LECTURE 2: Review of Probability and Statistics

- Probability
- Definition of probability
- Axioms and properties
- Conditional probability
- Bayes Theorem
- Random Variables
- Definition of a Random Variable
- Cumulative Distribution Function
- Probability Density Function
- Statistical characterization of Random Variables
- Random Vectors
- Mean vector
- Covariance matrix
- The Gaussian random variable

Basic probability concepts

- Definitions (informal)
- Probabilities are numbers assigned to events that indicate "how likely" it is that the event will occur when a random experiment is performed
- A probability law for a random experiment is a rule that assigns probabilities to the events in the experiment
- The sample space S of a random experiment is the set of all possible outcomes

Sample space

- Axioms of probability
- Axiom I: $0 \leq P\left[A_{i}\right]$
- Axiom II: $\mathrm{P}[\mathrm{S}]=1$
- Axiom III: if $A_{i} \cap A_{j}=\varnothing$, then $P\left[A_{i} \cup A_{j}\right]=P\left[A_{i}\right]+P\left[A_{j}\right]$

Warming-up exercise

- I come to class with three colored cards
- One BLUE on both sides
- One RED on both sides
- One BLUE on one side, RED on the other

A

B

C

- I shuffle the three cards, then pick one and show you one side only. The side visible to you is RED
- Obviously, the card has to be either A or C, right?
- I am willing to bet $\$ 1$ that the other side of the card has the same color, and need someone in the audience to bet another $\$ 1$ that it is the other color
- Obviously, on the average we will end up even, right?
- Let's try it!

More properties of probability

PROPERTY1: $\quad \mathrm{P}\left[\mathrm{A}^{\mathrm{C}}\right]=1-\mathrm{P}[\mathrm{A}]$
PROPERTY 2: $\quad \mathrm{P}[\mathrm{A}] \leq 1$
PROPERTY 3: $\quad \mathrm{P}[\varnothing]=0$
PROPERTY 4: given $\left\{A_{1}, A_{2}, \ldots A_{N}\right\}$, if $\left\{A_{i} \cap A_{j}=\varnothing \forall i, j\right\}$ then $P\left[\bigcup_{k=1}^{N} A_{k}\right]=\sum_{k=1}^{N} P\left[A_{k}\right]$ PROPERTY 5: $\quad P\left[A_{1} \cup A_{2}\right]=P\left[A_{1}\right]+P\left[A_{2}\right]-P\left[A_{1} \cap A_{2}\right]$

PROPERTY 6: $\quad P\left[\bigcup_{k=1}^{N} A_{k}\right]=\sum_{k=1}^{N} P\left[A_{k}\right]-\sum_{j<k}^{N} P\left[A_{j} \cap A_{k}\right]+\ldots+(-1)^{N+1} P\left[A_{1} \cap A_{2} \cap \ldots \cap A_{N}\right]$
PROPERTY7: if $A_{1} \subset A_{2}$, then $P\left[A_{1}\right] \leq P\left[A_{2}\right]$

Conditional probability

- If A and B are two events, the probability of event A when we already know that event B has occurred is defined by the relation

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]} \text { for } P[B]>0
$$

- This conditional probability $\mathrm{P}[\mathrm{A} \mid \mathrm{B}]$ is read:
- the "conditional probability of A conditioned on B", or simply
- the "probability of A given B"
- Interpretation

- The new evidence "B has occurred" has the following effects
- The original sample space S (the whole square) becomes B (the rightmost circle)
- The event A becomes $\mathrm{A} \cap \mathrm{B}$
- $P[B]$ simply re-normalizes the probability of events that occur jointly with B

Theorem of total probability

- Let $B_{1}, B_{2}, \ldots, B_{N}$ be mutually exclusive events whose union equals the sample space S. We refer to these sets as a partition of S.
- An event A can be represented as:

$$
A=A \cap S=A \cap\left(B_{1} \cup B_{2} \cup \ldots \cup B_{N}\right)=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \ldots\left(A \cap B_{N}\right)
$$

- Since $B_{1}, B_{2}, \ldots, B_{N}$ are mutually exclusive, then
- and, therefore

$$
\mathrm{P}[\mathrm{~A}]=\mathrm{P}\left[\mathrm{~A} \mid \mathrm{B}_{1}\right] \mathrm{P}\left[\mathrm{~B}_{1}\right]+\ldots \mathrm{P}\left[\mathrm{~A} \mid \mathrm{B}_{\mathrm{N}}\right] \mathrm{P}\left[\mathrm{~B}_{\mathrm{N}}\right]=\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{P}\left[\mathrm{~A} \mid \mathrm{B}_{\mathrm{k}}\right] \mathrm{P}\left[\mathrm{~B}_{\mathrm{k}}\right]
$$

Bayes Theorem

- Given $B_{1}, B_{2}, \ldots, B_{N}$, a partition of the sample space S. Suppose that event A occurs; what is the probability of event B_{j} ?
- Using the definition of conditional probability and the Theorem of total probability we obtain

$$
P\left[B_{j} \mid A\right]=\frac{P\left[A \cap B_{j}\right]}{P[A]}=\frac{P\left[A \mid B_{j}\right] \cdot P\left[B_{j}\right]}{\sum_{k=1}^{N} P\left[A \mid B_{k}\right] \cdot P\left[B_{k}\right]}
$$

- This is known as Bayes Theorem or Bayes Rule, and is (one of) the most useful relations in probability and statistics
- Bayes Theorem is definitely the fundamental relation in Statistical Pattern

Rev. Thomas Bayes (1702-1761) Recognition

Bayes Theorem and Statistical Pattern Recognition

- For the purpose of pattern classification, Bayes Theorem can be expressed as

$$
P\left[\omega_{j} \mid x\right]=\frac{P\left[x \mid \omega_{j}\right] \cdot P\left[\omega_{j}\right]}{\sum_{k=1}^{N} P\left[x \mid \omega_{k}\right] \cdot P\left[\omega_{k}\right]}=\frac{P\left[x \mid \omega_{j}\right] \cdot P\left[\omega_{j}\right]}{P[x]}
$$

- where ω_{j} is the $i^{\text {th }}$ class and \boldsymbol{x} is the feature vector
- A typical decision rule (class assignment) is to choose the class ω_{i} with the highest $\mathrm{P}\left[\omega_{\mathrm{i}} \mid \mathrm{x}\right]$
- Intuitively, we will choose the class that is more "likely" given feature vector \boldsymbol{x}
- Each term in the Bayes Theorem has a special name, which you should be familiar with
- $\mathrm{P}\left[\omega_{\mathrm{j}}\right] \quad$ Prior probability (of class ω_{i})
- $P\left[\omega_{\mathrm{j}} \mid x\right] \quad$ Posterior Probability (of class ω_{i} given the observation \boldsymbol{x})
- $\mathrm{P}\left[\mathrm{x} \mid \omega_{\mathrm{j}}\right] \quad$ Likelihood (conditional probability of observation \boldsymbol{x} given class ω_{i})
- $\mathrm{P}[\mathrm{x}] \quad \mathrm{A}$ normalization constant that does not affect the decision

Stretching exercise

- Consider a clinical problem where we need to decide if a patient has a particular medical condition on the basis of an imperfect test:
- Someone with the condition may go undetected (false-negative)
- Someone free of the condition may yield a positive result (false-positive)
- Nomenclature
- The true-negative rate $P(N E G \mid \neg C O N D)$ of a test is called its SPECIFICITY
- The true-positive rate $P(P O S \mid C O N D)$ of a test is called its SENSITIVITY

	TEST IS POSITIVE	TEST IS NEGATIVE	ROW TOTAL
HAS CONDITION	True-positive		
$P(P O S \mid C O N D)$	False-negative $P(N E G \mid C O N D)$		
FREE OF CONDITION	False-positive $P(P O S \mid \neg C O N D)$	True-negative $P(N E G \mid \neg C O N D)$	
COLUMN TOTAL			

- PROBLEM
- Assume a population of 10,000 where 1 out of every 100 people has the condition
- Assume that we design a test with 98% specificity and 90% sensitivity
- Assume you are required to take the test, which then yields a POSITIVE result
- What is the probability that you have the condition?
- SOLUTION A: Fill in the joint frequency table above
- SOLUTION B: Apply Bayes rule

Stretching exercise

- Consider a clinical problem where we need to decide if a patient has a particular medical condition on the basis of an imperfect test:
- Someone with the condition may go undetected (false-negative)
- Someone free of the condition may yield a positive result (false-positive)
- Nomenclature
- The true-negative rate $P(N E G \mid \neg C O N D)$ of a test is called its SPECIFICITY
- The true-positive rate $P(P O S \mid C O N D)$ of a test is called its SENSITIVITY

	TEST IS POSITIVE	TEST IS NEGATIVE	ROW TOTAL
HAS CONDITION	True-positive	False-negative	
	$P(P O S \mid C O N D)$	$P(N E G \mid C O N D)$	
	100×0.90	$100 \times(1-0.90)$	100
FREE OF CONDITION	False-positive	True-negative	
	$P(P O S \mid \neg C O N D)$	$P(N E G \mid \neg C O N D)$	
	$9,900 \times(1-0.98)$	$9,900 \times 0.98$	9,900
COLUMN TOTAL	288	9,712	10,000

- PROBLEM
- Assume a population of 10,000 where 1 out of every 100 people has the condition
- Assume that we design a test with 98% specificity and 90% sensitivity
- Assume you are required to take the test, which then yields a POSITIVE result
- What is the probability that you have the condition?
- SOLUTION A: Fill in the joint frequency table above
- SOLUTION B: Apply Bayes rule

Stretching exercise

- SOLUTION B: Apply Bayes theorem

$$
\begin{aligned}
& P[C O N D \mid P O S]= \\
& =\frac{P[P O S \mid C O N D] \cdot P[C O N D]}{P[P O S]}= \\
& =\frac{P[P O S \mid C O N D] \cdot P[C O N D]}{P[P O S \mid C O N D] \cdot P[C O N D]+P[P O S \mid \neg C O N D] \cdot P[\neg C O N D]}= \\
& =\frac{0.90 \cdot 0.01}{0.90 \cdot 0.01+(1-0.98) \cdot 0.99}= \\
& =0.3125
\end{aligned}
$$

Random variables

- When we perform a random experiment we are usually interested in some measurement or numerical attribute of the outcome
- When we sample a population we may be interested in their weights
- When rating the performance of two computers we may be interested in the execution time of a benchmark
- When trying to recognize an intruder aircraft, we may want to measure parameters that characterize its shape
- These examples lead to the concept of random variable
- A random variable X is a function that assigns a real number $X(\zeta)$ to each outcome ζ in the sample space of a random experiment
- This function $X(\zeta)$ is performing a mapping from all the possible elements in the sample space onto the real line (real numbers)
- The function that assigns values to each outcome is fixed and deterministic
- as in the rule "count the number of heads in three coin tosses"
- the randomness the observed values is due to the underlying randomness of the argument of the function X, namely the outcome ζ of the experiment
- Random variables can be
- Discrete: the resulting number after rolling a dice

- Continuous: the weight of a sampled individual

Cumulative distribution function (cdf)

- The cumulative distribution function $F_{X}(x)$ of a random variable X is defined as the probability of the event $\{\mathrm{X} \leq \mathrm{x}\}$

$$
F_{x}(x)=P[X \leq x] \text { for }-\infty<x<+\infty
$$

- Intuitively, $\mathrm{F}_{\mathrm{X}}(\mathrm{b})$ is the long-term proportion of times in which $X(\zeta) \leq b$
- Properties of the cdf

$$
\begin{aligned}
& 0 \leq F_{x}(x) \leq 1 \\
& \lim _{x \rightarrow \infty} F_{x}(x)=1 \\
& \lim _{x \rightarrow-\infty} F_{x}(x)=0 \\
& F_{x}(a) \leq F_{x}(b) \text { if } a \leq b \\
& F_{x}(b)=\lim _{h \rightarrow 0} F_{x}(b+h)=F_{x}\left(b^{+}\right)
\end{aligned}
$$

cdf for a person's weight

Probability density function (pdf)

- The probability density function of a continuous random variable X, if it exists, is defined as the derivative of $F_{X}(x)$

$$
f_{x}(x)=\frac{d F_{x}(x)}{d x}
$$

- For discrete random variables, the equivalent to

$\begin{array}{llllll}100 & 200 & 300 & 400 & 500 & \text { X (lb) }\end{array}$
pdf for a person's weight
- Properties

$$
f_{x}(x)=\frac{\Delta F_{x}(x)}{\Delta x}
$$

$$
\begin{aligned}
& f_{x}(x)>0 \\
& P[a<x<b]=\int_{a}^{b} f_{x}(x) d x \\
& F_{x}(x)=\int_{-\infty}^{x} f_{x}(x) d x \\
& 1=\int_{-\infty}^{+\infty} f_{x}(x) d x \\
& f_{x}(x \mid A)=\frac{d}{d x} F_{x}(x \mid A) \text { where } F_{x}(x \mid A)=\frac{P[\{X<x\} \cap A]}{P[A]} \text { if } P[A]>0
\end{aligned}
$$

pmf for rolling a (fair) dice

Probability density function Vs. Probability

- What is the probability of somebody weighting 200 lb ?
- According to the pdf, this is about 0.62
- This number seems reasonable, right?
- Now, what is the probability of somebody weighting 124.876 lb?
- According to the pdf, this is about 0.43
- But, intuitively, we know that the probability should be zero (or very, very small)

- How do we explain this paradox?

- The pdf DOES NOT define a probability, but a probability DENSITY!
- To obtain the actual probability we must integrate the pdf in an interval
- So we should have asked the question: what is the probability of
 pmf for rolling a (fair) dice somebody weighting 124.876 lb plus or minus 2 lb ?
- The probability mass function is a 'true' probability (reason why we call it a 'mass' as opposed to a 'density')
- The pmf is indicating that the probability of any number when rolling a fair dice is the same for all numbers, and equal to 1/6, a very legitimate answer
- The pmf DOES NOT need to be integrated to obtain the probability (it cannot be integrated in the first place)

Statistical characterization of random variables

- The cdf or the pdf are SUFFICIENT to fully characterize a random variable, However, a random variable can be PARTIALLY characterized with other measures
- Expectation

$$
E[X]=\mu=\int_{-\infty}^{+\infty} x f_{x}(x) d x
$$

- The expectation represents the center of mass of a density
- Variance

$$
\operatorname{VAR}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right]=\int_{-\infty}^{+\infty}(\mathrm{x}-\mu)^{2} \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}
$$

- The variance represents the spread about the mean
- Standard deviation $\operatorname{STD}[\mathrm{X}]=\operatorname{VAR}[\mathrm{X}]^{1 / 2}$
- The square root of the variance. It has the same units as the random variable.
- $\mathrm{N}^{\text {th }}$ moment

$$
E\left[X^{N}\right]=\int_{-\infty}^{+\infty} x^{N} f_{x}(x) d x
$$

Random vectors

- The notion of a random vector is an extension to that of a random variable
- A vector random variable X is a function that assigns a vector of real numbers to each outcome ζ in the sample space S
- We will always denote a random vector by a column vector
- The notions of cdf and pdf are replaced by 'joint cdf' and 'joint pdf'
- Given random vector, $\underline{X}=\left[x_{1} x_{2} \ldots x_{N}\right]^{\top}$ we define
- Joint Cumulative Distribution Function as:

$$
F_{\underline{x}}(\underline{x})=P_{\underline{x}}\left[\left\{X_{1} \leq x_{1}\right\} \cap\left\{X_{2} \leq x_{2}\right\} \cap \ldots \cap\left\{X_{N} \leq X_{N}\right\}\right]
$$

- Joint Probability Density Function as:

$$
f_{\underline{x}}(\underline{x})=\frac{\partial^{N} F_{\underline{x}}(\underline{x})}{\partial x_{1} \partial x_{2} \ldots \partial x_{N}}
$$

- The term marginal pdf is used to represent the pdf of a subset of all the random vector dimensions
- A marginal pdf is obtained by integrating out the variables that are not of interest
- As an example, for a two-dimensional problem with random vector $\underline{X}=\left[\mathrm{x}_{1} \mathrm{x}_{2}\right]^{\top}$, the marginal pdf for x_{1}, given the joint pdf $\mathrm{f}_{\mathrm{x} 1 \times 2}\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)$, is

$$
f_{x_{1}}\left(x_{1}\right)=\int_{x_{2}=-\infty}^{x_{2}=+\infty} f_{x_{1} x_{2}}\left(x_{1} x_{2}\right) d x_{2}
$$

Statistical characterization of random vectors

- A random vector is also fully characterized by its joint cdf or joint pdf
- Alternatively, we can (partially) describe a random vector with measures similar to those defined for scalar random variables
- Mean vector

$$
\mathrm{E}[\mathrm{X}]=\left[\mathrm{E}\left[\mathrm{X}_{1}\right] \mathrm{E}\left[\mathrm{X}_{2}\right] \ldots \mathrm{E}\left[\mathrm{X}_{N}\right]\right]^{\top}=\left[\mu_{1} \mu_{2} \ldots \mu_{N}\right]=\mu
$$

- Covariance matrix

$$
\begin{aligned}
\operatorname{COV}[X] & =\sum=E\left[(X-\mu)(X-\mu)^{\top}\right] \\
& =\left[\begin{array}{ccc}
E\left[\left(x_{1}-\mu_{1}\right)\left(x_{1}-\mu_{1}\right)\right] & \ldots & E\left[\left(x_{1}-\mu_{1}\right)\left(x_{N}-\mu_{N}\right)\right] \\
\ldots & \ldots & \\
E\left[\left(x_{N}-\mu_{N}\right)\left(x_{1}-\mu_{1}\right)\right] & \ldots & E\left[\left(x_{N}-\mu_{N}\right)\left(x_{N}-\mu_{N}\right)\right]
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \ldots & c_{1 N} \\
\ldots & \ldots & \\
c_{1 N} & \ldots & \sigma_{N}^{2}
\end{array}\right]
\end{aligned}
$$

Covariance matrix (1)

- The covariance matrix indicates the tendency of each pair of features (dimensions in a random vector) to vary together, i.e., to co-vary*
- The covariance has several important properties
- If $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{k}}$ tend to increase together, then $\mathbf{c}_{\mathrm{i}}>0$
- If $\mathbf{x}_{\mathbf{i}}$ tends to decrease when $\mathbf{x}_{\mathbf{k}}$ increases, then $\mathbf{c}_{\mathrm{ik}}<0$
- If $\mathbf{x}_{\mathbf{i}}$ and \mathbf{x}_{k} are uncorrelated, then $\mathrm{c}_{\mathrm{ik}}=0$
- $\left|\mathbf{c}_{\mathbf{i k}}\right| \leq \sigma_{\mathrm{i}} \sigma_{\mathrm{k}}$, where σ_{i} is the standard deviation of $\mathbf{x}_{\mathbf{i}}$
- $\mathbf{c}_{\mathrm{ii}}=\sigma_{\mathrm{i}}^{2}=\operatorname{VAR}\left(\mathbf{x}_{\mathrm{i}}\right)$
- The covariance terms can be expressed as

$$
\mathrm{c}_{\mathrm{ii}}=\sigma_{\mathrm{i}}^{2} \text { and } \mathrm{c}_{\mathrm{ik}}=\rho_{\mathrm{ik}} \sigma_{\mathrm{i}} \sigma_{\mathrm{k}}
$$

- where ρ_{ik} is called the correlation coefficient

$C_{i k}=-\sigma_{i} \sigma_{k}$
$\rho_{i k}=-1$

$C_{i k}=-1 / 2 \sigma_{\mathrm{i}} \sigma_{\mathrm{k}}$
$\rho_{\text {ik }}=-1 / 2$

$C_{i \mathrm{ik}}=0$
$\rho_{\mathrm{ik}}=0$

$C_{i k}=+1 / 2 \sigma_{i} \sigma_{k}$

$C_{i \mathrm{ik}}=\sigma_{\mathrm{i}} \sigma_{\mathrm{k}}$
$\rho_{\mathrm{ik}}=+1$

Covariance matrix (2)

- The covariance matrix can be reformulated as*

$$
\begin{array}{r}
\sum=E\left[(X-\mu)(X-\mu)^{\top}\right]=E\left[X X^{\top}\right]-\mu \mu^{\top}=S-\mu \mu^{\top} \\
\text { with } S=E\left[X X^{\top}\right]=\left[\begin{array}{ccc}
E\left[x_{1} x_{1}\right] & \ldots & E\left[x_{1} x_{N}\right] \\
\ldots & \ldots & \ldots \\
E\left[x_{N} x_{1}\right] & \ldots & E\left[x_{N} x_{N}\right]
\end{array}\right]
\end{array}
$$

- S is called the autocorrelation matrix, and contains the same amount of information as the covariance matrix
- The covariance matrix can also be expressed as

$$
\Sigma=\Gamma \mathrm{R} \Gamma=\left[\begin{array}{cccc}
\sigma_{1} & 0 & \ldots & 0 \\
0 & \sigma_{2} & & \\
\ldots & & \ldots & \\
0 & & & \sigma_{\mathrm{N}}
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & \rho_{12} & \ldots & \rho_{1 \mathrm{~N}} \\
\rho_{12} & 1 & & \\
\ldots & & \ldots & \\
\rho_{1 \mathrm{~N}} & & & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
\sigma_{1} & 0 & \ldots & 0 \\
0 & \sigma_{2} & & \\
\ldots & & \ldots & \\
0 & & & \sigma_{\mathrm{N}}
\end{array}\right]
$$

- A convenient formulation since Γ contains the scales of the features and R retains the essential information of the relationship between the features.
- R is the correlation matrix
- Correlation Vs. Independence
- Two random variables x_{i} and x_{k} are uncorrelated if $E\left[x_{i} x_{k}\right]=E\left[x_{i}\right] E\left[x_{k}\right]$
- Uncorrelated variables are also called linearly independent
- Two random variables x_{i} and x_{k} are independent if $P\left[x_{i} x_{k}\right]=P\left[x_{i}\right] P\left[x_{k}\right]$

A numerical example

- Given the following samples from a 3dimensional distribution
- Compute the covariance matrix
- Generate scatter plots for every pair of variables
- Can you observe any relationships between the covariance and the scatter plots?

	Variables (or features)		
Examples	\mathbf{x}_{1}	$\mathbf{x}_{\mathbf{2}}$	\mathbf{x}_{3}
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	4
$\mathbf{2}$	3	4	6
$\mathbf{3}$	5	4	2
$\mathbf{4}$	6	6	4

- You may work your solution in the templates below

	\bar{x}	$\underset{\sim}{*}$	¢	$\frac{\overline{⿳ 亠}}{\bar{x}}$	$\underset{\underset{X}{N}}{\underset{X}{N}}$	$\begin{aligned} & \stackrel{\cong}{8} \\ & \underset{x}{x} \end{aligned}$	$\frac{N}{\frac{\bar{j}}{\dot{x}}}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\grave{x}} \\ & \underset{\sim}{x} \end{aligned}$			
1												
2												
3												
4												
Average												

The Normal or Gaussian distribution

- The multivariate Normal or Gaussian distribution $\mathbf{N}(\mu, \Sigma)$ is defined as

$$
f_{x}(x)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(X-\mu)^{\top} \Sigma^{-1}(X-\mu)\right]
$$

- For a single dimension, this expression is reduced to

$$
\mathrm{f}_{\mathrm{x}}(\mathrm{x})=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mathrm{X}-\mu}{\sigma}\right)^{2}\right]
$$

- Gaussian distributions are very popular since
- The parameters (μ, Σ) are sufficient to uniquely characterize the normal distribution
- If the $\mathbf{x}_{\mathbf{i}}$'s are mutually uncorrelated $\left(\mathbf{c}_{\mathrm{ik}}=0\right)$, then they are also independent
- The covariance matrix becomes a diagonal matrix, with the individual variances in the main diagonal
- Central Limit Theorem
- The marginal and conditional densities are also Gaussian
- Any linear transformation of any N jointly Gaussian rv's results in N rv's that are also Gaussian

- For $X=\left[X_{1} X_{2} \ldots X_{N}\right]^{\top}$ jointly Gaussian, and A an $N \times N$ invertible matrix, then $Y=A X$ is also jointly Gaussian

$$
f_{Y}(y)=\frac{f_{X}\left(A^{-1} y\right)}{|A|}
$$

Central Limit Theorem

- The central limit theorem states that given a distribution with a mean μ and variance σ^{2}, the sampling distribution of the mean approaches a normal distribution with a mean (μ) and a variance σ^{2} / \mathbf{N} as N , the sample size, increases.
- No matter what the shape of the original distribution is, the sampling distribution of the mean approaches a normal distribution
- Keep in mind that N is the sample size for each mean and not the number of samples
- A uniform distribution is used to illustrate the idea behind the Central Limit Theorem
- Five hundred experiments were performed using am uniform distribution
- For $\mathrm{N}=1$, one sample was drawn from the distribution and its mean was recorded (for each of the 500 experiments)
- Obviously, the histogram shown a uniform density
- For $N=4,4$ samples were drawn from the distribution and the mean of these 4 samples was recorded (for each of the 500 experiments)
- The histogram starts to show a Gaussian shape
- And so on for $\mathrm{N}=7$ and $\mathrm{N}=10$
$\mathrm{N}=1$

- As N grows, the shape of the histograms resembles a Normal distribution more closely

