BLG 540E TEXT RETRIEVAL SYSTEMS

Latent Semantic Indexing

Arzucan Özgür

Faculty of Computer and Informatics, İstanbul Techical University

Today's topic

- Latent Semantic Indexing

Term-document matrices are very large

- But the number of topics that people talk about is small (in some sense)
Clothes, movies, politics, ...
- Can we represent the term-document space by a lower dimensional latent space?

Vector Space Model: Pros

- Automatic selection of index terms
- Partial matching of queries and documents (dealing with the case where no document contains all search terms)
- Ranking according to similarity score (dealing with large result sets)
- Term weighting schemes (improves retrieval performance)
- Various extensions
- Document clustering
- Relevance feedback (modifying query vector)
- Geometric foundation

Problems with Lexical Semantics

- Ambiguity and association in natural language
- Polysemy: Words often have amultitude of meanings and different types of usage (more severe in very heterogeneous collections).
- bank, jaguar, hot
- The vector space model is unable to discriminate between different meanings of the same word.

$$
\operatorname{sim}_{\text {true }}(d, q)<\cos (\angle(\vec{d}, \vec{q}))
$$

Problems with Lexical Semantics

- Synonymy: Different terms may have an identical or a similar meaning
- Large/big, Spicy/hot, Car/automobile
- No associations between words are made in the vector space representation.

$$
\operatorname{sim}_{\text {true }}(d, q)>\cos (\angle(\vec{d}, \vec{q}))
$$

Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of document-term matrix (typical rank 100-300)
- General idea
- Map documents (and terms) to a low-dimensional representation.
- Design a mapping such that the low-dimensional space reflects semantic associations (latent semantic space, identification of hidden (latent) concepts).
- Compute document similarity based on the inner product in this latent semantic space

Latent Semantic Analysis

- Latent semantic space: illustrating example
- Similar words and documents mapped to similar locations in the lower dimensional latent space.

Linear Algebra Background

Eigenvalues \& Eigenvectors

- Eigenvectors (for a square $m \times m$ matrix \mathbf{S})

- How many eigenvalues are there at most?

$$
\mathbf{S v}=\lambda \mathbf{v} \Longleftrightarrow(\mathbf{S}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}
$$

only has a non-zero solution if $|\mathbf{S}-\lambda \mathbf{I}|=0$
This is a m th order equation in λ which can have at most m distinct solutions (roots of the characteristic polynomial) - can be complex even though S is real.

Eigenvectors and eigenvalues

- Example:

$$
S=\left(\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right) \quad S-\lambda I=\left(\begin{array}{cc}
-1-\lambda & 3 \\
2 & -\lambda
\end{array}\right)
$$

- $|S-\lambda| \mid=(-I-\lambda) *(-\lambda)-3 * 2=0$
- Then: $\lambda+\lambda^{2}-6=0 ; \lambda_{1}=2 ; \lambda_{2}=-3$
- For $\lambda_{1}=2$:

$$
\left(\begin{array}{cc}
-3 & 3 \\
2 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=0
$$

- Solutions: $x_{1}=x_{2}$

Matrix-vector multiplication

has eigenvalues $30,20,1$ with corresponding eigenvectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Any vector (say $x=4$) can be viewed as a combination of the eigenvectors: $66 \quad x=2 v_{1}+4 v_{2}+6 v_{3}$

Matrix vector multiplication

- Thus a matrix-vector multiplication such as $S x(S, x$ as in the previous slide) can be rewritten in terms of the eigenvalues/vectors:

$$
\begin{aligned}
& S x=S\left(2 \mathrm{v}_{1}+4 \mathrm{v}_{2}+6 \mathrm{v}_{3}\right) \\
& S x=2 S v_{1}+4 S v_{2}+6 S v_{3}=2 \lambda_{1} v_{1}+4 \lambda_{2} v_{2}+6 \lambda_{3} v_{3} \\
& S x=60 v_{1}+80 v_{2}+6 \mathrm{v}_{3}
\end{aligned}
$$

- Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.

Matrix vector multiplication

" Suggestion: the effect of "small" eigenvalues is small.

- If we ignored the smallest eigenvalue (I), then instead of
$\left|\begin{array}{r}60 \\ 80 \\ 6\end{array}\right| \quad$ we would get $\quad\left|\begin{array}{c}60 \\ 80 \\ 0\end{array}\right|$
- These vectors are similar (in cosine similarity, etc.)

Eigenvalues \& Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$
S v_{\{1,2\}}=\lambda_{\{1,2\}} v_{\{1,2\}} \text {, and } \lambda_{1} \neq \lambda_{2} \Rightarrow v_{1} \cdot v_{2}=0
$$

All eigenvalues of a real symmetric matrix are real.

$$
\text { if }|S-\lambda I|=0 \text { and } S=S^{T} \Rightarrow \lambda \in \mathfrak{R}
$$

All eigenvalues of a positive semidefinite matrix are non-negative

$$
\forall w \in \Re^{n}, w^{T} S w \geq 0 \text {, then if } S v=\lambda \nu \Rightarrow \lambda \geq 0
$$

Example

- Let

$$
S=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \text { Real, symmetric. }
$$

- Then

$$
\begin{aligned}
& S-\lambda I=\left[\begin{array}{ll}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right] \Rightarrow \\
& |S-\lambda I|=(2-\lambda)^{2}-1=0 .
\end{aligned}
$$

- The eigenvalues are I and 3 (nonnegative, real).
- The eigenvectors are orthogonal (and real):

$$
\binom{1}{-1} \quad\binom{1}{1}
$$

Plug in these values and solve for eigenvectors.

Eigen/diagonal Decomposition

Let $\mathbf{S} \in \mathbb{R}^{m \times m}$ be a square matrix with m linearly independent eigenvectors
Theorem: There exists an eigen decomposition
(cf. matrix diagonalization theorem)

$$
\mathbf{S}=\mathbf{U} \mathbf{\Lambda}^{-1}
$$

Columns of \boldsymbol{U} are eigenvectors of \boldsymbol{S}
Diagonal elements of $\boldsymbol{\Lambda}$ are eigenvalues of \mathbf{S}

$$
\mathbf{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right), \quad \lambda_{i} \geq \lambda_{i+1}
$$

Diagonal decomposition: why/how

Let \boldsymbol{U} have the eigenvectors as columns:

$$
U=\left[\begin{array}{lll}
& & \\
v_{1} & \ldots & v_{n} \\
& &
\end{array}\right]
$$

Then, $\boldsymbol{S U}$ can be written

$$
S U=S\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} v_{1} & \ldots & \lambda_{n} v_{n} \\
& & \\
& &
\end{array}\right]\left[\begin{array}{lll}
v_{1} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& &
\end{array}\right]
$$

Thus $\mathbf{S U}=\mathbf{U} \boldsymbol{\Lambda}$, or $\boldsymbol{U}^{-1} \mathbf{S U}=\mathbf{\Lambda}$ And $\mathbf{S}=\mathbf{U} \boldsymbol{\wedge} \mathbf{U}^{-1}$.

Diagonal decomposition - example

Recall $\quad S=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] ; \lambda_{1}=1, \lambda_{2}=3$.
The eigenvectors $\binom{1}{-1}$ and $\binom{1}{1}$ form $\quad U=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
Inverting, we have $U^{-1}=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$

Then, $\boldsymbol{S}=\boldsymbol{U} \boldsymbol{\wedge} \boldsymbol{U}^{-1}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$

Example continued

Let's divide $\boldsymbol{U}\left(\right.$ and multiply $\left.\boldsymbol{U}^{-1}\right)$ by $\sqrt{2}$
Then, $\boldsymbol{S}=\begin{array}{cc}{\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]} \\ \boldsymbol{Q} & \boldsymbol{\Lambda} \quad\left(\boldsymbol{Q}^{-1}=\boldsymbol{Q}^{\top}\right)\end{array}$

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a symmetric matrix:
, Theorem: There exists a (unique)eigen decomposition

$$
S=Q \Lambda Q^{T}
$$

* where \mathbf{Q} is orthogonal:
- $Q^{-1}=Q^{T}$
' Columns of \mathbf{Q} are normalized eigenvectors
- Columns are orthogonal.
" (everything is real)

everything so far needs square matrices

- Recall $M \times N$ term-document matrices ...

Singular Value Decomposition

For an $M \times N$ matrix \mathbf{A} of rank r there exists a factorization (Singular Value Decomposition = SVD) as follows:

The columns of \boldsymbol{U} are orthogonal eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$.
The columns of \boldsymbol{V} are orthogonal eigenvectors of $\boldsymbol{A}^{\top} \boldsymbol{A}$. Eigenvalues $\lambda_{1} \ldots \lambda_{r}$ of $\boldsymbol{A} \boldsymbol{A}^{T}$ are the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$.

$$
\sigma_{i}=\sqrt{\lambda_{i}}
$$

$$
\Sigma=\operatorname{diag}\left(\sigma_{1} \ldots \sigma_{r}\right)
$$

Singular values. In Matlab, use $[U, S, V]=\operatorname{svd}(A)$

SVD example

Let $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Thus $M=3, N=2$. Its SVD is

$$
\left[\begin{array}{ccc}
0 & 2 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & 1 / \sqrt{6} & -1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \sqrt{3} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- SVD can be used to compute optimal low-rank approximations.
- Approximation problem: Find $\boldsymbol{A}_{\boldsymbol{k}}$ of rank \boldsymbol{k} such that

$$
\begin{aligned}
& A_{k}=\min _{X: \operatorname{rank}(X)=k}\|A-X\|_{F} \longleftarrow \text { Frobenius norm } \\
& \qquad\|A\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}} .
\end{aligned}
$$

A_{k} and X are both $m \times n$ matrices.
Typically, want $k \ll r$.

Low-rank Approximation

- Solution via SVD

$$
\begin{aligned}
& A_{k}=U \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\begin{array}{c}
\text { set smallest } r \text {-k } \\
\text { singular values to zero }
\end{array}}^{\left.\sigma_{k}, 0, \ldots, 0\right)} V^{T}\right.
\end{aligned}
$$

Reduced SVD

- If we retain only k singular values, and set the rest to 0 , then we don't need the matrix parts in brown
- Then Σ is $k \times k, U$ is $M \times k, V^{\top}$ is $k \times N$, and A_{k} is $M \times N$
- This is referred to as the reduced SVD
- It is the convenient (space-saving) and usual form for computational applications

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$
\bigcap_{X: \operatorname{rank}(X)=k}\|A-X\|_{F}=\left\|A-A_{k}\right\|_{F}=\sigma_{k+1}
$$

where the σ_{i} are ordered such that $\sigma_{i} \geq \sigma_{i+1}$.
Suggests why Frobenius error drops as k increased.

SVD Low-rank approximation

- Whereas the term-doc matrix A may have $M=50000$, $N=10$ million (and rank close to 50000)
- We can construct an approximation A_{100} with rank 100.
- Of all rank 100 matrices, it would have the lowest Frobenius error.
- Great ... but why would we??
- Answer:Latent Semantic Indexing
C. Eckart, G. Young, The approximation of a matrix by another of lower rank.

Psychometrika, 1, 211-218, 1936.

Latent Semantic Indexing via the SVD

What it is

- From term-doc matrix A, we compute the approximation A_{k}.
- There is a row for each term and a column for each doc in A_{k}
- Thus docs live in a space of $k \ll r$ dimensions
These dimensions are not the original axes

Example

- Query: gold silver truck

Documents:
> dI: Shipment of gold damaged in a fire.

- d2: Delivery of silver arrived in a silver truck.
- d3: Shipment of gold arrived in a truck.

Terms		d1	d2	d3		q
\downarrow		\downarrow	\downarrow	\downarrow		\checkmark
a		$\bigcirc 1$	1	1		0
arrived		0	1	1		0
damaged		1	0	0		0
delivery		0	1	0		0
fire		1	0	0		0
gold	$A=$	1	0	1	$q=$	1
in		1	1	1		0
of		1	1	1		0
shipment		1	0	1		0
silver		0	2	0		1
truck		0		1		1

Compute the SVD of A

$\mathbf{A}=\mathbf{U S V}{ }^{\mathbf{\top}}$

$$
\begin{aligned}
& \mathbf{U}=\left[\begin{array}{rrrr}
-0.4201 & 0.0748 & -0.0460 \\
-0.2995 & -0.2001 & 0.4078 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.1576 & -0.3046 & -0.2006 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.3151 & -0.6093 & -0.4013 \\
-0.2995 & -0.2001 & 0.4078
\end{array}\right] \quad \mathbf{S}=\left[\begin{array}{lll}
4.0989 & 0.0000 & 0.0000 \\
0.0000 & 2.3616 & 0.0000 \\
0.0000 & 0.0000 & 1.2737
\end{array}\right] \\
& \mathbf{V}=\left[\begin{array}{rrrrr}
-0.4945 & 0.6492-0.5780 \\
-0.6458 & -0.7194 & -0.2556 \\
-0.5817 & 0.2469 & 0.7750
\end{array}\right] \quad \mathbf{V}^{\mathbf{\top}}=\left[\begin{array}{lll}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469 \\
-0.5780 & -0.2556 & 0.7750
\end{array}\right]
\end{aligned}
$$

Rank 2 Approximation

$$
\begin{aligned}
& \mathbf{u} \approx \mathbf{U}_{\mathbf{k}}=\left[\begin{array}{rr}
-0.4201 & 0.0748 \\
-0.2995 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2626 & 0.3794 \\
-0.4201 & 0.0748 \\
-0.4201 & 0.0748 \\
-0.2626 & 0.3794 \\
-0.3151 \\
-0.2995 & -0.6093 \\
-0.2001
\end{array}\right] \quad \mathbf{s} \approx \mathbf{s}_{\mathbf{k}}=\left[\begin{array}{ll}
4.0989 & 0.0000 \\
0.0000 & 2.3616
\end{array}\right] \\
& \mathbf{V} \approx \mathbf{V}_{\mathbf{k}}=\left[\begin{array}{cc}
-0.4945 & 0.6492 \\
-0.6458 & -0.7194 \\
-0.5817 & 0.2469
\end{array}\right] \quad \mathbf{v}^{\mathbf{\top}} \approx \mathbf{v}_{\mathbf{k}}^{\mathbf{\top}}=\left[\begin{array}{lll}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469
\end{array}\right]
\end{aligned}
$$

Computing the query vector

$$
\begin{aligned}
& A^{\top}=\left(U S V^{\top}\right)^{\top}=V U^{\top} \\
& A^{\top} U S^{-1}=V S U^{\top} U S^{-1} \\
& V=A^{\top} U S^{-1} \\
& d=d^{\top} U S^{-1} \\
& q=q^{\top} U S^{-1}
\end{aligned}
$$

Thus, in the reduced k-dimensional space we can write

$$
\begin{aligned}
& d=d^{\top} U_{k} S_{k}^{-1} \\
& q=q^{\top} U_{k} S_{k}{ }^{-1}
\end{aligned}
$$

Computing the query vector

$$
\begin{aligned}
& \mathbf{q}=\mathbf{q}^{\mathbf{T}} \mathbf{U}_{\mathbf{k}} \mathbf{s}_{\mathbf{k}}^{\mathbf{- 1}} \\
& \mathbf{q}=\left[\begin{array}{lll}
0.0000100011
\end{array}\right]\left[\begin{array}{rrr}
-0.4201 & 0.0748 \\
-0.2995 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2626 & 0.3794 \\
-0.4201 & 0.0748 \\
-0.4201 & 0.0748 \\
-0.2626 & 0.3794 \\
-0.3151 & -0.6093 \\
-0.2995 & -0.2001
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{4.0989} & 0.0000 \\
0.0000 & \frac{1}{2.3616}
\end{array}\right] \\
& \mathbf{q}=\left[\begin{array}{lll}
-0.2140 & -0.1821
\end{array}\right]
\end{aligned}
$$

Computing the similarity

d1(-0.4945, 0.6492)
d2(-0.6458, -0.7194)
d3(-0.5817, 0.2469)

$$
\begin{aligned}
& \operatorname{sim}(\mathbf{q}, \mathbf{d})=\frac{\mathbf{q} \bullet \mathbf{d}}{|\mathbf{q}||\mathbf{d}|} \\
& \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{\mathbf{1}}\right)=\frac{(-0.2140)(-0.4945)+(-0.1821)(0.6492)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.4945)^{2}+(0.6492)^{2}}}=-0.0541 \\
& \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{2}\right)=\frac{(-0.2140)(-0.6458)+(-0.1821)(-0.7194)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.6458)^{2}+(-0.7194)^{2}}}=0.9910 \\
& \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{3}\right)=\frac{(-0.2140)(-0.5817)+(-0.1821)(0.2469)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.5817)^{2}+(0.2469)^{2}}}=0.4478
\end{aligned}
$$

Ranking documents in descending order

$$
d_{2}>d_{3}>d_{1}
$$

LSI Query Document Vectors

Resources

- Introduction to Information Retrieval, chapter I8.
- Some slides were adapted from
- Prof. Dragomir Radev's lectures at the University of Michigan:
- http://clair.si.umich.edu/~radev/teaching.html
> the book's companion website:
- http://nlp.stanford.edu/IR-book/information-retrieval-book.html
> SVD and LSI Tutorial:
> http://www.miislita.com/information-retrieval-tutorial/svd-Isi-tutorial-4-Isi-how-to-calculations.html

