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CHAPTER 8:

Nonparametric Methods




Nonparametric Estimation

® Parametric (single global model), semiparametric (small
number of local models)

® Parametric: model parameters contain summary of the
information in the dataset

® Nonparametric: Similar inputs have similar outputs
® Functions (pdf, discriminant, regression) change smoothly
® Keep the training data;“let the data speak for itself”

® Given x, find a small number of closest training instances
and interpolate from these

e Aka lazy/memory-based/case-based/instance-based
learning



Density Estimation

® Given the training set X={x'}, drawn iid from p(x)

® Divide data into bins of size h

® Histogram: A #{xt in the same bin as x}
plx)= —

® Naive estimator: t
#{x—h<x sx+h}

2Nh

W(x—xt) W(u)={1/2 if ju] <1 L

p(x)-

or

h 0 otherwise

ﬁ(x)=$2

t
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Histogram: h=2

#{xlr in the same bin as x}
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Naive estimator: h=2
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Why not histograms
very simple but:

The final shape of the density estimate depends on the starting
position of the bins

For multivariate data, the final shape of the density is also
affected by the orientation of the bins

The discontinuities of the estimate are not due to the
underlying density, they are only an artifact of the chosen bin
locations

These discontinuities make it very difficult, without experience,
to grasp the structure of the data

A much more serious problem is the curse of dimensionality,
since the number of bins grows exponentially with the number
of dimensions

In high dimensions we would require a very large number of
examples or else most of the bins would be empty
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Kernel Estimator

® Kernel function, e.g., Gaussian kernel:

-
K (u)= 1 exp| ——

27 - 2

e Kernel estimator (Parzen windows)

p() =S

t=I1

x-x) 1w 1 (X—xt)z
( h )=ﬁ§mﬂp_ 21



Kernel estimator: h=1




Nonparametric Density Estimation
General Formulation (1)

The probability that a vector x, drawn from a distribution
p(x), will fall in a given region % of the sample space is

P =fp(x')dx'

Suppose now that N vectors {x(1, x(2, ..., X(N)} are drawn
from the distribution. The probability that k of these N
vectors fall in R is given by the binomial distribution

N k N-k
P(k)=(k)P (1- P)

It can be shown (from the properties of the binomial p.m.f.)

that the mean and variance of the ratio k/N are
A =

k n -
Elﬁ] = dVarlkl =F (i—P) )
N N N
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Nonparametric Density Estimation
General Formulation(2)

Therefore, as N—oo, the distribution becomes sharper (the
variance gets smaller) so we can expect that a good estimate
of the probability P can be obtained from the mean fraction
of the points that fall within &

-

N

On the other hand, if we assume that R is so small that p(x)
does not vary appreciably within it, then

f p(x")dx'= p(x)V

e where V is the volume enclosed by region

~
—
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Nonparametric Density Estimation

General Formulation(3)

Merging with the previous result we obtain

P=[p(x)dx' = p(xX)V ] .
R - e
L= p(x) =
P - NV
N J

This estimate becomes more accurate as we increase the number of
sample points N and shrink the volume V

In practice the value of N (the total number of examples) is fixed
In order to improve the accuracy of the estimate p(x) we could let V
approach zero but then the region ® would then become so small that
it would enclose no examples
This means that, in practice, we will have to find a compromise value for
the volume V
e Large enough to include enough examples within R

e Small enough to support the assumption that p(x) is constant within R
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Nonparametric Density Estimation
General Formulation(4)

When applying this result to practical density estimation
problems, two basic approaches can be adopted

We can choose a fixed value of the volume V and determine k
from the data. This leads to methods commonly referred to as
Kernel Density Estimation (KDE)

We can choose a fixed value of k and determine the
corresponding volume V from the data. This gives rise to the k
Nearest Neighbor (kKNN) approach

It can be shown that both kNN and KDE converge to the true
probability density as N—oo, provided that V shrinks with N, and
k grows with N appropriately.
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k-Nearest Neighbor Estimator

* Instead of fixing bin width h and counting the number of

instances, fix the instances (neighbors) k and check bin
width

A k
pal 2Nd, (x)

d.(x), distance to kth closest instance to x
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Multivariate Data

e Kernel density estimator

alx) 1 iK(X_Xt)

TNRC & h
Multivariate Gaussian kernel
1y [ W
spheric K(u)=(E) exp s =
ellipsoid 1 1 .
) Gy 2
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Nonparametric Classification

Estimate p(x|C;) and use Bayes’ rule
Kernel estimator

g,(x)= Blx1€, (C, )= zK()

k-NN estimator

ﬁ(xlci)=

ki

g Aet)-f




Condensed Nearest Neighbor

* Time/space complexity of k-NN is O (N)

® Find a subset Z of X that is small and is accurate in
classifyi‘ng X (Hart, 1968)

E(Z1X)=E(X|Z)+4Z

Voronoi Tessalation
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Condensed Nearest Neighbor

® Incremental algorithm: Add instance if needed

Z 0
Repeat

For all € X (in random order)
Find @’ € Z s.t. || — 2/|| = mingjc z || — x|
If class(x)#class(x’) add « to Z
Until Z does not change

19



Nonparametric Regression

® Aka smoothing models
® Regressogram

G(x)= S blx)rt

where

.\ [l if x'isin the same bin with x
b(x,x )=

0 otherwise
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Regressogram smoother: h=6
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Regressogram linear smoother: h=6

X

\
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Running Mean/Kernel Smoother

e Running mean smoother * Kernel smoother

I D 2, '
ELW(X;X ) ELK(X;X )

where : :
where K( ) is Gaussian

( ) | if|u| <1
WU )= 0. othornics e Additive models (Hastie and
Tibshirani, 1990)

® Running line smoother
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Running mean smoother: h=6

X
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Running line smooth: h=6 /
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Kernel smooth: h=1 /
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How to Choose k or h?

® When k or h is small, single instances matter; bias is
small, variance is large (undersmoothing): High
complexity

® As k or h increases, we average over more instances and
variance decreases but bias increases (oversmoothing):
Low complexity

® Cross-validation is used to finetune k or h.

27



Kernel estimator for two classes: h =1
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Classification/Regression?

Mostly used models:

e Classification : knn
® Regression: Parzen windows
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