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Neural Networks

Networks of processing units (neurons) with
connections (synapses) between them

arge number of neurons: 10%°
Large connectitivity: 10°
Parallel processing

Distributed computation/memory

Robust to noise, failure;/




Perceptron
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(Rosenblatt, 1962)



What a Perceptron Does

* Regression: y=wx+w,

* Classification: y=1(wx+w,>0)
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Training a Perceptron

* Regression:

E‘“(w | xt,rt)= %(rt —yt)2 = %[ft - (WTXt )]2

t

Aw' =nlrt -yt ¢

e C(Classification:

y' =sigmoid (WTX’)
Et(W|Xt,l‘t)=—I"t 10g yt_(l_rt) log (1_yt)
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Learning Boolean AND
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Multilayer Perceptrons
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z, = sigmoid (W;x)
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1+exp [— (E; WX+ Wy )]

(Rumelhart et al., 1986)
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Backpropagation
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Initialize all v;;, and wy; to rand(—0.01,0.01)

Repeat

For all (xt,r*) € X in random order

For h=1,....H

2] — sigmoid(’wat)
For:=1,.... K

Y = 'v;.Fz
For:=1,.... K

Av; =n(r. —y:)z
For h=1,....H

Awy, = 77(21-(7’-' l/t)lzh) n (1 —
For:=1,.... K

v; — v; + Av;
For h=1,....H

wy, <— Wy + A’uJ’h

Until convergence

~h)wt

12



1.5F -1

=== Training
o Validatio

15f -

I

0 0.8F
-2 1 1 1 1 1 1 bl -
-05 -04 -0.2 -0.2 -0.1 0 0.1 -

o

1]

c

- 06

=

04

0 50 100 150 200 250 300
Training Epochs

13



Improving Convergence

* Momentum
OE"

ow,

1

AW! = —n——+ aAw;™

1

* Adaptive learning rate

{ +a ifE™ <E°
An=
—bn otherwise
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Overfitting/Overtraining

Number of weights: H (d+1)+(H+1)K
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Mean Square Error
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H | ntS (Abu-Mostafa, 1995)

 |nvariance to translation. rotation. size

A NIRs A

* Virtual examples

* Augmented error: E'=E+\ E,

If x” and x are the “same”: E,=[g(x|0)- g(x’|0)]?

Approximation hint: 0 if g(x H)E[ax,bx]
E, =. (g(xlﬁ)—ax)2 ifg(x H)<ax

(9(x16)-b,) ifg(x16)>b,
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Tuning the Network Size

e Destructive e Constructive
 Weight decay: * Growing networks

Dynamic Node Creation Cascade Correlation

(Ash, 1989) (Fahlman and Lebiere, 1989)
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Dimensionality Reduction

Linear Nonlinear
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Learning Time

* Applications:
— Sequence recognition: Speech recognition
— Sequence reproduction: Time-series prediction

— Sequence association

* Network architectures
— Time-delay networks (Waibel et al., 1989)
— Recurrent networks (Rumelhart et al., 1986)
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Time-Delay Neural Networks
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Recurrent Networks
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Unfolding in Time O
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» Deep Neural Networks

shallow networks' problems
optimization

regularization

convolution

hardware
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Universal Approximation Theorem

* MLP with one hidden layer is a universal
approximator (Hornik et al., 1989)

* But using multiple layers may lead to
simpler networks

* There is an MLP that fits the data, but it
might not be possible to find that MLP
using the training algorithms we have.



How to Train a MLP with Lots of Data

Test accuracy (percen’c)
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Having a shallow network with a lot of hidden units
may not learn as easy as a deep network.

Deep network may partition tasks into subtasks and

learn easier.
(Goodfellow, 2014)



Vanishing Gradients

* Learning with a lot of layers is difficult.

* Since gradients are computed based on gradients of layers
closer to the outputs, using chain rule, the gradients of weights
closer to the inputs get very small.

JoE  JE dy, 0z, '
8whj dy, 0z, awhj

max{0, z}

* Instead of sigmoid, RelU

g(z)

(Rectified Linear Activation Function

is used. RelU outputs are

linear for positive inputs and 2
O for negative inputs RelU(z) = max(0,7)



Deep Learning Libraries

torch Caffe theano
¥ Tensor UK cuDNN

* When computing gradients, use graph representation
of the MLP.

* |nstead of single weights, use vectors/tensors of
weights.

* Different libraries (Torch,Caffe vs Theano, TensorFlow)
approaches to the gradient computation.



Figure 6.11: The computational graph used to compute the cost used to train our example
of a single-layer MLP using the cross-entropy loss and weight decay.



Optimization

Theano and Tensorflow approximate the Hessian
Matrix (higher order derivatives) using Krylov

Methods. Matrix inversions (therefore computations of
eigenvectors/values are also approximated).

Nesterov Momentum: similar to momentum, but
evaluate gradient after applying the current velocity.

Minibatches (in order to optimize for the hardware
also)

Conjugate gradient
Polyak averaging
Greedy supervised pretraining



Regularization for Deep Learning
L1 and L2 (ridge regression/Tikhonov regularization)
regularization
Feature selection (results in weight elimination
Early stopping

Dataset augmentation: e.g. add rotated, blurred,
scaled etc. images



Regularization for Deep Learning

Ability to penalize weights at different layers
differently (Srebro 2005, constrain norm of each
column of the weight matrix of a neural network,
rather than constrain the whole weight matrix)

Noise robustness: dropout algorithm (approximates
bagging, zero random some weights at each
minibatch)

Parameter tying and parameter sharing: reduce the
number of parameters used by clustering/forcing
similar valued parameters together and representing
them using smaller number of bits. CNNs already do
parameter sharing

Adversarial training: training on perturbed images



Convolution

e Sparse interactions, parameter sharing and
equivariant representations

* Parallel convolutions (feature extraction
units), folllowed by RelU, followed by pooling
to to obtain summary statistics of nearby cells.



Hardware: GPUs and TPUs to make
matrix/weight operations faster

LAMBDA BLADE $16,500

Includes FREE shipping
If you're looking for an enterprise solution for cutting-edge Deep Learning Ships in 3 days
performance and parallelization, the Lambda Blade is a necessity. Experience how

profitable of an investment Deep Learning hardware can be for your team.

Designed for deployment in data centers, our 8 GPU configurations significantly boost
Deep Learning performance and are ideal for remote access from multiple concurrent

users.

lat1

LAMBDA SINGLE $2,599

Includes FREE shipping
Ships in 3 days

SINGLE is an introduction to high performance Deep Learning hardware. Pre-installed

is every framework you’ll need — including Tensorflow, Torch, and Caffe.

Have any questions? Call us: 1 (650) 479-5530.
GPU PROCESSOR
1x 1080 Ti Intel i5

NVIDIA GeForce GTX 1080 Intel™ Core i5-6500, 6M
Ti or Titan Xp. Pascal Cache, up to 3.60 GHz
architecture

ool l

i | I I I I I source: https://lambdal.com

STORAGE RAM

250GB ssp 16GB DDR4

Configurable to 500 GB Configurable to 32 GB DDR4 e — i ——
SATA SSD RAM.

source: https://lambdal.com



Tesekkurler.
Questions?

cataltepe@itu.edu.tr
zehra@tazi.io
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