ts) = i(dTs) + d'Ts

v(t)
Ts

L

(final value) = (initial value) + (length of interval) (average slope)

With switch in 
position 2:

Let’s compute the actual 
inductor current waveform, 
using the linear ripple 
approximation.
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Net change in inductor current over one 
switching period

Eliminate i(dTs), to express  i(Ts)
directly as a function of i(0): i(Ts) = i(0) +

Ts

L d(t) vg(t) Ts
+ d'(t) v(t)

Ts

vL(t) Ts

vg(t)
L

v(t)
L

t

i(t)

i(0) i(Ts)

dTs Ts0

d vg(t) Ts
+ d' v(t)

Ts

L

i(t)
Ts

Actual waveform,
including ripple

Averaged waveformThe intermediate step of 
computing i(dTs) is eliminated.

The final value i(Ts) is equal to 
the initial value i(0), plus the 
switching period Ts multiplied 
by the average slope 〈 vL 〉Ts /L.
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7.2.3 Averaging the capacitor waveforms

t

iC(t)

dTs Ts
0

–
v(t)

Ts

R
– i(t)

Ts

–
v(t)

Ts

R

iC(t)
Ts

Capacitor voltage and current 
waveforms

t
v(t)

dTs Ts

0

v(0)

v(dTs)

v(Ts)

v(t)
Ts

–
v(t)

Ts

RC –
v(t)

Ts

RC –
i(t)

Ts

C

Average capacitor current:

iC(t)
Ts

= d(t) –
v(t)

Ts

R
+ d'(t) – i(t)

Ts
–

v(t)
Ts

R

Collect terms, and equate to C d〈 v 〉Ts /dt:

C
d v(t)

Ts

dt
= – d'(t) i(t)

Ts
–

v(t)
Ts

R
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7.2.4 The average input current

t

ig(t)

dTs Ts

0
0

i(t)
Ts

ig(t) Ts

0

Converter input current 
waveform

We found in Chapter 3 that it was 
sometimes necessary to write an 
equation for the average converter input 
current, to derive a complete dc 
equivalent circuit model. It is likewise 
necessary to do this for the ac model.

Buck-boost input current waveform is

ig(t) =
i(t)

Ts
during subinterval 1

0 during subinterval 2

Average value:

ig(t) Ts
= d(t) i(t)

Ts
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7.2.5.  Perturbation and linearization

L
d i(t)

Ts

dt
= d(t) vg(t) Ts

+ d'(t) v(t)
Ts

C
d v(t)

Ts

dt
= – d'(t) i(t)

Ts
–

v(t)
Ts

R

ig(t) Ts
= d(t) i(t)

Ts

Converter averaged equations:

—nonlinear because of multiplication of the time-varying quantity d(t)
with other time-varying quantities such as i(t) and v(t).
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Construct small-signal model:
Linearize about quiescent operating point

If the converter is driven with some steady-state, or quiescent, inputs

d(t) = D

vg(t) Ts
= Vg

then, from the analysis of Chapter 2, after transients have subsided 
the inductor current, capacitor voltage, and input current

i(t)
Ts

, v(t)
Ts

, ig(t) Ts

reach the quiescent values I, V, and Ig, given by the steady-state 
analysis as

V = – D
D'

Vg

I = – V
D' R

Ig = D I
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Perturbation

So let us assume that the input voltage and duty cycle are equal to 
some given (dc) quiescent values, plus superimposed small ac 
variations:

vg(t) Ts
= Vg + vg(t)

d(t) = D + d(t)

In response, and after any transients have subsided, the converter 
dependent voltages and currents will be equal to the corresponding 
quiescent values, plus small ac variations:

i(t)
Ts

= I + i(t)

v(t)
Ts

= V + v(t)

ig(t) Ts
= Ig + ig(t)
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The small-signal assumption

vg(t) << Vg

d(t) << D

i(t) << I

v(t) << V

ig(t) << Ig

If the ac variations are much smaller in magnitude than the respective 
quiescent values,

then the nonlinear converter equations can be linearized.
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Perturbation of inductor equation

Insert the perturbed expressions into the inductor differential equation:

L
d I + i(t)

dt
= D + d(t) Vg + vg(t) + D' – d(t) V + v(t)

note that d’(t) is given by

d'(t) = 1 – d(t) = 1 – D + d(t) = D' – d(t) with D’ = 1 – D

Multiply out and collect terms:

L dI
dt
➚

0

+
d i(t)

dt
= DVg+ D'V + Dvg(t) + D'v(t) + Vg – V d(t) + d(t) vg(t) – v(t)

Dc terms 1 st order ac terms 2nd order ac terms
(linear) (nonlinear)
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The perturbed inductor equation

L dI
dt
➚

0

+
d i(t)

dt
= DVg+ D'V + Dvg(t) + D'v(t) + Vg – V d(t) + d(t) vg(t) – v(t)

Dc terms 1 st order ac terms 2nd order ac terms
(linear) (nonlinear)

Since I is a constant (dc) term, its derivative is zero

The right-hand side contains three types of terms:

• Dc terms, containing only dc quantities

• First-order ac terms, containing a single ac quantity, usually 
multiplied by a constant coefficient such as a dc term. These are 
linear functions of the ac variations

• Second-order ac terms, containing products of ac quantities. These 
are nonlinear, because they involve multiplication of ac quantities
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Neglect of second-order terms

L dI
dt
➚

0

+
d i(t)

dt
= DVg+ D'V + Dvg(t) + D'v(t) + Vg – V d(t) + d(t) vg(t) – v(t)

Dc terms 1 st order ac terms 2nd order ac terms
(linear) (nonlinear)

vg(t) << Vg

d(t) << D

i(t) << I

v(t) << V

ig(t) << Ig

Provided then the second-order ac terms are much 
smaller than the first-order terms. For 
example,

d(t) vg(t) << D vg(t) d(t) << Dwhen

So neglect second-order terms.
Also, dc terms on each side of equation 

are equal.
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Linearized inductor equation

Upon discarding second-order terms, and removing dc terms (which 
add to zero), we are left with

L
d i(t)

dt
= Dvg(t) + D'v(t) + Vg – V d(t)

This is the desired result: a linearized equation which describes small-
signal ac variations.

Note that the quiescent values D, D’, V, Vg, are treated as given 
constants in the equation.
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Capacitor equation

Perturbation leads to

C dV
dt
➚

0
+

dv(t)
dt

= – D'I – V
R + – D'i(t) –

v(t)
R + Id(t) + d(t)i(t)

Dc terms 1 st order ac terms 2nd order ac term
(linear) (nonlinear)

Neglect second-order terms. Dc terms on both sides of equation are 
equal. The following terms remain:

C
dv(t)

dt
= – D'i(t) –

v(t)
R + Id(t)

This is the desired small-signal linearized capacitor equation.

C
d V + v(t)

dt
= – D' – d(t) I + i(t) –

V + v(t)

R

Collect terms:
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Average input current

Perturbation leads to

Ig + ig(t) = D + d(t) I + i(t)

Collect terms:

Ig + ig(t) = DI + Di(t) + Id(t) + d(t)i(t)

Dc term 1 st order ac term Dc term 1 st order ac terms 2nd order ac term
(linear) (nonlinear)

Neglect second-order terms. Dc terms on both sides of equation are 
equal. The following first-order terms remain:

ig(t) = Di(t) + Id(t)

This is the linearized small-signal equation which described the 
converter input port.
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7.2.6.  Construction of small-signal
equivalent circuit model

The linearized small-signal converter equations:

L
d i(t)

dt
= Dvg(t) + D'v(t) + Vg – V d(t)

C
dv(t)

dt
= – D'i(t) –

v(t)
R + Id(t)

ig(t) = Di(t) + Id(t)

Reconstruct equivalent circuit corresponding to these equations, in 
manner similar to the process used in Chapter 3.
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Inductor loop equation

L
d i(t)

dt
= Dvg(t) + D'v(t) + Vg – V d(t)

+
–

+–

+
–

L

D' v(t)

Vg – V d(t)

L
d i(t)

dt

D vg(t)

i(t)

+ –
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Capacitor node equation

+

v(t)

–

RC

C
dv(t)

dt

D' i(t) I d(t)

v(t)
R

C
dv(t)

dt
= – D'i(t) –

v(t)
R + Id(t)
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Input port node equation

ig(t) = Di(t) + Id(t)

+
– D i(t)I d(t)

i g(t)

vg(t)
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Complete equivalent circuit

Collect the three circuits:

+
– D i(t)I d(t)vg(t) +

–

+–

+
–

L

D' v(t)

Vg – V d(t)

D vg(t)

i(t)

+

v(t)

–

RCD' i(t) I d(t)

Replace dependent sources with ideal dc transformers:

+
– I d(t)vg(t)

+–

L
Vg – V d(t)

+

v(t)

–

RCI d(t)

1 : D D' : 1

Small-signal ac equivalent circuit model of the buck-boost converter
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7.2.7.  Results for several basic converters

+
– I d(t)vg(t)

+–

LVg d(t)

+

v(t)

–

RC

1 : D

i(t)

+
–

L

C Rvg(t)

i(t) +

v(t)

–

+–

V d(t)

I d(t)

D' : 1

buck

boost
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Results for several basic converters

+
– I d(t)vg(t)

+–

L
Vg – V d(t)

+

v(t)

–

RCI d(t)

1 : D D' : 1

i(t)

buck-boost



Fundamentals of Power Electronics Chapter 7: AC equivalent circuit modeling44

7.3.  Example: a nonideal flyback converter

+
–

D1

Q1

C R

+

v(t)

–

1 : n

vg(t)

ig(t)

L

Flyback converter example

• MOSFET has on-
resistance Ron

• Flyback transformer 
has magnetizing 
inductance L, referred 
to primary
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Circuits during subintervals 1 and 2

+
–

D1

Q1

C R

+

v(t)

–
vg(t)

ig(t)

L

i(t) iC(t)+

vL(t)

–

1 : n

ideal

+
–

L

+

v

–

vg

1:n

C

transformer model

iig

R

iC+

vL

–

Ron

+
–

+

v

–

vg

1:n

C

transformer model

i

R

iC

i/n

–
v/n

+

+

vL

–

ig
=0

Flyback converter, with 
transformer equivalent 
circuit

Subinterval 1

Subinterval 2
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Subinterval 1

+
–

L

+

v

–

vg

1:n

C

transformer model

iig

R

iC+

vL

–

Ron

vL(t) = vg(t) – i(t) Ron

iC(t) = –
v(t)
R

ig(t) = i(t)

Circuit equations:

Small ripple approximation:

vL(t) = vg(t) Ts
– i(t)

Ts
Ron

iC(t) = –
v(t)

Ts

R
ig(t) = i(t)

Ts

MOSFET conducts, diode is 
reverse-biased
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Subinterval 2

Circuit equations:

Small ripple approximation:

MOSFET is off, diode 
conducts

vL(t) = –
v(t)
n

iC(t) = –
i(t)
n –

v(t)
R

ig(t) = 0

vL(t) = –
v(t)

Ts

n

iC(t) = –
i(t)

Ts

n –
v(t)

Ts

R
ig(t) = 0

+
–

+

v

–

vg

1:n

C

transformer model

i

R

iC

i/n

–
v/n

+

+

vL

–

ig
=0
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Inductor waveforms

t

vL(t)

dTs Ts
0

vg – iRon

– v/n

vL(t)
Ts

t

i(t)

dTs Ts0

i(t)
Ts

– v(t)
Ts

nL

vg(t) Ts
– Ron i(t)

Ts

L

vL(t) Ts
= d(t) vg(t) Ts

– i(t)
Ts

Ron + d'(t)
– v(t)

Ts

n

L
d i(t)

Ts

dt
= d(t) vg(t) Ts

– d(t) i(t)
Ts

Ron – d'(t)
v(t)

Ts

n

Average inductor voltage:

Hence, we can write:
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Capacitor waveforms

Average capacitor current:

Hence, we can write:

t

iC(t)

dTs Ts
0

– v/R

iC(t)
Ts

i
n – v

R

t

v(t)

dTs Ts0

v(t)
Ts

–
v(t)

Ts

RC

i(t)
Ts

nC –
v(t)

Ts

RC

iC(t)
Ts

= d(t)
– v(t)

Ts

R + d'(t)
i(t)

Ts

n –
v(t)

Ts

R

C
d v(t)

Ts

dt
= d'(t)

i(t)
Ts

n –
v(t)

Ts

R
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Input current waveform

Average input current:

t

ig(t)

dTs Ts

0
0

i(t)
Ts

ig(t) Ts

0

ig(t) Ts
= d(t) i(t)

Ts
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The averaged converter equations

L
d i(t)

Ts

dt
= d(t) vg(t) Ts

– d(t) i(t)
Ts

Ron – d'(t)
v(t)

Ts

n

C
d v(t)

Ts

dt
= d'(t)

i(t)
Ts

n –
v(t)

Ts

R

ig(t) Ts
= d(t) i(t)

Ts

— a system of nonlinear differential equations

Next step: perturbation and linearization. Let

vg(t) Ts
= Vg + vg(t)

d(t) = D + d(t)

i(t)
Ts

= I + i(t)

v(t)
Ts

= V + v(t)

ig(t) Ts
= Ig + ig(t)



Fundamentals of Power Electronics Chapter 7: AC equivalent circuit modeling52

L dI
dt
➚

0

+
d i(t)

dt
= DVg– D'Vn – DRonI + Dvg(t) – D'

v(t)
n + Vg + V

n – IRon d(t) – DRoni(t)

Dc terms 1 st order ac terms (linear)

+ d(t)vg(t) + d(t)
v(t)
n – d(t)i(t)Ron

2nd order ac terms (nonlinear)

Perturbation of the averaged inductor equation

L
d i(t)

Ts

dt
= d(t) vg(t) Ts

– d(t) i(t)
Ts

Ron – d'(t)
v(t)

Ts

n

L
d I + i(t)

dt
= D + d(t) Vg + vg(t) – D' – d(t)

V + v(t)
n – D + d(t) I + i(t) Ron
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Linearization of averaged inductor equation

Dc terms:

Second-order terms are small when the small-signal assumption is 
satisfied. The remaining first-order terms are:

0 = DVg– D'Vn – DRonI

L
d i(t)

dt
= Dvg(t) – D'

v(t)
n + Vg + V

n – IRon d(t) – DRoni(t)

This is the desired linearized inductor equation.
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Perturbation of averaged capacitor equation

C
d v(t)

Ts

dt
= d'(t)

i(t)
Ts

n –
v(t)

Ts

R

C
d V + v(t)

dt
= D' – d(t)

I + i(t)
n –

V + v(t)

R

C dV
dt
➚

0
+

dv(t)
dt

= D'I
n – V

R +
D'i(t)

n –
v(t)
R –

Id(t)
n –

d(t)i(t)
n

Dc terms 1 st order ac terms 2nd order ac term
(linear) (nonlinear)

Original averaged equation:

Perturb about quiescent operating point:

Collect terms:
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Linearization of averaged capacitor equation

0 = D'I
n – V

R

C
dv(t)

dt
=

D'i(t)
n –

v(t)
R –

Id(t)
n

Dc terms:

Second-order terms are small when the small-signal assumption is 
satisfied. The remaining first-order terms are:

This is the desired linearized capacitor equation.
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Perturbation of averaged input current equation

Original averaged equation:

Perturb about quiescent operating point:

Collect terms:

ig(t) Ts
= d(t) i(t)

Ts

Ig + ig(t) = D + d(t) I + i(t)

Ig + ig(t) = DI + Di(t) + Id(t) + d(t)i(t)

Dc term 1 st order ac term Dc term 1 st order ac terms 2nd order ac term
(linear) (nonlinear)
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Linearization of averaged input current equation

Dc terms:

Second-order terms are small when the small-signal assumption is 
satisfied. The remaining first-order terms are:

This is the desired linearized input current equation.

Ig = DI

ig(t) = Di(t) + Id(t)
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Summary: dc and small-signal ac
converter equations

0 = DVg– D'Vn – DRonI

0 = D'I
n – V

R
Ig = DI

L
d i(t)

dt
= Dvg(t) – D'

v(t)
n + Vg + V

n – IRon d(t) – DRoni(t)

C
dv(t)

dt
=

D'i(t)
n –

v(t)
R –

Id(t)
n

ig(t) = Di(t) + Id(t)

Dc equations:

Small-signal ac equations:

Next step: construct equivalent circuit models.
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Small-signal ac equivalent circuit:
inductor loop

L
d i(t)

dt
= Dvg(t) – D'

v(t)
n + Vg + V

n – IRon d(t) – DRoni(t)

+
–

+–

+
–

L

D' v(t)
n

d(t) Vg – IRon + V
n

L
d i(t)

dt

D vg(t)
i(t)

+ –

DRon
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Small-signal ac equivalent circuit:
capacitor node

C
dv(t)

dt
=

D'i(t)
n –

v(t)
R –

Id(t)
n

+

v(t)

–

RC

C
dv(t)

dt
D' i(t)

n
I d(t)

n

v(t)
R
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Small-signal ac equivalent circuit:
converter input node

ig(t) = Di(t) + Id(t)

+
– D i(t)I d(t)

i g(t)

vg(t)
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Small-signal ac model,
nonideal flyback converter example

Combine circuits:

Replace dependent sources with ideal transformers:

+
– D i(t)I d(t)

i g(t)

vg(t) +
–

+–

+
–

L

D' v(t)
n

d(t) Vg – IRon + V
n

D vg(t)

i(t)

DRon

+

v(t)

–

RCD' i(t)
n

I d(t)
n

+
–

I d(t)

i g(t)

vg(t)

L
d(t) Vg – IRon + V

n

i(t) DRon
+

v(t)

–

RCI d(t)
n

1 : D +– D' : n
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7.4.  State Space Averaging

• A formal method for deriving the small-signal ac equations of a 
switching converter

• Equivalent to the modeling method of the previous sections

• Uses the state-space matrix description of linear circuits

• Often cited in the literature

• A general approach: if the state equations of the converter can be 
written for each subinterval, then the small-signal averaged model 
can always be derived

• Computer programs exist which utilize the state-space averaging 
method
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7.4.1.  The state equations of a network

• A canonical form for writing the differential equations of a system

• If the system is linear, then the derivatives of the state variables are 
expressed as linear combinations of the system independent inputs and 
state variables themselves

• The physical state variables of a system are usually associated with the 
storage of energy

• For a typical converter circuit, the physical state variables are the inductor 
currents and capacitor voltages

• Other typical physical state variables: position and velocity of a motor shaft

• At a given point in time, the values of the state variables depend on the 
previous history of the system, rather than the present values of the 
system inputs

• To solve the differential equations of a system, the initial values of the 
state variables must be specified
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State equations of a linear system, in matrix form

x(t) =
x1(t)
x2(t) ,

dx(t)
dt

=

dx1(t)
dt

dx2(t)
dt

A canonical matrix form:

State vector x(t) contains
inductor currents, capacitor 
voltages, etc.:

Input vector u(t) contains independent sources such as vg(t)

Output vector y(t) contains other dependent quantities to be computed, such 
as ig(t)

Matrix K contains values of capacitance, inductance, and mutual 
inductance, so that K dx/dt is a vector containing capacitor currents and 
inductor winding voltages. These quantities are expressed as linear 
combinations of the independent inputs and state variables. The matrices A,
B, C, and E contain the constants of proportionality.

K dx(t)
dt

= A x(t) + B u(t)

y(t) = C x(t) + E u(t)
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Example

iin(t) R1 C1

L

C2

R3

R2

+

v1(t)

–

+

v2(t)

–

+
vout(t)

–

+  vL(t)  –iR1(t) iC1(t) iC2(t)

i(t)
State vector

x(t) =
v1(t)
v2(t)
i(t)

Matrix K

K =
C1 0 0
0 C2 0
0 0 L

Input vector

u(t) = iin(t)

Choose output vector as

y(t) =
vout(t)
iR1(t)

To write the state equations of this circuit, we must express the inductor 
voltages and capacitor currents as linear combinations of the elements of 
the x(t) and u( t) vectors.
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Circuit equations

iin(t) R1 C1

L

C2

R3

R2

+

v1(t)

–

+

v2(t)

–

+
vout(t)

–

+  vL(t)  –iR1(t) iC1(t) iC2(t)

i(t)

iC1(t) = C1

dv1(t)
dt

= iin(t) –
v1(t)

R – i(t)

iC2(t) = C2

dv2(t)
dt

= i(t) –
v2(t)

R2 + R3

vL(t) = L
di(t)
dt

= v1(t) – v2(t)

Find iC1 via node equation:

Find iC2 via node equation:

Find vL via loop equation:
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Equations in matrix form

C1 0 0
0 C2 0
0 0 L

dv1(t)
dt

dv2(t)
dt

di(t)
dt

=

– 1
R1

0 – 1

0 – 1
R2 + R3

1

1 – 1 0

v1(t)
v2(t)
i(t)

+
1
0
0

iin(t)

K dx(t)
dt

= A x(t) + B u(t)

iC1(t) = C1

dv1(t)
dt

= iin(t) –
v1(t)

R – i(t)

iC2(t) = C2

dv2(t)
dt

= i(t) –
v2(t)

R2 + R3

vL(t) = L
di(t)
dt

= v1(t) – v2(t)

The same equations:

Express in matrix form:
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Output (dependent signal) equations

iin(t) R1 C1

L

C2

R3

R2

+

v1(t)

–

+

v2(t)

–

+
vout(t)

–

+  vL(t)  –iR1(t) iC1(t) iC2(t)

i(t)

Express elements of the vector y as linear combinations of elements 
of x and u:

y(t) =
vout(t)
iR1(t)

vout(t) = v2(t)
R3

R2 + R3

iR1(t) =
v1(t)

R1
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Express in matrix form

The same equations:

Express in matrix form:

vout(t) = v2(t)
R3

R2 + R3

iR1(t) =
v1(t)

R1

vout(t)
iR1(t)

=
0

R3

R2 + R3
0

1
R1

0 0

v1(t)
v2(t)
i(t)

+ 0
0 iin(t)

y(t) = C x(t) + E u(t)
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7.4.2.  The basic state-space averaged model

K dx(t)
dt

= A 1 x(t) + B1 u(t)

y(t) = C1 x(t) + E1 u(t)

K dx(t)
dt

= A 2 x(t) + B2 u(t)

y(t) = C2 x(t) + E2 u(t)

Given: a PWM converter, operating in continuous conduction mode, 
with two subintervals during each switching period.

During subinterval 1, when the switches are in position 1, the 
converter reduces to a linear circuit that can be described by the 
following state equations:

During subinterval 2, when the switches are in position 2, the 
converter reduces to another linear circuit, that can be described by 
the following state equations:
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Equilibrium (dc) state-space averaged model

Provided that the natural frequencies of the converter, as well as the 
frequencies of variations of the converter inputs, are much slower than 
the switching frequency, then the state-space averaged model that 
describes the converter in equilibrium is

0 = A X + B U
Y = C X + E U

where the averaged matrices 
are

A = D A 1 + D' A 2

B = D B1 + D' B2

C = D C1 + D' C2

E = D E1 + D' E2

and the equilibrium dc 
components are

X = equilibrium (dc) state vector

U = equilibrium (dc) input vector

Y = equilibrium (dc) output vector

D = equilibrium (dc) duty cycle
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Solution of equilibrium averaged model

X = – A– 1 B U

Y = – C A– 1 B + E U

0 = A X + B U
Y = C X + E U

Equilibrium state-space averaged model:

Solution for X and Y:
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Small-signal ac state-space averaged model

K dx(t)
dt

= A x(t) + B u(t) + A 1 – A 2 X + B1 – B2 U d(t)

y(t) = C x(t) + E u(t) + C1 – C2 X + E1 – E2 U d(t)

where

x(t) = small – signal (ac) perturbation in state vector

u(t) = small – signal (ac) perturbation in input vector

y(t) = small – signal (ac) perturbation in output vector

d(t) = small – signal (ac) perturbation in duty cycle

So if we can write the converter state equations during subintervals 1 
and 2, then we can always find the averaged dc and small-signal ac 
models
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The low-frequency components of the input and output vectors are 
modeled in a similar manner.

By averaging the inductor voltages and capacitor currents, one 
obtains:

7.4.3.  Discussion of the state-space averaging result

As in Sections 7.1 and 7.2, the low-frequency components of the 
inductor currents and capacitor voltages are modeled by averaging 
over an interval of length Ts. Hence, we define the average of the 
state vector as:

x(t)
Ts

= 1
Ts

x(τ) dτ
t

t + Ts

K
d x(t)

Ts

dt
= d(t) A 1 + d'(t) A 2 x(t)

Ts
+ d(t) B1 + d'(t) B2 u(t)

Ts
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Change in state vector during first subinterval

K dx(t)
dt

= A 1 x(t) + B1 u(t)

y(t) = C1 x(t) + E1 u(t)

During subinterval 1, we have

So the elements of x(t) change with the slope

dx(t)
dt

= K– 1 A 1 x(t) + B1 u(t)

Small ripple assumption: the elements of x(t) and u(t) do not change 
significantly during the subinterval. Hence the slopes are essentially 
constant and are equal to

dx(t)
dt

= K– 1 A 1 x(t)
Ts

+ B1 u(t)
Ts
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Change in state vector during first subinterval

dx(t)
dt

= K– 1 A 1 x(t)
Ts

+ B1 u(t)
Ts

x(dTs) = x(0) + dTs K– 1 A 1 x(t)
Ts

+ B1 u(t)
Ts

final initial interval slope
value value length

K–1 A 1 x
Ts

+ B1 u
Ts

x(t)

x(0)

dTs0

K–1 dA 1 + d'A 2 x Ts
+ dB

Net change in state vector over first 
subinterval:
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Change in state vector during second subinterval

Use similar arguments.

State vector now changes with the essentially constant slope

dx(t)
dt

= K– 1 A 2 x(t)
Ts

+ B2 u(t)
Ts

The value of the state vector at the end of the second subinterval is 
therefore

x(Ts) = x(dTs) + d'Ts K– 1 A 2 x(t)
Ts

+ B2 u(t)
Ts

final initial interval slope
value value length
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Net change in state vector over one switching period

We have:

x(dTs) = x(0) + dTs K– 1 A 1 x(t)
Ts

+ B1 u(t)
Ts

x(Ts) = x(dTs) + d'Ts K– 1 A 2 x(t)
Ts

+ B2 u(t)
Ts

Eliminate x(dTs), to express x(Ts) directly in terms of x(0) :

x(Ts) = x(0) + dTsK
– 1 A 1 x(t)

Ts
+ B1 u(t)

Ts
+ d'TsK

– 1 A 2 x(t)
Ts

+ B2 u(t)
Ts

Collect terms:

x(Ts) = x(0) + TsK
– 1 d(t)A 1 + d'(t)A2 x(t)

Ts
+ TsK

– 1 d(t)B1 + d'(t)B2 u(t)
Ts
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Approximate derivative of state vector

d x(t)
Ts

dt
≈ x(Ts) – x(0)

Ts

K
d x(t)

Ts

dt
= d(t) A 1 + d'(t) A 2 x(t)

Ts
+ d(t) B1 + d'(t) B2 u(t)

Ts

Use Euler approximation:

We obtain:

K–1 A 1 x
Ts

+ B1 u
Ts

K–1 A 2 x
Ts

+ B2 u
Ts

t

x(t)

x(0) x(Ts)

dTs Ts0

K–1 dA 1 + d'A 2 x Ts
+ dB1 + d'B2 u Ts

x(t) Ts
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Low-frequency components of output vector

t

y(t)

dTs Ts

0
0

C1 x(t)
Ts

+ E1 u(t)
Ts

C2 x(t)
Ts

+ E2 u(t)
Ts

y(t)
Ts

Remove switching harmonics by averaging over one switching period:

y(t)
Ts

= d(t) C1 + d'(t) C2 x(t)
Ts

+ d(t) E1 + d'(t) E2 u(t)
Ts

y(t)
Ts

= d(t) C1 x(t)
Ts

+ E1 u(t)
Ts

+ d'(t) C2 x(t)
Ts

+ E2 u(t)
Ts

Collect terms:
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Averaged state equations: quiescent operating point

K
d x(t)

Ts

dt
= d(t) A 1 + d'(t) A 2 x(t)

Ts
+ d(t) B1 + d'(t) B2 u(t)

Ts

y(t)
Ts

= d(t) C1 + d'(t) C2 x(t)
Ts

+ d(t) E1 + d'(t) E2 u(t)
Ts

The averaged (nonlinear) state equations:

The converter operates in equilibrium when the derivatives of all 
elements of < x(t) >Ts

are zero. Hence, the converter quiescent 
operating point is the solution of

0 = A X + B U
Y = C X + E U

where A = D A 1 + D' A 2

B = D B1 + D' B2

C = D C1 + D' C2

E = D E1 + D' E2

X = equilibrium (dc) state vector

U = equilibrium (dc) input vector

Y = equilibrium (dc) output vector

D = equilibrium (dc) duty cycle

and
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Averaged state equations: perturbation and linearization

Let x(t)
Ts

= X + x(t)

u(t)
Ts

= U + u(t)

y(t)
Ts

= Y + y(t)

d(t) = D + d(t) ⇒ d'(t) = D' – d(t)

with U >> u(t)

D >> d(t)

X >> x(t)

Y >> y(t)

Substitute into averaged state equations:

K
d X+x(t)

dt
= D+d(t) A 1 + D'–d(t) A 2 X+x(t)

+ D+d(t) B1 + D'–d(t) B2 U+u(t)

Y+y(t) = D+d(t) C1 + D'–d(t) C2 X+x(t)

+ D+d(t) E1 + D'–d(t) E2 U+u(t)
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Averaged state equations: perturbation and linearization

K dx(t)
dt

= AX + BU + Ax(t) + Bu(t) + A 1 – A 2 X + B1 – B2 U d(t)

first–order ac dc terms first–order ac terms

+ A 1 – A 2 x(t)d(t) + B1 – B2 u(t)d(t)

second–order nonlinear terms

Y+y(t) = CX + EU + Cx(t) + Eu(t) + C1 – C2 X + E1 – E2 U d(t)

dc + 1st order ac dc terms first–order ac terms

+ C1 – C2 x(t)d(t) + E1 – E2 u(t)d(t)

second–order nonlinear terms
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Linearized small-signal state equations

K dx(t)
dt

= A x(t) + B u(t) + A 1 – A 2 X + B1 – B2 U d(t)

y(t) = C x(t) + E u(t) + C1 – C2 X + E1 – E2 U d(t)

Dc terms drop out of equations. Second-order (nonlinear) terms are 
small when the small-signal assumption is satisfied. We are left with:

This is the desired result.
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7.4.4.  Example: State-space averaging of a 
nonideal buck-boost converter

+
– L C R

+

v(t)

–

vg(t)

Q1 D1

i(t)

ig(t) Model nonidealities:

• MOSFET on-
resistance Ron

• Diode forward voltage 
drop VD

x(t) =
i(t)
v(t) u(t) =

vg(t)
VD

y(t) = ig(t)

state vector input vector output vector
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Subinterval 1

+
– L C R

+

v(t)

–

i(t)

vg(t)

Ronig(t)

L
di(t)
dt

= vg(t) – i(t) Ron

C
dv(t)

dt
= –

v(t)
R

ig(t) = i(t)

L 0
0 C

d
dt

i(t)
v(t) =

– Ron 0

0 – 1
R

i(t)
v(t) + 1 0

0 0
vg(t)
VD

K dx(t)
dt

A 1 x(t) B1 u(t)

ig(t) = 1 0
i(t)
v(t) + 0 0

vg(t)
VD

y(t) C1 x(t) E1 u(t)
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Subinterval 2

+
– L C R

+

v(t)

–
i(t)

vg(t)

+–

VD

ig(t)
L

di(t)
dt

= v(t) – VD

C
dv(t)

dt
= –

v(t)
R – i(t)

ig(t) = 0

L 0
0 C

d
dt

i(t)
v(t) =

0 1

– 1 – 1
R

i(t)
v(t) + 0 – 1

0 0
vg(t)
VD

K dx(t)
dt

A 2 x(t) B2 u(t)

ig(t) = 0 0
i(t)
v(t) + 0 0

vg(t)
VD

y(t) C2 x(t) E2 u(t)
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Evaluate averaged matrices

A = DA 1 + D'A 2 = D
– Ron 0

0 – 1
R

+ D'
0 1

– 1 – 1
R

=
– DRon D'

– D' – 1
R

B = DB1 + D'B2 = D – D'
0 0

C = DC1 + D'C2 = D 0

E = DE1 + D'E2 = 0 0

In a similar manner,
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DC state equations

0
0 =

– DRon D'

– D' – 1
R

I
V + D – D'

0 0
Vg

VD

Ig = D 0 I
V + 0 0

Vg

VD

0 = A X + B U
Y = C X + E U

or,

I
V = 1

1 + D
D'2

Ron

R

D
D'2R

1
D' R

– D
D'

1

Vg

VD

Ig = 1

1 + D
D'2

Ron

R

D2

D'2R
D

D'R
Vg

VD

DC solution:
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Steady-state equivalent circuit

+
–

+ –

Vg

Ig I

R

1 : D D' : 1
DRon D'VD

+

V

–

0
0 =

– DRon D'

– D' – 1
R

I
V + D – D'

0 0
Vg

VD

Ig = D 0 I
V + 0 0

Vg

VD

DC state equations:

Corresponding equivalent circuit:
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Small-signal ac model

Evaluate matrices in small-signal model:

A 1 – A 2 X + B1 – B2 U = – V
I +

Vg – IRon + VD

0 =
Vg – V – IRon + VD

I

C1 – C2 X + E1 – E2 U = I

Small-signal ac state equations:

L 0
0 C

d
dt

i(t)
v(t)

=
– DRon D'

– D' – 1
R

i(t)
v(t)

+ D – D'
0 0

vg(t)

vD(t)➚
0 +

Vg – V – IRon + VD

I d(t)

ig(t) = D 0
i(t)
v(t)

+ 0 0
0 0

vg(t)

vD(t)➚
0 + 0

I d(t)
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Construction of ac equivalent circuit

L
di(t)
dt

= D' v(t) – DRon i(t) + D vg(t) + Vg – V – IRon + VD d(t)

C
dv(t)

dt
= –D' i(t) –

v(t)
R + I d(t)

ig(t) = D i(t) + I d(t)

Small-signal ac 
equations, in 
scalar form:

+
–

+–

+
–

L

D' v(t)

d(t) Vg – V + VD – IRon

L
d i(t)

dt

D vg(t)
i(t)

+ –

DRon

+

v(t)

–

RC

C
dv(t)

dt

D' i(t) I d(t)

v(t)
R

+
– D i(t)I d(t)

i g(t)

vg(t)

Corresponding equivalent circuits:

inductor equation

input
eqn

capacitor
eqn
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Complete small-signal ac equivalent circuit

+
–

I d(t)

i g(t)

vg(t)

L
d(t) Vg – V + VD – IRon

i(t) DRon
+

v(t)

–

RCI d(t)

1 : D +– D' : 1

Combine individual circuits to obtain
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7.5.  Circuit Averaging and Averaged Switch Modeling

● Historically, circuit averaging was the first method known for 
modeling the small-signal ac behavior of CCM PWM converters

● It was originally thought to be difficult to apply in some cases
● There has been renewed interest in circuit averaging and its 

corrolary, averaged switch modeling, in the last decade
● Can be applied to a wide variety of converters

● We will use it to model DCM, CPM, and resonant converters

● Also useful for incorporating switching loss into ac model of CCM 
converters

● Applicable to 3ø PWM inverters and rectifiers

● Can be applied to phase-controlled rectifiers

● Rather than averaging and linearizing the converter state 
equations, the averaging and linearization operations are 
performed directly on the converter circuit
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Separate switch network from remainder of converter

+
–

Time-invariant network
containing converter reactive elements

C L

+     vC(t)     –
iL(t)

R

+

v(t)

–

vg(t)

Power input Load

Switch network

po
rt

1 port2

d(t)Control
input

+

v1(t)

–

+

v2(t)

–

i1(t) i2(t)
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Boost converter example

+
–

L

C R

+

v(t)

–

vg(t)

i(t)

+

v1(t)

–

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

+

v2(t)

–

i1(t) i2(t)

Ideal boost converter 
example

Two ways to 
define the 
switch network

(a) (b)
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Discussion

● The number of ports in the switch network is less than or equal 
to the number of SPST switches

● Simple dc-dc case, in which converter contains two SPST 
switches: switch network contains two ports
The switch network terminal waveforms are then the port voltages and 

currents: v1(t), i1(t), v2(t), and i2(t).
Two of these waveforms can be taken as independent inputs to the 

switch network; the remaining two waveforms are then viewed as 
dependent outputs of the switch network.

● Definition of the switch network terminal quantities is not unique. 
Different definitions lead equivalent results having different 
forms
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Boost converter example

Let’s use definition (a):

+
–

L

C R

+

v(t)

–

vg(t)

i(t)
+

v1(t)

–

+

v2(t)

–

i1(t) i2(t)

Since i1(t) and v2(t) coincide with the converter inductor current and 
output voltage, it is convenient to define these waveforms as the 
independent inputs to the switch network. The switch network 
dependent outputs are then v1(t) and i2(t).
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Obtaining a time-invariant network:
Modeling the terminal behavior of the switch network

Replace the switch network with dependent sources, which correctly 
represent the dependent output waveforms of the switch network

+
–

+
–

L

C R

+

v(t)

–

vg(t)

i(t)

v1(t)

+

v2(t)

–

i1(t)

i2(t)

Switch network

Boost converter example
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Definition of dependent generator waveforms

t

v1(t)

dTs Ts

0
0

0

v2(t)

t

i2(t)

dTs Ts

0
0

0

i1(t)

〈v1(t)〉Ts

〈i2(t)〉Ts

+
–

+
–

L

C R

+

v(t)

–

vg(t)

i(t)

v1(t)

+

v2(t)

–

i1(t)

i2(t)

Switch network

The waveforms of the dependent 
generators are defined to be identical 
to the actual terminal waveforms of the 
switch network.

The circuit is therefore electrical 
identical to the original converter.

So far, no approximations have been 
made.
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The circuit averaging step

+
–

Averaged time-invariant network
containing converter reactive elements

C L

+ 〈vC(t)〉Ts
     –

〈iL(t)〉Ts

R

+

〈v(t)〉Ts

–

〈vg(t)〉Ts

Power input Load

Averaged
switch network

po
rt

1 port2

d(t)Control
input

+

〈v2(t)〉Ts

–

〈i1(t)〉Ts
〈i2(t)〉Ts

+

〈v1(t)〉Ts

–

Now average all waveforms over one switching period:
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The averaging step

The basic assumption is made that the natural time constants of the 
converter are much longer than the switching period, so that the 
converter contains low-pass filtering of the switching harmonics. One 
may average the waveforms over an interval that is short compared to 
the system natural time constants, without significantly altering the 
system response. In particular, averaging over the switching period Ts

removes the switching harmonics, while preserving the low-frequency 
components of the waveforms.

In practice, the only work needed for this step is to average the switch 
dependent waveforms.
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Averaging step: boost converter example

+
–

+
–

L

C R

+

v(t)

–

vg(t)

i(t)

v1(t)

+

v2(t)

–

i1(t)

i2(t)

Switch network

+
–

+
–

L

C R

+

〈v(t)〉Ts

–

〈vg(t)〉Ts
〈v1(t)〉Ts

〈i2(t)〉Ts

〈i(t)〉Ts

+

〈v2(t)〉Ts

–

〈i1(t)〉Ts

Averaged switch network
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Compute average values of dependent sources

t

v1(t)

dTs Ts

0
0

0

v2(t)

t

i2(t)

dTs Ts

0
0

0

i1(t)

〈v1(t)〉Ts

〈i2(t)〉Ts

+
–

+
–

L

C R

+

〈v(t)〉Ts

–

〈vg(t)〉Ts
d'(t) 〈v2(t)〉Ts

d'(t) 〈i1(t)〉Ts

〈i(t)〉Ts

+

〈v2(t)〉Ts

–

〈i1(t)〉Ts

Averaged switch model

v1(t) Ts
= d'(t) v2(t) Ts

i2(t) Ts
= d'(t) i1(t) Ts

Average the waveforms of the 
dependent sources:
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Perturb and linearize

vg(t) Ts
= Vg + vg(t)

d(t) = D + d(t) ⇒ d'(t) = D' – d(t)

i(t)
Ts

= i1(t) Ts
= I + i(t)

v(t)
Ts

= v2(t) Ts
= V + v(t)

v1(t) Ts
= V1 + v1(t)

i2(t) Ts
= I2 + i2(t)

+
–

+
–

L

C R

+

–

Vg + vg(t)

I + i(t)

D' – d(t) V + v(t) D' – d(t) I + i(t) V + v(t)

As usual, let:

The circuit becomes:
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Dependent voltage source

+
–

+–

V d(t)

D' V + v(t)

D' – d(t) V + v(t) = D' V + v(t) – V d(t) – v(t)d(t)

nonlinear,
2nd order
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Dependent current source

D' – d(t) I + i(t) = D' I + i(t) – Id(t) – i(t)d(t)

nonlinear,
2nd order

D' I + i(t) I d(t)
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Linearized circuit-averaged model

+
–

L

C R

+

–

Vg + vg(t)

I + i(t)

V + v(t)+
–

+–

V d(t)

D' V + v(t) D' I + i(t) I d(t)

+
–

L

C R

+

–

Vg + vg(t)

I + i(t)

V + v(t)

+–

V d(t)

I d(t)

D' : 1
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Summary: Circuit averaging method

Model the switch network with equivalent voltage and current sources, 
such that an equivalent time-invariant network is obtained

Average converter waveforms over one switching period, to remove 
the switching harmonics

Perturb and linearize the resulting low-frequency model, to obtain a 
small-signal equivalent circuit
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Averaged switch modeling: CCM

I + i(t)

+–

V d(t)

I d(t)

D' : 1

+

–

V + v(t)

+

v(t)

–

1

2

i(t)

Switch
network

Circuit averaging of the boost converter: in essence, the switch 
network was replaced with an effective ideal transformer and 
generators:
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Basic functions performed by switch network

I + i(t)

+–

V d(t)

I d(t)

D' : 1

+

–

V + v(t)

+

v(t)

–

1

2

i(t)

Switch
network

For the boost example, we can conclude that the switch network performs 
two basic functions:

• Transformation of dc and small-signal ac voltage and current levels, 
according to the D’:1 conversion ratio

• Introduction of ac voltage and current variations, drive by the control 
input duty cycle variations

Circuit averaging modifies only the switch network. Hence, to obtain a small-
signal converter model, we need only replace the switch network with its 
averaged model. Such a procedure is called averaged switch modeling.
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Averaged switch modeling: Procedure

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

1. Define a switch network and its 
terminal waveforms. For a simple 
transistor-diode switch network as in 
the buck, boost, etc., there are two 
ports and four terminal quantities: v1,
i1, v2, i2.The switch network also 
contains a control input d. Buck
example:

2.  To derive an averaged switch model, express the average values of 
two of the terminal quantities, for example 〈 v2 〉Ts and 〈 i1 〉Ts,  as 
functions of the other average terminal quantities 〈 v1 〉Ts and 〈 i1 〉Ts .
〈 v2 〉Ts and 〈 i1 〉Ts may also be functions of the control input d, but they 
should not be expressed in terms of other converter signals.
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The basic buck-type CCM switch cell

+
–

L

C R

+

v(t)

–

vg(t)

i(t)

+

v2(t)

–

i1(t) i2(t)

Switch network

+

v1(t)

–

iC+  vCE  –

t

i1(t)

dTs Ts

0
0

i1(t) T2

0

i2

i2 T2

t

v2(t)

dTs Ts

0
0

v2(t) T2

0

v1i1(t) Ts
= d(t) i2(t) Ts

v2(t) Ts
= d(t) v1(t) Ts
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Replacement of switch network by dependent sources, 
CCM buck example

I1 + i1(t) = D I2 + i2(t) + I2 d(t)

V2 + v2(t) = D V1 + v1(t) + V1 d(t)

Perturbation and linearization of switch 
network:

+–1 : DI1 + i1 I2 + i2

I2 dV1 + v1

V1 d

V2 + v2

+

–

+

–

+
–

L

C R

Switch network

+–1 : DI1 + i1
I2 + i2

I2 dV1 + v1

V1 d

V2 + v2

+

–

+

–

I + i

V + v

+

–

Vg + vg

+
–

L

C R

+

v(t)

–

vg(t)

i(t)

i1(t)

i2(t)+

v1(t)

–

+
–

v2(t)

Switch network

Circuit-averaged model

Resulting
averaged switch 
model: CCM 
buck converter
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Three basic switch networks, and their CCM dc 
and small-signal ac averaged switch models

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

+–1 : DI1 + i1 I2 + i2

I2 dV1 + v1

V1 d

V2 + v2

+

–

+

–

+– D' : 1I1 + i1 I2 + i2

I1 dV1 + v1

V2 d

V2 + v2

+

–

+

–

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

+

v2(t)

–

i1(t) i2(t)

+

v1(t)

–

+– D' : DI1 + i1 I2 + i2

I2

DD'
dV1 + v1

V1

DD'
d

V2 + v2

+

–

+

–

see also

Appendix 3 
Averaged switch 
modeling of a 
CCM SEPIC



Fundamentals of Power Electronics Chapter 7: AC equivalent circuit modeling117

Example: Averaged switch modeling of CCM buck 
converter, including switching loss

+
–

L

C R

+

v(t)

–

vg(t)

i(t)

+

v2(t)

–

i1(t) i2(t)

Switch network

+

v1(t)

–

iC+  vCE  –

t

iC(t)

Ts

0

i2

vCE(t)

v1

0

t1 t2tir tvf tvr tif

i1(t) = iC(t)
v2(t) = v1(t) – vCE(t)

Switch network terminal 
waveforms: v1, i1, v2, i2. To 
derive averaged switch 
model, express 〈 v2 〉Ts

and 〈 i1 〉Ts as functions of 
〈 v1 〉Ts and 〈 i1 〉Ts . 〈 v2 〉Ts

and 〈 i1 〉Ts may also be 
functions of the control 
input d, but they should 
not be expressed in terms 
of other converter signals.
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Averaging i1(t)

i1(t) Ts
= 1

Ts
i1(t) dt

0

Ts

= i2(t) Ts

t1 + tvf + tvr + 1
2

tir + 1
2

tif

Ts

t

iC(t)

Ts

0

i2

vCE(t)

v1

0

t1 t2tir tvf tvr tif
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Expression for 〈 i1(t) 〉

d =
t1 + 1

2
tvf + 1

2
tvr + 1

2
tir + 1

2
tif

Ts

dv =
tvf + tvr

Ts

di =
tir + tif

Ts

i1(t) Ts
= 1

Ts
i1(t) dt

0

Ts

= i2(t) Ts

t1 + tvf + tvr + 1
2

tir + 1
2

tif

Ts

Let

Given

i1(t) Ts
= i2(t) Ts

d + 1
2

dv

Then we can write



Fundamentals of Power Electronics Chapter 7: AC equivalent circuit modeling120

Averaging the switch network output voltage v2(t)

t

iC(t)

Ts

0

i2

vCE(t)

v1

0

t1 t2tir tvf tvr tif

v2(t) Ts
= v1(t) – vCE(t)

Ts
= 1

Ts
– vCE(t) dt

0

Ts

+ v1(t) Ts

v2(t) Ts
= v1(t) Ts

t1 + 1
2

tvf + 1
2

tvr

Ts

v2(t) Ts
= v1(t) Ts

d – 1
2

di
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Construction of large-signal averaged-switch model

v2(t) Ts
= v1(t) Ts

d – 1
2

dii1(t) Ts
= i2(t) Ts

d + 1
2

dv

+
–

d(t) 〈i2(t)〉Ts
d(t) 〈v1(t)〉Ts

+

〈v2(t)〉Ts

–

〈i1(t)〉Ts

+

〈v1(t)〉Ts

–

+ – 〈i2(t)〉Ts

dv(t) 〈i2(t)〉Ts

1
2

di(t) 〈v1(t)〉Ts

1
2

+

〈v2(t)〉Ts

–

〈i1(t)〉Ts

+

〈v1(t)〉Ts

–

+ – 〈i2(t)〉Ts
1 : d(t)

dv(t) 〈i2(t)〉Ts

1
2

di(t) 〈v1(t)〉Ts

1
2
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Switching loss predicted by averaged switch model

+

〈v2(t)〉Ts

–

〈i1(t)〉Ts

+

〈v1(t)〉Ts

–
+ – 〈i2(t)〉Ts

1 : d(t)

dv(t) 〈i2(t)〉Ts

1
2

di(t) 〈v1(t)〉Ts

1
2

Psw = 1
2 dv + di i2(t) Ts

v1(t) Ts
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Solution of averaged converter model in steady state

+

V2

–

I1

Dv I2
1
2

+

V1

–

+ – I21 : D

+
–

L

C RVg

I

+

V

–

Averaged switch network model

Di V1
1
2

V = D – 1
2 Di Vg = DVg 1 –

Di

2D

Pin = VgI1 = V1I2 D + 1
2Dv

Pout = VI2 = V1I2 D – 1
2Di

η =
Pout

Pin

=
D – 1

2 Di

D + 1
2 Dv

=
1 –

Di

2D

1 +
Dv

2D

Output voltage: Efficiency calcuation:
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7.6.  The canonical circuit model

All PWM CCM dc-dc converters perform the same basic functions:

• Transformation of voltage and current levels, ideally with 100% 
efficiency

• Low-pass filtering of waveforms

• Control of waveforms by variation of duty cycle

Hence, we expect their equivalent circuit models to be qualitatively 
similar.

Canonical model:

• A standard form of equivalent circuit model, which represents 
the above physical properties

• Plug in parameter values for a given specific converter
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7.6.1.  Development of the canonical circuit model

+
–

1 : M(D)

R

+

–

Control
input

Power
input

Load

D

VVg

Converter model1. Transformation of dc 
voltage and current 
levels

• modeled as in 
Chapter 3 with ideal 
dc transformer

• effective turns ratio 
M(D)

• can refine dc model 
by addition of 
effective loss 
elements, as in 
Chapter 3
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Steps in the development of the canonical circuit model

+
–

1 : M(D)

RVg + vg(s)

+

–

V + v(s)

Control
input

Power
input

Load

D

2. Ac variations in 
vg(t) induce ac 
variations in v(t)

• these variations 
are also 
transformed by the 
conversion ratio 
M(D)
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Steps in the development of the canonical circuit model

+
–

1 : M(D)

RVg + vg(s)

+

–

V + v(s)

Effective

low-pass

filter

He(s)

Zei(s) Zeo(s)

Control
input

Power
input

Load

D

3. Converter
must contain an 
effective low-
pass filter 
characteristic

• necessary to 
filter switching 
ripple

• also filters ac 
variations

• effective filter 
elements may
not coincide with actual element values, 
but can also depend on operating point
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Steps in the development of the canonical circuit model

+
–

+– 1 : M(D)

RVg + vg(s)

+

–

V + v(s)

e(s) d(s)

j(s) d(s)
Effective

low-pass

filter

He(s)

Zei(s) Zeo(s)

Control
input

D + d(s)

Power
input

Load

4. Control input variations also induce ac variations in converter waveforms

• Independent sources represent effects of variations in duty cycle

• Can push all sources to input side as shown. Sources may then become 
frequency-dependent
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Transfer functions predicted by canonical model

+
–

+– 1 : M(D)

RVg + vg(s)

+

–

V + v(s)

e(s) d(s)

j(s) d(s)
Effective

low-pass

filter

He(s)

Zei(s) Zeo(s)

Control
input

D + d(s)

Power
input

Load

Gvg(s) =
v(s)
vg(s)

= M(D) He(s)

Gvd(s) =
v(s)
d(s)

= e(s) M(D) He(s)

Line-to-output transfer function:

Control-to-output transfer function:
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7.6.2. Example: manipulation of the buck-boost 
converter model into canonical form

+
– I dVg + vg(s)

+–

L
Vg – V d

RCI d

1 : D D' : 1

V + v(s)

+

–

Small-signal ac model of the buck-boost converter

• Push independent sources to input side of transformers

• Push inductor to output side of transformers

• Combine transformers
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Step 1

+
– I dVg + vg(s)

+–

L

RC

1 : D D' : 1

Vg – V
D

d

I
D'

d V + v(s)

+

–

Push voltage source through 1:D transformer
Move current source through D’:1 transformer
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Step 2

+
– I dVg + vg(s)

+–

L

RC

1 : D D' : 1

Vg – V
D

d

I
D'

d
V + v(s)

+

–

I
D'

d

node
A

How to move the current source past the inductor:
Break ground connection of current source, and connect to node A 

instead.
Connect an identical current source from node A to ground, so that 

the node equations are unchanged.
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Step 3

+
– I dVg + vg(s)

+–

L

RC

1 : D D' : 1

Vg – V
D

d

V + v(s)

+

–

I
D'

d
+ –

sLI
D'

d

The parallel-connected current source and inductor can now be 
replaced by a Thevenin-equivalent network:
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Step 4

+
–

I dVg + vg(s)
+–

L

RC

1 : D D' : 1

Vg – V
D

d

V + v(s)

+

–

+ –

sLI
D'

d

DI
D'

d

node
B

DI
D'

d

Now push current source through 1:D transformer.

Push current source past voltage source, again by:
Breaking ground connection of current source, and connecting to 

node B instead.
Connecting an identical current source from node B to ground, so 

that the node equations are unchanged.
Note that the resulting parallel-connected voltage and current 

sources are equivalent to a single voltage source.
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Step 5: final result

+
–

+– D' : D

C RVg + vg(s)

+

–

V + v(s)

Vg – V
D

– s LI
DD'

d(s)

I
D'

d(s)

L
D' 2

Effective
low-pass

filter

Push voltage source through 1:D transformer, and combine with 
existing input-side transformer.

Combine series-connected transformers.
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Coefficient of control-input voltage generator

e(s) =
Vg + V

D – s LI
D D'

e(s) = – V
D2 1 – s DL

D'2 R

Voltage source coefficient is:

Simplification, using dc relations, leads to

Pushing the sources past the inductor causes the generator to 
become frequency-dependent.
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7.6.3.  Canonical circuit parameters for some 
common converters

+
–

+– 1 : M(D) Le

C RVg + vg(s)

+

–

V + v(s)

e(s) d(s)

j(s) d(s)

Table 7.1. Canonical model parameters for the ideal buck, boost, and buck-boost converters

Converter M(D) Le e(s) j(s)

Buck D L
V
D2

V
R

Boost
1
D'

L
D' 2 V 1 – s L

D' 2 R
V

D' 2 R

Buck-boost – D
D'

L
D' 2 – V

D2 1 – s DL
D' 2 R

– V
D' 2 R
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7.7.  Modeling the pulse-width modulator

+
–

+

v(t)

–

vg(t)

Switching converterPower
input

Load
–+

R

compensator

Gc(s)

vref
voltage

reference

v

feedback
connection

pulse-width
modulator

vc

transistor
gate driver

δ(t)

δ(t)

TsdTs t t

vc(t)

Controller

Pulse-width
modulator
converts voltage 
signal vc(t) into
duty cycle signal 
d(t).

What is the 
relation between 
vc(t) and d(t)?



Fundamentals of Power Electronics Chapter 7: AC equivalent circuit modeling139

A simple pulse-width modulator

Sawtooth

wave

generator

+
–

vsaw(t)

vc(t)

comparator

δ(t)

PWM
waveform

analog
input

vsaw(t)VM

0

δ(t)
t

TsdTs

vc(t)

0 2Ts
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Equation of pulse-width modulator

vsaw(t)VM

0

δ(t)
t

TsdTs

vc(t)

0 2Ts

For a linear sawtooth waveform:

d(t) =
vc(t)
VM

for 0 ≤ vc(t) ≤ VM

So d(t) is a linear function of vc(t).
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Perturbed equation of pulse-width modulator

vc(t) = Vc + vc(t)

d(t) = D + d(t)

d(t) =
vc(t)
VM

for 0 ≤ vc(t) ≤ VM

PWM equation:

Perturb:

D + d(t) =
Vc + vc(t)

VM

Result:

D =
Vc

VM

d(t) =
vc(t)
VM

pulse-width
modulator

D + d(s)Vc + vc(s)
1

VM

Block diagram:

Dc and ac relations:



Fundamentals of Power Electronics Chapter 7: AC equivalent circuit modeling142

Sampling in the pulse-width modulator

pulse-width modulator

1
VM

vc d
sampler

fs

The input voltage is a 
continuous function 
of time, but there 
can be only one 
discrete value of the 
duty cycle for each 
switching period.

Therefore, the pulse-
width modulator 
samples the control
waveform, with sampling rate equal to the switching frequency.

In practice, this limits the useful frequencies of ac variations to values 
much less than the switching frequency. Control system bandwidth must 
be sufficiently less than the Nyquist rate fs/2. Models that do not account 
for sampling are accurate only at frequencies much less than fs/2.
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7.8.  Summary of key points

1.  The CCM converter analytical techniques of Chapters 2 and 3 can 
be extended to predict converter ac behavior. The key step is to 
average the converter waveforms over one switching period. This 
removes the switching harmonics, thereby exposing directly the 
desired dc and low-frequency ac components of the waveforms. In 
particular, expressions for the averaged inductor voltages, capacitor 
currents, and converter input current are usually found.

2.  Since switching converters are nonlinear systems, it is desirable to 
construct small-signal linearized models. This is accomplished by 
perturbing and linearizing the averaged model about a quiescent 
operating point.

3.  Ac equivalent circuits can be constructed, in the same manner 
used in Chapter 3 to construct dc equivalent circuits. If desired, the 
ac equivalent circuits may be refined to account for the effects of 
converter losses and other nonidealities.
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Summary of key points

4.  The state-space averaging method of section 7.4 is essentially the 
same as the basic approach of section 7.2, except that the formality 
of the state-space network description is used. The general results 
are listed in section 7.4.2.

5.  The circuit averaging technique also yields equivalent results, but 
the derivation involves manipulation of circuits rather than 
equations. Switching elements are replaced by dependent voltage 
and current sources, whose waveforms are defined to be identical 
to the switch waveforms of the actual circuit. This leads to a circuit 
having a time-invariant topology. The waveforms are then averaged 
to remove the switching ripple, and perturbed and linearized about a 
quiescent operating point to obtain a small-signal model.



Fundamentals of Power Electronics Chapter 7: AC equivalent circuit modeling145

Summary of key points

6.  When the switches are the only time-varying elements in the 
converter, then circuit averaging affects only the switch network. The 
converter model can then be derived by simply replacing the switch 
network with its averaged model. Dc and small-signal ac models of 
several common CCM switch networks are listed in section 7.5.4. 
Switching losses can also be modeled using this approach.

7.  The canonical circuit describes the basic properties shared by all 
dc-dc PWM converters operating in the continuous conduction mode. 
At the heart of the model is the ideal 1:M(D) transformer, introduced in 
Chapter 3 to represent the basic dc-dc conversion function, and 
generalized here to include ac variations. The converter reactive 
elements introduce an effective low-pass filter into the network. The 
model also includes independent sources which represent the effect of 
duty cycle variations. The parameter values in the canonical models of 
several basic converters are tabulated for easy reference.
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Summary of key points

8.  The conventional pulse-width modulator circuit has linear gain, 
dependent on the slope of the sawtooth waveform, or equivalently 
on its peak-to-peak magnitude.


