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Today’s topic

 Latent Semantic Indexing
 Term-document matrices are very large
 But the number of topics that people talk 

about is small (in some sense)
 Clothes, movies, politics, …

 Can we represent the term-document 
space by a lower dimensional latent space?

Ch. 18



Vector Space Model: Pros
 Automatic selection of index terms
 Partial matching of queries and documents (dealing with 

the case where no document contains all search terms)
 Ranking according to similarity score (dealing with 

large result sets)
 Term weighting schemes (improves retrieval performance)
 Various extensions

 Document clustering
 Relevance feedback (modifying query vector)

 Geometric foundation



Problems with Lexical Semantics

 Ambiguity and association in natural language
 Polysemy: Words often have a multitude of 

meanings and different types of usage (more 
severe in very heterogeneous collections).
 bank, jaguar, hot

 The vector space model is unable to discriminate 
between different meanings of the same word.



Problems with Lexical Semantics

 Synonymy: Different terms may have an 
identical or a similar meaning
 Large/big, Spicy/hot, Car/automobile

 No associations between words are made 
in the vector space representation.



Latent Semantic Indexing (LSI)
 Perform a low-rank approximation of 

document-term matrix (typical rank 100-300)
 General idea

 Map documents (and terms) to a low-dimensional 
representation.

 Design a mapping such that the low-dimensional space reflects 
semantic associations (latent semantic space, 
identification of hidden (latent) concepts).

 Compute document similarity based on the inner product 
in this latent semantic space

Sec. 18.4



Latent Semantic Analysis
 Latent semantic space: illustrating example
 Similar words and documents mapped to similar locations 

in the lower dimensional latent space.

http://www.puffinwarellc.com/index.php/news-and-articles/articles/33-latent-semantic-analysis-tutorial.html?start=1

Sec. 18.4



Linear Algebra 
Background



Eigenvalues & Eigenvectors
 Eigenvectors (for a square mm matrix S)

 How many eigenvalues are there at most?

only has a non-zero solution if 
This is a mth order equation in λ which can have at most m 
distinct solutions (roots of the characteristic polynomial) – can be 
complex even though S is real.

eigenvalue(right) eigenvector

Example

Sec. 18.1



Eigenvectors and eigenvalues
 Example:

 |S-λI| = (-1-λ)*(-λ)-3*2=0
 Then: λ+λ2-6=0;   λ1=2;   λ2=-3

 For λ1 2

 Solutions: x1=x2

S=−1 3
2 0  S−λI=−1− λ 3

2 −λ 

−3 3
2 −2 x1

x2
=0



Matrix-vector multiplication

S=[30 0 0
0 20 0
0 0 1 ] has eigenvalues 30, 20, 1 with

corresponding eigenvectors

v1=100 v 2=010  v 3=001 
Any vector (say x=    ) can be viewed as a combination of
the eigenvectors:               x = 2v1 + 4v2 + 6v3

246 

Sec. 18.1



Matrix vector multiplication
 Thus a matrix-vector multiplication such as Sx (S, x as in 

the previous slide) can be rewritten in terms of the 
eigenvalues/vectors:

 Even though x is an arbitrary vector, the action of S on x 
is determined by the eigenvalues/vectors.

Sx=S 2v14v26v 3 
Sx=2 Sv14 Sv26 Sv 3=2λ1 v14λ2 v26λ 3 v 3

Sx=60 v180 v26v 3

Sec. 18.1



Matrix vector multiplication
 Suggestion: the effect of “small” eigenvalues is small.
 If we ignored the smallest eigenvalue (1), then instead of

we would get

 These vectors are similar (in cosine similarity, etc.)

60
80
6  60

80
0 

Sec. 18.1



Eigenvalues & Eigenvectors

Sv{1,2 }=λ{1,2 }v{1,2 },  and λ1≠λ2⇒ v1⋅v2=0

For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

 if ∣S− λI∣=0  and S=ST ⇒ λ∈ℜ

All eigenvalues of a real symmetric matrix are real.

∀ w∈ℜn ,wT Sw≥0, then if Sv= λv⇒ λ≥0

All eigenvalues of a positive semidefinite matrix
are non-negative

Sec. 18.1



Plug in these values and 
solve for eigenvectors.

Example
 Let

 Then

 The eigenvalues are 1 and 3 (nonnegative, real). 
 The eigenvectors are orthogonal (and real):

S=[2 1
1 2 ]

S− λI=[2−λ 1
1 2−λ ]⇒

∣S− λI∣=2−λ 2−1=0.

 1
−1 11 

Real, symmetric.

Sec. 18.1



Let                    be a square matrix with m linearly 
independent eigenvectors 
Theorem: There exists an eigen decomposition         

(cf. matrix diagonalization theorem)

Columns of U are eigenvectors of S

Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal

Sec. 18.1



Diagonal decomposition: why/how

U=[ v1 . .. vn ]Let U have the eigenvectors as columns:

SU=S [ v1 .. . vn ]=[ λ1 v1 . .. λn vn ]=[v1 . .. vn ] [ λ1

. . .
λn

]
Then, SU can be written

And S=UΛU–1.

Thus SU=UΛ, or U–1SU=Λ

Sec. 18.1



Diagonal decomposition - example

Recall S=[2 1
1 2 ] ; λ1=1, λ2=3 .

The eigenvectors         and         form  1
−1 11  U=[ 1 1

−1 1 ]
Inverting, we have U−1=[1/2 −1/2

1/2 1/2 ]
Then, S=UΛU–1 = [ 1 1

−1 1 ] [1 0
0 3 ] [1/2 −1/2

1/2 1/2 ]

Recall
UU–1 =1.

Sec. 18.1



Example continued

Let’s divide U (and multiply U–1) by   2

[ 1 / 2 1 / 2
−1/ 2 1 / 2 ][1 0

0 3 ] [1/ 2 −1/ 2
1/ 2 1/ 2 ]Then, S=

Q (Q-1= QT )Λ

Sec. 18.1



 If                    is a symmetric matrix:

 Theorem: There exists a (unique) eigen 
decomposition

 where Q is orthogonal:
 Q-1= QT

 Columns of Q are normalized eigenvectors

 Columns are orthogonal.

 (everything is real)

Symmetric Eigen Decomposition

S=QΛQT

Sec. 18.1



everything so far needs square matrices
 Recall M  N term-document matrices … 



Singular Value Decomposition

A=UΣV T

MM MN V is NN

For an M  N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)
as follows:

The columns of U are orthogonal eigenvectors of AAT.
The columns of V are orthogonal eigenvectors of ATA.

σ i= λi

Σ=diag σ1 .. .σ r  Singular values.

Eigenvalues λ1 … λr of AAT are the eigenvalues of ATA.

Sec. 18.2

In Matlab, use [U,S,V] = svd (A)



SVD example

Let A=[1 −1
0 1
1 0 ]

Thus M=3, N=2. Its SVD is

[ 0 2/ 6 1 /3
1 / 2 −1/6 1 /3
1 / 2 1/ 6 −1 / 3 ][ 1 0

0  3
0 0 ] [1 / 2 1 / 2

1 / 2 −1 / 2 ]
Typically, the singular values arranged in decreasing order.

Sec. 18.2



 SVD can be used to compute optimal low-rank 
approximations.

 Approximation problem: Find Ak of rank k such that

Ak and X are both mn matrices.
Typically, want k << r.

Low-rank Approximation

Frobenius normAk= min
X : rank  X =k

∥A−X∥F

Sec. 18.3



 Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

Ak=U  diag σ1 ,. . . ,σ k ,0, . .. , 0 V T

k

Sec. 18.3



 If we retain only k singular values, and set the rest to 0, 
then we don’t need the matrix parts in brown

 Then  is Σ k×k, U is M×k, VT is k×N, and Ak is M×N 

 This is referred to as the reduced SVD
 It is the convenient (space-saving) and usual form for 

computational applications

Reduced SVD

k

Sec. 18.3



Approximation error
 How good (bad) is this approximation?
 It’s the best possible, measured by the Frobenius norm of 

the error:

where the σi are ordered such that σi  σi+1.

Suggests why Frobenius error drops as k increased.

min
X : rank  X =k

∥A−X∥F=∥A−Ak∥F=σ k1

Sec. 18.3



SVD Low-rank approximation
 Whereas the term-doc matrix A may have M=50000, 

N=10 million (and rank close to 50000)
 We can construct an approximation A100 with rank 100.

 Of all rank 100 matrices, it would have the lowest Frobenius 
error.

 Great … but why would we??
 Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. 
Psychometrika, 1, 211-218, 1936.

Sec. 18.3



Latent Semantic 
Indexing via the 
SVD



What it is
 From term-doc matrix A, we compute the 

approximation Ak.

 There is a row for each term and a column 
for each doc in Ak

 Thus docs live in a space of k<<r 
dimensions
 These dimensions are not the original axes

Sec. 18.4



Example
 Query: gold silver truck
 Documents:

 d1: Shipment of gold damaged in a fire.
 d2: Delivery of silver arrived in a silver truck.
 d3: Shipment of gold arrived in a truck.



Compute the SVD of A



Rank 2 Approximation



Computing the query vector



Computing the query vector



Computing the similarity



LSI Query Document Vectors



Resources
 Introduction to Information Retrieval, chapter 18.
 Some slides were adapted from

 Prof. Dragomir Radev’s lectures at the University of Michigan:
 http://clair.si.umich.edu/~radev/teaching.html

 the book’s companion website:
 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

 SVD and LSI Tutorial:
 http://www.miislita.com/information-retrieval-tutorial/svd-lsi-tutorial-

4-lsi-how-to-calculations.html

Sec. 3.5
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