Selected Sections For the Final Exam of BLG527E Spring 2017 Concentrate on Chapter 10-19 first. Then go back and review Chapters 3-9 3 Bayesian Decision Theory 3.2 Classification 3.3 Losses and Risks 3.4 Discriminant Functions 4 Parametric Methods 4.2 Maximum Likelihood Estimation 4.2.1 Bernoulli Density 4.2.2 Multinomial Density 4.2.3 Gaussian (Normal) Density 4.3 Evaluating an Estimator: Bias and Variance 4.4 The Bayes' Estimator 4.5 Parametric Classification 4.6 Regression 4.7 Tuning Model Complexity: Bias/Variance Dilemma 4.8 Model Selection Procedures 5 Multivariate Methods 5.1 Multivariate Data 5.2 Parameter Estimation 5.3 Estimation of Missing Values 5.4 Multivariate Normal Distribution 5.5 Multivariate Classification 5.6 Tuning Complexity 6 Dimensionality Reduction 6.2 Subset Selection 6.3 Principal Components Analysis 6.5 Multidimensional Scaling 6.6 Linear Discriminant Analysis 6.7 Isomap 6.8 Locally Linear Embedding 7 Clustering 7.2 Mixture Densities 7.3 k-Means Clustering 7.4 Expectation-Maximization Algorithm 7.7 Hierarchical Clustering 7.8 Choosing the Number of Clusters 8 Nonparametric Methods 8.2 Nonparametric Density Estimation 8.2.1 Histogram Estimator 8.2.2 Kernel Estimator 8.2.3 k-Nearest Neighbor Estimator 8.3 Generalization to Multivariate Data 8.4 Nonparametric Classification 8.5 Condensed Nearest Neighbor 9 Decision Trees 9.2 Univariate Trees 9.2.1 Classification Trees 9.2.2 Regression Trees 9.3 Pruning 9.4 Rule Extraction from Trees 9.6 Multivariate Trees 10 Linear Discrimination 10.2 Generalizing the Linear Model 10.3 Geometry of the Linear Discriminant 10.3.1 Two Classes 10.3.2 Multiple Classes 10.4 Pairwise Separation 10.5 Parametric Discrimination Revisited 10.6 Gradient Descent 10.7 Logistic Discrimination 10.7.1 Two Classes 10.7.2 Multiple Classes 11 Multilayer Perceptrons 11.2 The Perceptron 11.3 Training a Perceptron 11.4 Learning Boolean Functions 11.5 Multilayer Perceptrons 11.6 MLP as a Universal Approximator 11.7 Backpropagation Algorithm 11.7.1 Nonlinear Regression 11.7.2 Two-Class Discrimination 11.7.3 Multiclass Discrimination 11.7.4 Multiple Hidden Layers 11.8 Training Procedures 11.8.1 Improving Convergence 11.8.2 Overtraining 11.8.3 Structuring the Network 11.8.4 Hints 11.9 Tuning the Network Size 11.10 Bayesian View of Learning 11.11 Dimensionality Reduction 11.12 Learning Time 11.12.1 Time Delay Neural Networks 11.12.2 Recurrent Networks 13 Kernel Machines 309 13.2 Optimal Separating Hyperplane 13.3 The Nonseparable Case: Soft Margin Hyperplane 13.4 ν-SVM 13.5 Kernel Trick 13.6 Vectorial Kernels 13.7 Defining Kernels 14 Bayesian Estimation 14.2 Estimating the Parameter of a Distribution 14.2.1 Discrete Variables 14.2.2 Continuous Variables 14.3 Bayesian Estimation of the Parameters of a Function 14.3.1 Regression 14.3.2 The Use of Basis/Kernel Functions 14.3.3 Bayesian Classification 14.4 Gaussian Processes (READING MATERIAL, not covered in the exam) 15 Hidden Markov Models 15.2 Discrete Markov Processes 15.3 Hidden Markov Models 15.4 Three Basic Problems of HMMs 15.5 Evaluation Problem 15.6 Finding the State Sequence 15.7 Learning Model Parameters (READING MATERIAL, not covered in the exam) 15.8 Continuous Observations (READING MATERIAL, not covered in the exam) 15.10 Model Selection in HMM (READING MATERIAL, not covered in the exam) 16 Graphical Models 16.2 Canonical Cases for Conditional Independence 16.3 Example Graphical Models 16.3.1 Naive Bayes' Classifier 16.3.2 Hidden Markov Model 16.3.3 Linear Regression 16.4 d-Separation 16.5 Belief Propagation 16.5.1 Chains 16.5.2 Trees (READING MATERIAL, not covered in the exam) 16.6 Undirected Graphs: Markov Random Fields 17 Combining Multiple Learners 17.1 Rationale 17.2 Generating Diverse Learners 17.3 Model Combination Schemes 17.4 Voting 17.5 Error-Correcting Output Codes (READING MATERIAL, not covered in the exam) 17.6 Bagging 17.7 Boosting 17.9 Stacked Generalization 19 Design and Analysis of Machine Learning Experiments 19.2 Factors, Response, and Strategy of Experimentation 19.5 Guidelines for Machine Learning Experiments 19.6 Cross-Validation and Resampling Methods 19.6.1 K-Fold Cross-Validation 19.6.2 5x2 Cross-Validation 19.6.3 Bootstrapping 19.7 Measuring Classifier Performance 19.8 Interval Estimation 19.9 Hypothesis Testing 19.10 Assessing a Classification Algorithm's Performance 19.10.1 Binomial Test 19.10.2 Approximate Normal Test 19.10.3 t Test 19.11 Comparing Two Classification Algorithms 19.11.1 McNemar's Test 19.11.2 K-Fold Cross-Validated Paired t Test 19.12 Comparing Multiple Algorithms: Analysis of Variance