BLG 540E TEXT RETRIEVAL SYSTEMS

Term Weighting, Scoring and the Vector Space Model

Arzucan Özgür

Ch. 6

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- ▶ Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - ▶ This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- ▶ Query I:"flights from istanbul" → 900,000 hits
- Query 2: "flights from istanbul to narita": I hit
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - ▶ AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering over the (top) documents in the collection with respect to a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval models have normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - ▶ We just show the top k (≈ 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

Importance of ranking:

- Viewing abstracts: Users are a lot more likely to read the abstracts of the top-ranked pages (1, 2, 3, 4) than the abstracts of the lower ranked pages (7, 8, 9, 10).
- Clicking: Distribution is even more skewed for clicking
- In I out of 2 cases, users click on the top-ranked page.
- Even if the top-ranked page is not relevant, 30% of users will click on it.

- Getting the ranking right is very important.
- ▶ Getting the top-ranked page right is most important.

Ch. 6

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- ▶ Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Ch. 6

Jaccard coefficient

- Recall from Lecture 3: A commonly used measure of overlap of two sets A and B
- ▶ jaccard(A,B) = $|A \cap B| / |A \cup B|$
- \rightarrow jaccard(A,A) = I
- ▶ jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- ▶ Document I: caesar died in march
- Document 2: the long march

Ch. 6

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length

Recall (Lecture 1): Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in \mathbb{N}^{v} : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- ▶ John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model.

Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

Sec. 6.2

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

- ▶ $0 \rightarrow 0$, $I \rightarrow I$, $2 \rightarrow I$.3, $I0 \rightarrow 2$, $I000 \rightarrow 4$, etc.
- Score for a document-query pair: sum over terms t in both q and d:

$$score = \sum_{t \in q \cap d} (1 + \log t f_{t,d})$$

The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- ▶ → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- ► → For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - \triangleright df_t is an inverse measure of the informativeness of t
 - \rightarrow df_t $\leq N$
- ▶ We define the idf (inverse document frequency) of *t* by

$$idf_t = \log_{10} (N/df_t)$$

We use $log(N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	4
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = \log_{10} (N/df_t)$$

There is one idf value for each term t in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- ▶ The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Final ranking of documents for a query

Score
$$(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

Sec. 6.3

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

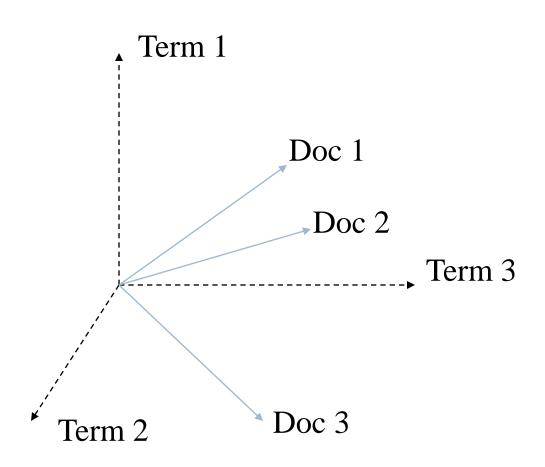
Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Sec. 6.3

Documents as vectors

- ▶ So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- ▶ These are very sparse vectors most entries are zero.

The Vector-space model



Queries as vectors

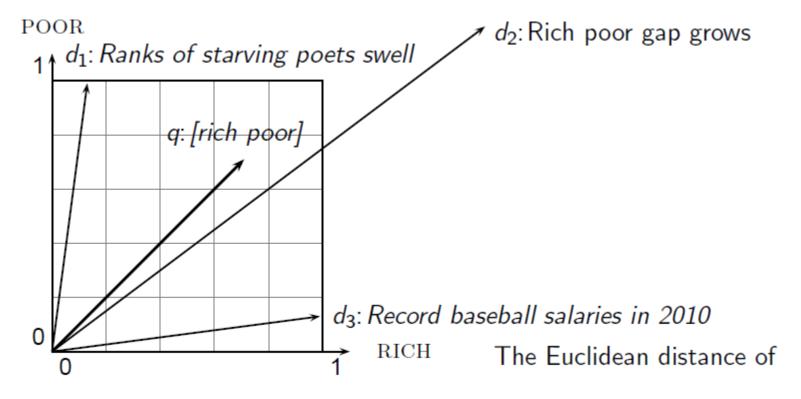
- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- ▶ proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

Sec. 6.3

Why distance is a bad idea



 \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

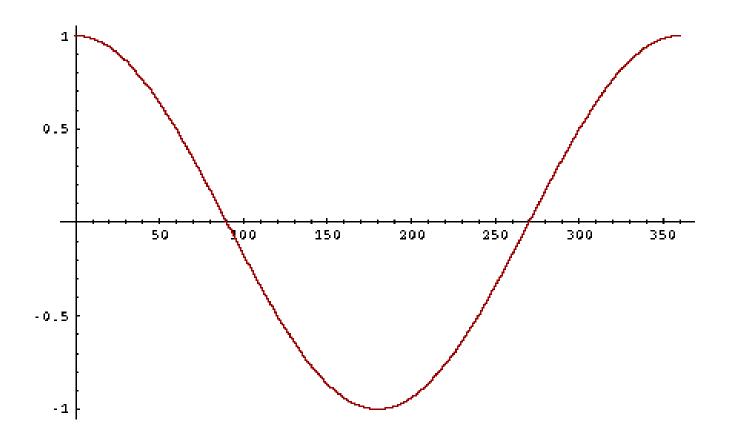
Use angle instead of distance

- ▶ Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines



▶ But how — and why — should we be computing cosines?

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L₂ norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- ▶ Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

Sec. 6.3

cosine(query,document)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

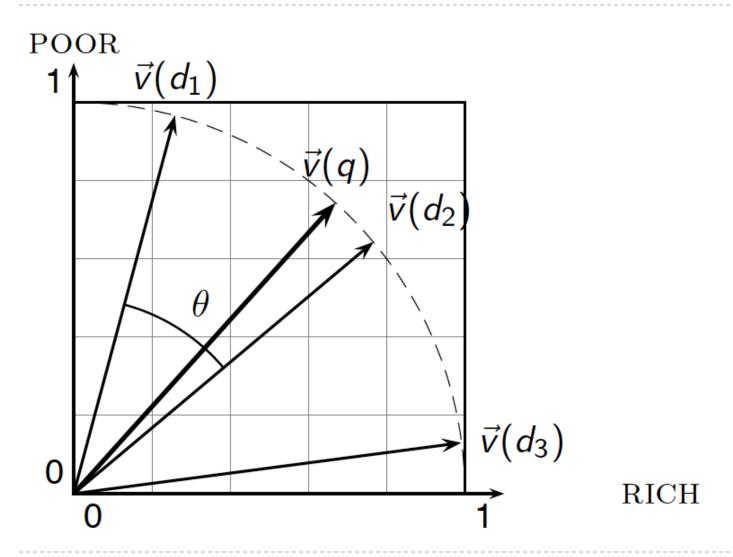
 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$
 for q, d length-normalized.

Cosine similarity illustrated



Cosine similarity amongst 3 documents

How similar are

the novels

SaS: Sense and

Sensibility (Jane Austen)

PaP: Pride and

Prejudice (Jane Austen), and

WH: Wuthering

Heights? (Emily Bronte)

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

After length normalization

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

cos(SaS,PaP) ≈

$$0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0$$

 ≈ 0.94

$$cos(SaS,WH) \approx 0.79$$

$$cos(PaP,WH) \approx 0.69$$

Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
 2 float Length[N]
 3 for each query term t
    do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf_{t,d}) in postings list
         do Scores[d] += w_{t,d} \times w_{t,q}
     Read the array Length
     for each d
 8
     do Scores[d] = Scores[d]/Length[d]
10 return Top K components of Scores[]
```

Sec. 6.4

tf-idf weighting has many variants

Term frequency		Docum	ent frequency	Normalization			
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1		
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$		
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{d}f_t}{\mathrm{d}f_t}\}$	u (pivoted unique)	1/u		
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$		
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$						

Columns headed 'n' are acronyms for weight schemes.

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- ▶ A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (l as first character), no idf and cosine normalization
- Query: logarithmic tf (l in leftmost column), idf (t in second column), cosine normalization ...

tf-idf example: lnc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term	Query					Document				Pro d	
	tf- raw	tf-wt	df	idf	wt	n'liz e	tf-raw	tf-wt	wt	n'liz e	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- ▶ Return the top K (e.g., K = 10) to the user

Computing Scores in a Complete Search System

Ch. 7

Outline

- Speeding up vector space ranking
- Putting together a complete search system
 - Will require learning about a number of miscellaneous topics and heuristics

Efficient cosine ranking

- Find the K docs in the collection "nearest" to the query \Rightarrow K largest query-doc cosines.
- Efficient ranking:
 - Computing a single cosine efficiently.
 - ▶ Choosing the *K* largest cosine values efficiently.
 - ▶ Can we do this without computing all N cosines?

Efficient cosine ranking

- What we're doing in effect: solving the K-nearest neighbor problem for a query vector
- In general, we do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes support this well

Special case – unweighted queries

- No weighting on query terms
 - Assume each query term occurs only once
- Then for ranking, don't need to normalize query vector

Faster cosine: unweighted query

```
FastCosineScore(q)
```

- 1 float Scores[N] = 0
- 2 for each d
- 3 do Initialize Length[d] to the length of doc d
- 4 for each query term t
- 5 **do** calculate $w_{t,q}$ and fetch postings list for t
- for each pair(d, $tf_{t,d}$) in postings list
- 7 **do** add $wf_{t,d}$ to Scores[d]
- 8 Read the array Length[d]
- 9 for each d
- 10 **do** Divide *Scores*[d] by *Length*[d]
- 11 return Top K components of Scores[]

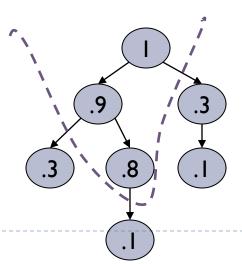
Figure 7.1 A faster algorithm for vector space scores.

Computing the *K* largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- Can we pick off docs with K highest cosines?
- ▶ Let \int = number of docs with nonzero cosines
 - We seek the K best of these J

Use heap for selecting top *K*

- Binary tree in which each node's value > the values of children
- Takes 2J operations to construct, then each of K "winners" read off in 2log J steps.
- ▶ For J=IM, K=I00, this is about I0% of the cost of sorting.



Bottlenecks

- Primary computational bottleneck in scoring: <u>cosine</u> <u>computation</u>
- Can we avoid all this computation?
- Yes, but may sometimes get it wrong
 - ▶ a doc not in the top K may creep into the list of K output docs
 - Is this such a bad thing?

Cosine similarity is only a proxy

- User has a task and a query formulation
- Cosine matches docs to query
- Thus cosine is anyway a proxy for user happiness
- If we get a list of K docs "close" to the top K by cosine measure, should be ok

Sec. 7.1.

Generic approach

- Find a set A of contenders, with K < |A| << N
 - A does not necessarily contain the top K, but has many docs from among the top K
 - ▶ Return the top *K* docs in *A*
- Think of A as <u>pruning</u> non-contenders
- The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach

Index elimination

- Basic algorithm FastCosineScore only considers docs containing at least one query term
- ▶ Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms

Sec. 7.1.2

High-idf query terms only

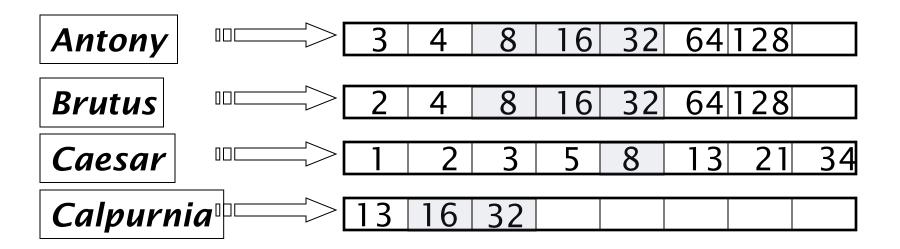
- For a query such as catcher in the rye
- Only accumulate scores from catcher and rye
- Intuition: in and the contribute little to the scores and so don't alter rank-ordering much
- Benefit:
 - ▶ Postings of low-idf terms have many docs \rightarrow these (many) docs get eliminated from set A of contenders

Sec. 7.1.2

Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
- Easy to implement in postings traversal

3 of 4 query terms



Scores only computed for docs 8, 16 and 32.

Champion lists

- Precompute for each dictionary term t, the r docs of highest weight in t's postings
 - Call this the champion list for t
 - \blacktriangleright (aka <u>fancy list</u> or <u>top docs</u> for t)
- Note that r has to be chosen at index build time
 - ▶ Thus, it's possible that r < K
- At query time, only compute scores for docs in the champion list of some query term
 - ▶ Pick the K top-scoring docs from amongst these

Sec. 7.1.4

Static quality scores

- We want top-ranking documents to be both relevant and authoritative
- Relevance is being modeled by cosine scores
- Authority is typically a query-independent property of a document
- Examples of authority signals
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - (Pagerank)

Modeling authority

- Assign to each document a query-independent quality score in [0,1] to each document d
 - \blacktriangleright Denote this by g(d)
- Thus, a quantity like the number of citations is scaled into [0,1]

Sec. 7.1.4

Net score

- Consider a simple total score combining cosine relevance and authority
- ▶ net-score(q,d) = g(d) + cosine(q,d)
 - Can use some other linear combination than an equal weighting
 - Indeed, any function of the two "signals" of user happiness –
 more later
- ▶ Now we seek the top *K* docs by <u>net score</u>

Top *K* by net score – fast methods

- First idea: Order all postings by g(d)
- Key: this is a common ordering for all postings
- ▶ Thus, can concurrently traverse query terms' postings for
 - Postings intersection
 - Cosine score computation

Why order postings by g(d)?

- Under g(d)-ordering, top-scoring docs likely to appear early in postings traversal
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - Short of computing scores for all docs in postings

Sec. 7.1.4

High and low lists

- For each term, we maintain two postings lists called high and low
 - Think of high as the champion list
- When traversing postings on a query, only traverse high lists first
 - If we get more than K docs, select the top K and stop
 - ▶ Else proceed to get docs from the *low* lists
- Can be used even for simple cosine scores, without global quality g(d)
- A means for segmenting index into two <u>tiers</u>

Sec. 7.1.5

Impact-ordered postings

- We only want to compute scores for docs for which $wf_{t,d}$ is high enough
- We sort each postings list by $wf_{t,d}$
- Now: not all postings in a common order!
- ▶ How do we compute scores in order to pick off top *K*?
 - Two ideas follow

1. Early termination

- ▶ When traversing t's postings, stop early after either
 - a fixed number of r docs
 - \triangleright $wf_{t,d}$ drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union

2. idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine or some other net scores

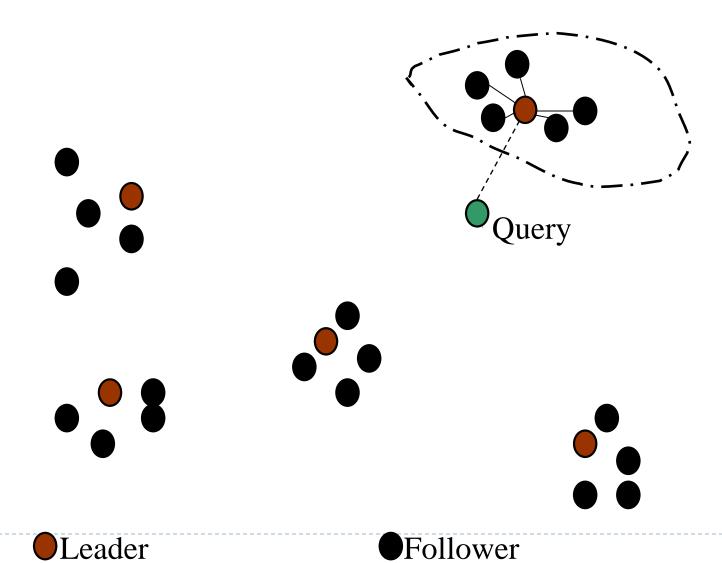
Cluster pruning: preprocessing

- ▶ Pick \sqrt{N} docs at random: call these leaders
- For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - Likely: each leader has $\sim \sqrt{N}$ followers.

Cluster pruning: query processing

- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek K nearest docs from among L's followers.

Visualization



Why use random sampling

- ▶ Fast
- ▶ Leaders reflect data distribution

General variants

- ▶ Have each follower attached to bI=3 (say) nearest leaders.
- From query, find b2=4 (say) nearest leaders and their followers.

Parametric and zone indexes

- Thus far, a doc has been a sequence of terms
- In fact documents have multiple parts, some with special semantics:
 - Author
 - Title
 - Date of publication
 - Language
 - Format
 - etc.
- ▶ These constitute the metadata about a document

Fields

- We sometimes wish to search by these metadata
 - E.g., find docs authored by William Shakespeare in the year 1601, containing alas poor Yorick
- Year = 1601 is an example of a field
- Also, author last name = shakespeare, etc
- Field or parametric index: postings for each field value
 - Sometimes build range trees (e.g., for dates)
- Field query typically treated as conjunction
 - (doc *must* be authored by shakespeare)

Zone

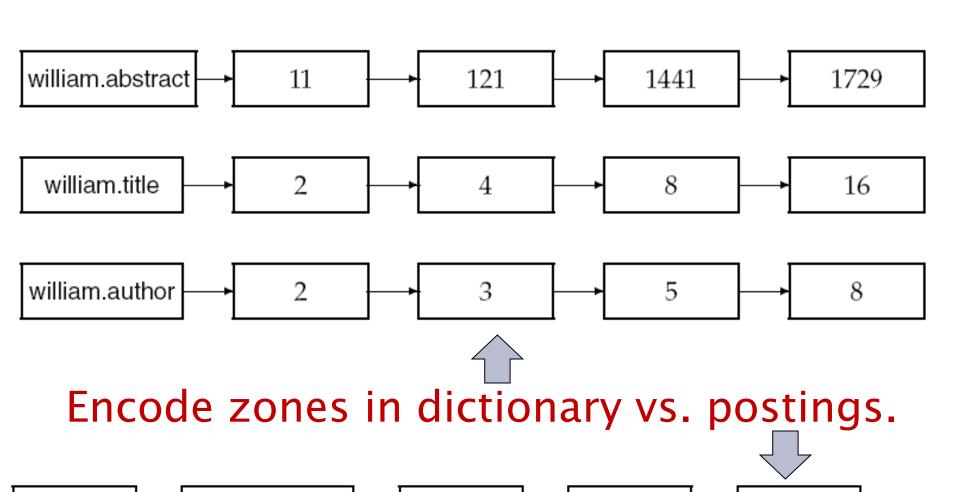
- A zone is a region of the doc that can contain an arbitrary amount of text e.g.,
 - Title
 - Abstract
 - References ...
- Build inverted indexes on zones as well to permit querying
- ▶ E.g., "find docs with merchant in the title zone and matching the query gentle rain"

Sec. 6.1

Example zone indexes

2.author, 2.title

william



3.author

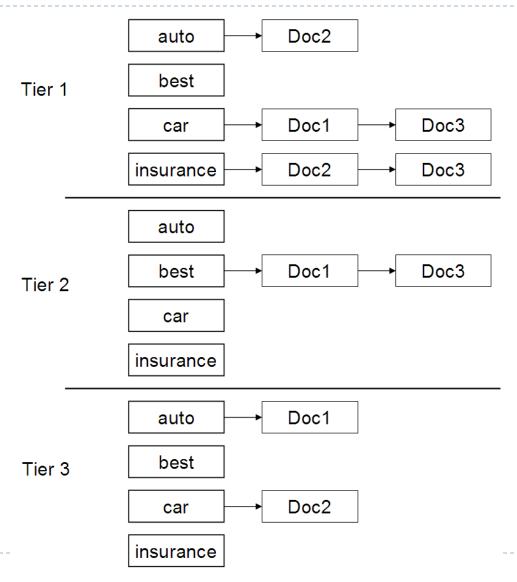
4.title

5.author

Tiered indexes

- Break postings up into a hierarchy of lists
 - Most important
 - ...
 - Least important
- \blacktriangleright Can be done by g(d) or another measure
- Inverted index thus broken up into <u>tiers</u> of decreasing importance
- At query time use top tier unless it fails to yield K docs
 - If so drop to lower tiers

Example tiered index



Query term proximity

- Free text queries: just a set of terms typed into the query box – common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let w be the smallest window in a doc containing all query terms, e.g.,
- For the query strained mercy the smallest window in the doc The quality of mercy is not strained is 4 (words)
- Would like scoring function to take this into.

Query parsers

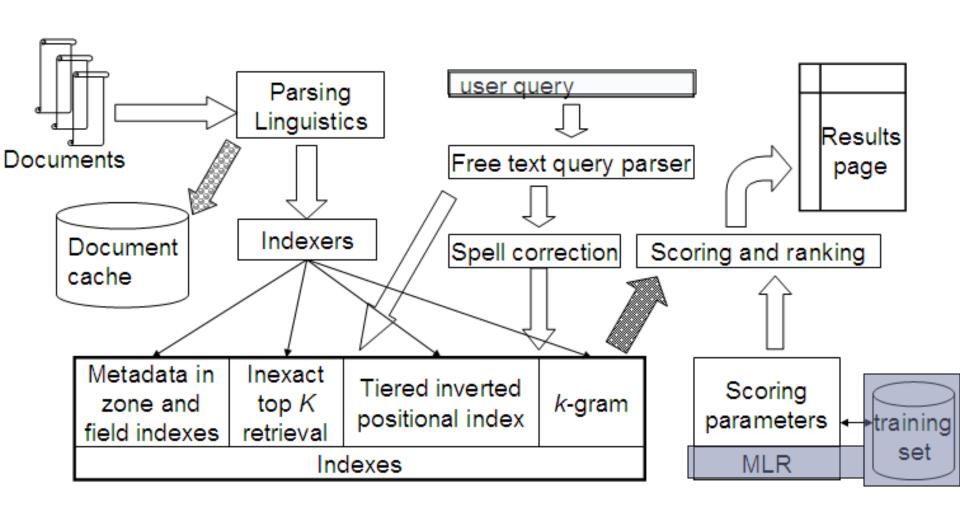
- Free text query from user may in fact spawn one or more queries to the indexes, e.g. query rising interest rates
 - Run the query as a phrase query
 - If <K docs contain the phrase rising interest rates, run the two phrase queries rising interest and interest rates
 - If we still have <K docs, run the vector space query rising interest rates
 - Rank matching docs by vector space scoring
- ▶ This sequence is issued by a query parser

Aggregate scores

- We've seen that score functions can combine cosine, static quality, proximity, etc.
- How do we know the best combination?
- Some applications expert-tuned
- Increasingly common: machine-learned

Sec. 7.2.4

Putting it all together



References

- ▶ Introduction to Information Retrieval, chapters 6 & 7.
- ▶ The slides were adapted from
 - the book's companion website:
 - http://nlp.stanford.edu/IR-book/information-retrieval-book.html

