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Ranked retrieval 

 Thus far, our queries have all been Boolean. 

 Documents either match or don’t. 

 Good for expert users with precise understanding of 

their needs and the collection. 

 Also good for applications:  Applications can easily consume 

1000s of results. 

 Not good for the majority of users. 

 Most users incapable of writing Boolean queries (or they are, 

but they think it’s too much work). 

 Most users don’t want to wade through 1000s of results. 

 This is particularly true of web search. 
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Problem with Boolean search: 

feast or famine 

 Boolean queries often result in either too few (=0) or 

too many (1000s) results. 

 Query 1: “flights from istanbul” → 900,000 hits 

 Query 2: “flights from istanbul to narita”: 1 hit 

 It takes a lot of skill to come up with a query that 

produces a manageable number of hits. 

 AND gives too few; OR gives too many 
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Ranked retrieval models 

 Rather than a set of documents satisfying a query 

expression, in ranked retrieval models, the system returns 

an ordering over the (top) documents in the collection 

with respect to a query 

 Free text queries: Rather than a query language of 

operators and expressions, the user’s query is just one or 

more words in a human language 

 In principle, there are two separate choices here, but in 

practice, ranked retrieval models have normally been 

associated with free text queries and vice versa 
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Feast or famine: not a problem in ranked 

retrieval 

 When a system produces a ranked result set, large result 

sets are not an issue 

 Indeed, the size of the result set is not an issue 

 We just show the top k ( ≈ 10) results 

 We don’t overwhelm the user 

 

 Premise: the ranking algorithm works 
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Importance of ranking: 

 Viewing abstracts: Users are a lot more likely to read the 

abstracts of the top-ranked pages (1, 2, 3, 4) than the 

abstracts of the lower ranked pages (7, 8, 9, 10). 

 Clicking: Distribution is even more skewed for clicking 

 In 1 out of 2 cases, users click on the top-ranked page. 

 Even if the top-ranked page is not relevant, 30% of users 

will click on it. 

 

 Getting the ranking right is very important. 

 Getting the top-ranked page right is most important. 



Scoring as the basis of ranked retrieval 

 We wish to return in order the documents most likely to 

be useful to the searcher 

 How can we rank-order the documents in the collection 

with respect to a query? 

 Assign a score – say in [0, 1] – to each document 

 This score measures how well document and query 

“match”. 

Ch. 6 



Query-document matching scores 

 We need a way of assigning a score to a query/document 

pair 

 Let’s start with a one-term query 

 If the query term does not occur in the document: score 

should be 0 

 The more frequent the query term in the document, the 

higher the score (should be) 

 We will look at a number of alternatives for this. 
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Jaccard coefficient 

 Recall from Lecture 3:  A commonly used measure of 

overlap of two sets A and B 

 jaccard(A,B) = |A ∩ B| / |A ∪ B| 

 jaccard(A,A) = 1 

 jaccard(A,B) = 0 if A ∩ B = 0 

 A and B don’t have to be the same size. 

 Always assigns a number between 0 and 1. 
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Jaccard coefficient: Scoring example 

 What is the query-document match score that the 

Jaccard coefficient computes for each of the two 

documents below? 

 Query: ides of march 

 Document 1: caesar died in march 

 Document 2: the long march 
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Issues with Jaccard for scoring 

 It doesn’t consider term frequency (how many times a 

term occurs in a document) 

 Rare terms in a collection are more informative than 

frequent terms. Jaccard doesn’t consider this information 

 We need a more sophisticated way of normalizing for 

length 
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Recall (Lecture 1): Binary term-document 

incidence matrix 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}
|V| 
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Term-document count matrices 

 Consider the number of occurrences of a term in a 

document:  

 Each document is a count vector in ℕv: a column below  

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0
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Bag of words model 

 Vector representation doesn’t consider the ordering of 

words in a document 

 John is quicker than Mary and Mary is quicker than John have 

the same vectors 

 This is called the bag of words model. 



Term frequency tf 

 The term frequency tft,d of term t in document d is 

defined as the number of times that t occurs in d. 

 We want to use tf when computing query-document 

match scores. But how? 

 Raw term frequency is not what we want: 

 A document with 10 occurrences of the term is more relevant 

than a document with 1 occurrence of the term. 

 But not 10 times more relevant. 

 Relevance does not increase proportionally with term 

frequency. 



Log-frequency weighting 

 The log frequency weight of term t in d is 

 

 

 

 

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc. 

 Score for a document-query pair: sum over terms t in both q and d: 

 

    score 
 

 

 The score is 0 if none of the query terms is present in the 
document. 
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Document frequency 

 Rare terms are more informative than frequent terms 

 Recall stop words 

 Consider a term in the query that is rare in the collection 

(e.g., arachnocentric) 

 A document containing this term is very likely to be 

relevant to the query arachnocentric 

 → We want a high weight for rare terms like arachnocentric. 
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Document frequency, continued 

 Frequent terms are less informative than rare terms 

 Consider a query term that is frequent in the collection 

(e.g., high, increase, line) 

 A document containing such a term is more likely to be 

relevant than a document that doesn’t 

 But it’s not a sure indicator of relevance. 

 → For frequent terms, we want high positive weights for 

words like high, increase, and line 

 But lower weights than for rare terms. 

 We will use document frequency (df) to capture this. 
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idf weight 

 dft is the document frequency of t: the number of 

documents that contain t 

 dft is an inverse measure of the informativeness of t 

 dft   N 

 We define the idf (inverse document frequency) of t by 

 

 

 

 We use log (N/dft) instead of N/dft to “dampen” the effect of 

idf. 

)/df( log  idf 10 tt N

Will turn out the base of the log is immaterial. 
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idf example, suppose N = 1 million 

term dft idft 

calpurnia 1 6 

animal 100 4 

sunday 1,000 4 

fly 10,000 2 

under 100,000 1 

the 1,000,000 0 

There is one idf value for each term t in a collection. 
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Effect of idf on ranking 

 Does idf have an effect on ranking for one-term queries, 

like 

 iPhone 

 idf has no effect on ranking one term queries 

 idf affects the ranking of documents for queries with at least 

two terms 

 For the query capricious person, idf weighting makes 

occurrences of capricious count for much more in the final 

document ranking than occurrences of person. 



Collection vs. Document frequency 

 The collection frequency of t is the number of 
occurrences of t in the collection, counting multiple 
occurrences. 

 Example: 

 

 

 

 

 

 

 Which word is a better search term (and should get a 
higher weight)? 

Word Collection frequency Document frequency 

insurance 10440 3997 

try 10422 8760 

Sec. 6.2.1 



tf-idf weighting 

 The tf-idf weight of a term is the product of its tf weight 

and its idf weight. 

 

 

 Best known weighting scheme in information retrieval 

 Note: the “-” in tf-idf is a hyphen, not a minus sign! 

 Alternative names: tf.idf, tf x idf 

 Increases with the number of occurrences within a 

document 

 Increases with the rarity of the term in the collection 

)df/(log)tflog1(w 10,, tdt N
dt
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Final ranking of documents for a query 



Score(q,d)  tf.idft,d
tqd



Sec. 6.2.2 



Binary → count → weight matrix 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 

vector of tf-idf weights ∈ R|V| 
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Documents as vectors 

 So we have a |V|-dimensional vector space 

 Terms are axes of the space 

 Documents are points or vectors in this space 

 Very high-dimensional: tens of millions of dimensions 

when you apply this to a web search engine 

 These are very sparse vectors - most entries are zero. 
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The Vector-space model 

Term 1 

Term 2 

Term 3 

Doc 1 

Doc 2 

Doc 3 



Queries as vectors 

 Key idea 1: Do the same for queries: represent them as 

vectors in the space 

 Key idea 2: Rank documents according to their proximity 

to the query in this space 

 proximity = similarity of vectors 

 proximity ≈ inverse of distance 

 Recall:  We do this because we want to get away from the 

you’re-either-in-or-out Boolean model. 

 Instead: rank more relevant documents higher than less 

relevant documents 
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Formalizing vector space proximity 

 First cut: distance between two points 

 ( = distance between the end points of the two vectors) 

 Euclidean distance? 

 Euclidean distance is a bad idea . . . 

 . . . because Euclidean distance is large for vectors of 

different lengths. 
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Why distance is a bad idea 
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Use angle instead of distance 

 Thought experiment: take a document d and append it to 

itself. Call this document d′. 

 “Semantically” d and d′ have the same content 

 The Euclidean distance between the two documents can 

be quite large 

 The angle between the two documents is 0, 

corresponding to maximal similarity. 

 

 Key idea: Rank documents according to angle with query. 
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From angles to cosines 

 The following two notions are equivalent. 

 Rank documents in decreasing order of the angle between 

query and document 

 Rank documents in increasing order  of 

cosine(query,document) 

 Cosine is a monotonically decreasing function for the 

interval [0o, 180o] 
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From angles to cosines 

 But how – and why – should we be computing cosines? 
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Length normalization 

 A vector can be (length-) normalized by dividing each of 

its components by its length – for this we use the L2 

norm: 

 

 Dividing a vector by its L2 norm makes it a unit (length) 

vector (on surface of unit hypersphere) 

 Effect on the two documents d and d′ (d appended to 

itself) from earlier slide: they have identical vectors after 

length-normalization. 

 Long and short documents now have comparable weights 


i ixx 2

2
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cosine(query,document) 
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Dot product Unit vectors 

q
i
 is the tf-idf weight of term i in the query 

d
i
 is the tf-idf weight of term i in the document 

 

cos(q,d) is the cosine similarity of q and d … or, 

equivalently, the cosine of the angle between q and d. 
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Cosine for length-normalized vectors 

 For length-normalized vectors, cosine similarity is simply 

the dot product (or scalar product): 

 

 

 

 

                                   for q, d length-normalized. 

 



cos(q ,d )  q d  qidi
i1

V





Cosine similarity illustrated 
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Cosine similarity amongst 3 documents 

term SaS PaP WH 

affection 115 58  20 

jealous 10 7 11 

gossip 2 0 6 

wuthering 0 0 38 

How similar are 

the novels 

SaS: Sense and 

Sensibility (Jane Austen) 

PaP: Pride and 

Prejudice (Jane Austen), 
and 

WH: Wuthering 

Heights? (Emily 
Bronte) 

Term frequencies (counts) 

Sec. 6.3 

Note: To simplify this example, we don’t do idf weighting. 



3 documents example contd. 

Log frequency weighting 

term SaS PaP WH 

affection 3.06 2.76 2.30 

jealous 2.00 1.85 2.04 

gossip 1.30 0 1.78 

wuthering 0 0 2.58 

After length normalization 

term SaS PaP WH 

affection 0.789 0.832 0.524 

jealous 0.515 0.555 0.465 

gossip 0.335 0 0.405 

wuthering 0 0 0.588 

cos(SaS,PaP) ≈ 

0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 

≈ 0.94 

cos(SaS,WH) ≈ 0.79 

cos(PaP,WH) ≈ 0.69 
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Computing cosine scores 
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tf-idf weighting has many variants 

Columns headed ‘n’ are acronyms for weight schemes. 
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Weighting may differ in queries vs 

documents 

 Many search engines allow for different weightings for 

queries vs. documents 

 SMART Notation: denotes the combination in use in an 

engine, with the notation ddd.qqq, using the acronyms 

from the previous table 

 A very standard weighting scheme is: lnc.ltc 

 Document: logarithmic tf (l as first character), no idf and 

cosine normalization 

 Query: logarithmic tf (l in leftmost column), idf (t in 

second column), cosine normalization … 
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tf-idf example: lnc.ltc 

Term Query Document Pro

d 

tf-

raw 

tf-wt df idf wt n’liz

e 

tf-raw tf-wt wt n’liz

e 

auto 0 0 5000 2.3  0 0 1 1 1 0.52 0 

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0 

car 1  1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27 

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53 

Document: car insurance auto insurance 

Query: best car insurance 

Exercise: what is N, the number of docs? 

Score = 0+0+0.27+0.53 = 0.8 

Doc length = 



12  02 12 1.32 1.92
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Summary – vector space ranking 

 Represent the query as a weighted tf-idf vector 

 Represent each document as a weighted tf-idf vector 

 Compute the cosine similarity score for the query vector 

and each document vector 

 Rank documents with respect to the query by score 

 Return the top K (e.g., K = 10) to the user 



Computing Scores in a Complete 

Search System 



Outline 

 Speeding up vector space ranking 

 Putting together a complete search 

system 

 Will require learning about  a number of 

miscellaneous topics and heuristics 
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Efficient cosine ranking 

 Find the K docs in the collection “nearest” to the 

query  K largest query-doc cosines. 

 Efficient ranking: 

 Computing a single cosine efficiently. 

 Choosing the K largest cosine values efficiently. 

 Can we do this without computing all N cosines? 
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Efficient cosine ranking 

 What we’re doing in effect: solving the K-nearest neighbor 

problem for a query vector 

 In general, we do not know how to do this  efficiently for 

high-dimensional spaces 

 But it is solvable for short queries, and standard indexes 

support this well 

Sec. 7.1 



Special case – unweighted queries 

 No weighting on query terms 

 Assume each query term occurs only once 

 Then for ranking, don’t need to normalize query vector 
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Faster cosine: unweighted query 
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Computing the K largest cosines: selection 

vs. sorting 

 Typically we want to retrieve the top K docs (in the 

cosine ranking for the query) 

 not to totally order all docs in the collection 

 Can we pick off docs with K highest cosines? 

 Let J = number of docs with nonzero cosines 

 We seek the K best of these J 
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Use heap for selecting top K 

 Binary tree in which each node’s value > the values of 

children 

 Takes 2J operations to construct, then each of K “winners” 

read off in 2log J steps. 

 For J=1M, K=100, this is about 10% of the cost of sorting. 

1 

.9 .3 

.8 .3 

.1 

.1 
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Bottlenecks 

 Primary computational bottleneck in scoring: cosine 

computation 

 Can we avoid all this computation? 

 Yes, but may sometimes get it wrong 

 a doc not in the top K may creep into the list of K 

output docs 

 Is this such a bad thing? 

Sec. 7.1.1 



Cosine similarity is only a proxy 

 User has a task and a query formulation 

 Cosine matches docs to query 

 Thus cosine is anyway a proxy for user happiness 

 If we get a list of K docs “close” to the top K by cosine 

measure, should be ok 
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Generic approach 

 Find a set A  of contenders, with K < |A| << N 

 A does not necessarily contain the top K, but has many 

docs from among the top K 

 Return the top K docs in A 

 Think of A as pruning non-contenders 

 The same approach is also used for other (non-cosine) 

scoring functions 

 Will look at several schemes following this approach 
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Index elimination 

 Basic algorithm FastCosineScore only considers docs 

containing at least one query term 

 Take this further: 

 Only consider high-idf query terms 

 Only consider docs containing many query terms 
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High-idf query terms only 

 For a query such as catcher in the rye 

 Only accumulate scores from catcher and rye 

 Intuition: in and the contribute little to the scores and so 

don’t alter rank-ordering much 

 Benefit: 

 Postings of low-idf terms have many docs  these (many) docs 

get eliminated from set A of contenders 
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Docs containing many query terms 

 Any doc with at least one query term is a candidate for 

the top K output list 

 For multi-term queries, only compute scores for docs 

containing several of the query terms 

 Say, at least 3 out of 4 

 Easy to implement in postings traversal 
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3 of 4 query terms 

Brutus 

Caesar 

Calpurnia 

1 2 3 5 8 13 21 34 

2 4 8 16 32 64 128 

13 16 

Antony 3 4 8 16 32 64 128 

32 

Scores only computed for docs 8, 16 and 32. 
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Champion lists 

 Precompute for each dictionary term t, the r docs of 

highest weight in t’s postings 

 Call this the champion list for t 

 (aka fancy list or top docs for t) 

 Note that r has to be chosen at index build time 

 Thus, it’s possible that r < K 

 At query time, only compute scores for docs in the 

champion list of some query term 

 Pick the K top-scoring docs from amongst these 
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Static quality scores 

 We want top-ranking documents to be both relevant and 

authoritative 

 Relevance is being modeled by cosine scores 

 Authority is typically a query-independent property of a 

document 

 Examples of authority signals 

 Wikipedia among websites 

 Articles in certain newspapers 

 A paper with many citations 

 (Pagerank) 
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Modeling authority 

 Assign to each document a query-independent quality 

score in [0,1] to each document d 

 Denote this by g(d) 

 Thus, a quantity like the number of citations is scaled into 

[0,1] 
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Net score 

 Consider a simple total score combining cosine relevance 

and authority 

 net-score(q,d) = g(d) + cosine(q,d) 

 Can use some other linear combination than an equal 

weighting 

 Indeed, any function of the two “signals” of user happiness – 

more later 

 Now we seek the top K docs by net score 
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Top K by net score – fast methods 

 First idea: Order all postings by g(d) 

 Key: this is a common ordering for all postings 

 Thus, can concurrently traverse query terms’ postings for 

 Postings intersection 

 Cosine score computation 
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Why order postings by g(d)? 

 Under g(d)-ordering, top-scoring docs likely to appear 

early in postings traversal 

 In time-bound applications (say, we have to return 

whatever search results we can in 50 ms), this allows us 

to stop postings traversal early 

 Short of computing scores for all docs in postings 
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High and low lists 

 For each term, we maintain two postings lists called high 

and low 

 Think of high as the champion list 

 When traversing postings on a query, only traverse high 

lists first 

 If we get more than K docs, select the top K and stop 

 Else proceed to get docs from the low lists 

 Can be used even for simple cosine scores, without global 

quality g(d) 

 A means for segmenting index into two tiers 
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Impact-ordered postings 

 We only want to compute scores for docs for which wft,d 

is high enough 

 We sort each postings list by wft,d 

 Now: not all postings in a common order! 

 How do we compute scores in order to pick off top K? 

 Two ideas follow 
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1. Early termination 

 When traversing t’s postings, stop early after either 

 a fixed number of r docs 

 wft,d  drops below some threshold 

 Take the union of the resulting sets of docs 

 One from the postings of each query term 

 Compute only the scores for docs in this union 
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2. idf-ordered terms 

 When considering the postings of query terms 

 Look at them in order of decreasing idf 

 High idf terms likely to contribute most to score 

 As we update score contribution from each query term 

 Stop if doc scores relatively unchanged 

 Can apply to cosine or some other net scores 
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Cluster pruning: preprocessing 

 Pick N docs at random: call these leaders 

 For every other doc, pre-compute nearest 

leader 

 Docs attached to a leader: its followers; 

 Likely: each leader has ~ N followers. 
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 Cluster pruning: query processing 

 Process a query as follows: 

 Given query Q, find its nearest leader L. 

 Seek K nearest docs from among L’s 

followers. 
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Visualization 

Query 

Leader Follower 
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Why use random sampling 

 Fast 

 Leaders reflect data distribution 
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General variants 

 Have each follower attached to b1=3 (say) nearest 

leaders. 

 From query, find b2=4 (say) nearest leaders and their 

followers. 
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Parametric and zone indexes 

 Thus far, a doc has been a sequence of terms 

 In fact documents have multiple parts, some with special 

semantics: 

 Author 

 Title 

 Date of publication 

 Language 

 Format 

 etc. 

 These constitute the metadata about a document 
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Fields 

 We sometimes wish to search by these metadata 

 E.g., find docs authored by William Shakespeare in the year 

1601, containing alas poor Yorick 

 Year = 1601 is an example of a field 

 Also, author last name = shakespeare, etc 

 Field or parametric index: postings for each field value 

 Sometimes build range trees (e.g., for dates) 

 Field query typically treated as conjunction 

 (doc must be authored by shakespeare) 
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Zone 

 A zone is a region of the doc that can contain an 

arbitrary amount of text e.g., 

 Title 

 Abstract 

 References … 

 Build inverted indexes on zones as well to permit 

querying 

 E.g., “find docs with merchant in the title zone and 

matching the query gentle rain” 
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Example zone indexes 

Encode zones in dictionary vs. postings. 
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Tiered indexes 

 Break postings up into a hierarchy of lists 

 Most important 

 … 

 Least important 

 Can be done by g(d) or another measure 

 Inverted index thus broken up into tiers of decreasing 

importance 

 At query time use top tier unless it fails to yield K docs 

 If so drop to lower tiers 
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Example tiered index 
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Query term proximity 

 Free text queries: just a set of terms typed into the query 

box – common on the web 

 Users prefer docs in which query terms occur within 

close proximity of each other 

 Let w be the smallest window in a doc containing all 

query terms, e.g., 

 For the query strained mercy the smallest window in the 

doc The quality of mercy is not strained is 4 (words) 

 Would like scoring function to take this into. 
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Query parsers 

 Free text query from user may in fact spawn one or more 

queries to the indexes, e.g. query rising interest rates 

 Run the query as a phrase query  

 If <K docs contain the phrase rising interest rates, run the two 

phrase queries rising interest and interest rates 

 If we still have <K docs, run the vector space query rising 

interest rates 

 Rank matching docs by vector space scoring 

 This sequence is issued by a query parser 
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Aggregate scores 

 We’ve seen that score functions can combine cosine, 

static quality, proximity, etc. 

 How do we know the best combination? 

 Some applications – expert-tuned 

 Increasingly common: machine-learned 
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Putting it all together 

Sec. 7.2.4 



References 

 Introduction to Information Retrieval, chapters 6 & 7. 

 The slides were adapted from 

 the book’s companion website: 

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html 

Sec. 3.5 

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

