D

Matrix Calculus

In this Appendix we collect some useful formulas of matrix calculus that often appear in finite element derivations.

§D. 1 THE DERIVATIVES OF VECTOR FUNCTIONS

Let \mathbf{x} and \mathbf{y} be vectors of orders n and m respectively:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \tag{D.1}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

where each component y_{i} may be a function of all the x_{j}, a fact represented by saying that \mathbf{y} is a function of \mathbf{x}, or

$$
\begin{equation*}
\mathbf{y}=\mathbf{y}(\mathbf{x}) . \tag{D.2}
\end{equation*}
$$

If $n=1, \mathbf{x}$ reduces to a scalar, which we call x. If $m=1, \mathbf{y}$ reduces to a scalar, which we call y. Various applications are studied in the following subsections.

§D.1.1 Derivative of Vector with Respect to Vector

The derivative of the vector \mathbf{y} with respect to vector \mathbf{x} is the $n \times m$ matrix

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}} \tag{D.3}\\
\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_{1}}{\partial x_{n}} & \frac{\partial y_{2}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

§D.1.2 Derivative of a Scalar with Respect to Vector

If y is a scalar,

$$
\frac{\partial y}{\partial \mathbf{x}} \stackrel{\text { def }}{=}\left[\begin{array}{c}
\frac{\partial y}{\partial x_{1}} \tag{D.4}\\
\frac{\partial y}{\partial x_{2}} \\
\vdots \\
\frac{\partial y}{\partial x_{n}}
\end{array}\right] .
$$

§D.1.3 Derivative of Vector with Respect to Scalar

If x is a scalar,

$$
\frac{\partial \mathbf{y}}{\partial x} \stackrel{\text { def }}{=}\left[\begin{array}{llll}
\frac{\partial y_{1}}{\partial x} & \frac{\partial y_{2}}{\partial x} & \ldots & \frac{\partial y_{m}}{\partial x} \tag{D.5}
\end{array}\right]
$$

D-2

REMARK D. 1

Many authors, notably in statistics and economics, define the derivatives as the transposes of those given above. ${ }^{1}$ This has the advantage of better agreement of matrix products with composition schemes such as the chain rule. Evidently the notation is not yet stable.

EXAMPLE D. 1

Given

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \tag{D.6}\\
y_{2}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

and

$$
\begin{align*}
& y_{1}=x_{1}^{2}-x_{2} \tag{D.7}\\
& y_{2}=x_{3}^{2}+3 x_{2}
\end{align*}
$$

the partial derivative matrix $\partial \mathbf{y} / \partial \mathbf{x}$ is computed as follows:

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} \tag{D.8}\\
\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} \\
\frac{\partial y_{1}}{\partial x_{3}} & \frac{\partial y_{2}}{\partial x_{3}}
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1} & 0 \\
-1 & 3 \\
0 & 2 x_{3}
\end{array}\right]
$$

§D.1.4 Jacobian of a Variable Transformation

In multivariate analysis, if \mathbf{x} and \mathbf{y} are of the same order, the determinant of the square matrix $\partial \mathbf{x} / \partial \mathbf{y}$, that is

$$
\begin{equation*}
J=\left|\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right| \tag{D.9}
\end{equation*}
$$

is called the Jacobian of the transformation determined by $\mathbf{y}=\mathbf{y}(\mathbf{x})$. The inverse determinant is

$$
\begin{equation*}
J^{-1}=\left|\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right| \tag{D.10}
\end{equation*}
$$

[^0]
D-3

EXAMPLE D. 2

The transformation from spherical to Cartesian coordinates is defined by

$$
\begin{equation*}
x=r \sin \theta \cos \psi, \quad y=r \sin \theta \sin \psi, \quad z=r \cos \theta \tag{D.11}
\end{equation*}
$$

where $r>0,0<\theta<\pi$ and $0 \leq \psi<2 \pi$. To obtain the Jacobian of the transformation, let

$$
\begin{array}{lll}
x \equiv x_{1}, & y \equiv x_{2}, & z \equiv x_{3} \tag{D.12}\\
r \equiv y_{1}, & \theta \equiv y_{2}, & \psi \equiv y_{3}
\end{array}
$$

Then

$$
\begin{align*}
J=\left|\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right| & =\left|\begin{array}{ccc}
\sin y_{2} \cos y_{3} & \sin y_{2} \sin y_{3} & \cos y_{2} \\
y_{1} \cos y_{2} \cos y_{3} & y_{1} \cos y_{2} \sin y_{3} & -y_{1} \sin y_{2} \\
-y_{1} \sin y_{2} \sin y_{3} & y_{1} \sin y_{2} \cos y_{3} & 0
\end{array}\right| \tag{D.13}\\
& =y_{1}^{2} \sin y_{2}=r^{2} \sin \theta
\end{align*}
$$

The foregoing definitions can be used to obtain derivatives to many frequently used expressions, including quadratic and bilinear forms.

EXAMPLE D. 3

Consider the quadratic form

$$
\begin{equation*}
y=\mathbf{x}^{T} \mathbf{A} \mathbf{x} \tag{D.14}
\end{equation*}
$$

where \mathbf{A} is a square matrix of order n. Using the definition (D.3) one obtains

$$
\begin{equation*}
\frac{\partial y}{\partial \mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{A}^{T} \mathbf{x} \tag{D.15}
\end{equation*}
$$

and if \mathbf{A} is symmetric,

$$
\begin{equation*}
\frac{\partial y}{\partial \mathbf{x}}=2 \mathbf{A} \mathbf{x} \tag{D.16}
\end{equation*}
$$

We can of course continue the differentiation process:

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial \mathbf{x}^{2}}=\frac{\partial}{\partial \mathbf{x}}\left(\frac{\partial y}{\partial \mathbf{x}}\right)=\mathbf{A}+\mathbf{A}^{T} \tag{D.17}
\end{equation*}
$$

and if \mathbf{A} is symmetric,

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial \mathbf{x}^{2}}=2 \mathbf{A} \tag{D.18}
\end{equation*}
$$

The following table collects several useful vector derivative formulas.

\mathbf{y}	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$
$\mathbf{A} \mathbf{x}$	\mathbf{A}^{T}
$\mathbf{x}^{T} \mathbf{A}$	\mathbf{A}
$\mathbf{x}^{T} \mathbf{x}$	$2 \mathbf{x}$
$\mathbf{x}^{T} \mathbf{A} \mathbf{x}$	$\mathbf{A} \mathbf{x}+\mathbf{A}^{T} \mathbf{x}$

§D. 2 THE CHAIN RULE FOR VECTOR FUNCTIONS

Let

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \tag{D.19}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad, \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{r}
\end{array}\right] \quad \text { and } \quad \mathbf{z}=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{m}
\end{array}\right]
$$

where \mathbf{z} is a function of \mathbf{y}, which is in turn a function of \mathbf{x}. Using the definition (D.2), we can write

$$
\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)^{T}=\left[\begin{array}{cccc}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial x_{2}} & \cdots & \frac{\partial z_{1}}{\partial x_{n}} \tag{D.20}\\
\frac{\partial z_{2}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{2}} & \cdots & \frac{\partial z_{2}}{\partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial z_{m}}{\partial x_{1}} & \frac{\partial z_{m}}{\partial x_{2}} & \cdots & \frac{\partial z_{m}}{\partial x_{n}}
\end{array}\right]
$$

Each entry of this matrix may be expanded as

$$
\frac{\partial z_{i}}{\partial x_{j}}=\sum_{q=1}^{r} \frac{\partial z_{i}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{j}} \quad\left\{\begin{array}{l}
i=1,2, \ldots, m \tag{D.21}\\
j=1,2, \ldots, n
\end{array}\right.
$$

Then

$$
\begin{align*}
& \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)^{T}=\left[\begin{array}{cccc}
\sum \frac{\partial z_{1}}{y_{q}} \frac{\partial y_{q}}{\partial x_{1}} & \sum \frac{\partial z_{1}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{2}} & \cdots & \sum \frac{\partial z_{2}}{\partial y_{q}} \frac{\partial y_{q}}{\partial y_{n}} \\
\sum \frac{\partial z_{1}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{1}} & \sum \frac{\partial z_{1}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{2}} & \cdots & \sum \frac{\partial z_{2}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{n}} \\
\vdots & & & \\
\sum \frac{\partial z_{m}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{1}} & \sum \frac{\partial z_{z}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{2}} & \cdots & \sum \frac{\partial z_{m}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{n}}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{\partial z_{1}}{\partial y_{1}} & \frac{\partial z_{1}}{\partial y_{2}} & \cdots & \frac{\partial z_{1}}{\partial y_{r}} \\
\frac{\partial z_{2}}{\partial y_{1}} & \frac{\partial z_{2}}{\partial y_{2}} & \cdots & \frac{\partial z_{2}}{\partial y_{r}} \\
\vdots & & & \\
\frac{\partial z_{m}}{\partial y_{1}} & \frac{\partial z_{m}}{\partial y_{2}} & \cdots & \frac{\partial z_{m}}{\partial y_{r}}
\end{array}\right]\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots & & & \\
\frac{\partial y_{r}}{\partial x_{1}} & \frac{\partial y_{r}}{\partial x_{2}} & \cdots & \frac{\partial y_{r}}{\partial x_{n}}
\end{array}\right] \\
& =\left(\frac{\partial \mathbf{z}}{\partial \mathbf{y}}\right)^{T}\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{T}=\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}}\right)^{T} . \tag{D.22}
\end{align*}
$$

On transposing both sides, we finally obtain

$$
\begin{equation*}
\frac{\partial \mathbf{z}}{\partial \mathbf{x}}=\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \tag{D.23}
\end{equation*}
$$

which is the chain rule for vectors. If all vectors reduce to scalars,

$$
\begin{equation*}
\frac{\partial z}{\partial x}=\frac{\partial y}{\partial x} \frac{\partial z}{\partial y}=\frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \tag{D.24}
\end{equation*}
$$

D-5
which is the conventional chain rule of calculus. Note, however, that when we are dealing with vectors, the chain of matrices builds "toward the left." For example, if \mathbf{w} is a function of \mathbf{z}, which is a function of \mathbf{y}, which is a function of \mathbf{x},

$$
\begin{equation*}
\frac{\partial \mathbf{w}}{\partial \mathbf{x}}=\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{w}}{\partial \mathbf{z}} \tag{D.25}
\end{equation*}
$$

On the other hand, in the ordinary chain rule one can indistictly build the product to the right or to the left because scalar multiplication is commutative.

§D. 3 THE DERIVATIVE OF SCALAR FUNCTIONS OF A MATRIX

Let $\mathbf{X}=\left(x_{i j}\right)$ be a matrix of order $(m \times n)$ and let

$$
\begin{equation*}
y=f(\mathbf{X}) \tag{D.26}
\end{equation*}
$$

be a scalar function of \mathbf{X}. The derivative of y with respect to \mathbf{X}, denoted by

$$
\begin{equation*}
\frac{\partial y}{\partial \mathbf{X}}, \tag{D.27}
\end{equation*}
$$

is defined as the following matrix of order $(m \times n)$:

$$
\mathbf{G}=\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{cccc}
\frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \cdots & \frac{\partial y}{\partial x_{1 n}} \tag{D.28}\\
\frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2 n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y}{\partial x_{m 1}} & \frac{\partial y}{\partial x_{m 2}} & \cdots & \frac{\partial y}{\partial x_{m n}}
\end{array}\right]=\left[\frac{\partial y}{\partial x_{i j}}\right]=\sum_{i, j} \mathbf{E}_{i j} \frac{\partial y}{\partial x_{i j}},
$$

where $\mathbf{E}_{i j}$ denotes the elementary matrix* of order $(m \times n)$. This matrix \mathbf{G} is also known as a gradient matrix.

EXAMPLE D. 4

Find the gradient matrix if y is the trace of a square matrix \mathbf{X} of order n, that is

$$
\begin{equation*}
y=\operatorname{tr}(\mathbf{X})=\sum_{i=1}^{n} x_{i i} \tag{D.29}
\end{equation*}
$$

Obviously all non-diagonal partials vanish whereas the diagonal partials equal one, thus

$$
\begin{equation*}
\mathbf{G}=\frac{\partial y}{\partial \mathbf{X}}=\mathbf{I}, \tag{D.30}
\end{equation*}
$$

where \mathbf{I} denotes the identity matrix of order n.

[^1]
§D.3.1 Functions of a Matrix Determinant

An important family of derivatives with respect to a matrix involves functions of the determinant of a matrix, for example $y=|\mathbf{X}|$ or $y=|\mathbf{A X}|$. Suppose that we have a matrix $\mathbf{Y}=\left[y_{i j}\right]$ whose components are functions of a matrix $\mathbf{X}=\left[x_{r s}\right]$, that is $y_{i j}=f_{i j}\left(x_{r s}\right)$, and set out to build the matrix

$$
\begin{equation*}
\frac{\partial|\mathbf{Y}|}{\partial \mathbf{X}} . \tag{D.31}
\end{equation*}
$$

Using the chain rule we can write

$$
\begin{equation*}
\frac{\partial|\mathbf{Y}|}{\partial x_{r s}}=\sum_{i} \sum_{j} \mathbf{Y}_{i j} \frac{\partial|\mathbf{Y}|}{\partial y_{i j}} \frac{\partial y_{i j}}{\partial x_{r s}} \tag{D.32}
\end{equation*}
$$

But

$$
\begin{equation*}
|\mathbf{Y}|=\sum_{j} y_{i j} \mathbf{Y}_{i j} \tag{D.33}
\end{equation*}
$$

where $\mathbf{Y}_{i j}$ is the cofactor of the element $y_{i j}$ in $|\mathbf{Y}|$. Since the cofactors $\mathbf{Y}_{i 1}, \mathbf{Y}_{i 2}, \ldots$ are independent of the element $y_{i j}$, we have

$$
\begin{equation*}
\frac{\partial|\mathbf{Y}|}{\partial y_{i j}}=\mathbf{Y}_{i j} \tag{D.34}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\frac{\partial|\mathbf{Y}|}{\partial x_{r s}}=\sum_{i} \sum_{j} \mathbf{Y}_{i j} \frac{\partial y_{i j}}{\partial x_{r s}} . \tag{D.35}
\end{equation*}
$$

There is an alternative form of this result which is ocassionally useful. Define

$$
\begin{equation*}
a_{i j}=\mathbf{Y}_{i j}, \quad \mathbf{A}=\left[a_{i j}\right], \quad b_{i j}=\frac{\partial y_{i j}}{\partial x_{r s}}, \quad \mathbf{B}=\left[b_{i j}\right] . \tag{D.36}
\end{equation*}
$$

Then it can be shown that

$$
\begin{equation*}
\frac{\partial|\mathbf{Y}|}{\partial x_{r s}}=\operatorname{tr}\left(\mathbf{A B}^{T}\right)=\operatorname{tr}\left(\mathbf{B}^{T} \mathbf{A}\right) . \tag{D.37}
\end{equation*}
$$

EXAMPLE D. 5

If \mathbf{X} is a nonsingular square matrix and $\mathbf{Z}=|\mathbf{X}| \mathbf{X}^{-1}$ its cofactor matrix,

$$
\begin{equation*}
\mathbf{G}=\frac{\partial|\mathbf{X}|}{\partial \mathbf{X}}=\mathbf{Z}^{T} . \tag{D.38}
\end{equation*}
$$

If \mathbf{X} is also symmetric,

$$
\begin{equation*}
\mathbf{G}=\frac{\partial|\mathbf{X}|}{\partial \mathbf{X}}=2 \mathbf{Z}^{T}-\operatorname{diag}\left(\mathbf{Z}^{T}\right) . \tag{D.39}
\end{equation*}
$$

§D. 4 THE MATRIX DIFFERENTIAL

For a scalar function $f(\mathbf{x})$, where \mathbf{x} is an n-vector, the ordinary differential of multivariate calculus is defined as

$$
\begin{equation*}
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i} \tag{D.40}
\end{equation*}
$$

In harmony with this formula, we define the differential of an $m \times n$ matrix $\mathbf{X}=\left[x_{i j}\right]$ to be

$$
d \mathbf{X} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
d x_{11} & d x_{12} & \ldots & d x_{1 n} \tag{D.41}\\
d x_{21} & d x_{22} & \ldots & d x_{2 n} \\
\vdots & \vdots & & \vdots \\
d x_{m 1} & d x_{m 2} & \ldots & d x_{m n}
\end{array}\right]
$$

This definition complies with the multiplicative and associative rules

$$
\begin{equation*}
d(\alpha \mathbf{X})=\alpha d \mathbf{X}, \quad d(\mathbf{X}+\mathbf{Y})=d \mathbf{X}+d \mathbf{Y} \tag{D.42}
\end{equation*}
$$

If \mathbf{X} and \mathbf{Y} are product-conforming matrices, it can be verified that the differential of their product is

$$
\begin{equation*}
d(\mathbf{X Y})=(d \mathbf{X}) \mathbf{Y}+\mathbf{X}(d \mathbf{Y}) \tag{D.43}
\end{equation*}
$$

which is an extension of the well known rule $d(x y)=y d x+x d y$ for scalar functions.

EXAMPLE D. 6

If $\mathbf{X}=\left[x_{i j}\right]$ is a square nonsingular matrix of order n, and denote $\mathbf{Z}=|\mathbf{X}| \mathbf{X}^{-1}$. Find the differential of the determinant of \mathbf{X} :

$$
\begin{equation*}
\left.d|\mathbf{X}|=\sum_{i, j} \frac{\partial|\mathbf{X}|}{\partial x_{i j}} d x_{i j}=\sum_{i, j} \mathbf{X}_{i j} d x_{i j}=\operatorname{tr}\left(|\mathbf{X}| \mathbf{X}^{-1}\right)^{T} d \mathbf{X}\right)=\operatorname{tr}\left(\mathbf{Z}^{T} d \mathbf{X}\right), \tag{D.44}
\end{equation*}
$$

where $X_{i j}$ denotes the cofactor of $x_{i j}$ in \mathbf{X}.

EXAMPLE D. 7

With the same assumptions as above, find $d\left(\mathbf{X}^{-1}\right)$. The quickest derivation follows by differentiating both sides of the identity $\mathbf{X}^{-1} \mathbf{X}=\mathbf{I}$:

$$
\begin{equation*}
d\left(\mathbf{X}^{-1}\right) \mathbf{X}+\mathbf{X}^{-1} d \mathbf{X}=\mathbf{0}, \tag{D.45}
\end{equation*}
$$

from which

$$
\begin{equation*}
d\left(\mathbf{X}^{-1}\right)=-\mathbf{X}^{-1} d \mathbf{X} \mathbf{X}^{-1} \tag{D.46}
\end{equation*}
$$

If \mathbf{X} reduces to the scalar x we have

$$
\begin{equation*}
d\left(\frac{1}{x}\right)=-\frac{d x}{x^{2}} . \tag{D.47}
\end{equation*}
$$

[^0]: ${ }^{1}$ One author puts it this way: "When one does matrix calculus, one quickly finds that there are two kinds of people in this world: those who think the gradient is a row vector, and those who think it is a column vector."

[^1]: * The elementary matrix $\mathbf{E}_{i j}$ of order $m \times n$ has all zero entries except for the (i, j) entry, which is one.

