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Announcements 



Paper Presentations 

 Please email me (ozgura@itu.edu.tr) your top 3 paper 

choices for presentation. Email me in advance to check if 

the papers are appropriate. 

 Due date: 03/03/2011 (Thursday) – 17:00. 

 You can choose from the suggested papers. But at least 

one of your three preferred papers should be proposed 

by you. 

 I will try to assign you one of your three choices. 

 You will have 20 minutes for presentation + 5 minutes for 

questions/discussion. 

 



Some paper suggestions 
 The XML Retrieval chapter in the book. 

 

 Dafna Shahaf and Carlos Guestrin. Connecting the dots between news articles.  In 
KDD ’10: Proceedings of the 16th ACM SIGKDD international conference on 
Knowledge discovery and data mining, pages 623–632, New York, NY, USA, 2010. 
ACM. 

 

 Turning Down the Noise in the Blogosphere, KDD2009. 

 http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf 

 

 Michele Banko and Oren Etzioni.  The tradeoffs between open and traditional 
relation extraction. In Proceedings of ACL-08: HLT, pages 28–36, Columbus, Ohio, 
June 2008. Association for Computational Linguistics. 

 

 - Science Maps: Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging 
trends and transient patterns in scientific literature. Journal of the American Society 
for Information Science and Technology, 57(3), 359-377. doi: 10.1002/asi.20317 

 http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf 



Some paper suggestions 
 Monika Rauch Henzinger, Finding near-duplicate web pages: a large-scale evaluation of 

algorithms, SIGIR, 2006, pp. 284–291.  

 

 Andrei Z. Broder, Identifying and filtering near-duplicate documents, CPM, 2000, pp. 1–10. 

 

 Gunes Erkan and Dragomir R. Radev. Lexrank: Graph-based centrality as salience in text 
summarization. Journal of Artificial Intelligence Research (JAIR), 2004.  

 

 Qiaozhu Mei, Dengyong Zhou, Kenneth Church. Query Suggestion Using Hitting Time, 
Proceedings of the 16th ACM International Conference on Information and Knowledge 
Management (CIKM'08), pages 469-478, 2008.  

 

 Patterns of Cascading Behavior in Large Blog Graphs by J. Leskovec, M. McGlohon, C. 
Faloutsos, N. Glance, M. Hurst. SIAM SDM 2007. 

 

 R. W. White and S. M. Drucker. Investigating behavioral variability in web search. In WWW’07. 

 

 E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user 
behavior information. In Proceedings of ACM SIGIR 2006. 



Some paper suggestions 

 G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and Y. Sun. Finding question-answer 

pairs from online forums. In Proc. 31st SIGIR. 

 http://research.microsoft.com/en-us/um/people/cyl/download/papers/SIGIR2008-

Gao-MSRA.pdf 

 

 Chirita, P.-A., Firan, C. S., and Nejdl, W.  Personalized query expansion for 

the web.  In SIGIR (2007), pp. 7-14. 

 

 Collins-Thompson, K., and Callan, J. Query expansion using random walk 

models. In CIKM (2005), pp. 704-711. 

 

 Pavel Calodo et al. Combining link-based and text-based methods for web 

document classification. CIKM 2003.  



Some paper suggestions 
 Search advertising using Web relevance feedback.  Broder, P. Ciccolo, 

M. Fontoura, E. Gabrilovich, V. Josifovski, and L. Riedel. (CIKM, 2008)  

 

 Automatic Generation of Bid Phrases for Online Advertising.  Ravi, 
S.; Broder, A.; Gabrilovich, E.; Josifovski, V.; Pandey, S.; Pang, B. WSDM 
(2010)  

 

 Using Landing Pages for Sponsored Search Ad Selection. Choi, Y.; 
Fontoura, M.; Gabrilovich, E.; Josifovski, V.; Mediano, M.; Pang, B. 
(WWW 2010)  

 

 Ganesh Ramakrishnan, Soumen Chakrabarti, Deepa Paranjpe, and    
Pushpak Bhattacharya. Is question answering an acquired skill? In 
Proceedings of the 13th international conference on World Wide 
Web,  2004. 

 



Project 

 Please submit a one-page project proposal by e-mail. 

 Due date: 09/03/2011 Wednesday 17:00. 

 You can choose from the list of project ideas or propose 

your own. 

 You can work in teams of two, or individually. 

 The last two weeks (06/05/2011 and 13/05/2011) will be 

allocated for your project presentations (15 min. 

presentation + 5 min. questions/discussion). 

 



Some Project Ideas 

 Build a question answering system. 

 Build a language identification system. 

 Social network analysis from text  

 Query log analysis. 

 information extraction 

 information extraction for biology (e.g. extracting protein 

interactions) 

 blog analysis 

 Sentiment/polarity extraction 

 document duplicate and near-duplicate recognition 

 clustering scientific papers by topic using citation information 

 



Some Project Ideas 

 automatic query correction/expansion 

 query completion/recommendation 

 extract names of people and their descriptions from the web 

 finding similar documents 

 named entity recognition 

 named entity disambiguation 

 movie recommendations 

 adversarial IR (spam) 

 language modeling for IR 

 Text classification/clustering 

 summarization 



Recap 
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Type/token distinction 

Token – an instance of a word or term occurring in a document 

Type – an equivalence class of tokens 

In June, the dog likes to chase the cat in the barn. 

12 word tokens, 9 word types 
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Problems in tokenization 

What are the delimiters? Space? Apostrophe? Hyphen? 

For each of these: sometimes they delimit, sometimes they don‟t. 

No whitespace in many languages! (e.g., Chinese) 

No whitespace in Dutch, German, Swedish compounds 

(Lebensversicherungsgesellschaftsangestellter) 
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Problems with equivalence classing 

A term is an equivalence class of tokens. 

How do we define equivalence classes? 

Numbers (3/20/91 vs. 20/3/91) 

Case folding 

Stemming, Porter stemmer 

Morphological analysis 

Equivalence classing problems in other languages 

More complex morphology than in English 

Finnish: a single verb may have 12,000 different 

forms 

Accents, umlauts 



Skip pointers 

128 2 4 8 41 48 64 

31 1 2 3 8 11 17 21 

31 11 

41 128 

Sec. 2.3 

Brutus 

Caesar 



16 

Positional indexes 

Postings lists in a nonpositional index: each posting is just a docID 

Postings lists in a positional index: each posting is a docID and a list of 

positions 

Example query: “to1 be2 or3 not4 to5 be6”  

TO, 993427: 

‹ 1: ‹7, 18, 33, 72, 86, 231›; 
  2: ‹1, 17, 74, 222, 255›; 
  4: ‹8, 16, 190, 429, 433›; 
  5: ‹363, 367›; 
  7: ‹13, 23, 191›; . . . › 

BE, 178239: 

‹ 1: ‹17, 25›; 
  4: ‹17, 191, 291, 430, 434›; 
  5: ‹14, 19, 101›; . . . › Document 4 is a match! 
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Positional indexes 

With a positional index, we can answer phrase queries. 

With a positional index, we can answer proximity queries. 



Today’s Lecture 

Tolerant retrieval: What to do if there is no exact match between 

query term and document term 

Wildcard queries 

Spelling correction 



Dictionaries 
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Inverted index 
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Dictionaries 

The dictionary is the data structure for storing the term vocabulary. 

Term vocabulary: the data 

Dictionary: the data structure for storing the term vocabulary 



A naïve dictionary 
 An array of struct: 

 
 

 

 

 

 

         

 

 

 

   char[20]    int                   Postings * 

          20 bytes    4/8 bytes         4/8 bytes   

 How do we store a dictionary in memory efficiently? 

 How do we quickly look up elements at query time? 

Sec. 3.1 
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Data structures for looking up term 

Two main classes of data structures: hashes and trees 

Some IR systems use hashes, some use trees. 

Criteria for when to use hashes vs. trees: 

Is there a fixed number of terms or will it keep 

growing? 

What are the relative frequencies with which various 

keys will be accessed? 

How many terms are we likely to have? 
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Hashes 

Each vocabulary term is hashed into an integer. 

Try to avoid collisions 

At query time, do the following: hash query term, resolve collisions, 

locate entry in fixed-width array 

Pros: Lookup in a hash is faster than lookup in a tree. 

Lookup time is constant. 

Cons 

no way to find minor variants (resume vs. résumé) 

no prefix search (all terms starting with automat) 

need to rehash everything periodically if vocabulary 

keeps growing 



Root 
a-m n-z 

a-hu hy-m n-sh si-z 

Tree: binary tree 

Sec. 3.1 



Tree: B-tree 

 Definition: Every internal nodel has a number of children in 

the interval [a,b] where a, b are appropriate natural numbers, 

e.g., [2,4]. 

a-hu 

hy-m 

n-z 

Sec. 3.1 



Trees 

 Simplest: binary tree 

 More usual: B-trees 

 Trees require a standard ordering of characters and hence 

strings … but we standardly have one 

 Pros: 

 Solves the prefix problem (terms starting with hyp) 

 Cons: 

 Slower: O(log M)  [and this requires balanced tree] 

 Rebalancing binary trees is expensive 

 But B-trees mitigate the rebalancing problem 

Sec. 3.1 



Wild-card queries 
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Wildcard queries 

mon*: find all docs containing any term beginning with mon 

Easy with B-tree dictionary: retrieve all terms t in the range: mon ≤ t 

< moo 

*mon: find all docs containing any term ending with mon 

Maintain an additional tree for terms backwards 

Then retrieve all terms t in the range: nom ≤ t < non 

Result: A set of terms that are matches for wildcard query 

Then retrieve documents that contain any of these terms 
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How to handle * in the middle of a term 

Example: c*sar 

 We could look up c* and *sar in the B-tree and intersect the two 

term sets. 

Expensive 

Alternative: permuterm index 

Basic idea: Rotate every wildcard query, so that the * occurs at the 

end. 

Store each of these rotations in the dictionary, say, in a B-tree 
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Permuterm → term mapping 

 



32 

Permuterm index 

For HELLO, we‟ve stored: hello$, ello$h, llo$he, lo$hel, and o$hell 

Queries 

For X, look up X$ (hello -> hello$) 

For X*, look up X*$ (hel* -> hel*$) 

For *X, look up X$* (*lo -> lo$*) 

For *X*, look up X* (*ll* -> ll*) 

For X*Y, look up Y$X* (hel*o -> o$hel*) 
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Processing a lookup in the permuterm index 

Rotate query wildcard to the right 

Use B-tree lookup as before 

Problem: Permuterm more than quadruples the size of the dictionary 

compared to a regular B-tree. (empirical number) 
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k-gram indexes 

More space-efficient than permuterm index 

Enumerate all character k-grams (sequence of k characters) 

occurring in a term 

2-grams are called bigrams. 

Example: from „April is the cruelest month’ we get the bigrams: $a ap 

pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on nt h$ 

$ is a special word boundary symbol, as before. 

Maintain an inverted index from bigrams to the terms that contain 

the bigram 
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Postings list in a 3-gram inverted index 
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k-gram (bigram, trigram, . . . ) indexes 

Note that we now have two different types of inverted indexes 

The term-document inverted index for finding documents based on a 

query consisting of terms 

The k-gram index for finding terms based on a query consisting of k-

grams 
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Processing wildcarded terms in a bigram index 

Query mon* can now be run as: $m AND mo AND on 

Gets us all terms with the prefix mon . . . 

. . . but also many “false positives” like MOON. 

We must postfilter these terms against query. 

Surviving terms are then looked up in the term-document inverted 

index. 

k-gram index vs. permuterm index 

k-gram index is more space efficient. 

Permuterm index doesn‟t require postfiltering. 



Intention: you are looking for the University of Geneva, but don’t know 

which accents to use for the French words for university and Geneva. 

Google has very limited support for wildcard queries. 



According to Google search basics, 2010-04-29: “Note that the * operator works only on 

whole words, not parts of words.” 



But this is not entirely true. Try [pythag*] and [m*nchen] 

Why doesn’t Google fully support wildcard queries? 
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Processing wildcard queries in the term-

document index 

Problem 1: we must potentially execute a large number of Boolean 

queries. 

Most straightforward semantics: Conjunction of disjunctions 

For [gen* universit*]: geneva university OR geneva université OR 

genève university OR genève université OR general universities OR 

. . . 

Very expensive 

Problem 2: Users hate to type. If you encourage “laziness” people will 

respond! 

If abbreviated queries like [pyth* theo*] for [pythagoras‟ theorem] are 

allowed, users will use them a lot. 

This would significantly increase the cost of answering queries. 

 

 

 

 

 

Search 

Type your search terms, use ‘*’ if you need to. 

E.g., Alex* will match Alexander. 



Spelling correction 
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Spelling correction 

Two principal uses 

Correcting documents being indexed 

Correcting user queries 

Two different methods for spelling correction 

Isolated word spelling correction 

Check each word on its own for misspelling 

Will not catch typos resulting in correctly spelled 

words, e.g., I flew form Heathrow to Narita.  

Context-sensitive spelling correction 

Look at surrounding words 

Can correct form/from error above 



Document correction 

 Especially needed for OCR’ed documents 

 Correction algorithms are tuned for this: rn/m 

 Can use domain-specific knowledge 

 E.g., OCR can confuse O and D more often than it would confuse O 

and I (adjacent on the QWERTY keyboard, so more likely 

interchanged in typing). 

 But also: web pages and even printed material has typos 

 But often we don’t change the documents but aim to fix 

the query-document mapping 

Sec. 3.3 



Query mis-spellings 

 Our principal focus here 

 E.g., the query Albert Einstain 

 We can either 

 Retrieve documents indexed by the correct spelling, OR 

 Return several suggested alternative queries with the correct 

spelling 

 Did you mean … ? 

Sec. 3.3 





Isolated word correction 

 Fundamental premise – there is a lexicon from which the 

correct spellings come 

 Two basic choices for this 

 A standard lexicon such as 

 Webster’s English Dictionary 

 An “industry-specific” lexicon – hand-maintained 

 The lexicon of the indexed corpus 

 E.g., all words on the web 

 All names, acronyms etc. 

 (Including the mis-spellings) 

Sec. 3.3.2 



Isolated word correction 

 Given a lexicon and a character sequence Q, return the 

words in the lexicon closest to Q 

 What’s “closest”? 

 We’ll study several alternatives 

 Edit distance (Levenshtein distance) 

 Weighted edit distance 

 n-gram overlap 

Sec. 3.3.2 
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Edit distance 

The edit distance between string s1 and string s2 is the minimum 

number of basic operations that convert s1 to s2. 

Levenshtein distance: The admissible basic operations are insert, 

delete, and replace (Edit distance usually refers to Levenshtein 

distance)  

Levenshtein distance dog-do: 1 (delete g) 

Levenshtein distance cat-cart: 1 (insert r) 

Levenshtein distance cat-cut: 1 (replace a with u) 

Levenshtein distance cat-act: 2 (replace c with a, replace a with c) 

Damerau-Levenshtein distance cat-act: 1 (transpose c with a) 

Damerau-Levenshtein includes transposition as a fourth possible 

operation. 

Hamming distance: only allows substitution (only applies to strings of 

the same length). 
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Levenshtein distance: Computation 
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Levenshtein distance: Algorithm 
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Levenshtein distance: Algorithm 

 



53 

Levenshtein distance: Algorithm 
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Levenshtein distance: Algorithm 
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Levenshtein distance: Algorithm 
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Levenshtein distance: Example 
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Each cell of Levenshtein matrix 

 

cost of getting here from 

my upper left neighbor 

(copy or replace) 

cost of getting here 

from my upper neighbor 

(delete) 

cost of getting here from 

my left neighbor (insert) 

the minimum of the three 

possible “movements”; 

the cheapest way of getting 

here 
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Levenshtein distance: Example 
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Dynamic programming 

Optimal substructure: The optimal solution to the problem contains 

within it subsolutions, i.e., optimal solutions to subproblems. 

Overlapping subsolutions: The subsolutions overlap. These 

subsolutions are computed over and over again when computing the 

global optimal solution in a brute-force algorithm. 

Subproblem in the case of edit distance: what is the edit distance of 

two prefixes 

Overlapping subsolutions: We need most distances of prefixes 3 times 

– this corresponds to moving right, diagonally, down. 
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Weighted edit distance 

As above, but weight of an operation depends on the characters 

involved. 

Meant to capture keyboard errors, e.g., m more likely to be mistyped 

as n than as q. 

Therefore, replacing m by n is a smaller edit distance than by q. 

We now require a weight matrix as input. 

Modify dynamic programming to handle weights 
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Using edit distance for spelling correction 

Given query, first enumerate all character sequences within a preset 

(possibly weighted) edit distance 

Intersect this set with our list of “correct” words 

Then suggest terms in the intersection to the user. 

→ exercise in a few slides 
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Exercise 

❶Compute Levenshtein distance matrix for OSLO – SNOW 

❷What are the Levenshtein editing operations that transform cat into 

catcat? 
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How do I read out the editing operations that transform OSLO into SNOW? 



98 



99 



100 



101 



102 



103 



104 



105 



106 



107 



108 

Spelling correction 

Now that we can compute edit distance: how to use it for isolated 

word spelling correction. 

k-gram indexes for isolated word spelling correction. 

Context-sensitive spelling correction 

General issues 



Edit distance to all dictionary terms? 

 Given a (mis-spelled) query – do we compute its edit 

distance to every dictionary term? 

 Expensive and slow 

 Alternative? 

 How do we cut the set of candidate dictionary terms? 

 One possibility is to use n-gram overlap for this 

 This can also be used by itself for spelling correction. 

Sec. 3.3.4 



n-gram overlap 

 Enumerate all the n-grams in the query string as well as in 

the lexicon 

 Use the n-gram index (recall wild-card search) to retrieve 

all lexicon terms matching any of the query n-grams 

 Threshold by number of matching n-grams 

 Variants – weight by keyboard layout, etc. 

Sec. 3.3.4 



Example with trigrams 

 Suppose the text is november 

 Trigrams are nov, ove, vem, emb, mbe, ber. 

 The query is december 

 Trigrams are dec, ece, cem, emb, mbe, ber. 

 So 3 trigrams overlap (of 6 in each term) 

 How can we turn this into a normalized measure of 

overlap? 

Sec. 3.3.4 



One option – Jaccard coefficient 

 A commonly-used measure of overlap 

 Let X and Y be two sets; then the J.C. is 

 

 

 Equals 1 when X and Y have the same elements and zero 

when they are disjoint 

 X and Y don’t have to be of the same size 

 Always assigns a number between 0 and 1 

 Now threshold to decide if you have a match 

 E.g., if J.C. > 0.8, declare a match  

YXYX  /

Sec. 3.3.4 



Matching trigrams 

 Consider the query lord – we wish to identify words 

matching 2 of its 3 bigrams (lo, or, rd) 

lo 

or 

rd 

alone lord sloth 

lord morbid 

border card 

border 

ardent 

Standard postings “merge” will enumerate …  

Sec. 3.3.4 



Context-sensitive spell correction 

Sec. 3.3.5 



Context-sensitive correction 

 Need surrounding context to catch this. 

 First idea: retrieve dictionary terms close (in weighted 
edit distance) to each query term 

 Now try all possible resulting phrases with one word 
“fixed” at a time 

 flew from Istanbul Ataturk Airport  

 fled form Istanbul Ataturk Airport  

 flea form Istanbul Ataturk Airport  

 Hit-based spelling correction: Suggest the alternative 
that has lots of hits. 

 

Sec. 3.3.5 



Exercise 

 Suppose that for “flew form Istanbul Ataturk Airport”  

we have 7 alternatives for flew, 20 for form, 3 for Istanbul, 

2 for Ataturk, and 3 for airport. 

How many “corrected” phrases will we enumerate in this 

scheme? 

Sec. 3.3.5 



Another approach 

 Break phrase query into a conjunction of biwords 

(Lecture 2). 

 Look for biwords that need only one term corrected. 

 Enumerate phrase matches and … rank them! 

Sec. 3.3.5 



General issues in spell correction 

 We enumerate multiple alternatives for “Did you mean?” 

 Need to figure out which to present to the user 

 Use heuristics 

 The alternative hitting most docs 

 Query log analysis + tweaking 

 For especially popular, topical queries 

 Spell-correction is computationally expensive 

 Avoid running routinely on every query? 

 Run only on queries that matched few docs 

 

Sec. 3.3.5 



Soundex 



Soundex 

 Class of heuristics to expand a query into phonetic 

equivalents 

 Language specific – mainly for names 

 E.g., chebyshev  tchebycheff 

 

Sec. 3.4 



Soundex – typical algorithm 

 Turn every token to be indexed into a 4-character 

reduced form 

 Do the same with query terms 

 Build and search an index on the reduced forms 

 (when the query calls for a soundex match) 

 
 

Sec. 3.4 



Soundex – typical algorithm 
1. Retain the first letter of the word.  
2. Change all occurrences of the following letters to '0' (zero): 

  'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.  
3. Change letters to digits as follows:  

 B, F, P, V  1 
 C, G, J, K, Q, S, X, Z  2 
 D,T  3 
 L  4 
 M, N  5 
 R  6 

4. Remove all pairs of consecutive digits. 

5. Remove all zeros from the resulting string. 

6. Pad the resulting string with trailing zeros and return the 
first four positions, which will be of the form <uppercase 
letter> <digit> <digit> <digit>. 

Sec. 3.4 
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Example: Soundex of HERMAN 

Retain H 

ERMAN → 0RM0N 

0RM0N → 06505 

06505 → 06505 

06505 → 655 

Return H655 

Note: HERMANN will generate the same code 



Soundex 

 Soundex is the classic algorithm, provided by most 

databases (Oracle, Microsoft, …) 

 How useful is soundex? 

 Not very – for information retrieval 

 Okay for “high recall” tasks, though biased to names of 

certain nationalities 

 

Sec. 3.4 



What queries can we process? 

 We have 

 Positional inverted index with skip pointers 

 Wild-card index 

 Spell-correction 

 Soundex 

 Queries such as 

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski) 



References 

 Introduction to Information Retrieval, chapter 3 

 The slides were adapted from the book’s companion website: 

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html 

 

 A nice example and an applet for edit distance. 

 http://www.merriampark.com/ld.htm 

 

 Nice reading on spell correction: 

 Peter Norvig: How to write a spelling corrector  

http://norvig.com/spell-correct.html 

 

 Soundex Algorith demo: 

 http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top 

Sec. 3.5 
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