Lecture Slides for

INTRODUCTION TO

Machine Learning 2nd Edition

ETHEM ALPAYDIN
© The MIT Press, 2010
alpaydin@boun.edu.tr
http://www.cmpe.boun.edu.tr/~ethem/i2m/2e

CHAPTER 6:
Dimensionality Reduction

Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

- Feature selection: Choosing $k<d$ important features, ignoring the remaining $d-k$

Subset selection algorithms

- Feature extraction: Project the original $x_{i}, i=1, \ldots, d$ dimensions to new $k<d$ dimensions, $z_{j}, j=1, \ldots, k$

Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)

Subset Selection

- There are 2^{d} subsets of d features
- Forward search: Add the best feature at each step
- Set of features F initially \varnothing.
- At each iteration, find the best new feature $j=\operatorname{argmin}_{i} E\left(F \cup x_{i}\right)$
- Add x_{j} to F if $E\left(F \cup x_{j}\right)<E(F)$
- Hill-climbing $O\left(d^{2}\right)$ algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add k, remove l)

Principal Components Analysis (PCA)

- Find a low-dimensional space such that when \boldsymbol{x} is projected there, information loss is minimized.
- The projection of \boldsymbol{x} on the direction of \boldsymbol{w} is: $\boldsymbol{z}=\boldsymbol{w}^{\top} \boldsymbol{x}$
- Find \boldsymbol{w} such that $\operatorname{Var}(z)$ is maximized

$$
\begin{aligned}
\operatorname{Var}(\mathrm{z}) & =\operatorname{Var}\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)=\mathrm{E}\left[\left(\boldsymbol{w}^{\top} \boldsymbol{x}-\boldsymbol{w}^{\top} \boldsymbol{\mu}\right)^{2}\right] \\
& =\mathrm{E}\left[\left(\boldsymbol{w}^{\top} \boldsymbol{x}-\boldsymbol{w}^{\top} \boldsymbol{\mu}\right)\left(\boldsymbol{w}^{\top} \boldsymbol{x}-\boldsymbol{w}^{\top} \boldsymbol{\mu}\right)\right] \\
& =\mathrm{E}\left[\boldsymbol{w}^{\top}(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{w}\right] \\
& =\boldsymbol{w}^{\top} \mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right] \boldsymbol{w}=\boldsymbol{w}^{\top} \sum \boldsymbol{w} \\
\text { where } \operatorname{Var}(\boldsymbol{x}) & =\mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right]=\boldsymbol{\Sigma}
\end{aligned}
$$

- Maximize $\operatorname{Var}(z)$ subject to $||w||=1$

$$
\max _{\mathbf{w}_{1}} \mathbf{w}_{1}^{\top} \Sigma \mathbf{w}_{1}-\alpha\left(\mathbf{w}_{1}^{\top} \mathbf{w}_{1}-1\right)
$$

$\sum w_{1}=\alpha w_{1}$ that is, w_{1} is an eigenvector of Σ
Choose the one with the largest eigenvalue for $\operatorname{Var}(z)$ to be max

- Second principal component: $\operatorname{Max} \operatorname{Var}\left(z_{2}\right)$, s.t., $\| \boldsymbol{w}_{2}| |=1$ and orthogonal to w_{1}

$$
\max _{\mathbf{w}_{2}} \mathbf{w}_{2}^{\top} \Sigma \mathbf{w}_{2}-\alpha\left(\mathbf{w}_{2}^{\top} \mathbf{w}_{2}-1\right)-\beta\left(\mathbf{w}_{2}^{\top} \mathbf{w}_{1}-0\right)
$$

$\Sigma w_{2}=\alpha w_{2}$ that is, w_{2} is another eigenvector of Σ and so on.

What PCA does

$$
z=\mathbf{W}^{\top}(x-m)
$$

where the columns of \mathbf{W} are the eigenvectors of $\boldsymbol{\Sigma}$, and \boldsymbol{m} is sample mean
Centers the data at the origin and rotates the axes

How to choose k ?

- Proportion of Variance (PoV) explained

$$
\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}+\cdots+\lambda_{d}}
$$

when λ_{i} are sorted in descending order

- Typically, stop at PoV>0.9
- Scree graph plots of PoV vs k, stop at "elbow"
(a) Scree graph for Optdigits

(b) Proportion of variance explained

Factor Analysis

- Find a small number of factors \boldsymbol{z}, which when combined generate \boldsymbol{x} :

$$
x_{i}-\mu_{i}=v_{i 1} z_{1}+v_{i 2} z_{2}+\ldots+v_{i k} z_{k}+\varepsilon_{i}
$$

where $z_{j}, j=1, \ldots, k$ are the latent factors with

$$
\mathrm{E}\left[z_{j}\right]=0, \operatorname{Var}\left(z_{j}\right)=1, \operatorname{Cov}\left(z_{i}, z_{j}\right)=0, i \neq j,
$$

ε_{i} are the noise sources

$$
\mathrm{E}\left[\varepsilon_{i}\right]=\psi_{i}, \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0, i \neq j, \operatorname{Cov}\left(\varepsilon_{i}, z_{j}\right)=0,
$$

and $v_{i j}$ are the factor loadings

PCA vs FA

- PCA From \boldsymbol{x} to $\boldsymbol{z} \quad \boldsymbol{z}=\mathbf{W}^{\top}(\boldsymbol{x}-\boldsymbol{\mu})$
- FA

new variables \boldsymbol{Z}

From \boldsymbol{z} to \boldsymbol{x}
$x-\mu=V z+\varepsilon$

FA

Factor Analysis

- In FA, factors z_{j} are stretched, rotated and translated to generate \boldsymbol{x}

Multidimensional Scaling

- Given pairwise distances between N points,

$$
d_{i j}, i, j=1, \ldots, N
$$

place on a low-dim map s.t. distances are preserved.

- $\boldsymbol{z}=\boldsymbol{g}(\boldsymbol{x} \mid \vartheta) \quad$ Find ϑ that min Sammon stress

$$
\begin{aligned}
E(\theta \mid \mathcal{X}) & =\sum_{r, s} \frac{\left(\left\|\mathbf{z}^{r}-\mathbf{z}^{s}\right\|-\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|\right)^{2}}{\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|^{2}} \\
& =\sum_{r, s} \frac{\left(\left\|\mathbf{g}\left(\mathbf{x}^{r} \mid \theta\right)-\mathbf{g}\left(\mathbf{x}^{s} \mid \theta\right)\right\|-\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|\right)^{2}}{\left\|\mathbf{x}^{r}-\mathbf{x}^{s}\right\|^{2}}
\end{aligned}
$$

Map of Europe by MDS

Map from CIA - The World Factbook: http://www.cia.gov/

Linear Discriminant Analvsis

- Find a low-dimensional space such that when \boldsymbol{x} i: そ~ projected, classes are well-separated.
- Find \boldsymbol{w} that maximizes

$$
J(\mathbf{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

$m_{1}=\frac{\sum_{t} \mathbf{w}^{\top} \mathbf{x}^{t} r^{t}}{\sum_{t} r^{t}} s_{1}^{2}=\sum_{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}-m_{1}\right)^{2} r^{t}$

Between-class scatter:

$$
\begin{aligned}
\left(m_{1}-m_{2}\right)^{2} & =\left(\mathbf{w}^{\top} \mathbf{m}_{1}-\mathbf{w}^{\top} \mathbf{m}_{2}\right)^{2} \\
& =\mathbf{w}^{\top}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{\top} \mathbf{w} \\
& =\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w} \text { where } \mathbf{S}_{B}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{\top}
\end{aligned}
$$

- Within-class scatter:

$$
\begin{aligned}
s_{1}^{2} & =\sum_{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}-m_{1}\right)^{2} r^{t} \\
& =\sum_{t} \mathbf{w}^{T}\left(\mathbf{x}^{t}-\mathbf{m}_{1}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{1}\right)^{T} \mathbf{w} r^{t}=\mathbf{w}^{T} \mathbf{S}_{1} \mathbf{w} \\
\text { where } \mathbf{S}_{1} & =\sum_{t}\left(\mathbf{x}^{t}-\mathbf{m}_{1}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{1}\right)^{T} r^{t} \\
s_{1}^{2}+s_{2}^{2} & =\mathbf{w}^{T} \mathbf{S}_{W} \mathbf{w} \text { where } \mathbf{S}_{W}=\mathbf{S}_{1}+\mathbf{S}_{2}
\end{aligned}
$$

Fisher's Linear Discriminant

- Find \boldsymbol{w} that max

$$
J(\mathbf{w})=\frac{\mathbf{w}^{\top} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\top} \mathbf{S}_{w} \mathbf{w}}=\frac{\mid \mathbf{w}^{\top}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{2}}{\mathbf{w}^{\top} \mathbf{S}_{w} \mathbf{w}}
$$

- LDA soln:

$$
\mathbf{w}=c \cdot \mathbf{S}_{w}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)
$$

- Parametric soln:

$$
\begin{aligned}
\mathbf{w}= & \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) \\
& \text { when } p\left(\mathbf{x} \mid C_{i}\right) \sim \mathcal{N}\left(\mu_{i}, \Sigma\right)
\end{aligned}
$$

K>2 Classes

- Within-class scatter:

$$
\mathbf{S}_{w}=\sum_{i=1}^{K} \mathbf{S}_{i} \quad \mathbf{S}_{i}=\sum_{t} r_{i}^{t}\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)\left(\mathbf{x}^{t}-\mathbf{m}_{i}\right)^{T}
$$

- Between-class scatter:

$$
\mathbf{S}_{B}=\sum_{i=1}^{K} N_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{T} \quad \mathbf{m}=\frac{1}{K} \sum_{i=1}^{K} \mathbf{m}_{i}
$$

- Find \mathbf{W} that max

$$
J(\mathbf{W})=\frac{\left|\mathbf{W}^{\top} \mathbf{S}_{B} \mathbf{W}\right|}{\left|\mathbf{W}^{\top} \mathbf{S}_{W} \mathbf{W}\right|} \quad \begin{aligned}
& \text { The largest eigenvectors of } \mathbf{S}_{W}{ }^{-1} \mathbf{S}_{B} \\
& \text { Maximum rank of } K-1
\end{aligned}
$$

Optdigits after LDA

Isomap

- Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

Isomap

- Instances r and s are connected in the graph if $\left|\left|\boldsymbol{x}^{r}-\boldsymbol{x}^{s}\right|\right|<\varepsilon$ or if \boldsymbol{x}^{s} is one of the k neighbors of \boldsymbol{x}^{r} The edge length is $\left\|x^{r}-\boldsymbol{x}^{s}\right\|$
- For two nodes r and s not connected, the distance is equal to the shortest path between them
- Once the $N \times N$ distance matrix is thus formed, use MDS to find a lower-dimensional mapping

Locally Linear Embedding

1. Given \boldsymbol{x}^{r} find its neighbors $\boldsymbol{x}^{s}{ }_{(r)}$
2. Find $\mathbf{W}_{r s}$ that minimize

$$
E(\mathbf{W} \mid X)=\sum_{r}\left\|\mathbf{x}^{r}-\sum_{s} \mathbf{W}_{r s} \mathbf{x}_{(r)}^{s}\right\|^{2}
$$

3. Find the new coordinates \mathbf{z}^{r} that minimize

$$
E(\mathbf{z} \mid \mathbf{W})=\sum_{r}\left\|z^{r}-\sum_{s} \mathbf{W}_{r s} z_{(r)}^{s}\right\|^{2}
$$

z space

LLE on Optdigits

Nonlinear PCA (Nonlinear autoencoder)

$$
\Phi_{\text {extr }}: \mathcal{X} \rightarrow \mathcal{Z} \quad \Phi_{\text {gen }}: \mathcal{Z} \rightarrow \hat{\mathcal{X}}
$$

You need at least 4 layers of weights for nonlinear dimensionality reduction.
Note that it could be very costly to train the neural network for a large number of features D

Kernel PCA [scholkopf et.al. 1998]

- Kernel substitution: allows expression of an algorithm only in terms of kernels $k\left(x, x_{n}\right)=\phi(x)^{T} \phi\left(x_{n}\right)$ (dot product in the $\phi(\mathrm{x})$ space which could be very high dimensional)
- Kernel PCA: extend PCA so that instance vectors only appear in terms of dot products.
- If $k\left(x, x_{n}\right)=x^{T} x_{n}$ kernel PCA reduces to PCA

Kernel PCA

Assume both x and $\phi(\mathrm{x})$ [for the time being] have zero mean.
$S u_{i}=\lambda_{i} u_{i}$
$C v_{i}=\lambda_{i} v_{i}$
$C_{M \times M}=\frac{1}{N} \sum_{n=1}^{N} \phi\left(x_{n}\right) \phi\left(x_{n}\right)^{T}$
$\frac{1}{N} \sum_{n=1}^{N} \phi\left(x_{n}\right) \phi\left(x_{n}\right)^{T} v_{i}=\lambda_{i} v_{i} \rightarrow v_{i}=\sum_{n=1}^{N} a_{i n} \phi\left(x_{n}\right)$
$\frac{1}{N} \sum_{n=1}^{N} \phi\left(x_{n}\right) \phi\left(x_{n}\right)^{T} \sum_{m=1}^{N} a_{i m} \phi\left(x_{m}\right)=\lambda_{i} \sum_{n=1}^{N} a_{i n} \phi\left(x_{n}\right)$
$\frac{1}{N} \sum_{n=1}^{N} k\left(x_{l}, x_{n}\right) \sum_{m=1}^{N} a_{i m} k\left(x_{n}, x_{m}\right)=\lambda_{i} \sum_{n=1}^{N} a_{i n} k\left(x_{l}, x_{n}\right) \quad / /$ multiply both sides by $\phi\left(x_{l}\right)$
$K^{2} a_{i}=\lambda_{i} N K a_{i} \rightarrow K a_{i}=\lambda_{i} N a_{i}$
Taking into account unit length of v_{i} and nonzero mean $\phi(x)$,compute:
$\widetilde{K}=\mathrm{K}-1_{\mathrm{N}} \mathrm{K}-\mathrm{K} 1_{\mathrm{N}}+1_{\mathrm{N}} \mathrm{K} 1_{\mathrm{N}} \quad$ compute eigen vectors of \widetilde{K} projection of a point x onto eigenvector i is given by :
$y_{i}(x)=\phi(x)^{T} v_{i}=\sum_{n=1}^{N} a_{i n} \phi(x)^{T} \phi\left(x_{n}\right)=\sum_{n=1}^{N} a_{i n} k\left(x, x_{n}\right)$

mRMR (minimum Redundancy Maximum

Relevance) [Peng 2003]

- Measure feature-feature (redundancy) and feature-label (relevance) correlations using mutual information:

$$
I(X, Y)=\sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p_{1}(x) p_{2}(y)}\right)
$$

- S: set of selected features, $\mathrm{F}_{\mathrm{i}}, \mathrm{F}_{\mathrm{j}}$ features, H:labels

$$
\min \text { Red, } \quad \text { Red }=\frac{1}{|S|^{2}} \sum_{F_{i}, F_{j} \in S} I\left(F_{i}, F_{j}\right) \quad \max \operatorname{Rel}, \operatorname{Rel}=\frac{1}{|S|} \sum_{F_{i} \in S} I\left(F_{i}, H\right)
$$

- MID: max Rel-Red
- MIQ: max Rel/Red

mRMR Algorithm

for all F_{i} in $i=1$.. d do

Compute $\operatorname{Rel}_{\mathrm{i}}$ between F_{i} and H using MI
end for
Sort (decreasing) features according to their $\operatorname{Rel}_{\mathrm{i}}$ values
Initialize feature subset $S=\{$ the most relevant feature $\}$
$\mathrm{i}=2$
while $\mathrm{i} \leq \mathrm{d}$
Compute $\mathrm{MIQ}_{\mathrm{i}}$ (or $\mathrm{MID}_{\mathrm{i}}$) for each unselected feature let $\mathrm{j}=$ the feature with max MIQ (or MID)
$S \leftarrow S \cup F_{j}$
$\mathrm{i}=\mathrm{j}+1$
endwhile

mRMR Notes

Need to discretize features in order to compute MI, or need to use a nonparametric method to compute MI.

Advantages of mRMR:
mRMR is much faster than wrapper methods (i.e. forwardbackward selection)
Since it takes into account the label information it is more beneficial for classification than PCA
Since MI is a nonlinear measure of similarity, even if there are nonlinear correlations between features/labels, they are taken into account.

Some Feature Selection Tools

- Weka
- PrTools
- Many methods are easily implemented using Matlab
- mRMR source code is available from Peng's web site.

