
BLG 540E

TEXT RETRIEVAL SYSTEMS

Arzucan Özgür

Term Weighting, Scoring and the
Vector Space Model

Faculty of Computer and Informatics, İstanbul Techical University

March 11, 2011

Ranked retrieval

 Thus far, our queries have all been Boolean.

 Documents either match or don’t.

 Good for expert users with precise understanding of

their needs and the collection.

 Also good for applications: Applications can easily consume

1000s of results.

 Not good for the majority of users.

 Most users incapable of writing Boolean queries (or they are,

but they think it’s too much work).

 Most users don’t want to wade through 1000s of results.

 This is particularly true of web search.

Ch. 6

Problem with Boolean search:

feast or famine

 Boolean queries often result in either too few (=0) or

too many (1000s) results.

 Query 1: “flights from istanbul” → 900,000 hits

 Query 2: “flights from istanbul to narita”: 1 hit

 It takes a lot of skill to come up with a query that

produces a manageable number of hits.

 AND gives too few; OR gives too many

Ch. 6

Ranked retrieval models

 Rather than a set of documents satisfying a query

expression, in ranked retrieval models, the system returns

an ordering over the (top) documents in the collection

with respect to a query

 Free text queries: Rather than a query language of

operators and expressions, the user’s query is just one or

more words in a human language

 In principle, there are two separate choices here, but in

practice, ranked retrieval models have normally been

associated with free text queries and vice versa

4

Feast or famine: not a problem in ranked

retrieval

 When a system produces a ranked result set, large result

sets are not an issue

 Indeed, the size of the result set is not an issue

 We just show the top k (≈ 10) results

 We don’t overwhelm the user

 Premise: the ranking algorithm works

Ch. 6

Importance of ranking:

 Viewing abstracts: Users are a lot more likely to read the

abstracts of the top-ranked pages (1, 2, 3, 4) than the

abstracts of the lower ranked pages (7, 8, 9, 10).

 Clicking: Distribution is even more skewed for clicking

 In 1 out of 2 cases, users click on the top-ranked page.

 Even if the top-ranked page is not relevant, 30% of users

will click on it.

 Getting the ranking right is very important.

 Getting the top-ranked page right is most important.

Scoring as the basis of ranked retrieval

 We wish to return in order the documents most likely to

be useful to the searcher

 How can we rank-order the documents in the collection

with respect to a query?

 Assign a score – say in [0, 1] – to each document

 This score measures how well document and query

“match”.

Ch. 6

Query-document matching scores

 We need a way of assigning a score to a query/document

pair

 Let’s start with a one-term query

 If the query term does not occur in the document: score

should be 0

 The more frequent the query term in the document, the

higher the score (should be)

 We will look at a number of alternatives for this.

Ch. 6

Jaccard coefficient

 Recall from Lecture 3: A commonly used measure of

overlap of two sets A and B

 jaccard(A,B) = |A ∩ B| / |A ∪ B|

 jaccard(A,A) = 1

 jaccard(A,B) = 0 if A ∩ B = 0

 A and B don’t have to be the same size.

 Always assigns a number between 0 and 1.

Ch. 6

Jaccard coefficient: Scoring example

 What is the query-document match score that the

Jaccard coefficient computes for each of the two

documents below?

 Query: ides of march

 Document 1: caesar died in march

 Document 2: the long march

Ch. 6

Issues with Jaccard for scoring

 It doesn’t consider term frequency (how many times a

term occurs in a document)

 Rare terms in a collection are more informative than

frequent terms. Jaccard doesn’t consider this information

 We need a more sophisticated way of normalizing for

length

Ch. 6

Recall (Lecture 1): Binary term-document

incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}
|V|

Sec. 6.2

Term-document count matrices

 Consider the number of occurrences of a term in a

document:

 Each document is a count vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

Bag of words model

 Vector representation doesn’t consider the ordering of

words in a document

 John is quicker than Mary and Mary is quicker than John have

the same vectors

 This is called the bag of words model.

Term frequency tf

 The term frequency tft,d of term t in document d is

defined as the number of times that t occurs in d.

 We want to use tf when computing query-document

match scores. But how?

 Raw term frequency is not what we want:

 A document with 10 occurrences of the term is more relevant

than a document with 1 occurrence of the term.

 But not 10 times more relevant.

 Relevance does not increase proportionally with term

frequency.

Log-frequency weighting

 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

 Score for a document-query pair: sum over terms t in both q and d:

 score

 The score is 0 if none of the query terms is present in the
document.

otherwise 0,

0 tfif, tflog 1

10 t,dt,d

t,dw

dqt dt) tflog (1 ,

Sec. 6.2

Document frequency

 Rare terms are more informative than frequent terms

 Recall stop words

 Consider a term in the query that is rare in the collection

(e.g., arachnocentric)

 A document containing this term is very likely to be

relevant to the query arachnocentric

 → We want a high weight for rare terms like arachnocentric.

Sec. 6.2.1

Document frequency, continued

 Frequent terms are less informative than rare terms

 Consider a query term that is frequent in the collection

(e.g., high, increase, line)

 A document containing such a term is more likely to be

relevant than a document that doesn’t

 But it’s not a sure indicator of relevance.

 → For frequent terms, we want high positive weights for

words like high, increase, and line

 But lower weights than for rare terms.

 We will use document frequency (df) to capture this.

Sec. 6.2.1

idf weight

 dft is the document frequency of t: the number of

documents that contain t

 dft is an inverse measure of the informativeness of t

 dft N

 We define the idf (inverse document frequency) of t by

 We use log (N/dft) instead of N/dft to “dampen” the effect of

idf.

)/df(log idf 10 tt N

Will turn out the base of the log is immaterial.

Sec. 6.2.1

idf example, suppose N = 1 million

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 4

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N

Effect of idf on ranking

 Does idf have an effect on ranking for one-term queries,

like

 iPhone

 idf has no effect on ranking one term queries

 idf affects the ranking of documents for queries with at least

two terms

 For the query capricious person, idf weighting makes

occurrences of capricious count for much more in the final

document ranking than occurrences of person.

Collection vs. Document frequency

 The collection frequency of t is the number of
occurrences of t in the collection, counting multiple
occurrences.

 Example:

 Which word is a better search term (and should get a
higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight

and its idf weight.

 Best known weighting scheme in information retrieval

 Note: the “-” in tf-idf is a hyphen, not a minus sign!

 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a

document

 Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,, tdt N
dt

Sec. 6.2.2

Final ranking of documents for a query

Score(q,d) tf.idft,d
tqd

Sec. 6.2.2

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued

vector of tf-idf weights ∈ R|V|

Sec. 6.3

Documents as vectors

 So we have a |V|-dimensional vector space

 Terms are axes of the space

 Documents are points or vectors in this space

 Very high-dimensional: tens of millions of dimensions

when you apply this to a web search engine

 These are very sparse vectors - most entries are zero.

Sec. 6.3

The Vector-space model

Term 1

Term 2

Term 3

Doc 1

Doc 2

Doc 3

Queries as vectors

 Key idea 1: Do the same for queries: represent them as

vectors in the space

 Key idea 2: Rank documents according to their proximity

to the query in this space

 proximity = similarity of vectors

 proximity ≈ inverse of distance

 Recall: We do this because we want to get away from the

you’re-either-in-or-out Boolean model.

 Instead: rank more relevant documents higher than less

relevant documents

Sec. 6.3

Formalizing vector space proximity

 First cut: distance between two points

 (= distance between the end points of the two vectors)

 Euclidean distance?

 Euclidean distance is a bad idea . . .

 . . . because Euclidean distance is large for vectors of

different lengths.

Sec. 6.3

Why distance is a bad idea

Sec. 6.3

Use angle instead of distance

 Thought experiment: take a document d and append it to

itself. Call this document d′.

 “Semantically” d and d′ have the same content

 The Euclidean distance between the two documents can

be quite large

 The angle between the two documents is 0,

corresponding to maximal similarity.

 Key idea: Rank documents according to angle with query.

Sec. 6.3

From angles to cosines

 The following two notions are equivalent.

 Rank documents in decreasing order of the angle between

query and document

 Rank documents in increasing order of

cosine(query,document)

 Cosine is a monotonically decreasing function for the

interval [0o, 180o]

Sec. 6.3

From angles to cosines

 But how – and why – should we be computing cosines?

Sec. 6.3

Length normalization

 A vector can be (length-) normalized by dividing each of

its components by its length – for this we use the L2

norm:

 Dividing a vector by its L2 norm makes it a unit (length)

vector (on surface of unit hypersphere)

 Effect on the two documents d and d′ (d appended to

itself) from earlier slide: they have identical vectors after

length-normalization.

 Long and short documents now have comparable weights

i ixx 2

2

Sec. 6.3

cosine(query,document)

V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(

Dot product Unit vectors

q
i
 is the tf-idf weight of term i in the query

d
i
 is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.

Sec. 6.3

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply

the dot product (or scalar product):

 for q, d length-normalized.

cos(q ,d) q d qidi
i1

V

Cosine similarity illustrated

37

Cosine similarity amongst 3 documents

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How similar are

the novels

SaS: Sense and

Sensibility (Jane Austen)

PaP: Pride and

Prejudice (Jane Austen),
and

WH: Wuthering

Heights? (Emily
Bronte)

Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting.

3 documents example contd.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈

0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0

≈ 0.94

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Sec. 6.3

Computing cosine scores

Sec. 6.3

tf-idf weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Sec. 6.4

Weighting may differ in queries vs

documents

 Many search engines allow for different weightings for

queries vs. documents

 SMART Notation: denotes the combination in use in an

engine, with the notation ddd.qqq, using the acronyms

from the previous table

 A very standard weighting scheme is: lnc.ltc

 Document: logarithmic tf (l as first character), no idf and

cosine normalization

 Query: logarithmic tf (l in leftmost column), idf (t in

second column), cosine normalization …

Sec. 6.4

tf-idf example: lnc.ltc

Term Query Document Pro

d

tf-

raw

tf-wt df idf wt n’liz

e

tf-raw tf-wt wt n’liz

e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance

Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =

12 02 12 1.32 1.92

Sec. 6.4

Summary – vector space ranking

 Represent the query as a weighted tf-idf vector

 Represent each document as a weighted tf-idf vector

 Compute the cosine similarity score for the query vector

and each document vector

 Rank documents with respect to the query by score

 Return the top K (e.g., K = 10) to the user

Computing Scores in a Complete

Search System

Outline

 Speeding up vector space ranking

 Putting together a complete search

system

 Will require learning about a number of

miscellaneous topics and heuristics

Ch. 7

Efficient cosine ranking

 Find the K docs in the collection “nearest” to the

query K largest query-doc cosines.

 Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the K largest cosine values efficiently.

 Can we do this without computing all N cosines?

Sec. 7.1

Efficient cosine ranking

 What we’re doing in effect: solving the K-nearest neighbor

problem for a query vector

 In general, we do not know how to do this efficiently for

high-dimensional spaces

 But it is solvable for short queries, and standard indexes

support this well

Sec. 7.1

Special case – unweighted queries

 No weighting on query terms

 Assume each query term occurs only once

 Then for ranking, don’t need to normalize query vector

Sec. 7.1

Faster cosine: unweighted query

Sec. 7.1

Computing the K largest cosines: selection

vs. sorting

 Typically we want to retrieve the top K docs (in the

cosine ranking for the query)

 not to totally order all docs in the collection

 Can we pick off docs with K highest cosines?

 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Sec. 7.1

Use heap for selecting top K

 Binary tree in which each node’s value > the values of

children

 Takes 2J operations to construct, then each of K “winners”

read off in 2log J steps.

 For J=1M, K=100, this is about 10% of the cost of sorting.

1

.9 .3

.8 .3

.1

.1

Sec. 7.1

Bottlenecks

 Primary computational bottleneck in scoring: cosine

computation

 Can we avoid all this computation?

 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K

output docs

 Is this such a bad thing?

Sec. 7.1.1

Cosine similarity is only a proxy

 User has a task and a query formulation

 Cosine matches docs to query

 Thus cosine is anyway a proxy for user happiness

 If we get a list of K docs “close” to the top K by cosine

measure, should be ok

Sec. 7.1.1

Generic approach

 Find a set A of contenders, with K < |A| << N

 A does not necessarily contain the top K, but has many

docs from among the top K

 Return the top K docs in A

 Think of A as pruning non-contenders

 The same approach is also used for other (non-cosine)

scoring functions

 Will look at several schemes following this approach

Sec. 7.1.1

Index elimination

 Basic algorithm FastCosineScore only considers docs

containing at least one query term

 Take this further:

 Only consider high-idf query terms

 Only consider docs containing many query terms

Sec. 7.1.2

High-idf query terms only

 For a query such as catcher in the rye

 Only accumulate scores from catcher and rye

 Intuition: in and the contribute little to the scores and so

don’t alter rank-ordering much

 Benefit:

 Postings of low-idf terms have many docs these (many) docs

get eliminated from set A of contenders

Sec. 7.1.2

Docs containing many query terms

 Any doc with at least one query term is a candidate for

the top K output list

 For multi-term queries, only compute scores for docs

containing several of the query terms

 Say, at least 3 out of 4

 Easy to implement in postings traversal

Sec. 7.1.2

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

Champion lists

 Precompute for each dictionary term t, the r docs of

highest weight in t’s postings

 Call this the champion list for t

 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time

 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the

champion list of some query term

 Pick the K top-scoring docs from amongst these

Sec. 7.1.3

Static quality scores

 We want top-ranking documents to be both relevant and

authoritative

 Relevance is being modeled by cosine scores

 Authority is typically a query-independent property of a

document

 Examples of authority signals

 Wikipedia among websites

 Articles in certain newspapers

 A paper with many citations

 (Pagerank)

Sec. 7.1.4

Modeling authority

 Assign to each document a query-independent quality

score in [0,1] to each document d

 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled into

[0,1]

Sec. 7.1.4

Net score

 Consider a simple total score combining cosine relevance

and authority

 net-score(q,d) = g(d) + cosine(q,d)

 Can use some other linear combination than an equal

weighting

 Indeed, any function of the two “signals” of user happiness –

more later

 Now we seek the top K docs by net score

Sec. 7.1.4

Top K by net score – fast methods

 First idea: Order all postings by g(d)

 Key: this is a common ordering for all postings

 Thus, can concurrently traverse query terms’ postings for

 Postings intersection

 Cosine score computation

Sec. 7.1.4

Why order postings by g(d)?

 Under g(d)-ordering, top-scoring docs likely to appear

early in postings traversal

 In time-bound applications (say, we have to return

whatever search results we can in 50 ms), this allows us

to stop postings traversal early

 Short of computing scores for all docs in postings

Sec. 7.1.4

High and low lists

 For each term, we maintain two postings lists called high

and low

 Think of high as the champion list

 When traversing postings on a query, only traverse high

lists first

 If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

 Can be used even for simple cosine scores, without global

quality g(d)

 A means for segmenting index into two tiers

Sec. 7.1.4

Impact-ordered postings

 We only want to compute scores for docs for which wft,d

is high enough

 We sort each postings list by wft,d

 Now: not all postings in a common order!

 How do we compute scores in order to pick off top K?

 Two ideas follow

Sec. 7.1.5

1. Early termination

 When traversing t’s postings, stop early after either

 a fixed number of r docs

 wft,d drops below some threshold

 Take the union of the resulting sets of docs

 One from the postings of each query term

 Compute only the scores for docs in this union

Sec. 7.1.5

2. idf-ordered terms

 When considering the postings of query terms

 Look at them in order of decreasing idf

 High idf terms likely to contribute most to score

 As we update score contribution from each query term

 Stop if doc scores relatively unchanged

 Can apply to cosine or some other net scores

Sec. 7.1.5

Cluster pruning: preprocessing

 Pick N docs at random: call these leaders

 For every other doc, pre-compute nearest

leader

 Docs attached to a leader: its followers;

 Likely: each leader has ~ N followers.

Sec. 7.1.6

 Cluster pruning: query processing

 Process a query as follows:

 Given query Q, find its nearest leader L.

 Seek K nearest docs from among L’s

followers.

Sec. 7.1.6

Visualization

Query

Leader Follower

Sec. 7.1.6

Why use random sampling

 Fast

 Leaders reflect data distribution

Sec. 7.1.6

General variants

 Have each follower attached to b1=3 (say) nearest

leaders.

 From query, find b2=4 (say) nearest leaders and their

followers.

Sec. 7.1.6

Parametric and zone indexes

 Thus far, a doc has been a sequence of terms

 In fact documents have multiple parts, some with special

semantics:

 Author

 Title

 Date of publication

 Language

 Format

 etc.

 These constitute the metadata about a document

Sec. 6.1

Fields

 We sometimes wish to search by these metadata

 E.g., find docs authored by William Shakespeare in the year

1601, containing alas poor Yorick

 Year = 1601 is an example of a field

 Also, author last name = shakespeare, etc

 Field or parametric index: postings for each field value

 Sometimes build range trees (e.g., for dates)

 Field query typically treated as conjunction

 (doc must be authored by shakespeare)

Sec. 6.1

Zone

 A zone is a region of the doc that can contain an

arbitrary amount of text e.g.,

 Title

 Abstract

 References …

 Build inverted indexes on zones as well to permit

querying

 E.g., “find docs with merchant in the title zone and

matching the query gentle rain”

Sec. 6.1

Example zone indexes

Encode zones in dictionary vs. postings.

Sec. 6.1

Tiered indexes

 Break postings up into a hierarchy of lists

 Most important

 …

 Least important

 Can be done by g(d) or another measure

 Inverted index thus broken up into tiers of decreasing

importance

 At query time use top tier unless it fails to yield K docs

 If so drop to lower tiers

Sec. 7.2.1

Example tiered index

Sec. 7.2.1

Query term proximity

 Free text queries: just a set of terms typed into the query

box – common on the web

 Users prefer docs in which query terms occur within

close proximity of each other

 Let w be the smallest window in a doc containing all

query terms, e.g.,

 For the query strained mercy the smallest window in the

doc The quality of mercy is not strained is 4 (words)

 Would like scoring function to take this into.

Sec. 7.2.2

Query parsers

 Free text query from user may in fact spawn one or more

queries to the indexes, e.g. query rising interest rates

 Run the query as a phrase query

 If <K docs contain the phrase rising interest rates, run the two

phrase queries rising interest and interest rates

 If we still have <K docs, run the vector space query rising

interest rates

 Rank matching docs by vector space scoring

 This sequence is issued by a query parser

Sec. 7.2.3

Aggregate scores

 We’ve seen that score functions can combine cosine,

static quality, proximity, etc.

 How do we know the best combination?

 Some applications – expert-tuned

 Increasingly common: machine-learned

Sec. 7.2.3

Putting it all together

Sec. 7.2.4

References

 Introduction to Information Retrieval, chapters 6 & 7.

 The slides were adapted from

 the book’s companion website:

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

Sec. 3.5

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

