Basic Concepts

- supervised, unsupervised and semi-supervised learning
- density estimation, classification, regression
- optimization

Perceptrons and Multilayer Perceptrons

- perceptron
- multilayer perceptron
- training
- overfitting and its prevention
- learning from data and hints
- neural networks for time series

Deep Neural Networks

Neural Networks

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10¹⁰
- Large connectitivity: 10⁵
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures

Perceptron

What a Perceptron Does

• Regression: $y=wx+w_0$

• Classification: $y=1(wx+w_0>0)$

Training a Perceptron

• Regression:

$$E^{t}(\mathbf{w} \mid \mathbf{x}^{t}, r^{t}) = \frac{1}{2} (r^{t} - y^{t})^{2} = \frac{1}{2} [r^{t} - (\mathbf{w}^{T} \mathbf{x}^{t})]^{2}$$
$$\Delta w_{j}^{t} = \eta (r^{t} - y^{t}) x_{j}^{t}$$

Classification:

$$y^{t} = \text{sigmoid} \left(\mathbf{w}^{T}\mathbf{x}^{t}\right)$$

$$E^{t}\left(\mathbf{w}|\mathbf{x}^{t}, \mathbf{r}^{t}\right) = -r^{t} \log y^{t} - (1 - r^{t}) \log (1 - y^{t})$$

$$\Delta w_{j}^{t} = \eta (r^{t} - y^{t}) x_{j}^{t}$$

Learning Boolean AND

<i>x</i> ₁	<i>x</i> ₂	r
0	0	0
0	1	1
1	0	1
1	1	0

• No w_0 , w_1 , w_2 satisfy:

$$w_0 \le 0$$

 $w_2 + w_0 > 0$
 $w_1 + w_0 > 0$
 $w_1 + w_2 + w_0 \le 0$

(Minsky and Papert, 1969)

Multilayer Perceptrons

$$\mathbf{y}_i = \mathbf{v}_i^T \mathbf{z} = \sum_{h=1}^H \mathbf{v}_{ih} \mathbf{z}_h + \mathbf{v}_{i0}$$

$$z_{h} = \text{sigmoid } \left(\mathbf{w}_{h}^{T}\mathbf{x}\right)$$

$$= \frac{1}{1 + \exp\left[-\left(\sum_{j=1}^{d} w_{hj} x_{j} + w_{h0}\right)\right]}$$

(Rumelhart et al., 1986)

 $x_1 \text{ XOR } x_2 = (x_1 \text{ AND } ^2 x_2) \text{ OR } (^2 x_1 \text{ AND } x_2)$

Backpropagation

Regression

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = \frac{1}{2} \sum_{t} (r^{t} - y^{t})^{2}$$

$$y^t = \sum_{h=1}^H v_h z_h^t + v_0$$

$$\Delta \mathbf{v}_h = \sum_t \left(\mathbf{r}^t - \mathbf{y}^t \right) \mathbf{z}_h^t$$

Forward

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hi}}$$

$$z_h = \underline{\text{sigmoid}} \left(\mathbf{w}_h^T \mathbf{x} \right)$$

X

$$= -\eta \sum_{t} \frac{\partial E}{\partial y^{t}} \frac{\partial y^{t}}{\partial z_{h}^{t}} \frac{\partial z_{h}^{t}}{\partial w_{hj}}$$

$$= -\eta \sum_{t} -(r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

Backward

Initialize all
$$v_{ih}$$
 and w_{hj} to $\mathrm{rand}(-0.01, 0.01)$ Repeat

For all $(\boldsymbol{x}^t, r^t) \in \mathcal{X}$ in random order

For $h = 1, \dots, H$
 $z_h \leftarrow \mathrm{sigmoid}(\boldsymbol{w}_h^T \boldsymbol{x}^t)$

For $i = 1, \dots, K$
 $y_i = \boldsymbol{v}_i^T \boldsymbol{z}$

For $i = 1, \dots, K$
 $\Delta \boldsymbol{v}_i = \eta(r_i^t - y_i^t) \boldsymbol{z}$

For $h = 1, \dots, H$
 $\Delta \boldsymbol{w}_h = \eta(\sum_i (r_i^t - y_i^t) v_{ih}) z_h (1 - z_h) \boldsymbol{x}^t$

For
$$i=1,\ldots,K$$

$$\boldsymbol{v}_i \leftarrow \boldsymbol{v}_i + \Delta \boldsymbol{v}_i$$

For
$$h = 1, \dots, H$$

$$\boldsymbol{w}_h \leftarrow \boldsymbol{w}_h + \Delta \boldsymbol{w}_h$$

Until convergence

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Improving Convergence

Momentum

$$\Delta \mathbf{w}_{i}^{t} = -\eta \frac{\partial \mathbf{E}^{t}}{\partial \mathbf{w}_{i}} + \alpha \Delta \mathbf{w}_{i}^{t-1}$$

Adaptive learning rate

$$\Delta \eta = \begin{cases} +a & \text{if } E^{t+\tau} < E^t \\ -b\eta & \text{otherwise} \end{cases}$$

Overfitting/Overtraining

Number of weights: H(d+1)+(H+1)K

Hints (Abu-Mostafa, 1995)

Invariance to translation, rotation, size

- Virtual examples
- Augmented error: $E' = E + \lambda_h E_h$

If x' and x are the "same": $E_h = [g(x | \theta) - g(x' | \theta)]^2$

Approximation hint:

$$E_h = \begin{cases} 0 & \text{if } g(x \mid \theta) \in [a_x, b_x] \\ (g(x \mid \theta) - a_x)^2 & \text{if } g(x \mid \theta) < a_x \\ (g(x \mid \theta) - b_x)^2 & \text{if } g(x \mid \theta) > b_x \end{cases}$$

Tuning the Network Size

- Destructive
- Weight decay:

- Constructive
- Growing networks

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} - \lambda w_i$$
$$E' = E + \frac{\lambda}{2} \sum_i w_i^2$$

$$E' = E + \frac{\lambda}{2} \sum_{i} w_{i}^{2}$$

Dynamic Node Creation

(Ash, 1989)

Cascade Correlation

(Fahlman and Lebiere, 1989)

Dimensionality Reduction

Learning Time

- Applications:
 - Sequence recognition: Speech recognition
 - Sequence reproduction: Time-series prediction
 - Sequence association
- Network architectures
 - Time-delay networks (Waibel et al., 1989)
 - Recurrent networks (Rumelhart et al., 1986)

Time-Delay Neural Networks

Recurrent Networks

Unfolding in Time h^3 W R h^2 x^3 R h^1 R R

 h^0

(b)

Basic Concepts

- supervised, unsupervised and semi-supervised learning
- density estimation, classification, regression
- optimization

Perceptrons and Multilayer Perceptrons

- overfitting and its prevention
- learning from data and hints

Deep Neural Networks

- shallow networks' problems
- optimization
- regularization
- convolution
- hardware

Universal Approximation Theorem

- MLP with one hidden layer is a universal approximator (Hornik et al., 1989)
- But using multiple layers may lead to simpler networks
- There is an MLP that fits the data, but it might not be possible to find that MLP using the training algorithms we have.

How to Train a MLP with Lots of Data

Having a shallow network with a lot of hidden units may not learn as easy as a deep network.

Deep network may partition tasks into subtasks and learn easier.

(Goodfellow, 2014)

Vanishing Gradients

- Learning with a lot of layers is difficult.
- Since gradients are computed based on gradients of layers closer to the outputs, using chain rule, the gradients of weights closer to the inputs get very small.

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial z_h} \frac{\partial z_h}{\partial w_{hj}}$$

Instead of sigmoid, RelU
 (Rectified Linear Activation Function is used. RelU outputs are linear for positive inputs and 0 for negative inputs

$$\operatorname{Re} lU(z) = \max(0, z)$$

Deep Learning Libraries

- When computing gradients, use graph representation of the MLP.
- Instead of single weights, use vectors/tensors of weights.
- Different libraries (Torch, Caffe vs Theano, TensorFlow) approaches to the gradient computation.

Figure 6.11: The computational graph used to compute the cost used to train our example of a single-layer MLP using the cross-entropy loss and weight decay.

Optimization

- Theano and Tensorflow approximate the Hessian Matrix (higher order derivatives) using Krylov Methods. Matrix inversions (therefore computations of eigenvectors/values are also approximated).
- Nesterov Momentum: similar to momentum, but evaluate gradient after applying the current velocity.
- Minibatches (in order to optimize for the hardware also)
- Conjugate gradient
- Polyak averaging
- Greedy supervised pretraining

Regularization for Deep Learning

- L1 and L2 (ridge regression/Tikhonov regularization) regularization
- Feature selection (results in weight elimination
- Early stopping
- Dataset augmentation: e.g. add rotated, blurred, scaled etc. images

Regularization for Deep Learning

- Ability to penalize weights at different layers differently (Srebro 2005, constrain norm of each column of the weight matrix of a neural network, rather than constrain the whole weight matrix)
- Noise robustness: dropout algorithm (approximates bagging, zero random some weights at each minibatch)
- Parameter tying and parameter sharing: reduce the number of parameters used by clustering/forcing similar valued parameters together and representing them using smaller number of bits. CNNs already do parameter sharing
- Adversarial training: training on perturbed images

Convolution

- Sparse interactions, parameter sharing and equivariant representations
- Parallel convolutions (feature extraction units), followed by ReIU, followed by pooling to to obtain summary statistics of nearby cells.

Hardware: GPUs and TPUs to make matrix/weight operations faster

LAMBDA BLADE

If you're looking for an enterprise solution for cutting-edge Deep Learning performance and parallelization, the Lambda Blade is a necessity. Experience how profitable of an investment Deep Learning hardware can be for your team.

Designed for deployment in data centers, our 8 GPU configurations significantly boost Deep Learning performance and are ideal for remote access from multiple concurrent users

LAMBDA SINGLE

SINGLE is an introduction to high performance Deep Learning hardware. Pre-installed is every framework you'll need — including Tensorflow, Torch, and Caffe.

Have any questions? Call us: 1 (650) 479-5530.

GPU

1x 1080 Ti

NVIDIA GeForce GTX 1080 Ti or Titan Xp. Pascal architecture

STORAGE

250GB SSD

Configurable to 500 GB SATA SSD

PROCESSOR

Intel i5

Intel™ Core i5-6500, 6M Cache, up to 3.60 GHz

RAM

16GB DDR4

Configurable to 32 GB DDR4 RAM.

\$2,599

l at 1

Includes FREE shipping
Ships in 3 days

source: https://lambdal.com

\$16,500

Includes FREE shipping
Ships in 3 days

source: https://lambdal.com

Teşekkürler. Questions?

cataltepe@itu.edu.tr zehra@tazi.io

http://www.deeplearningbook.org

Alpaydin, Ethem. Introduction to machine learning. MIT press, 2014.

July,2017