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CHAPTER 16:

Graphical Models




Graphical Models

® Aka Bayesian networks, probabilistic networks

® Nodes are hypotheses (random vars) and the
probabilities corresponds to our belief in the truth of the
hypothesis

® Arcs are direct influences between hypotheses

® The structure is represented as a directed acyclic graph
(DAG)

® The parameters are the conditional probabilities in the
arcs (Pearl, 1988, 2000; Jensen, 1996; Lauritzen, 1996)
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P(R)=0.4

4 Diagnostic inference:

diagnostic Knowing that the grass is wet,

! what is the probability that rain is
causal the cause?

P(W | R)=0.9 P(W [R)P(R
P(W | ~R)=0.2 P(RIW)= ( Pl(W))( )

. PWIR)P(R)

~ P(W|R)P(R)+P(W |~R)P(~R)
- 0.9%x0.4
0.9%0.4+0.2x0.6

=0.75




Conditional Independence

® Xand Y are independent if
P(X,Y)=P(X)P(Y)
® X and Y are conditionally independent given Z if
P(X,Y|2)=P(X|2)P(Y|2)
or
P(X|Y,2)=P(X|2)

® Three canonical cases: Head-to-tail, Tail-to-tail, head-to-
head
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Case 1: Head-to-Tail

o P(X,Y,Z)=P(X)P(Y|X)P(Z]Y)

(a) Model

. PR|C)=08 POV| R) = 0.9
PO=04 pRri1-y=01 POV | ~R) = 02

o P(W|C)=P(W|R)P(R|C)+P(W|~R)P(~R|C)



Case 2: Tail-to-Tail

® P(X,Y,Z)=P(X)P(Y|X)P(Z]| X)

P(C)=0.5

. P(R| C)=0.8
P(S|~C)=0.5 P(R|~C)=0.1
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Case 3: Head-to-Head

® P(X,Y,Z)=P(X)P(Y)P(Z|X,Y)

P(S) =02 P(R)=04

POV| R, S)=0.95
POV | R ~8) =0.90

PW|~R,85) =090
Wet grass |\ P(W|~R~S8)=0.10

Lecture Notes for E Alpaydin 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) 8



" “Causal vs Diagnostic Inference

P(85)=0.2 P(R)=0.4

%) ®) Causal inference: If the
sprinkler is on, what is the
probability that the grass is wet?

P(W|S) = P(W|R,S) P(R|S) +
P(W|~R,S) P(~R|S)

P(W | R,5)=0.95 -
P(W|R~S)=090 - PIWIRSIPRI+
P(W | ~R,$)=0.90 P(W|~R,S) P(~R)

Wet grass |\ P(W|~R,~S)=0.10 = 0.950.4+0.90.6=0.92

Diagnostic inference: If the grass is wet, what is the probability

that the sprinkler is on? P(S|W) =0.35>0.2 P(S)

P(S|R,W) =0.21 Explaining away: Knowing that it has rained
decreases the probability that the sprinkler is on.




; duses

P(C)=0.5

Causal inference:

P(W|C) = P(W|R,S) P(R,S|C) +
P(W|~R,S) P(~R,S|C) +
P(W|R,~S) P(R,~S|C) +
POV RSSEPISR ST

P(S | C)=0.1
P(S | ~C)=0.5

P(R| C)=0.8
P(R | ~C)=0.1

and use the fact that
P(R,S|C) = P(R|C) P(S|C)

R.5)=0.95 Diagnostic: P(C|W ) =7
R,~$)=0.90

~R,8)=0.90

~R,~S5)=0.10

Wet grass
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““Exploiting the Local Structure

P(C)=0.5

P(S| C)=0.1
P(S | ~C)=0.5

P(R| C)=0.8
P(R | ~C)=0.1 BilE =

P(W | R,S)=0.95
P(W| R,~S)=0.90
P(W | ~R,S)=0.90

P(W | ~R,~S)=0.10
Wet grass

P(c,S,R,W,F)=P(C)P(S |C)P(R |C)P(W |S,R)P(F |R)
P(Xl,. : .Xd)= lz_][P(X,. |parents (X,. ))

P(F | R)=0.1
P(F | ~R)=0.7
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“Classification

P(C)
C
Bayes’ rule inverts the arc:

P(C|x)= p(x|C)P(C)

p(x)

diagnostic

P(C| x) px|C)

C>
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““Naive Bayes’ Classifier

Given C, x; are independent:

p(x1C) = p(x,1€) p(x, |C) ... plx,|C)
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" Hidden I\/Iarlméﬁa_sa/

Graphical Model
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(¢) Coupled HMM (d) Switching HMM
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P

plr'|x',r,X) = [lplr'| X', wip(w | X, rdw

| X, w)p(w)
= f p(r'|x', w) s 0 dw

= [plr' X', w)| [ plr Ix, w)p(wldw
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d-Separation

® A path from node A to node B

is blocked if

a) The directions of edges on
the path meet head-to-tail
(case 1) or tail-to-tail (case 2)
and the node isin C, or

b) The directions of edges meet
head-to-head (case 3) and
neither that node nor any of
its descendants is in C.

If all paths are blocked, A and
B are d-separated
(conditionally independent)
given C.

BCDF is blocked given C.

BEFG is blocked by F.

BEFD is blocked unless F (or G) is
given.
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- Belief Propagation (Pearl, 1988)

® Chain:A sequence of head-to-tail nodes with one root, all
nodes with exactly one parent.

X)), MX)

P(X|E)= PEIX)P(X) _PE",E"| X)P(X) m(X)=P(X | E+)
= @ A(X) = P(E-1X)
e

P(E) m(X) ="y P(X |U)r(V)
AX)= Y P(Y [ X)A(Y)
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P
Trees

AX)=P(E, | X) = 4, (X)4,(X)
A U) =Y AX)P(X|U)

w(X)=P(X|Ex) ="y P(X U}, (U)

7, (X) = a,(X)m(X)
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_ Polytrees:

Nodes with multiple parents

mX)=PXIEx)= Y ¥ - Y PIX|U, U,

U b, Uy

7, (X)=a] | A, (X)r(X)

S%j

AU) = BY MX) Y PXNULU, - U] b))

AX) =]j/1yj X)

How can we model P(X|U,,U,,...,U,) cheaply?
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P

Junction Trees

* If X does not separate E* and E7, we convert it into a
junction tree and then apply the polytree algorithm

o E Tree of moralized
(parents to the same clique),
o ° R.S cligue nodes
(R,S) is a clique
O
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_ Undirected Graphs:
Random Fields

® In a Markov random field, dependencies are symmetric,
for example, pixels in an image

dl'KOV

® In an undirected graph, A and B are independent if
removing C makes them unconnected.

® Potential function ¢ (X_.) shows how favorable is the
particular configuration X over the clique C

® The joint is defined in terms of the clique potentials

1 .
p(X)=EHz//C(XC)where normalizer Z=ZH1//C(XC)
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Factor Graphs

® Define new factor nodes and write the joint in terms of
them

Ja Jb

ORO p(X)= =T £:(X)
ZS S S

OO
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Learning a Graphical Model

® Learning the conditional probabilities, either as tables (for
discrete case with small number of parents), or as
parametric functions

® Learning the structure of the graph: Doing a state-space
search over a score function that uses both goodness of
fit to data and some measure of complexity
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Influence Diagrams

decision node

choose
class

utility node

chance node
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