
BLG 540E

TEXT RETRIEVAL SYSTEMS

Arzucan Özgür

Dictionaries and tolerant retrieval

Faculty of Computer and Informatics, İstanbul Techical University

February 25, 2011

Announcements

Paper Presentations

 Please email me (ozgura@itu.edu.tr) your top 3 paper

choices for presentation. Email me in advance to check if

the papers are appropriate.

 Due date: 03/03/2011 (Thursday) – 17:00.

 You can choose from the suggested papers. But at least

one of your three preferred papers should be proposed

by you.

 I will try to assign you one of your three choices.

 You will have 20 minutes for presentation + 5 minutes for

questions/discussion.

Some paper suggestions
 The XML Retrieval chapter in the book.

 Dafna Shahaf and Carlos Guestrin. Connecting the dots between news articles. In
KDD ’10: Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 623–632, New York, NY, USA, 2010.
ACM.

 Turning Down the Noise in the Blogosphere, KDD2009.

 http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf

 Michele Banko and Oren Etzioni. The tradeoffs between open and traditional
relation extraction. In Proceedings of ACL-08: HLT, pages 28–36, Columbus, Ohio,
June 2008. Association for Computational Linguistics.

 - Science Maps: Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging
trends and transient patterns in scientific literature. Journal of the American Society
for Information Science and Technology, 57(3), 359-377. doi: 10.1002/asi.20317

 http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf

Some paper suggestions
 Monika Rauch Henzinger, Finding near-duplicate web pages: a large-scale evaluation of

algorithms, SIGIR, 2006, pp. 284–291.

 Andrei Z. Broder, Identifying and filtering near-duplicate documents, CPM, 2000, pp. 1–10.

 Gunes Erkan and Dragomir R. Radev. Lexrank: Graph-based centrality as salience in text
summarization. Journal of Artificial Intelligence Research (JAIR), 2004.

 Qiaozhu Mei, Dengyong Zhou, Kenneth Church. Query Suggestion Using Hitting Time,
Proceedings of the 16th ACM International Conference on Information and Knowledge
Management (CIKM'08), pages 469-478, 2008.

 Patterns of Cascading Behavior in Large Blog Graphs by J. Leskovec, M. McGlohon, C.
Faloutsos, N. Glance, M. Hurst. SIAM SDM 2007.

 R. W. White and S. M. Drucker. Investigating behavioral variability in web search. In WWW’07.

 E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user
behavior information. In Proceedings of ACM SIGIR 2006.

Some paper suggestions

 G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and Y. Sun. Finding question-answer

pairs from online forums. In Proc. 31st SIGIR.

 http://research.microsoft.com/en-us/um/people/cyl/download/papers/SIGIR2008-

Gao-MSRA.pdf

 Chirita, P.-A., Firan, C. S., and Nejdl, W. Personalized query expansion for

the web. In SIGIR (2007), pp. 7-14.

 Collins-Thompson, K., and Callan, J. Query expansion using random walk

models. In CIKM (2005), pp. 704-711.

 Pavel Calodo et al. Combining link-based and text-based methods for web

document classification. CIKM 2003.

Some paper suggestions
 Search advertising using Web relevance feedback. Broder, P. Ciccolo,

M. Fontoura, E. Gabrilovich, V. Josifovski, and L. Riedel. (CIKM, 2008)

 Automatic Generation of Bid Phrases for Online Advertising. Ravi,
S.; Broder, A.; Gabrilovich, E.; Josifovski, V.; Pandey, S.; Pang, B. WSDM
(2010)

 Using Landing Pages for Sponsored Search Ad Selection. Choi, Y.;
Fontoura, M.; Gabrilovich, E.; Josifovski, V.; Mediano, M.; Pang, B.
(WWW 2010)

 Ganesh Ramakrishnan, Soumen Chakrabarti, Deepa Paranjpe, and
Pushpak Bhattacharya. Is question answering an acquired skill? In
Proceedings of the 13th international conference on World Wide
Web, 2004.

Project

 Please submit a one-page project proposal by e-mail.

 Due date: 09/03/2011 Wednesday 17:00.

 You can choose from the list of project ideas or propose

your own.

 You can work in teams of two, or individually.

 The last two weeks (06/05/2011 and 13/05/2011) will be

allocated for your project presentations (15 min.

presentation + 5 min. questions/discussion).

Some Project Ideas

 Build a question answering system.

 Build a language identification system.

 Social network analysis from text

 Query log analysis.

 information extraction

 information extraction for biology (e.g. extracting protein

interactions)

 blog analysis

 Sentiment/polarity extraction

 document duplicate and near-duplicate recognition

 clustering scientific papers by topic using citation information

Some Project Ideas

 automatic query correction/expansion

 query completion/recommendation

 extract names of people and their descriptions from the web

 finding similar documents

 named entity recognition

 named entity disambiguation

 movie recommendations

 adversarial IR (spam)

 language modeling for IR

 Text classification/clustering

 summarization

Recap

12

Type/token distinction

Token – an instance of a word or term occurring in a document

Type – an equivalence class of tokens

In June, the dog likes to chase the cat in the barn.

12 word tokens, 9 word types

13

Problems in tokenization

What are the delimiters? Space? Apostrophe? Hyphen?

For each of these: sometimes they delimit, sometimes they don‟t.

No whitespace in many languages! (e.g., Chinese)

No whitespace in Dutch, German, Swedish compounds

(Lebensversicherungsgesellschaftsangestellter)

14

Problems with equivalence classing

A term is an equivalence class of tokens.

How do we define equivalence classes?

Numbers (3/20/91 vs. 20/3/91)

Case folding

Stemming, Porter stemmer

Morphological analysis

Equivalence classing problems in other languages

More complex morphology than in English

Finnish: a single verb may have 12,000 different

forms

Accents, umlauts

Skip pointers

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21

31 11

41 128

Sec. 2.3

Brutus

Caesar

16

Positional indexes

Postings lists in a nonpositional index: each posting is just a docID

Postings lists in a positional index: each posting is a docID and a list of

positions

Example query: “to1 be2 or3 not4 to5 be6”

TO, 993427:

‹ 1: ‹7, 18, 33, 72, 86, 231›;
 2: ‹1, 17, 74, 222, 255›;
 4: ‹8, 16, 190, 429, 433›;
 5: ‹363, 367›;
 7: ‹13, 23, 191›; . . . ›

BE, 178239:

‹ 1: ‹17, 25›;
 4: ‹17, 191, 291, 430, 434›;
 5: ‹14, 19, 101›; . . . › Document 4 is a match!

17

Positional indexes

With a positional index, we can answer phrase queries.

With a positional index, we can answer proximity queries.

Today’s Lecture

Tolerant retrieval: What to do if there is no exact match between

query term and document term

Wildcard queries

Spelling correction

Dictionaries

20

Inverted index

21

Dictionaries

The dictionary is the data structure for storing the term vocabulary.

Term vocabulary: the data

Dictionary: the data structure for storing the term vocabulary

A naïve dictionary
 An array of struct:

 char[20] int Postings *

 20 bytes 4/8 bytes 4/8 bytes

 How do we store a dictionary in memory efficiently?

 How do we quickly look up elements at query time?

Sec. 3.1

23

Data structures for looking up term

Two main classes of data structures: hashes and trees

Some IR systems use hashes, some use trees.

Criteria for when to use hashes vs. trees:

Is there a fixed number of terms or will it keep

growing?

What are the relative frequencies with which various

keys will be accessed?

How many terms are we likely to have?

24

Hashes

Each vocabulary term is hashed into an integer.

Try to avoid collisions

At query time, do the following: hash query term, resolve collisions,

locate entry in fixed-width array

Pros: Lookup in a hash is faster than lookup in a tree.

Lookup time is constant.

Cons

no way to find minor variants (resume vs. résumé)

no prefix search (all terms starting with automat)

need to rehash everything periodically if vocabulary

keeps growing

Root
a-m n-z

a-hu hy-m n-sh si-z

Tree: binary tree

Sec. 3.1

Tree: B-tree

 Definition: Every internal nodel has a number of children in

the interval [a,b] where a, b are appropriate natural numbers,

e.g., [2,4].

a-hu

hy-m

n-z

Sec. 3.1

Trees

 Simplest: binary tree

 More usual: B-trees

 Trees require a standard ordering of characters and hence

strings … but we standardly have one

 Pros:

 Solves the prefix problem (terms starting with hyp)

 Cons:

 Slower: O(log M) [and this requires balanced tree]

 Rebalancing binary trees is expensive

 But B-trees mitigate the rebalancing problem

Sec. 3.1

Wild-card queries

29

Wildcard queries

mon*: find all docs containing any term beginning with mon

Easy with B-tree dictionary: retrieve all terms t in the range: mon ≤ t

< moo

*mon: find all docs containing any term ending with mon

Maintain an additional tree for terms backwards

Then retrieve all terms t in the range: nom ≤ t < non

Result: A set of terms that are matches for wildcard query

Then retrieve documents that contain any of these terms

30

How to handle * in the middle of a term

Example: c*sar

 We could look up c* and *sar in the B-tree and intersect the two

term sets.

Expensive

Alternative: permuterm index

Basic idea: Rotate every wildcard query, so that the * occurs at the

end.

Store each of these rotations in the dictionary, say, in a B-tree

31

Permuterm → term mapping

32

Permuterm index

For HELLO, we‟ve stored: hello$, ello$h, llohe, lohel, and o$hell

Queries

For X, look up X$ (hello -> hello$)

For X*, look up X*$ (hel* -> hel*$)

For *X, look up X$* (*lo -> lo$*)

For *X*, look up X* (*ll* -> ll*)

For X*Y, look up Y$X* (hel*o -> o$hel*)

33

Processing a lookup in the permuterm index

Rotate query wildcard to the right

Use B-tree lookup as before

Problem: Permuterm more than quadruples the size of the dictionary

compared to a regular B-tree. (empirical number)

34

k-gram indexes

More space-efficient than permuterm index

Enumerate all character k-grams (sequence of k characters)

occurring in a term

2-grams are called bigrams.

Example: from „April is the cruelest month’ we get the bigrams: $a ap

pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on nt h$

$ is a special word boundary symbol, as before.

Maintain an inverted index from bigrams to the terms that contain

the bigram

35

Postings list in a 3-gram inverted index

36

k-gram (bigram, trigram, . . .) indexes

Note that we now have two different types of inverted indexes

The term-document inverted index for finding documents based on a

query consisting of terms

The k-gram index for finding terms based on a query consisting of k-

grams

37

Processing wildcarded terms in a bigram index

Query mon* can now be run as: $m AND mo AND on

Gets us all terms with the prefix mon . . .

. . . but also many “false positives” like MOON.

We must postfilter these terms against query.

Surviving terms are then looked up in the term-document inverted

index.

k-gram index vs. permuterm index

k-gram index is more space efficient.

Permuterm index doesn‟t require postfiltering.

Intention: you are looking for the University of Geneva, but don’t know

which accents to use for the French words for university and Geneva.

Google has very limited support for wildcard queries.

According to Google search basics, 2010-04-29: “Note that the * operator works only on

whole words, not parts of words.”

But this is not entirely true. Try [pythag*] and [m*nchen]

Why doesn’t Google fully support wildcard queries?

41

Processing wildcard queries in the term-

document index

Problem 1: we must potentially execute a large number of Boolean

queries.

Most straightforward semantics: Conjunction of disjunctions

For [gen* universit*]: geneva university OR geneva université OR

genève university OR genève université OR general universities OR

. . .

Very expensive

Problem 2: Users hate to type. If you encourage “laziness” people will

respond!

If abbreviated queries like [pyth* theo*] for [pythagoras‟ theorem] are

allowed, users will use them a lot.

This would significantly increase the cost of answering queries.

Search

Type your search terms, use ‘*’ if you need to.

E.g., Alex* will match Alexander.

Spelling correction

43

Spelling correction

Two principal uses

Correcting documents being indexed

Correcting user queries

Two different methods for spelling correction

Isolated word spelling correction

Check each word on its own for misspelling

Will not catch typos resulting in correctly spelled

words, e.g., I flew form Heathrow to Narita.

Context-sensitive spelling correction

Look at surrounding words

Can correct form/from error above

Document correction

 Especially needed for OCR’ed documents

 Correction algorithms are tuned for this: rn/m

 Can use domain-specific knowledge

 E.g., OCR can confuse O and D more often than it would confuse O

and I (adjacent on the QWERTY keyboard, so more likely

interchanged in typing).

 But also: web pages and even printed material has typos

 But often we don’t change the documents but aim to fix

the query-document mapping

Sec. 3.3

Query mis-spellings

 Our principal focus here

 E.g., the query Albert Einstain

 We can either

 Retrieve documents indexed by the correct spelling, OR

 Return several suggested alternative queries with the correct

spelling

 Did you mean … ?

Sec. 3.3

Isolated word correction

 Fundamental premise – there is a lexicon from which the

correct spellings come

 Two basic choices for this

 A standard lexicon such as

 Webster’s English Dictionary

 An “industry-specific” lexicon – hand-maintained

 The lexicon of the indexed corpus

 E.g., all words on the web

 All names, acronyms etc.

 (Including the mis-spellings)

Sec. 3.3.2

Isolated word correction

 Given a lexicon and a character sequence Q, return the

words in the lexicon closest to Q

 What’s “closest”?

 We’ll study several alternatives

 Edit distance (Levenshtein distance)

 Weighted edit distance

 n-gram overlap

Sec. 3.3.2

49

Edit distance

The edit distance between string s1 and string s2 is the minimum

number of basic operations that convert s1 to s2.

Levenshtein distance: The admissible basic operations are insert,

delete, and replace (Edit distance usually refers to Levenshtein

distance)

Levenshtein distance dog-do: 1 (delete g)

Levenshtein distance cat-cart: 1 (insert r)

Levenshtein distance cat-cut: 1 (replace a with u)

Levenshtein distance cat-act: 2 (replace c with a, replace a with c)

Damerau-Levenshtein distance cat-act: 1 (transpose c with a)

Damerau-Levenshtein includes transposition as a fourth possible

operation.

Hamming distance: only allows substitution (only applies to strings of

the same length).

50

Levenshtein distance: Computation

51

Levenshtein distance: Algorithm

52

Levenshtein distance: Algorithm

53

Levenshtein distance: Algorithm

54

Levenshtein distance: Algorithm

55

Levenshtein distance: Algorithm

56

Levenshtein distance: Example

57

Each cell of Levenshtein matrix

cost of getting here from

my upper left neighbor

(copy or replace)

cost of getting here

from my upper neighbor

(delete)

cost of getting here from

my left neighbor (insert)

the minimum of the three

possible “movements”;

the cheapest way of getting

here

58

Levenshtein distance: Example

59

Dynamic programming

Optimal substructure: The optimal solution to the problem contains

within it subsolutions, i.e., optimal solutions to subproblems.

Overlapping subsolutions: The subsolutions overlap. These

subsolutions are computed over and over again when computing the

global optimal solution in a brute-force algorithm.

Subproblem in the case of edit distance: what is the edit distance of

two prefixes

Overlapping subsolutions: We need most distances of prefixes 3 times

– this corresponds to moving right, diagonally, down.

60

Weighted edit distance

As above, but weight of an operation depends on the characters

involved.

Meant to capture keyboard errors, e.g., m more likely to be mistyped

as n than as q.

Therefore, replacing m by n is a smaller edit distance than by q.

We now require a weight matrix as input.

Modify dynamic programming to handle weights

61

Using edit distance for spelling correction

Given query, first enumerate all character sequences within a preset

(possibly weighted) edit distance

Intersect this set with our list of “correct” words

Then suggest terms in the intersection to the user.

→ exercise in a few slides

62

Exercise

❶Compute Levenshtein distance matrix for OSLO – SNOW

❷What are the Levenshtein editing operations that transform cat into

catcat?

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

How do I read out the editing operations that transform OSLO into SNOW?

98

99

100

101

102

103

104

105

106

107

108

Spelling correction

Now that we can compute edit distance: how to use it for isolated

word spelling correction.

k-gram indexes for isolated word spelling correction.

Context-sensitive spelling correction

General issues

Edit distance to all dictionary terms?

 Given a (mis-spelled) query – do we compute its edit

distance to every dictionary term?

 Expensive and slow

 Alternative?

 How do we cut the set of candidate dictionary terms?

 One possibility is to use n-gram overlap for this

 This can also be used by itself for spelling correction.

Sec. 3.3.4

n-gram overlap

 Enumerate all the n-grams in the query string as well as in

the lexicon

 Use the n-gram index (recall wild-card search) to retrieve

all lexicon terms matching any of the query n-grams

 Threshold by number of matching n-grams

 Variants – weight by keyboard layout, etc.

Sec. 3.3.4

Example with trigrams

 Suppose the text is november

 Trigrams are nov, ove, vem, emb, mbe, ber.

 The query is december

 Trigrams are dec, ece, cem, emb, mbe, ber.

 So 3 trigrams overlap (of 6 in each term)

 How can we turn this into a normalized measure of

overlap?

Sec. 3.3.4

One option – Jaccard coefficient

 A commonly-used measure of overlap

 Let X and Y be two sets; then the J.C. is

 Equals 1 when X and Y have the same elements and zero

when they are disjoint

 X and Y don’t have to be of the same size

 Always assigns a number between 0 and 1

 Now threshold to decide if you have a match

 E.g., if J.C. > 0.8, declare a match

YXYX /

Sec. 3.3.4

Matching trigrams

 Consider the query lord – we wish to identify words

matching 2 of its 3 bigrams (lo, or, rd)

lo

or

rd

alone lord sloth

lord morbid

border card

border

ardent

Standard postings “merge” will enumerate …

Sec. 3.3.4

Context-sensitive spell correction

Sec. 3.3.5

Context-sensitive correction

 Need surrounding context to catch this.

 First idea: retrieve dictionary terms close (in weighted
edit distance) to each query term

 Now try all possible resulting phrases with one word
“fixed” at a time

 flew from Istanbul Ataturk Airport

 fled form Istanbul Ataturk Airport

 flea form Istanbul Ataturk Airport

 Hit-based spelling correction: Suggest the alternative
that has lots of hits.

Sec. 3.3.5

Exercise

 Suppose that for “flew form Istanbul Ataturk Airport”

we have 7 alternatives for flew, 20 for form, 3 for Istanbul,

2 for Ataturk, and 3 for airport.

How many “corrected” phrases will we enumerate in this

scheme?

Sec. 3.3.5

Another approach

 Break phrase query into a conjunction of biwords

(Lecture 2).

 Look for biwords that need only one term corrected.

 Enumerate phrase matches and … rank them!

Sec. 3.3.5

General issues in spell correction

 We enumerate multiple alternatives for “Did you mean?”

 Need to figure out which to present to the user

 Use heuristics

 The alternative hitting most docs

 Query log analysis + tweaking

 For especially popular, topical queries

 Spell-correction is computationally expensive

 Avoid running routinely on every query?

 Run only on queries that matched few docs

Sec. 3.3.5

Soundex

Soundex

 Class of heuristics to expand a query into phonetic

equivalents

 Language specific – mainly for names

 E.g., chebyshev tchebycheff

Sec. 3.4

Soundex – typical algorithm

 Turn every token to be indexed into a 4-character

reduced form

 Do the same with query terms

 Build and search an index on the reduced forms

 (when the query calls for a soundex match)

Sec. 3.4

Soundex – typical algorithm
1. Retain the first letter of the word.
2. Change all occurrences of the following letters to '0' (zero):

 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.
3. Change letters to digits as follows:

 B, F, P, V 1
 C, G, J, K, Q, S, X, Z 2
 D,T 3
 L 4
 M, N 5
 R 6

4. Remove all pairs of consecutive digits.

5. Remove all zeros from the resulting string.

6. Pad the resulting string with trailing zeros and return the
first four positions, which will be of the form <uppercase
letter> <digit> <digit> <digit>.

Sec. 3.4

123

Example: Soundex of HERMAN

Retain H

ERMAN → 0RM0N

0RM0N → 06505

06505 → 06505

06505 → 655

Return H655

Note: HERMANN will generate the same code

Soundex

 Soundex is the classic algorithm, provided by most

databases (Oracle, Microsoft, …)

 How useful is soundex?

 Not very – for information retrieval

 Okay for “high recall” tasks, though biased to names of

certain nationalities

Sec. 3.4

What queries can we process?

 We have

 Positional inverted index with skip pointers

 Wild-card index

 Spell-correction

 Soundex

 Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

References

 Introduction to Information Retrieval, chapter 3

 The slides were adapted from the book’s companion website:

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

 A nice example and an applet for edit distance.

 http://www.merriampark.com/ld.htm

 Nice reading on spell correction:

 Peter Norvig: How to write a spelling corrector

http://norvig.com/spell-correct.html

 Soundex Algorith demo:

 http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

Sec. 3.5

http://www.merriampark.com/ld.htm
http://www.merriampark.com/ld.htm
http://www.merriampark.com/ld.htm
http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

