
BLG 540E

TEXT RETRIEVAL SYSTEMS

Arzucan Özgür

Probabilistic IR and
Language Modeling

Faculty of Computer and Informatics, İstanbul Techical University

March 25, 2011

Probabilistic IR

3

Probabilistic Approach to Retrieval

• Probability theory provides a principled foundation for such

reasoning under uncertainty

• Probabilistic models exploit this foundation to estimate how

likely it is that a document is relevant to a query

Slide from Prof. Min-Yen Kan / National University of Singapore

4

Probabilistic IR Models at a Glance

 Classical probabilistic retrieval model
 Probability ranking principle

 Binary Independence Model, BestMatch25 (Okapi)

 Bayesian networks for text retrieval

 Language model approach to IR
 Important recent work, competitive performance

Probabilistic methods are one of the oldest but also

one of the currently hottest topics in IR

5

Basic Probability Theory

 For events A and B

 Joint probability P(A, B) of both events occurring

 Conditional probability P(A|B) of event A occurring given that

event B has occurred

 Chain rule gives fundamental relationship between joint and

conditional probabilities:

 Similarly for the complement of an event:

 Partition rule: if B can be divided into an exhaustive set of

disjoint subcases, then P(B) is the sum of the probabilities of the

subcases.

A special case of this rule gives:

6

Basic Probability Theory

Bayes’ Rule for inverting conditional probabilities:

Can be thought of as a way of updating probabilities:

 Start off with prior probability P(A) (initial estimate of how

likely event A is in the absence of any other information)

 Derive a posterior probability P(A|B) after having seen the

evidence B, based on the likelihood of B occurring in the two

cases that A does or does not hold

Odds:

7

Probability Ranking Principle (PRP)

 PRP in brief
If the retrieved documents (w.r.t a query) are ranked decreasingly on

their probability of relevance, then the effectiveness of the system will

be the best that is obtainable

 PRP in full
If [the IR] system’s response to each [query] is a ranking of the

documents [...] in order of decreasing probability of relevance to the

[query], where the probabilities are estimated as accurately as

possible on the basis of whatever data have been made available to

the system for this purpose, the overall effectiveness of the system to

its user will be the best that is obtainable on the basis of those data

Probability Ranking Principle

Let x be a document in the collection.

Let R represent relevance of a document w.r.t. given (fixed)

query and let NR represent non-relevance.

)(

)()|(
)|(

)(

)()|(
)|(

xp

NRpNRxp
xNRp

xp

RpRxp
xRp

p(x|R), p(x|NR) - probability that if a relevant (non-relevant)

 document is retrieved, it is x.

Need to find p(R|x) - probability that a document x is relevant.

p(R),p(NR) - prior probability

of retrieving a (non) relevant

document

1)|()|(xNRpxRp

R={0,1} vs. NR/R

Binary Independence Model

 Traditionally used in conjunction with PRP

 “Binary” = Boolean: documents are represented as binary

incidence vectors of terms:

 iff term i is present in document x.

 “Independence”: terms occur in documents independently

 Different documents can be modeled as same vector

),,(1 nxxx

1ix

Binary Independence Model

 Queries: binary term incidence vectors

 Given query q,

 for each document d need to compute p(R|q,d).

 replace with computing p(R|q,x) where x is binary term

incidence vector representing d

 Interested only in ranking

 Will use odds and Bayes’ Rule:

)|(

),|()|(

)|(

),|()|(

),|(

),|(
),|(

qxp

qNRxpqNRp

qxp

qRxpqRp

xqNRp

xqRp
xqRO

Binary Independence Model

• Using Independence Assumption:

n

i i

i

qNRxp

qRxp

qNRxp

qRxp

1),|(

),|(

),|(

),|(

),|(

),|(

)|(

)|(

),|(

),|(
),|(

qNRxp

qRxp

qNRp

qRp

xqNRp

xqRp
xqRO

Constant for a

given query
Needs estimation

n

i i

i

qNRxp

qRxp
qROdqRO

1),|(

),|(
)|(),|(•So :

Binary Independence Model

n

i i

i

qNRxp

qRxp
qROdqRO

1),|(

),|(
)|(),|(

• Since xi is either 0 or 1:

01),|0(

),|0(

),|1(

),|1(
)|(),|(

ii x i

i

x i

i

qNRxp

qRxp

qNRxp

qRxp
qROdqRO

• Let);,|1(qRxpp ii);,|1(qNRxpr ii

• Assume, for all terms not occurring in the query (qi=0) ii rp

Then...

All matching terms
Non-matching

query terms

Binary Independence Model

All matching terms
All query terms

11

1
01

1

1

)1(

)1(
)|(

1

1
)|(),|(

iii

i

iii

q i

i

qx ii

ii

q
x i

i

qx i

i

r

p

pr

rp
qRO

r

p

r

p
qROxqRO

Binary Independence Model

Constant for

each query

Only quantity to be estimated

for rankings

11 1

1

)1(

)1(
)|(),|(

iii q i

i

qx ii

ii

r

p

pr

rp
qROxqRO

• Retrieval Status Value:

11)1(

)1(
log

)1(

)1(
log

iiii qx ii

ii

qx ii

ii

pr

rp

pr

rp
RSV

Binary Independence Model

• All boils down to computing RSV.

11)1(

)1(
log

)1(

)1(
log

iiii qx ii

ii

qx ii

ii

pr

rp

pr

rp
RSV

1

;
ii qx

icRSV
)1(

)1(
log

ii

ii
i

pr

rp
c

So, how do we compute ci’s from our data ?

Binary Independence Model

• Estimating RSV coefficients.

• For each term i look at this table of document counts:

Documens Relevant Non-Relevant Total

Xi=1 s n-s n

Xi=0 S-s N-n-S+s N-n

Total S N-S N

S

s
pi)(

)(

SN

sn
ri

)()(

)(
log),,,(

sSnNsn

sSs
sSnNKci

• Estimates:

17

Probability Estimates in Practice

Assuming that relevant documents are a very small percentage of the

collection, approximate statistics for nonrelevant documents by

statistics from the whole collection

Hence, rt (the probability of term occurrence in nonrelevant

documents for a query) is dft/N and

 log[(1 − rt)/rt] = log[(N − dft)/df t] ≈ log N/df t

The above approximation cannot easily be extended to relevant

documents

Prabability Estimates in Practice

Statistics of relevant documents (pt) can be estimated in various

ways:

❶ Use the frequency of term occurrence in known relevant

documents (if known).

❷ Set as constant. E.g., assume that pt is constant over all

terms xt in the query and that pt = 0.5

Each term is equally likely to occur in a relevant

document, and so the pt and (1 − pt) factors cancel out in

the expression for RSV

Weak estimate, but doesn’t disagree violently with

expectation that query terms appear in many but not all

relevant documents

Combining this method with the earlier approximation for

rt , the document ranking is determined simply by which

query terms occur in documents scaled by their idf

weighting

An Appraisal of Probabilistic Models

Among the oldest formal models in IR

Maron & Kuhns, 1960: Since an IR system cannot

predict with certainty which document is relevant, we

should deal with probabilities
Assumptions for getting reasonable approximations of the needed

probabilities (in the BIM):

Boolean representation of

documents/queries/relevance

Term independence

Out-of-query terms do not affect retrieval

Document relevance values are independent

An Appraisal of Probabilistic Models

The difference between ‘vector space’ and ‘probabilistic’ IR is not that

great:

In either case you build an information retrieval

scheme in the exact same way.

Difference: for probabilistic IR, at the end, you score

queries not by cosine similarity and tf-idf in a vector

space, but by a slightly different formula motivated by

probability theory

Language Models for IR

Standard Probabilistic IR

Slide from Prof. Min-Yen Kan / National University of Singapore

Language Modeling based IR

Slide from Prof. Min-Yen Kan / National University of Singapore

24

What is a language model?

 We can view a finite state automaton as a deterministic language model

 I wish I wish I wish I wish . . . Cannot generate: “wish I wish”

 or “I wish I”. Our basic model: each document was generated by a different
automaton like this except that these automata are probabilistic.

25

A probabilistic language model

 This is a one-state probabilistic finite-state automaton – a unigram language
model – and the state emission distribution for its one state q1. STOP is not a word,
but a special symbol indicating that the automaton stops.

 frog said that toad likes frog STOP

 P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.02

 = 0.0000000000048 = 4.8 · 10-12

26

A different language model for each document

 frog said that toad likes frog STOP P(string|Md1) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 ·
0.02 = 0.0000000000048 = 4.8 · 10-12

 P(string|Md2) = 0.01 · 0.03 · 0.05 · 0.02 · 0.02 · 0.01 · 0.02 = 0.0000000000120 = 12 · 10-12

P(string|Md1) < P(string|Md2)

 Thus, document d2 is “more relevant” to the string “frog said that toad likes frog STOP”
than d1 is.

Unigram and Higher Order Models

Slide from Prof. Min-Yen Kan / National University of Singapore

28

Using language models in IR

 Each document is treated as (the basis for) a language model.

 Given a query q

 Rank documents based on P(d|q)

 P(q) is the same for all documents, so ignore

 P(d) is the prior – often treated as the same for all d

 But we can give a prior to “high-quality” documents, e.g., those
with high PageRank.

 P(q|d) is the probability of q given d.

 So to rank documents according to relevance to q, ranking according to P(q|d) and
P(d|q) is equivalent.

29

How to compute P(q|d)

 We will make the same conditional independence
assumption as for Naive Bayes.

 (|q|: length of q; tk : the token occurring at position k in q)

 This is equivalent to:

 tft,q: term frequency (# occurrences) of t in q

30

Parameter estimation

 Missing piece: Where do the parameters P(t|Md) come from?

 Start with maximum likelihood estimates

 (|d|: length of d; tft,d : # occurrences of t in d)

 Problem with zeros.

 A single t with P(t|Md) = 0 will make zero.

 For example, for query [Michael Jackson top hits] a document
about “top songs” (but not using the word “hits”) would have
P(t|Md) = 0. – That’s bad.

 We need to smooth the estimates to avoid zeros.

31

Smoothing

 Key intuition: A nonoccurring term is possible (even though
it didn’t occur), . . .

 . . . but no more likely than would be expected by chance
in the collection.

 Notation: Mc: the collection model; cft: the number of
occurrences of t in the collection; : the total
number of tokens in the collection.

 We will use to “smooth” P(t|d) away from zero.

32

Mixture model

 P(t|d) = λP(t|Md) + (1 - λ)P(t|Mc)

 Mixes the probability from the document with the general
collection frequency of the word.

 High value of λ: “conjunctive-like” search – tends to
retrieve documents containing all query words.

 Low value of λ: more disjunctive, suitable for long queries

 Correctly setting λ is very important for good performance.

33

Mixture model: Summary

 What we model: The user has a document in mind and
generates the query from this document.

 The equation represents the probability that the document
that the user had in mind was in fact this one.

34

Example

 Collection: d1 and d2

 d1 : Jackson was one of the most talented entertainers of all
time

 d2: Michael Jackson anointed himself King of Pop

 Query q: Michael Jackson

 Use mixture model with λ = 1/2

 P(q|d1) = *(0/11 + 1/18)/2+ · *(1/11 + 2/18)/2+ ≈ 0.003

 P(q|d2) = *(1/7 + 1/18)/2+ · *(1/7 + 2/18)/2+ ≈ 0.013

 Ranking: d2 > d1

35

Exercise:

 Collection: d1 and d2

 d1 : Xerox reports a profit but revenue is down

 d2: Lucene narrows quarter loss but decreases further

 Query q: revenue down

 Use mixture model with λ = 1/2

 P(q|d1) = *(1/8 + 2/16)/2+ · *(1/8 + 1/16)/2+ = 1/8 · 3/32 =

 3/256

 P(q|d2) = *(1/8 + 2/16)/2+ · *(0/8 + 1/16)/2+ = 1/8 · 1/32 =

 1/256

 Ranking: d1 > d2

36

Vector space (tf-idf) vs. LM

 The language modeling approach always does better in these
experiments but note that where the approach shows
significant gains is at higher levels of recall.

37

LMs vs. vector space model

 LMs vs. vector space model: commonalities
 Term frequency is directly in the model.

 Probabilities are inherently “length-normalized”.

 Mixing document and collection frequencies has an effect similar to idf.

 LMs vs. vector space model: differences
 LMs: based on probability theory

 Vector space: based on similarity, a geometric/ linear algebra notion

 Collection frequency vs. document frequency

 Details of term frequency, length normalization etc.

References

 Introduction to Information Retrieval, chapters 11 & 12.

 The slides were adapted from

 Prof. Dragomir Radev’s lectures at the University of Michigan:

 http://clair.si.umich.edu/~radev/teaching.html

 the book’s companion website:

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

Sec. 3.5

http://clair.si.umich.edu/~radev/teaching.html
http://clair.si.umich.edu/~radev/teaching.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

