BLG 540E TEXT RETRIEVAL SYSTEMS

Latent Semantic Indexing

Arzucan Özgür

Faculty of Computer and Informatics, İstanbul Techical University April 15, 2011

D

Today's topic

Latent Semantic Indexing

- Term-document matrices are very large
- But the number of topics that people talk about is small (in some sense)
 - Clothes, movies, politics, ...
- Can we represent the term-document space by a lower dimensional latent space?

Vector Space Model: Pros

- Automatic selection of index terms
- Partial matching of queries and documents (dealing with the case where no document contains all search terms)
- Ranking according to similarity score (dealing with large result sets)
- Term weighting schemes (improves retrieval performance)
- Various extensions
 - Document clustering
 - Relevance feedback (modifying query vector)
- Geometric foundation

Problems with Lexical Semantics

- Ambiguity and association in natural language
 - Polysemy: Words often have amultitude of meanings and different types of usage (more severe in very heterogeneous collections).
 - bank, jaguar, hot
 - The vector space model is unable to discriminate between different meanings of the same word.

$$sim_{true}(d,q) < cos(\angle(\vec{d},\vec{q}))$$

Problems with Lexical Semantics

Synonymy: Different terms may have an identical or a similar meaning

Large/big, Spicy/hot, Car/automobile

No associations between words are made in the vector space representation.

$$\operatorname{sim}_{\operatorname{true}}(d,q) > \cos(\angle(\vec{d},\vec{q}))$$

Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of document-term matrix (typical rank 100-300)
- General idea
 - Map documents (and terms) to a low-dimensional representation.
 - Design a mapping such that the low-dimensional space reflects semantic associations (latent semantic space, identification of hidden (latent) concepts).
 - Compute document similarity based on the inner product in this latent semantic space

Latent Semantic Analysis

Latent semantic space: illustrating example

Similar words and documents mapped to similar locations in the lower dimensional latent space.

http://www.puffinwarellc.com/index.php/news-and-articles/articles/33-latent-semantic-analysis-tutorial.html?start=1

Linear Algebra Background

Eigenvalues & Eigenvectors

• **Eigenvectors** (for a square $m \times m$ matrix **S**)

How many eigenvalues are there at most?

$$\mathbf{S}\mathbf{v} = \lambda\mathbf{v} \iff (\mathbf{S} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$$

only has a non-zero solution if $|\mathbf{S} - \lambda \mathbf{I}| = 0$

This is a *m*th order equation in λ which can have at most *m* distinct solutions (roots of the characteristic polynomial) - <u>can be</u> <u>complex even though S is real.</u>

Eigenvectors and eigenvalues

• Example:

$$S = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix} \qquad S - \lambda I = \begin{pmatrix} -1 - \lambda & 3 \\ 2 & -\lambda \end{pmatrix}$$

$$|S-\lambda I| = (-I-\lambda)^*(-\lambda)^-3^*2=0$$

Then:
$$\lambda + \lambda^2 - 6 = 0$$
; $\lambda_1 = 2$; $\lambda_2 = -3$

For $\lambda_1 = 2$:

$$\begin{pmatrix} -3 & 3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

Solutions: $x_1 = x_2$

Matrix-vector multiplication

 $S = \begin{vmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ has eigenvalues 30, 20, 1 with corresponding eigenvectors

$$v_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad v_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad v_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Any vector (say $x = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$) can be viewed as a combination of $x = 2v_1 + 4v_2 + 6v_3$

Matrix vector multiplication

Thus a matrix-vector multiplication such as Sx (S, x as in the previous slide) can be rewritten in terms of the eigenvalues/vectors:

$$Sx = S(2v_1 + 4v_2 + 6v_3)$$

$$Sx = 2Sv_1 + 4Sv_2 + 6Sv_3 = 2\lambda_1v_1 + 4\lambda_2v_2 + 6\lambda_3v_3$$

$$Sx = 60v_1 + 80v_2 + 6v_3$$

Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.

Matrix vector multiplication

- Suggestion: the effect of "small" eigenvalues is small.
- If we ignored the smallest eigenvalue (1), then instead of

These vectors are similar (in cosine similarity, etc.)

Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are **orthogonal**

$$Sv_{\{1,2\}} = \lambda_{\{1,2\}}v_{\{1,2\}}$$
, and $\lambda_1 \neq \lambda_2 \Rightarrow v_1 \cdot v_2 = 0$

All eigenvalues of a real symmetric matrix are real.

if
$$|S - \lambda I| = 0$$
 and $S = S^T \Rightarrow \lambda \in \Re$

All eigenvalues of a positive semidefinite matrix are **non-negative** $\forall w \in \Re^n, w^T Sw \ge 0$, then if $Sv = \lambda v \Rightarrow \lambda \ge 0$

Example Let $S = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} \longleftarrow$ Real, symmetric. $S - \lambda I = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} \Rightarrow$ Then $|S - \lambda I| = (2 - \lambda)^2 - 1 = 0.$

- The eigenvalues are I and 3 (nonnegative, real).
- The eigenvectors are orthogonal (and real):

 $\begin{array}{c|c}1\\1\end{array} & \begin{array}{c}1\\1\end{array} \end{array}$

Plug in these values and solve for eigenvectors.

Eigen/diagonal Decomposition

Let $\mathbf{S} \in \mathbb{R}^{m \times m}$ be a square matrix with *m* linearly independent eigenvectors

Theorem: There exists an **eigen decomposition**

(cf. matrix diagonalization theorem) diagonal $\mathbf{S} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1}$

Columns of U are eigenvectors of S
Diagonal elements of A are eigenvalues of S
A = diag(λ₁,..., λ_m), λ_i ≥ λ_{i+1}

Diagonal decomposition: why/how

Let **U** have the eigenvectors as columns: $U = \begin{vmatrix} v_1 & \dots & v_n \end{vmatrix}$

Then, **SU** can be written $SU = S \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \dots & \lambda_n v_n \end{bmatrix} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & \lambda_n \end{bmatrix}$

Thus *SU=UA*, or *U⁻¹SU=A* And *S=UAU⁻¹.*

Diagonal decomposition - example

Recall
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; \lambda_1 = 1, \lambda_2 = 3.$$

The eigenvectors $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ form $U = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$
Inverting, we have $U^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$
Then, $S = U \wedge U^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$

Sec. 18.1

Example continued

Let's divide **U** (and multiply U^{-1}) by $\sqrt{2}$

Then, **S**=
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
$$\mathbf{Q} \qquad \mathbf{\Lambda} \qquad (\mathbf{Q}^{-1} = \mathbf{Q}^{T})$$

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a **symmetric** matrix:
- Theorem: There exists a (unique)eigen decomposition

$$S = QAQ^T$$

- where Q is orthogonal:
 - $\mathbf{Q}^{-1} = \mathbf{Q}^{T}$
 - Columns of Q are normalized eigenvectors
 - Columns are orthogonal.
 - (everything is real)

everything so far needs square matrices

• Recall $M \times N$ term-document matrices ...

Singular Value Decomposition

For an $M \times N$ matrix **A** of rank *r* there exists a factorization (Singular Value Decomposition = **SVD**) as follows:

The columns of **U** are orthogonal eigenvectors of AA^{T} . The columns of **V** are orthogonal eigenvectors of $A^{T}A$. Eigenvalues $\lambda_{1} \dots \lambda_{r}$ of AA^{T} are the eigenvalues of $A^{T}A$.

$$\sigma_i = \sqrt{\lambda_i}$$

$$\Sigma = diag(\sigma_1 \dots \sigma_r)$$
In Matlab, use [U S V] = syd (A)

SVD example

Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus $M=3, N=2$. Its SVD is
 $\begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- SVD can be used to compute optimal low-rank approximations.
- Approximation problem: Find A_k of rank k such that

$$A_{k} = \min_{X: rank(X)=k} \|A - X\|_{F} - Frobenius norm \\ \|A\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}.$$

 A_k and X are both $m \times n$ matrices. Typically, want k << r.

Low-rank Approximation

Solution via SVD

$$A_k = U \operatorname{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0) V^T$$

set smallest r-k singular values to zero

Reduced SVD

- If we retain only k singular values, and set the rest to 0, then we don't need the matrix parts in brown
- Then Σ is $k \times k$, U is $M \times k$, V^T is $k \times N$, and A_k is $M \times N$
- This is referred to as the reduced SVD
- It is the convenient (space-saving) and usual form for computational applications

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$\min_{X: rank(X)=k} \|A - X\|_F = \|A - A_k\|_F = \sigma_{k+1}$$

where the σ_i are ordered such that $\sigma_i \geq \sigma_{i+1}$. Suggests why Frobenius error drops as k increased.

SVD Low-rank approximation

- Whereas the term-doc matrix A may have M=50000, N=10 million (and rank close to 50000)
- We can construct an approximation A_{100} with rank 100.
 - Of all rank 100 matrices, it would have the lowest Frobenius error.
- Great ... but why would we??
- Answer: Latent Semantic Indexing

Latent Semantic Indexing via the SVD

What it is

- From term-doc matrix A, we compute the approximation A_{k} .
- There is a row for each term and a column for each doc in A_k
- Thus docs live in a space of k<<r dimensions
 - These dimensions are not the original axes

Example

- Query: gold silver truck
- Documents:
 - dI: Shipment of gold damaged in a fire.
 - d2: Delivery of silver arrived in a silver truck.
 - d3: Shipment of gold arrived in a truck.

Compute the SVD of A

$A = USV^T$

D

Rank 2 Approximation

$$\mathbf{U} \approx \mathbf{U}_{\mathbf{k}} = \begin{bmatrix} -0.4201 & 0.0748 \\ -0.2995 & -0.2001 \\ -0.1206 & 0.2749 \\ -0.1576 & -0.3046 \\ -0.1206 & 0.2749 \\ -0.2626 & 0.3794 \\ -0.4201 & 0.0748 \\ -0.4201 & 0.0748 \\ -0.2626 & 0.3794 \\ -0.3151 & -0.6093 \\ -0.2995 & -0.2001 \end{bmatrix} \mathbf{S} \approx \mathbf{S}_{\mathbf{k}} = \begin{bmatrix} 4.0989 & 0.0000 \\ 0.0000 & 2.3616 \end{bmatrix}$$
$$\mathbf{V} \approx \mathbf{V}_{\mathbf{k}} = \begin{bmatrix} -0.4945 & 0.6492 \\ -0.6458 & -0.7194 \\ -0.5817 & 0.2469 \end{bmatrix} \mathbf{V}^{\mathsf{T}} \approx \mathbf{V}_{\mathbf{k}}^{\mathsf{T}} = \begin{bmatrix} -0.4945 & -0.6458 & -0.5817 \\ 0.6492 & -0.7194 & 0.2469 \end{bmatrix}$$

Computing the query vector

```
A^{T} = (USV^{T})^{T} = VSU^{T}A^{T}US^{-1} = VSU^{T}US^{-1}V = A^{T}US^{-1}d = d^{T}US^{-1}
```

 $q = q^T U S^{-1}$

Thus, in the reduced k-dimensional space we can write

 $d = d^{\mathsf{T}} \mathsf{U}_k \mathsf{S}_k^{-1}$ $q = q^{\mathsf{T}} \mathsf{U}_k \mathsf{S}_k^{-1}$

Computing the query vector

$$\mathbf{q} = \begin{bmatrix} -0.2140 & -0.1821 \end{bmatrix}$$

Computing the similarity

d1(-0.4945, 0.6492) d2(-0.6458, -0.7194) d3(-0.5817, 0.2469) $sim(q, d) = \frac{q \cdot d}{|q||d|}$ $sim(q, d_1) = \frac{(-0.2140)(-0.4945) + (-0.1821)(-0.6492)}{\sqrt{(-0.2140)^2 + (-0.1821)^2}\sqrt{(-0.4945)^2 + (-0.6492)^2}} = -0.0541$ $sim(q, d_2) = \frac{(-0.2140)(-0.6458) + (-0.1821)(-0.7194)}{\sqrt{(-0.2140)^2 + (-0.1821)^2}\sqrt{(-0.6458)^2 + (-0.7194)^2}} = 0.9910$

$$sim(q, d_3) = \frac{(-0.2140)(-0.5817) + (-0.1821)(0.2469)}{\sqrt{(-0.2140)^2 + (-0.1821)^2} \sqrt{(-0.5817)^2 + (0.2469)^2}} = 0.4478$$

Ranking documents in descending order

 $d_2 > d_3 > d_1$

LSI Query Document Vectors

Resources

- Introduction to Information Retrieval, chapter 18.
- Some slides were adapted from
 - Prof. Dragomir Radev's lectures at the University of Michigan:
 - http://clair.si.umich.edu/~radev/teaching.html
 - the book's companion website:
 - http://nlp.stanford.edu/IR-book/information-retrieval-book.html
 - SVD and LSI Tutorial:
 - http://www.miislita.com/information-retrieval-tutorial/svd-lsi-tutorial-4-lsi-how-to-calculations.html