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1 BAYESIAN DECISION THEORY
We are needed to create a discriminant function of the form:
gi(x) =Inp(x|w;)+InP(w;) (1.1)

Then we need to define a class which has 3 label probabilities (one is later). Each label has its
own mean, standard deviation and PDE These are what wanted from us to do;

* With given mean, standard deviations and prior probabilities, plot the pdf and the sep-
arating surface

* With given mean, standard deviations and changed priors, plot the pdf and the sepa-
rating surface
* Generate random datasets with given element numbers for first two assignments
- Compute the estimates for the mean, plot histograms and computed separating

points

* Add another class label with its own mean, standard deviation and prior probability.
Compute decision regions again.



In order to find the decision surface, we need to create an equation of two classes. In PDFs,
when two class have the same probability value, in that point they have a decision surface.
Following that information, we must equalize the function g(x) of each class.

81(x) = g2(x) (1.2)
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If we solve this equation for certain ¢ and o values, we will get proper x values. And these
values will be our decision regions. For example, if we solve this equation for 1.a, the equation
will be as follows.

ex (— (x—(—5))2)_ ! ex (__(x—lO)z) =0 (1.5)
Vo P\ 32 Voravz P e '
x=1.7297195052747578 (1.6)

This x value will be our decision surface. Applying this formula for each section in the ques-
tion, we can get the following values as decision surfaces.

l.a(x) =1.7297195052747578 (1.7)

1.b(x) = —1.7912565829379605 (1.8)
l.c(x)(IN10a) = 1.2563433341620744 (1.9
l.c(x)(N10b) = —3.252287590835177 (1.10)
1l.c(x)(IN100a) = 1.6843889288822038 (1.11)
1.c(x)(IN100b) = —1.009899579735004 (1.12)
1.d(x)(First) = 1.6033512225956448 (1.13)
1.d(x)(Second) = 2.055393315932129 (1.14)



1.1 PLOTTING THE PDFS AND THE SEPARATING SURFACE

P(wj|x) = M (1.15)
p(x)

gi(x) =Inp(xlw;) + InP(w;) (1.16)

In the first equation, we have he basic definition of the Bayes formula. In the second equa-
tion, we have the posterior probability in a log scale. Summing logs means multiplying pa-
rameters inside the log. We have the prior probability, mean and standard deviation as fol-
lows;

P(w1), P(w2) =0.5 (1.17)
o=4 (1.18)
1= =5,z = 10 (1.19)

With given mean and standard deviation values, the PDF (posterior) and separating surface
plot will be like the following;
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Figure 1.1: Plot of (Q1.a)

We can see that the probability of making decision in favor of the class 2 is higher.



1.2 PLOTTING THE PDFS AND THE SEPARATING SURFACE (WITH 0.1 PROBABILITY)

YP(w
P(wjlx) = M (1.20)
p(x)

gi(x) =Inp(x|w;)+InP(w;) (1.21)

In the first equation, we have he basic definition of the Bayes formula. In the second equa-
tion, we have the posterior probability in a log scale. Summing logs means multiplying pa-
rameters inside the log. We have the prior probability, mean and standard deviation as fol-
lows;

P(w;) =0.1,P(w) =0.9 (1.22)
o=4 (1.23)
1 = =5, o = 10 (1.24)

With given mean and standard deviation values, the PDF (posterior) and separating surface
plot will be like the following;
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Figure 1.2: Plot of (Q1.b)

We can see that the probability of making decision in favor of the class 2 is higher than before.



1.3 PLOTTING THE HISTOGRAMS AND THE SEPARATING SURFACE (N=10)

We are needed to create random samples based on the given standard deviation and mean
values. First, we created two 10 sample sized spaces and plotted their histogram with these
probability and mean values.

P(w:) = 0.5, P(w,) = 0.5, P(ws) = 0.1, P(wy) = 0.9 (1.25)
o=4 (1.26)
1 = =5, o = 10 (1.27)

Calculated the new mean values from these histograms and run the separating surface func-
tion with these new mean values.
p1 = —4.56, ly = 7.52, i3 = —3.74, 14 = 8.28 (1.28)

With given mean and standard deviation values, the histograms and separating surface plot
will be like the following;
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Figure 1.3: Histograms and Separating Surface Values for N=10

We can see that the histogram based data verifies our previous assumptions.



1.4 PLOTTING THE HISTOGRAMS AND THE SEPARATING SURFACE (N=100)

We are needed to create random samples based on the given standard deviation and mean
values. First, we created two 100 sample sized spaces and plotted their histogram with these
probability and mean values.

P(w:) = 0.5, P(w,) = 0.5, P(ws) = 0.1, P(wy) = 0.9 (1.29)
o=4 (1.30)
1 = =5,z = 10 (1.31)

Calculated the new mean values from these histograms and run the separating surface func-
tion with these new mean values.
1 = —4.99, t1y = 9.95, 13 = —4.47, 14 = 10.98 (1.32)

With given mean and standard deviation values, the histograms and separating surface plot
will be like the following;
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Figure 1.4: Histograms and Separating Surface Values for N=100

We can see that the histogram based data verifies our previous assumptions.



1.5 PLOTTING THE PDFS AND THE SEPARATING SURFACE (WITH 3RD CLASS)

YP(w:
p(x)

gi(x) =Inp(x|w;)+InP(w;) (1.34)

In the first equation, we have he basic definition of the Bayes formula. In the second equa-
tion, we have the posterior probability in a log scale. Summing logs means multiplying pa-
rameters inside the log. We have the prior probability, mean and standard deviation as fol-
lows;

P(wy) = 0.4, P(w;) = 0.4, P(ws3) = 0.2 (1.35)
o=4 (1.36)
(1 =—-5pp=10,u3 =5 (1.37)

With given mean and standard deviation values, the PDF (posterior) and decision region plot
will be like the following;
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Figure 1.5: Plot of (Q1.d)

We can see that the decision region of class 3 is the smallest one.



2 RUNNING THE CODE

The assignment has been written in Python 3.6.2 with Sublime Text 3.1.1 IDE. In order to
run the assignment code, the following Python libraries are required;

e math
* numpy

* matplotlib
* scipy

Simply running the code will give Figure 1a,1b,1¢(N10,1a),1¢(N100,1a), 1¢(N10,1b),1c(N100,1b),
1d, respectively. Also in the console you can find the parameter outputs.

Function output example: The 1l.a. seperator is on x(1.7297195852747578)

1.A Decision Surface at 1.7297195852747578
Decision Surface at -1.7912565329379605

Decision Surface at 1.119241394364648
New Means mul: -6.26, mu2: 18.78
New 5td Devs sigmal: 3.59, sigma2: 5.16

Decision Surface at 1.9886857335358319
New Means mul: -4.8, mul: 9.32
New S5td Devs sigmal: 4.21, sigma2: 5.44

Decision Surface at -1.5844824865649814
New Means mul: -5.74, mu2: 7.75

-

New S5td Devs sigmal: 3.8, sigma2: 3.31

Decision Surface at -1.988874505188342
New Means mul: -4.84, mu2: 9.57
New Std Devs sigmal: 3.75, sigma2: 5.67

First Decision Surface at 1.6033512225956448
Second Decision Surface at 2.855393315932129

Figure 2.1: Parameter outputs in the console



