DISCRETE-TIME SIGNALS
AND SYSTEMS

2.0 INTRODUCTION

The term signal is generally applied to something that conveys information. Signals
generally convey information about the state or behavior of a physical system, and

often, signals are synthesized for the purpose of communicating information between
humans or between humans and machines, '

either continuous or discrete. Continuous-time signals are defined along a continuum
of times and thus are represented by a continuous independent variable. Continuous-
time signals are often referred to as analog signals. Discrete-time signals are defined at
discrete times, and thus, the independent variable has discrete values; i.e., discrete-time
signals are represented as sequences of numbers. Signals such as speech or images may
have either a continuous- or a discrete-variable representation, and if certain conditions
hold, these representations are entirely equivalent. Besides the independent variables
being either continuous or discrete, the signal amplitude may be either contihuous or
‘discrete. Digital signals are those for which both time and amplitude are discréte.

Discrete-time signals may arise by sampling a continuous-time signal, or they may
be generated directly by some discrete-time process. Whatever the origin of the discrete-
time signals, discrete-time signal-processing systems have many attractive features. They
can be realized with great flexibility with a variety of technologies, such as charge
transport devices, surface acoustic wave devices, general-purpose digital computers, or
high-speed microprocessors. Complete signal-processing systems can be implemented
using VLSI techniques. Discrete-time Systems can be used to simulate analog systems
or, more importantly, to realize signal transformations that cannot be implemented
with continuous-time hardware. Thus, discrete-time representations of signals are often
desirable when sophisticated and flexible signal processing is required.

2.1 DISCRETE-TIME SIGNALS: SEQUENCES

Discrete-time signals are represented mathematically as sequences of numbers. A se-
quence of numbers x, in which the nth number in the sequence is denoted x[n],! is
formally written as

x = {x[n]}, —00 < N < 00, 2.1
where n is an integer. In a practical setting, such sequences can often arise from periodic

sampling of an analog signal. In this case, the numeric value of the nth number in the
sequence is equal to the value of the analog signal, x,(z), at time nT; i.e.,

x[n] = x;(nT), —0 <N < 00. 2.2)

~ The quantity T is called the sampling period, and its reciprocal is the sampling fre-
quency.
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2.1.1 Basic Sequences and Sequence Operations

In the analysis of discrete-time signal-processing systems, sequences are manipulated
in several basic ways. The product and sum of two sequences x[n] and y[n] are defined
as the sample-by-sample product and sum, respectively. Multiplication of a sequence
x[n] by a number ¢ is defined as multiplication of each sample value by a. A sequence
y[n] is said to be a delayed or shifted version of a sequence x[n] if

Yl =xn-n) (2.3)
where ng is an integer.

The unit sample sequence (Figure 2.3a) is defined as the sequence

0, 0, :
sm={1 120 L e

Aswe will see, the unit sainple sequence plays the same role for discrete-time signals and
systems that the unit impulse function (Dirac delta function) does for continuous-time
signals and systems,

More generally, any sequence can be expressed as

x[n] = i x[k]8[n — k]. (2.6)

k=—00

The unit step sequence (Figure 2.3b) is given by

. 19 . 2 Os i )
)= {5 m = X
Unit step
*-0—0—0—0—0—0-0—0 0 . L "
The unit step is related to the impulse by
n
uln] = " 8[K]; (2.8)
k=—00
or | ‘
Culn] =) _8n—4l. | (2.9b)
k=0

Conversely, the impulse sequence can be expressed as the first backward difference of
the unit step sequence, i.e.,

5[n] = u[n] — u[n — 1]. (2.10)

Exponential sequem':eé are extremely important in representing and analyzing lin-
ear time-invariant disctete-time systems. The general form of an exponential sequence
is

x[n] = Ac”. (2.11)

If Aand « are real nun_lbers, then the sequence isreal. If 0 < @ < 1 and A s positive,
then the sequence values are positive and decrease with increasing n, as in Figure 2.3(c).
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For -1 < & < 0, the sequence values alternate in sign, but again decrease in magnitude
with increasing 7. If jo| > 1, then the sequence grows in magnitude as n increases.

Sinusoidal sequences are also very important. A sinusoidal sequence has the gen-
eral form

x[n] = A cos(won + ¢), for all n, (2.13)
with A and d>' real constants, and is illustrated in Figure 2.3(d).

Sinusoidal
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Specifically, if @ = |aje/s and A = | AJe/, the
sequence A« can be expressed in any of the following ways:

x[n] = Aa" = |Aje/?|q|relwom
= | Al la"e/ @or+4) | .14)

= | 4| le|"cos(won + ¢) + J1A[lel" sin(won + ¢).

The sequence oscillates with an exponentially growing envelope if || > 1 or with an
exponentially decaying envelope if |o| < 1. (As a simple example, consider the case
wo =71 ) i

When || = 1, the sequence is referred to as a complex exponential sequence and
has the form

x[n] = |Ale’ ™) = | A] cos(won + ¢) + j|A| sinfwpn + ¢); - (2.15)
that is, the real and imaginary parts of e/" vary sinusoidally with n.

An important difference between continuous-time
and discrete-time complex sinusoids is seen when we consider a frequency (w¢ + 27).
In this case,

x[n] = Aej(wo+27r)n

:AejwonejZ”"ﬁAej“’O".

(2.16)

More generally, we can easily see that complex exponential sequences with frequencies
" (w0 +2rr), where.r is an integer, are indistinguishable from one another.

For now, we simply conclude that, when

discussing complex exponential signals of the form xfn] = Ae/*o or real sinusoidal

 signals of the form x[n] = A cos(won + ¢), we need only consider frequencies in an
interval of length 27, such as —7 < wg <7 or0 < wg < 2.






In the discrete-time case, a periodic sequence is
a sequence for which

x[n]=x[n+N],  foralln, (2.18)

where the period N is necessarily an integer. If this condition for periodicity is tested
for the discrete-time sinusoid, then

A cos(won + @) = A cos(won + woN + ¢), (2.19)
which requires that
' woN =2nk, ’ (2.20)

where kis an integer.

The integer restriction on n causes some sinusoidal signals not to bé periodic
at all, For example, there is no integer N such that the signal x3[n] = cos(n) satisfies
the condition x3[n + N] = x3[n] for all n. These and other properties of discrete-time
sinusoids that run counter to their continuous-time counterparts are caused by the .
limitation of the time index n to integers for discrete-time signals and systems.

When we combine the condition of Eq. (2.20) with our previous observation that
wo and (w¢ + 27r) are indistinguishable frequencies, it becomes clear that there are
N distinguishable frequencies for which the corresponding sequences are periodic with
period N. One set of frequencies is wx = 27k/N, k= 0,1, ..., N — 1. These properties
of complex exponential and sinusoidal sequences are basic to both the theory and the
design of computational algorithms for discrete-time Fourier analysis. .
For the discrete-

time sinusoidal signal x[n] = A cos(cuon + ¢), as w( increases from wg = 0 toward

+ wo = m, x[n] oscillates more and more rapidly. However, as ¢ increases from wq = 7

10 wg = 2m, the oscillations become slower. As a consequence, for sinusoidal ‘

- and complex exponential signals, values of wqin the vicinity of wg = 2k for any integer

value of k are typically referred to as low frequencies (relatively slow oscillations), while

values of wg in 'the vicinity of wg = (7 +2n k) for any integer value of k are typically
referred to as high frequencies (relatively rapid oscillations).

2.2 DISCRETE-TIME SYSTEMS

- A discrete-time system is defined mathematically as a transformation or operator that
maps an input sequence with values x[n] into an output sequence with values y[n]. This
can be denoted as

yln] = Tix[n]} (2.22)

—> T[] |—>

x[n] yin]

The ideal delay systein-ié &éﬁﬂed by the equation
yln] = x[n — n4], —00 < 1 < 00, (2.23)

where ng is a fixed 1 positive integer called the delay of the system
The general movmg—average system is defined by the equauon o

1 .
Y[]___M1+M2+1 Z xn -4

1
- e — 24
=i - 1{x[n + M1]+x[n+ My -1+ +x[n] (2.24)

Lol 1T ... vln — M.N



2.2.1 Memoryless Systems

A system is referred to as memoryless if the output y

(1] at every value of n, depends
only on the input x[n] at the same value of n.

ylnl = (x[n])?,  foreach value of .
2.2.2 Linear Systems

The class of linear systems is defined by the principle of superposition, If y1[n] and yj[n]

are the responses of a system when x; [n] and x,[n] are the respective inputs, then the
system is linear if and only if . '

Ttalnl + x[nl} = T(x[n]} + Tienl} = yi[n] + y2[n) (2.26a)
and '

| T{ax[n]} = aT{x[n}} = ay[n], » (2.26b)
where a is an arbitrary constant.

__ 'This equation can be generalized to the superposition
of many inputs. Specifically, if -

x[n] =" axn], (2.28a)
S . ,
then the output of a linear system will be A
yinl =3 apln], § (2.28b)
k .

where y;[n] is the system response to the input x)c[n].

The system defined by the input—output equation

n

yinl = > [ - (2.29)

k=—00

is called the accumulator system, since the output at time » s just the sum of the present
and all previous input samples. The accumulator system is a linear system.,

Consider the system defined by
wn] = logy, (Ix[n])). (2.36)
This system is not linear.

2.2.3 Time-Invariant Systems

Then the system is
said to be time invariant if, for all ng, the input sequence with values x;[n] = x[n — ng]
produces the output sequence with values y;[n] = y[n — ng).

Consider the accumulator from Example 2.6. We define x;|n| = x[n -‘"no J-
143

vl = )" xulk (2.38)
k=—00 ;
= i x[k ~ ng]. (2.39)
k=—00

Substituting the change of variables k1 = k — ng into the summation gives
n—np

ylrl= D" xfka] = yin - nol. (2.40)

ky=—00

Thus, the accumulator is a time-invariant system.



'The system defined by the relation
yin] = x[Mn), —00 < n < 00, (2.41)
with M a positive integer, is called a compressor.

Comparing these two outputs, we see that y[n — ng] is not equal to y4 [n] for all M and
no, and therefore, the system is not time invariant.

2.2.4 Causality

A systemis causal if, for every choice of ny, the output sequence value at the indexn = n,
depends only on the input sequence values for =< no. This implies that if %, (] = xy[n]
for n < ng, then y1[n] = y,{n] for n < ny. That is, the system is nonanticipative.

Consider the forward difference system defined by the relationship

Yl = x[n+1] = ] (244)

This system is not causal, since the current value of the output depends on a future
value of the input.

The backward difference system, defined as
yIn] = x[n] - x[n - 1), (2.45)

has an output that depends only on the present and past values of the input, Because
there is no way for the output at a specific time y[no] to incorporate values of the input
for n > ng, the system is causal.

© 2.2.5 Stability

A system is stable in the bounded-input, bounded-output (BIBO) sense if and only if
every bounded input sequence produces a bounded output sequence. The input x{n] is
bounded if there exists a fixed positive finite value B such that

Ix[n]l < Byi< oo, = foralln, , (2.46)

The accumulator, as defined in Example 2.6 by Eq. (2.29), is also not stable. For
example, consider the case when x[n] = u[n], which is clearly bounded by B, = 1. For
this input, the output of the accumulator is

n

yil= 3" uin (2.48)
k=~00
0, n<0,
h {(n +1), n>0. (2.49)
There is no finite choice for By such that (n + 1) < B, < o for all n; thus, the system -

is unstable.

2.3 LINEAR TIME-INVARIANT SYSTEMS

y[n] = T{ > x[kls[n — k]} . ‘ (2.50)
k=~—00
From the principle of superposition in Eq. (2.27), we can write .
Y= 37 xHT6— Ky = 3 skl (2.51)
k=—c0 k=—00

According to Eq. (2.51), the system response to any input can be expressed in terms of
the responses of the system to the sequences 8[n — k].



'The property of time invariance implies that if A[n] is the response to §[n], then
the response to 8[n — £] is h[n — k]. With this additional constraint, Eq. (2.51) becomes
yirl= ¥} x[klA[n — &]. (2.52)

=—00

Asa consequence of Eq. (2.52),alinear time-invariant system (which we will sometimes
abbreviate as LTT) is completely characterized by its impulse response 4[] in the sense
that, given A[n], it is possible to use Eq. (2.52) to compute the output y[x] due to any
input x[n].

Equation (2.52) is commonly called the convolution sum. If y[n] is a sequence
whose values are related to the values of two sequences h[n] and x[~] as in Eg. (2.52),
we say that y[n] is the convolution of x [] with h[n] and represent this by the notation

y[n] = x[n] x h[n]. | - (2.53)

Example 2.12 Computation of the Convolution Sum
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From Example 2.3, it should be clear that, in general, the sequence h[n — k],
—00 < k < 00, is obtained by

| L. reflecting A[k] about the origin to obtain h[—k];
2. shifting the origin of the reflected sequence to k = n.



2.4 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

Some general properties of the class of linear time-invariant systems can be found

by considering properties of the convolution operation. For example, the convolution
operation is commutative: -

x[n] #h[n) = hn] % x[n]. (2.61)

The
convolution operation also distributes over addition; i.e.,

" x[n) * (aln] + aln]) = x[n] « by [n] + x[n] % o],

This followsina straightfbrward_way from Eq. (2.52) and is a direct result of the linearit};
and commutativity of convolution. '

In a cascade connection of systems, the output of the first system is the input to

the second, the output of the second is the input to the third, etc. The output of the last
system is the overall output.

x[n] huln) glad y[n]

i 115[11] »| By 1] F—

x[n] y[n]
e RRUG N AR o
x[n} y[n]

In a parallel connection, the systems have the same input, and their outputs are
summed to produce an overall output. It follows from the distributive property of convo-
lution that the connection of two linear time-invariant systems in parallel is equivalent to

a single system whose impulse response is the sum of the individual impulse responses;
ie., .

hln] = hy[n] + hy[n). (2.64)
> hy[n]
| —
x[n] )’["]}
>1 hy[n]’
(@)

—»1 hy[n] + B, [n] —b-
J ylnl

(®)



_ : Linear time-invariant systems are stable if
and only if the impulse response is absolutely summable, i.e., if

o0
S= " [h[K]} < co. (2.65)
k=-00 ‘
This can be shown as follows. From Eq. (2.62),
. o0 ) [oe]
ylnli = | > Alklxln~ K| < " (B[] Ix[n - ). (2.66)
/ k=—oo k=-—00
I x[n] is bounded, so that
|x[n]l S Bxy
then substituting B; for |x[n — k]| can only strengthen the inequality. Hence,
ylnll < B: D [H[K]l. N (2.67)

The class of causal systems was defined in Section 2.2.4 as those systems for which

the output y[no] depends only on the input samples x[n], forn < ng. It follows from

Eq. (2.52) or Eq. (2.62) that this definition implies the condition ,
- h[n]=0, n<o0, - L (2.70)
for causality of linear time-invariant systems. (See Problem 2.62.) For this reason, it is

sometimes convenient to refer to a sequence that is zero for n < 0 as a causal sequence,

meaning that it could be the impulse response of a causal system.

Ideal Delay (Example 2.3) ,
hln] =é8[n—ny],  n, apositive ﬁxed‘integ'er. (2.71)
Moving Average (Example 2.4) '

1 &
hn] = ————= 8[n — k]

=M1»+M2+1k=—M1 »
A ' (2.72)
L -My<n<M, -
0, otherwise.

Accumulator (Example2.6)

hin] = Z B[k

=;—oo )
: 1, n>0, : ’
={0, ot | - em
= u[n].
Forward Difference (Example 2.10) _ .
’ ~ h[n]=d[n+1] - 8[n). : - 279

Backward Difference (Example 2.10)
' h[n] = 8[n] — 8[n —1]. ' ‘ (2.75)

10



The impulse response of the accumulator is infinite in duration. This is an example
of the class of systems referred to as infinite-duration impulse response (ITR) systems.
An example of an IIR system that is stable is a system whose impulse response is
h[n] = a"u[n] with |a| < 1. In this case, .

e ¢]
S=>"lal". (2.76)
" n=0
If Ja} < 1, the formula for the sum of the terms of an infinite geometric series gives
1 : :
= - . a7
1Tl < 00 2.77)

If, on the other hand, |a| > 1, the sumn is infinite and the system is unstable.

Since the output of the delay system is y[n] = xfn—ng];
~and since the delay system has impulse response h[n] = 8[n — n,], it follows that

x[n] * 8[n — ng] = é[n — ng] * x[n] = x[n — ngl. (2.78)
Forward —sample
x[n] dif(;?r‘::arfce > Onzcsl'r:;lpl _yﬁj ‘
(@) \ v
 h[n] = (8 + 1] = 8[n]) % 8[n — 1]
-One-sample .| F d
M |__delay diference [~ = 8[n— 1] % (8[n +1] - 6[n])
(b) o . = 3["] —-.6[11 - 1]
Backward
x[n] dizftfcer:riize —-;E:]
©
- h[n] = u[n] % (8[n] = 8{n—1])
= u[n] — u[n — 1]
Backward-
~—ye{ Accumulator | diaf(f:erv:,e?xrce - = 4[n].
x[n} system | y1n] system x[n]

In general, if
‘a linear time-invariant system has impulse response A[n], then its inverse system, if it
exists, has impulse response /;[n] defined by the relation

h[n] * hi[n] = h;[n] % k[n] = S[n]. - (2.81) ‘

- Inverse systems are useful in many situations in which it is necessary to compensate
for the effects of a linear system.

14




2.5 LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

An important subclass of linear time-invariant systems consists of those systems for

which the input x[x] and the output y[n] satisfy an Nth-order linear constant-coefficient
difference equation of the form _ '

N M
Zaky[n — k] = Z bmx[n — m]. (2.82)
k=0 m=0

An example of the class of linear constant-coefficient difference equations is the ac-
cumulator system defined by

n

yinl= 3" #4. (2:83)

k=—00

By éeparating the term x[n] from the sum, we can rewrite Eq. (2.83) as

‘n—l

y[n] = x[n] + Z x[k]. (2.85)
k=~00
il =xnl+yn-1], (2.86)

from which the desired form of the difference equaﬁon can be obtained by grouping
all the input and output terms on separate sides of the equation:

yln] = yln ~ 11 = x[n]. | 87
o C? T
. \ B2
One-sample
delay
yln-1]

Consider the moﬁng—aVerage system of Example 2.4, with M; = 0 so that the system
is causal. In this case,

Mz )
1 v
= —— n-— k ’ ¢ . (2'89)
=G g"[ L,
which is a special case of Eq. (2.82), with N =0,ap = 1, M = My, and by = 1/(M;+1)
for0 < k< M,. .
Attenuator
—] 1 ' Acc;msl;;l:litor‘
x[n] M,+1) Y yln]

(My+1)
> sample
delay

12



Alternatively, if the auxiliary conditions are a set of auxiliary values of y[n], the
other values of y[n] can be generated by rewriting Eq. (2.82) as a recurrence formula,
i.e., in the form

N a L :
yin] = - Z —yln—Kkl+)» —x[n-k. (2.97)
k=1 0 k= 40 '

If the input x[n], together with a set of auxiliary values, say, y[I-11,y[-2],..., y[-N ],is
specified, then y[0] can be determined from Eq. (2.97). With y[0], y[-1], .., Y[-N+1]
available, y[1] can then be calculated, and so on. When this procedure is used, y[n] is

said to be computed recursively; i.e., the output computation involves not onlythe input
sequence, but also previous values of the output sequence,

To summarize, for a system for which the mput and output satisfy a linear constant-
coefficient difference equation:

e The output for a given input is not uniquely specified. Auxiliary information or
conditions are required. '

o If the auxiliary information is in the form of N sequential values of the output,
later values can be obtained by rearranging the difference equation as a recursive
relation running forward in n, and prior values can be obtained by rearranging
the difference equation as a recursive relation running backward in n.

o Linearity, time invariance, and causality of the system will depend on the auxiliary

conditions. If an additional condition is that the system is initially at rest, then the
system will be linear, time invariant, and causal. ‘

(5), O=<n<M,
ap

hln] = (2.107)

0, otherwise.
The impulse response is obviously finite in duration.

2.6 FREQUENCY-DOMAIN REPRESENTATION OF
| DISCRETE-TIME SIGNALS AND SYSTEMS

To demonstrate the eigenfunction property of complex exponentials fo.r discrete-time
systems, consider an input sequence x[n] = ¢/“" for —00 < n < 00, i€, a complex
exponential of radian frequency w. From Eq. (2.62), tl}e corresponding output of a
linear time-invariant system with impulse response A[n] is

yln] = f: h[k]e/*t=5)

k=0 (2.108)
= efon ( > h[k]e-f‘vk).
' k=—c0 _
If we define o
H(e/®) = Z h[kle ik, (2.109)
k=-00 - )

Eq. (2.108) becomes : v
' y[n] = H(e/*)eion, (2.110)

13



N The eigenvalue
H(e’®) is called the frequency response of the system. In general, H(e/®) is complex
and can be expressed in terms of its real and imaginary parts as

H(e/®) = Hy(e/*) + jHy(e/*) (2.111)
or in terms of magnitude and phase as

H(e/®) = | H(el) |/ <HE), (2.112)

f'\S a.simple example of how we can find the frequency response of a linear time-
Invariant system, consider the ideal delay system defined by

y[nl = x[n—ny), ' (2.113)

y[n] —_ ej‘w(n—nd) = g~ jond gjon

H(e.’w) — e-jw"d. ) . (2-114)

The magnitude and phase are
[HEe®) =1, - ' - (2116a)
<H(el?) = —wny. ‘ (2.116b)

Since it is simple to express a sinusoid as a linear combination of complex exponentials,
let us consider a sinusoidal input

x[n] = Acos(won + ¢) = ?e"”e"""" + —2-e"’¢e"“’°". (2.119)
Thus, the total response is
y[n] = .‘;[H(efm)eweiwo" + H(e~/o0)e /bgmivon], (2.121)

It h[n] is real, it can be shown (see Problem 2.71) that H(e~/¢®) = H"(e/*°). Conse-
quently,

yln] = AlH(e/®)|cos(won + ¢ +6),  (2122)

where 6 = < H(e/%) is the phase of the system function at frequeﬂcy @o.

Since H(e/®) is periodic with period 27, and since the frequencies @ and

- @+ 2 are indistinguishable, it follows that we need only specify H(e/®) over an inter-
val of length 27, e.g.,,0 < @ < 27 or —n < w < . The inherent periodicity defines
the frequency response everywhere outside the chosen interval. For simplicity and for
consistency with the continuous-time case, it is generally convenient to specify H(e/®)
over the interval —n < @ < . With respect to this interval, the “low frequencies” are
frequencies close to zero, while the “high frequencies” are frequencies close to 4. Re-
calling that frequencies differing by an integer multiple of 25 are indistinguishable, we
might generalize the preceding statement as follows: The “low frequencies” are those

that are close to an even multiple of 7, while the “high frequencies” are those that are
~ close to an odd multiple of 7.

M



Ideal Frequency-Selective Filters

Hy (el
? ) th(ejm)
1 .
D 1 [
| I 1 l
1T -w, W, T w - —W, 0 W, T @
Hy(e™®) :
1 pr(e}w)
[ 1
1 | _
e ~@p W, 0 W, wp, T L L
—ar ~w)y -w, 0 w, w, T o
The impulse reSponSe of the mo?ing;ével:agé ‘syste'm‘of Exarriple 24is
- -Mi<n<M
h[n]= M1‘+M2+1, 1=%=52,.
[ - otherwise.
Therefore, the frequency response is
. ", _
. 1 .
H(e?)= -——0© — —jen, 1
€)= s 2 ¢ (2127)
n=—M; .
H(e/?) = g = : e .
M;+M; +1 1=¢-Jo 1+ My+1 sin(w/2)
|H(e/®)]
. /
] A I !
-2m ~7 = 2 " 27 ®
) 5 5
LH(e/?)
A o . - |
ANEEINIEVIAN NN
-27\ \ -™N Y \ ™~ > 277\ o
. L

The magnitude and phase of H(e/®) are plotted in Figure 2.19for M; = Oand M, =4,
Note that H(e/®) is periodic, as is required of the frequency response of a discrete-
time system. Note also that | H(e/)| falls off at “high frequencies” and <« H(e/?),i.e.,
the phase of H(e/®), varies linearly with c,



2.7 REPRESENTATION OF SEQUENCES BY FOURIER TRANSFORMS

Many sequences can be represented by a Fourier integral of the form

x[n] = -Zln/ X(e/*Yei“ndy, (2.133)
where :
Xy = Y" x[nje~ion, (2.134)

n=—00

Equations (2.133) and (2.134) together form a Fourier representation for the sequence.
Equation (2.133), the inverse Fourier transform, is a synthesis formula.

Equation (2.134), the Fourier transform,” is an expression for computing
X (e’*) from the sequence x[n), i.e., for analyzing the sequence x[n] to determine how
much of each frequency component is required to synthesize x[n] using Eq. (2.133).

3Sometimes we will refer to Eq. (2.134) more explicitly as the discrete-time Fourier transform, or
DTFT, particularly when it is important to distinguish it from the continuous-time Fourier transform.

In general, the Fourier transform is a complex-valued function of . As with the
frequency response, we may either express X (e/*) in réctangular form as

X(e/*) = Xp(e!®) + j X1 (e/®) (2.1352)

or in polar form as

X(ejw) = [X(ejw)leiq X(el"’)_ (2.135b)

The phase <X (e/*) is not uniquely specified by Eq. (2.135b), since any integer
multiple of 2 may be added to < X(e/*) at any value of w without affecting the result of
the complex exponentiation. When we specifically want to refer to the principal value,
i.e., <X(e’*) restricted to the range of values between —n and 4+, we will denote this
as ARG[X(e/“)]. If we want to refer to a phase function that is

a continuous function
- of wfor 0 < @ < m, we will use the notation arg[ X (e/*)]. '

By comparing Egs. (2.109) and (2.134), we can see that the frequency response ot
a linear time-invariant system is simply the Fourier transform of the impulse response

and that, therefore, the impulse response can be obtained from the frequency response
by applying the inverse Fourier transform integral; i.e.,

h[n} = % H(e')el*Mdo, (2.136)

-

Thus, if x[n] is absolutely summable, then X (e/®) exists. Furthermore, in this case, the
series can be shown to converge uniformly to a continuous function of w.

16



Let x[n] = a"u[n]. The Fourier transform of this sequence is 1¢

00 oo ]
X(ejw) = Zane—jum — Z(ae—jw)n
n=0 n=0
1 ey —f
= — iflae™’| <1 or |a]<1.
1—ge-Je

Clearly, the condition |a| < 1is the condition for the absolute summability of x[n};ie.,

Zlal" =7 _IM <00 ifjal<1. (2.140)

n=0

Let us determine the impulse response of the ideal lowpass filter discussed in Example
2.19. The frequency response is

Hip(e/*) = { 1, |ol<aw, . (2.144)

0, o <|w<m,

1 [e |
hip[n] = o / e/ dw

1 ) 1 . .
= 27jn [e7"] ciwc ~ 2njn (€77 — g=/ter) (2.145)
sin w.n _
= i -0 <N < 00,
Hy(e®), M=1 Hy e, M=3
TN\ N\

/ \\ L// \\,

-1 -~ 0 w, ro -7 NS o, 0 w, NS 7w
(a) (b) M sin
) : ) ; inw.n
HM(ef‘”), M=7 HM(EI'"), M=19. HM(eJ“’) = Z ”n‘-‘ e—]wn.
F AN A\ : Aaaale a s A n=—M

/v o v\ AR
I\/ \I\ . A F ..

~
. g 7 i oo
- Vow, 0 w. M Tw -7 Vg 0 P A

() (d)

However, hyp[n], as given in Eq. (2.145), is square summable, and
correspondingly, Hp(e/*) converges in the mean-square sense to Hip(e’®); i.e.,

T
_ limf | Hip(e’®) — Hu(e/*)|?dw = 0. -
M-—o0 —



Fourier Transform of a Constant

Consider the sequence x[n] = 1 for all n. This sequence is neither absolutely summable

nor square summable, and Eq. (2.134) does not converge in either the uniform or mean-

square sense for this case. However, it is possible and useful to define the Fourier
transform of the sequence x[n] to be the periodic impulse train?

X(e/®) = i 2m8(w + 277). | (2.147)

r=-—00

Another sequence that is neither absolutely summable nor square summable is

‘the unit step sequence u[n]. Although it is not completely straightforward to show, this

sequence can be represented by the following Fourier transform:

. 1 ad
) ¥ — "
U(e’?) T T r=§_°° né(w + 27r). (2.153)
SYMMETRY PROPERTIES OF THE FOURIER

TRANSFORM

A conjugate-symmetric sequence x,[n] is defined as a sequence for which x,[n] =
x;[—n], and a conjugate-antisymmetric sequence x,[n] is defined as a sequence for which

Xo[n] = —x3[—n], where * denotes complex conjugation. Any sequence x[n] can be -

expressed as a sum of a conjugate-symmetric and conjugate-antisymmetric sequence.
Specifically, '
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x[n] = x,[n] + x,[n], : (2.154a)
where :
Xe[n] = L(x[n] + x*[~n]) = x;[—n] ' (2.154b)
and 7 .
x,[n] = ,%(x[n] = x*=n]) = —x}[-n]. (2.154c)
Sequence Fourier Transform
x[n] X(el®)
1. x*[n] _ X*(e™/®) jon jo o
2. x*[-n] : X*(ei®) X(e!?) = X(e )+ Xo(e] )
3. Re{x[n]} X.(e/*) (conjugate-symmetric part of X (e/®)) o N L
- 4, JTIm{x[n]} X,(e/®) (conjugate-antisymmietric part Xe(e’) = 3 [X (e )+ X (e )]
of X (ef®)) '
5. xe[n] (conjugate-symmetric part  Xg(e/?) = Re{X (e/?)} Xo(e!®) = %[X(elw) - X*(e"j“’)],
of x[n]) » :
6. x[n] (conjugate-antisymmetric  jXp(e/®) = jTm{X(e/?))
part of x[n]) ,
The following properties apply only when x[n] is real: Xe(ej“’) = X (e_j“’)
7. Any real x[n] X(el?) = X*(e~10) (Fourier transform is
v : | _ conjugate symmetric) Xo(e ,'w) - X: (e ,-w).
8. Any real x[n] Xr(e!®) = Xr(e=/%) (real part is even)
9. Any real x[n] Xi(e/®) = —X;(e~/*) (imaginary part is odd)
10. Any real x[n] _ |1 X (e/®)| = | X (e‘f“’)l (magnitude is even)
11. Any real x[n] q4X(el?y = —«X(e~/*) (phase is odd)
12. x.[n] (even part of x[n]) Xr(e'®) '
13. x,[n] (odd part of x[r]) i X1(el®)



Hlustration of Symmetry Properties - 19

x{n] = a™ufn]

5
: 1 . 4
joy .
X(e )—l—ae—fﬂ’ if |la| < 1. ,é )
Then, from the properties of complex numbers, it follows that E. 2
. 1 ;
Joy — -~ _ —jo 1
X(e™) 1—~age-je X7 0 1 : )
. 1-acosw ; e -2 0 H i
Xolef®) = = Xn(e—'® 2 2 5
&(e™) 1+4a? —-2acosw R( ) Radian frequency (v)
: —asinw ; A
joy = = —X;(e~7® 1.0
X (") 1+a?—2acosw Xi(e™) o~
o 1 : ) § 05+ AZ-=<
(e )| = =1X(e"7? g - N\
i 405 'S et ?
. — . - - LT
<X(e/®) = tan™! (_M) = —aX(e) £
l—acosw -10 L 1 ) .
R
. B Radian frequency (o)
2.9 FOURIER TRANSFORM THEOREMS
, - o
x[n] <= X(e/®).
Sequence Fourier Transform
x[] X(el%)
yir] Y(e®) |
L axn] +by[n] aX(e/*) + b¥(el®) Linearity
2. x[n—n4] (nq aninteger) e fond X(eiw) Time SHIftiﬂg
3. efoon[n] X (e (e-v0)) Frequency Shifting
4. x[-n) A X(e /@) Time Reversal
X*(e/®) if x[n] real.
5. nxfn] jdﬁii(e"“’) Differentiation in Frequency
6. x[n] » y[n] X(e/*)Y(e/®) .
1 [ The Convolution Theorem
7. x[n]yln) 5= / X(e’®)Y(e/)ag
Pafseval's theorem:
00 4
2_ 1 AN : .
8 D bl = 5 [ (@)l de ' : Parsevals Theorem
. n=-—00
o0 1 3. 4
) Ml = Jjo jew
9 Z *nly'[n] = — [ . XY (e/*)dw
. B=—00

The function | X (e/¢)|? is called the energy density spectrum.



Thus, convolution of sequences implies multiplication of the corresponding Fourier

transforms. Note that the time-shifting property is a special case of the convolution

property, since

and if h[n] = §[n — ny], then y[n] = x[n] * 6[n — ny] = x[n — n,). Therefore,

most Fourier transform theorems is evident when we comp

8[n — ny4] DL e jena

H(e/?)y = e~ iom

modulation theorems.

of sequences (the convolution sum) is equivale
periodic Fourier transforms, and multiplication of sequences is equi
convolution of corresponding Fourier transforms.

20

(2.170)

and Y (e/®) = e7/om X (/)

The duality inherent in
are the convolution and
Specifically, discrete-time convolution
nt to multiplication of corresponding
valent to periodic

FOURIER TRANSFORM PAIRS
Sequence Fourier Transform
1. 8[n) 1
2, 8[n - ng) e—Jono
w -.
3.1 (~00<n<) , Z 2it8(w + 27k)

10.

11

. a"ufn] (lal <1)

. ufn]
. (n+1)a"un] (laj <1)
rsinwp(n + ‘1)
—_— 1
S (<)
sin wen
nn
_J1. 0snzM
- x[n} = 0, otherwise
e!wD"
cos{won + ¢)

k=—o00
1
1 —age-Jo

0o
ree t ) w2
k=—00

1
(1 _ ae—jw)2

: 1
1—2r coswpe™Jo + r2e~i2

0N — 11 lw! < We,
,X(elw) - {0, we <lw| <7

sinfw(M + 1)/2] - loMP2
sin(w/2) -

o
z 218(w — wo + 21k)

’ k=—00

oo
Z [7e8(w — wo + 27k) + e I¥8(w + wp + 27K)]

k=—00




THE Z-TRANSFORM

The z-transform of a sequence x[n] is defined as

X(2)= i x[n]z™".
Z{x[n]) = Z x[n]z™" = X(2). (3.3)

With this interpretation, the z-transform operator is seen to transform the sequence x[n]
into the function X (z), where z is a continuous complex variable.
_ This is one motivation for the notation X (e/*) for the
Fourier transform; when it exists, the Fourier transform is simply X (z) with z = e/“. This
corresponds to restricting z to have unity magnitude; i.e., for/|z| = 1, the z-transform
corresponds to the Fourier transform. More generally, we'can express the complex
. variable zin polar form as

Z=rel®,

With z expressed in this form, Eq. (3.2) becomes

w .
X@rel*)y= " (x[nlryeom. (3.6)
' n=-—00
Equation (3.6) can be interpreted as the Fourier transform of the product of the original
sequence x[n] and the exponential sequence r~". Obviously, for r = 1, Eq. (3.6) reduces
to the Fourier transform of x[n].

_ The z-transform evaluated on the unit circle corresponds
to ’the‘FOUI'lelf transform. Note that wis the angle between the vector to a point z on the
unit circle and the real axis of the complex z-plane.

Im z-plane

. . = eiw
Unit circle z

P
S\

With this interpretation, the inherent periodicity in frequency of the Fourier transform
is captured naturally, since a change of angle of 27 radians in the z-plane corresponds
toitraversing the unit circle once and returning to exactly the same point.

For any given sequence, the set of values of z for which the z-transform converges is
called the region of convergence, which we abbreviate ROC.

i [x[n)r™" < o0 (3.7)

n=—00 .

for convergence of the z-transform.
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The region of convergence will consist of a ring in the z-plane, Q.Q/

$m z-piane

For example, the se-
quence x[n] = u[n] is not absolutely summable, and therefore, the Fourier transform
does not converge absolutely. However, r u[n] is absolutely summable if » > 1. This
means that the z-transform for the unit step exists with a region of convergence |z| > 1.

If the ROC includes the unit circle,
this of course implies convergence of the z-transform for |z] = 1, or equivalently, the
Fourier transform of the sequence converges. Conversely, if the ROC does not include
the unit circle, the Fourier transform does not converge absolutely.

Amopg t!le most important and useful z-transforms are those for which X (z)is arational
function inside the region of convergence, i.e.,

P(z)
| | X(2) = 0" - (3.9)
where P(z) and Q(z) are polynomials in z. The values of z for which X (2) =
the zeros of X (z), and the values of zfor which X(z) is infinite are referr
- poles of X(z). The poles of X(z) for finite values of z are the roots of the d
polynomial. In addition, poles may occur at z = 0 or z = oo.

O are called -
ed to as the
enominator

Right-Sided Exponential Sequence

Consider the signal x[n] = a"u[n]. Because it is nonzero only for n > 0, this is an
example of a right-sided sequence. From Eq. (3.2),

(o o]

X(z) = Z =a"u[n]z™" = Z(az—l)n_
h==00 n=0
. . ,,
X@=3 @ Ve =y Wkl (10

n=0
Here we have used the familiar formula for the sum of terms of a geometric
series. The z-transform has a region of convergence for any finite value of |a|. The
Fourier transform of x[n}, on the other hand, converges only if |a| < 1. Fora = 1, x[n]
is the unit step sequence with z-transform

1
X(Z) = i——_——z—_l', ‘Z| > 1. (3.11)




Left-Sided Exponential Sequence

Now let x[n] = —a"u[—n — 1]. Since the sequence is nonzero only for n < —1, this is

a left-sided sequence. Then

1 1 z
= , lz| <lal.

l-a1z 1-—az1" z—a

X(9)=1-

Sum of Two Exponential Sequences

Consider a signal that is the sum of two real exponentials:

x[n] = ()" uln] + (-3)" uln). o (B31%)

$m  z-plane

| z 1
(3)"uln) = ——, g1,
1- ?Z !
1\ Z 1
T3
and, consequently,
1 1

()"l + (=3)"ul) & — 4

(3.17)

(3.18)

2%



Two-Sided Exponential Sequence

Consider the sequence
x[n] = (=4)" uln) = (3)" u[-n-1].

Note that this sequence grows exponentially as n — —o0.

1
1 n 2 - l
(4l S
b4 1
- (%)"u[—m ~1] <> m;: Iz < %
: ’ 2
Thus, by the linearity of the z-transform,
1 1
X(1)s ——+—u g,
@ T+dz=t 1 lg-1 3
2(1- 427 2z(z~ &)

1
Izl < 5,

(i) (- Ty ©

Sm z-plane

Finite-Length Sequence

Consider the signal

a*, 0<n<N-1,
x{n)'= 0, otherwise.
Then

N-1 N-1
X@)=> a7"=) (az)
. n=0 n=0
1 _(az—-l)N - 1 ZN __aN
T l—az7! T N1 z-a

L]

Specifically, the N roots of the numerator polynomial

‘are at

Zpe=ael kN k—0,1,... N-1. (3.24)

(Note that these values satisfy the equation z¥ = a”, and when a = 1, these complex
values are the Nth roots of unity.) The zero at & = 0 cancels the pole at z = a.

(2+3)(z23)

24

(3.20)

Gaty

(3.23)

15th-order pole




TABLE3.1 SOME COMMON z-TRANSFORM PAIRS

Sequence Transform ROC
1. §[n) 1. Allz
' 1
2. u[n] = Iz} > 1
1
3. —u[-—n - 1] 'i-:—z—_T IZ‘ <1
4. 8[n—mj z" All zexcept 0 (if m > 0)
: or oo (if m < 0)
1
5. a"uln] rpp— izl > la|
. ) .
6. —a"u[-n-1] 1—:;—;_—1 l2l <al
-1 ‘
7. na"u[n] a_—a——fz—_z'l? _ 12l > la| A
1 -
8. —na"u[-n—1] H—_iz;:—l-)-i iz < |a]
TR »
13.{0",05"5‘1\,_1' 1-a%z" .|Zl>0

0, otherwise 1—az-1

3.2 PROPERTIES OF THE REGION OF CONVERGENCE

FOR THE z-TRANSFORM

PROPERTY 1: The ROC s aring or disk in th'émzw-plane centered at the origin; i.e.,

O<rp<izl <rp<oo.

PROPERTY 2:  The Fourier transform of x[n] converges absolutely if and only if
the ROC of the z-transform of x[n} includes the unit circle.

PROPERTY 3:  The ROC cannot contain any poles.

PROPERTY 4:  If x[n]is a finite-duration sequence, i.e., a sequence that is zero except
in a finite interval —oo' < N; < n < N, < 00, thenthe ROC is the entire z-plane,
except possibly z =0 or z = .

PROPERTY 5: If x{n]is a right-sided sequence, i.e., a sequence that is zero for
n < N; < oo, the ROC extends outward from the outermost (i.e., largest
magnitude) finite pole in X(z) to (and possibly including) z = cc.

- PROPERTY 6:  If x[n]is a left-sided sequence, 1.e., a sequence that is zero for n >

N; > —o00, the ROC extends inward from the innermost (smallest magnitude)
nonzero pole in X (z) to (and possibly including) z = 0.

PROPERTY 7: A two-sided sequence is an infinite-duration sequence that is neither
. right sided nor left sided. If x{n] i"a.two-sided sequence, the ROC will consist

of aring in the z-plane, bounded on the interior and exterior by a pole and,
-/ conmsistent with property 3, not containing any poles.

PROPERTY 8: The ROC must be a connected region.

2h



f?"forr] >r0

_HHTTH

(©)

Property 5 can be interpreted in a somewhat similar manner. Figure  illustrates
a right-sided sequence and the exponential sequence r " for two different values of r.
A right-sided sequence is zero prior to some value of n, say, N;. If the circle |z| = rpisin
- the ROC, then x[n]ry™ is absolutely summable, or equivalently, the Fourier transform of
x[n]rg™ converges. Since x[n] is right sided, the sequence x[n]r;™ will also be absolutely
summable if r; " decays faster thanrj™. Specifically, asillustrated in Figure  , this more
rapid exponential decay will further attenuate sequence values for positive values of n
and cannot cause sequence values for negative values of  to become unbounded, since
x[n]z™" = O for n < N;. Based on this property, we can conclude that, for a right-sided
sequence, the ROC extends outward from some circle in the z-plane, concentric with the
~ origin. :

For right-sided sequences, the ROC is dictated by the exponential weighting re-
- quired to have all‘exponential terms decay to zero for increasing #; for left-sided se-
quences, the exponential weighting must be such that all exponential terms decay to
zero for decreasing n. For two-sided sequences, the exponential weighting needs to be
balanced, since if it.decays too fast for increasing #, it may grow too quickly for de-
creasing n and vice versa. More specifically, for two-sided sequences, some of the poles
contribute only for # > 0 and the rest only for n < 0. The region of convergence is
bounded on the inside by the pole with the largest magnitude that contributes for n > 0
and on the outside by the pole with the smallest magnitude that contributes for n < 0.
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Examples of four z- transforms with the same pole~zero locations, Z!z
illustrating the different possibilities for the region of convergence. Each ROC
corresponds to a different sequence: (b) to a right-sided sequence, (c) to a left-
sided sequence, (d) to a two-sided sequence, and {e) to a two-sided sequence.

Im z-plane

Unit circle

/
/ $m z-plane
X K
a b c e
(a)
$m  z-plane Im  z-plane
(e)
)
{c) (d)
' If the sequence
is nonzero only in the interval N; < n < N, the z-transform
N, ) :
X() =Y x[n)z™" (3.22)
. ' n=N,

has no problems of convergence, as long as each of the terms |x[n]z™"| is finite.

Stability, Causality, and the ROC

$m z-plane

" Unit circle

)

LSIESD 4
9
®




There are three possible ROC'’s consistent with
properties 1-8 that can be associated with this pole-zero plot. However, if we state
in addition that the system is stable (or equivalently, that k[n] is absolutely summable
and therefore has a Fourier transform), then the ROC must include the unit circle.
Thus, stability of the system and properties 1-8 imply that the ROC is the region

% < |z < 2. Note that as a consequence, h[n] is two sided, and therefore, the system

is not causal.

If we state instead that the system is causal, and therefore that h[n] is right sided,
then property 5 would require that the ROC be the region |z > 2. Under this
condition, the system would not be stable; i.e., for this specific pole-zero plot, there is
no ROC that would imply that the system is both stable and causal.

3.3 THE INVERSE z-TRANSFORM

Partial Fraction Expansion

To see how to obtain a partial fraction expansion, let us assume that X (2) is
expressed as a ratio of polynomials in z7!; i.e.,

M
> bt

X(@)=*2 @A

DI
k=0

Such z-transforms arise frequently in the study of linear time-invariant systems. An
equivalent expression is "

M
: zNZbkzM""'
X(g)= —F=0 = (338) .

N
™ Z a7k
=0

‘Equation (3.38) explicitly shows that for such functions, there will be M zeros and N
~-poles at nonzero locations in the/z-plane. In addition, there will be either M — N poles
atz=0if M > Nor N— Mzerosat z = Q0if N > M. Inother words, z-transforms of the
form of Eq. (3.37) always have the same number of poles and zeros in the finite z-plane,

- and there are no poles or zeros at z = oo. To obtain the partial fraction expansion of

X(z) in Eq. (3.37), it is most convenient to note that X (2) could be expressed in the
form

M
H(l — )
bo i

X()=—F
“ H(l —dz7h)
k=1

) (3.39)

If M < N and the poles are all first order, then X(z) can be expressed as
. o
= —_— 3.40
X@) =3 14 (a0)
Ay, can be found from

Ap = (l — de‘l)X‘(Z)IZﬂ{k. 3 | (34])



Consider a sequence x[n] with z-transform

1 ‘ 1
(N -F) 7 o

X(2) =

Ay Ay

TS oy

From Eq. (3.41),

Ar=(1-1Y) X, = 1.

=1/4 =

A =r(l—%z‘1) X(Z)l 2.

=12
Therefore,
(=5 T4

Since x[n] is right sided, the ROC for each term extends outward from the outermost
pole. From Table 3.1 and the linearity of the z-transform, it then follows that

x{n] =2 (%) uln] — (i—) uln] .

X ()=

Clearly, the numerator that would result from adding the terms in Eq. (3.40) would

be at most of degree (N — 1) in the variable z7!. If M > N, then a polynomial must
be added to the right-hand side of Eq. (3.40), the order of which is (M ~ N). Thus, for
M > N, the complete partial fraction expansion would have the form

’ . M-N N Ak
= y o S S— 343
X(2) ; Bz + k}; TTdeT (3.43)
If X (z) has multiple-order poles and M > N, Eq. (3.43) must be further modified.

In particular, if X(z) has a pole of orders at z = d; and all the other poles are first-order
~then Eq. (3.43) becomes

ki

M—N N Ay s C
X(z) = B,z + —t+ )y —T 3.44
§ r k=1‘zk¢i 1— dkz-l ”{:1 (1 — diz—-l)m ( )

The coefficients Ay and B, are obtained as before. The coefficients C, are obtained
from the equation

1 { i ——d,-w)’X(w")]} . (345

m = (S _ m)!(_di)s—m dws—m w:d,."'

The terms B,z correspond to shifted and scaled impulse sequences, i.e., terms
of the form Bé[n = r]. The fractional terms correspond to exponential sequences. To
decide whether a term Ay

1— de_l

corresponds to (dx)"u[n] or —(dx)"u[—n — 1], we must use the properties of the region of
convergence that were discussed in Section 3.2. From that discussion, it follows that if
X (z) has only simple poles and the ROCisof the formrg < |z| < r,,thena given pole d;
will correspond to a right-sided exponential (d)"u[n]if |di] < rg, and it will correspond
to a left-sided exponential if |dy| > r.. Thus, the region of convergence can be used
to sort the poles. Multiple-order poles also are divided into left-sided and right-sided
contributions in the same way.

29



Finite-Length Sequence

Suppose X(z) is given in the form

X@=22(1-iz) A+ -2, (3.50)
‘However, by multiplying the factors of Eq. (3.50), we can express X(z)as
X@=2"-Lz-14+171

Therefore, by inspection, x[n] is seen to be

1, n=-2,
. -§, n=-1,
'x[n] =3¢ —1, n=0,
L on=1, : ' -
0, - otherwise.

Equivalently, :
x[n] = 8{n+2] - 38[n + 1] - 8[n] + 3é[n — 1],

Inverse Transform by Power
Series Expansion !

Consider the z-transform
X(z) =log(1 + azl), 1z} > lal.

Using the power series expansion for log(1 + x), with |x| < 1, we obtain

X)) = i (_1)n+lanz——n. => *[n] = {(——1)0-{-—1%‘

n

n=1 ’

Sequence Transform : ROC

x[n] X(2) Ry

xi[n] X1(2) Ry

xln} - X2(2) Ry,

axi[n] + bxa[n] aXi1(z) +bX41(2) Contains Ry N Ry,

x[n — ng) - T X(2) Ry, except for the possible

addition or deletion of
the origin or co

- zpx[n] X(2/20) Izol Rx

. dXx '
nx|n) -~z dZ(Z) Ry, except for the possible

addition or deletion of
the origin or oo

x*[n] : . X*(z%) Ry

Relx[n]} %—[X(z) + X*(z*)] Contains R,
Jmix[n]} : %[X(z) — X*(z*)] - Contains R,
x*[-n] - X(1/z7) 1/R;

x1[n} * x3[n) A X1()X2(z) Contains Ry, N R;,

Initial-value theorem: ’
x[n] =0, n<0 lim X (z) = x[0]
-=>00

M



Shifted Exponential Sequence 31

Consider the z-transform

1
X@)=—3. ld>3
2—3

From the ROC, we identify this as corresponding to a right-sided sequence. We
can first rewrite X'(z) in the form

Z—l

X@) =1 o > 5 (3.55)
i :
X (z) can be written as
~1 1 1
X(2)=12 — |- Izl > 3. (3.58)
1- ;277! :

From the time-shifting property, we recognize the factor z~! in Eq. (3.58) as being -
associated with a time shift of one sample to the right of the sequence (}—1)" ulnl; ie.,

xlnl = (1) uln —1). | (3.59)
Exponential Multiplication
Starting with the transform pair

1
uln] & 1-2z71

2 > 1, ‘ (3.60)

we can use the exponential multiplication property to determine the z-transform of
x[n] = r" cos(won)uln]. (3.61)
First, x[n] is expressed as
x[n] = %(re"‘”")"u[n] + %(re”j“"’)”u[n].

Then, using Eq. (3.60) and the exponential multiplication property, we see that

(0 = 2
sre Yl = T s,

1¢,,—i Z ]
i(re ]O)o)"u[n] *—> 1_:7637";—2?, IZI > r.

From the linearity property, it follows that

1 1

X 2 <
(2) 1 " relwng + [ —— Izl > r

i

3.62
(1 —rcoswoz™) (3.62)

1-2rcoswgz! +r2z-2’

1z} >r.

inverse of Non-Rational z-Transform

_ In this example, we use the differentiation property together with the time-shifting
property to determine the inverse z-transform

X(z) = log(l +az™!), 1zl > |al,
we first differentiate to obtain a rational expression:

dX(z) —az?
dz ~ 14az7V




From the differentiation property, , 3 2

1] z dX(z) az!

Izl > la|. (3.63)
Specifically, we can express nx{n] as

nx[n] = a(—a)"ufn - 1].
Therefore,

x[n] = (-1)"+ f’—l':u[n ~1] E log(1 +az7™h), Iz| > lal.

Time-Reversed Eprnential Sequence

If the sequence x[n] is real or we do not conjugate a complex sequence, the result
becomes

x{~n] <% X(1/2, ROC = 7;—.

X
As an example of the use of the property of time reversal, consider the sequence
x[n] = a™"u[—n),

which is a time-reversed version of a"u[n]. From the time-reversal property, it follows
that :

1 __a—lz'—l

- X(2) = _ X
@) l—az 1—~gqg-1z-1" lzl < la™'|.

Evaluating a Convolution Using

the z-Transform

Let x1{n] = a"u[n] and x;{n] = u[n]. The corresponding z-transforms are

0]

1

- e L

XD =) a"0" =5 1l > lal,
n=0
~and
= 1
e rn nd Re
X(z) = le =15 Izl > 1.
n=0
If la] < 1, the z-transform of the convolution of x; [n] with x;[n] is then ciiffglﬁzc
1 z*
Y(Z) = = IZI > 1

(1-az-)(1-2z1) " (z—a)(z-1)

Expanding Y (z) in Eq. (3.64) in a partial fraction expansion,
we get

1 1 - .a
_ _ 1,
Y@ =1 (1——z"1 1—az—1)’ Izl >

“Therefore,

B il = T (ulr] — ™).



SAMPLING OF
CONTINUOUS-TIME SIGNALS

— C/D e
x.(?) x[n] =x(nT)

!

) =xaT). oo <n<oo G

In Eq. (4.1), T is the sampling period, and its reciprocal, f, = 1/T. is the sampling
frequency, in samples per second. We also express the sampling frequency as Q, = 27 /T
when we want to use frequencies in radians per second.

In a practical setting, the operation of sampling is implemented by an analog-to-
digital (A/D) converter. Such systems can be viewed as approximations to the ideal
C/D converter. . _ ’ ,

The sampling operation is generally not invertible; d.c., given the output x[n],
it is not possible in general to reconstruct Xc(t), the input to the sampler, since many
continuous-time signals can produce the same output sequence of samples. The inherent
ambiguity in sampling is a fundamental issue in signal processing. Fortunately, it is
possible to remove the ambiguity by restricting the input signals that go into the sampler.

To derive the frequency-domain relation betweefi the input and output of an ideal C/D
converter, let us first consider the conversion of xc(t) to x,(r) through modulation of
the periodic impulse train '

o

s(t)y= Y_.8(t~nT), (42)

n=-oC

where 8(¢) is the unit impulse function, or Dirac delta function. We modulate s(¢) with
xc(t), obtaining

Xy (1) = xe(t)s (1)
= x.(t) zx: 8(t —nT).

n=-—-o¢

(4.3)

C/D converter

|

|

}

. |
Conversion from i
impulse train I
|

|

|

x. (1) : x,(1) to discrete-time x[n)=x.(nT)
| sequence
T |
_ xs(t) can be expressed as
B o]
()= Y x(nT)s(t —nT). (4.4)

n=-—-0oc



The Fourier transform of a periodic impulse
train is a periodic impulse train (Oppenheim and Willsky. 1997). Specifically,

5(jQ) = %’é i 5(2 — k). (4.5)

k::—oc

where Q, = 27/ T is the sampling frequency in radians/s. Since

X,(j9) = 5= Xe(j2) # S(if),

where % denotes the operation of continuous-variable convolution. it follows that -

) 1 & . '
XD =5 3 Xlj(Q-k)). | (4.6)
k=—oc
X.(j0) ()
1 _ 27
~0y Qy Q20 -0, o o 20, 30,
(@) ‘ (b) ‘

S/ A X X A

AN PN AN /\f//\\l/&\ //\\ \\

Q-0 70, 20, Q

~ Consequently, x.(r) can be recovered from xs(t) with an ideal
lowpass filter. This is depicted in Figure 4.4(a), which shows the impulse train modu-
lator followed by a linear time-invariant system with frequency response H, ().

Since
Xr(]Q) = H,(jQ)XS(jQ), (4~8)
it follows that if H, () is an ideal lowpass filter with gain 7 and cutoff frequency Q.
such that
QN < Qe < (25 — Q). : (4.9)

then
| X,(j2) = X(j). | (4.10)

3



20

s(=3 8(1-nT)

=~

x.(t) x (1)

H,(j)

()x > 2.(25\:

AN

\

o o % -y

1,(jQ)

AN

(Q,— Q)

Oy < 0, < (O, - 0,)

~Qp

Oy Q0 -Q

Q. : Q

Nyquist Sampling Theorem: Let x:(r) be a bandlimited signal with

X(jQ)=0 for|Q > Qn.

~Then x.(t) is uniquely determined by its samples x[n] = x(nT)n=0,+1,42, ..., if

The frequency Q is commonly referred to as the N yquist frequency,
29y that must be exceeded by the sampling frequency is called the

Since

and

it follows that

Consequently. |

or equivalently,

Qs = - > 2Qn.

x

X (jR) = ) x(aT)e I8,

H=—

x[n] =x(nT)

o &

X(ejm): Z x[n]e‘j‘”",

n=—x

X;(j2) = X(€)uear = X(/97).

X = 2 3 X(j(R - k9,

k=—-oc

L ady 2k
xen =7 3 x(i(3-5)).
k=—oc

(4.14b)

and the frequency
Nyaquist rate.

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4:20)

Q
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Sampling and Reconstruction
of a Sinusoidal Signal '

If we sample the continuous-time signal x.(t) = cos(4000xt) with sampling period
T = 1/6000, we obtain x[n] = x.(nT) = cos(4000x Tn) = cos(wyn). where wy =
40007 T" = 2 /3. In this case, Qs = 27/ T = 120007, and the highest frequency of the
signal is ¢ = 40007 so the conditions of the Nyquist sampling theorem are satisfied
and there is no aliasing. The Fourier transform of x.(¢) is

X (jQ) = m8(S2 - 40007) + 78(S2 + 40007).
XU 1,6

=16000m  —120007  -BO007 - 60007 - 40007 0 40007 60K SO 120000 166007 )
(a)

X(efy = X (jwl Ty

27 ®

(b}

From Egs. (4.18)-(4.20), we see that X (e/®) is simply a frequency-scaled version of

X, (j2) with the frequency scaling specified by w = Q7. This scaling can alternatively -

be thought of as a normalization of the frequency axis so that the frequency = € in
X;(j2) is normalized to w = 2x for X (e/*). The fact that there is a frequency scaling
or normalization in the transformation from X,(j) to X(e/?)is directly associated
with the fact that there is a time normalization in the transformation from x, (1) to x[n].

] x
Xo(JQ) = D X(i(R - k)

k==

RECONSTRUCTION OF A BANDLIMITED SIGNAL

FROM ITS SAMPLES \
) If we are
given a sequence of samples, x[n], we can form an impulse train x,(t) in which successive
impulses are assigned an area equal to successive sequence values, i.e.,

20

x() = > x[n]s(t —nT). (422)

N=--00
The nth sample is associated with the impulse at t = nT, where T is the sampling
period associated with the sequence x[n]. If this impulse train is the input to an ideal
-lowpass continuous-time filter with frequency response H,(j2) and impulse response
h,(1),then the output of the filter will be

>
%)= " x[nlh,(t —nT). (4.23)
n=-—00
The corresponding impulse response, 4, (1),
is the inverse Fourier transform of H,(j$2), and for cutoff frequency 7/ T it is given by

sin(zt/T)

hn(t) = 7t)T

(4.24)

. where we have used the fact that scaling the independent variable of

an impulse also scales its area, i.e., 8(w/ T ) = Té(w).



o

L =Y x[n]smjf(’t(i ;';?}/TT] (4.25) o

From the frequency-domain argument of Section 4.2, we saw that if x[n] = x.(nT),
where X.(jQ) = 0 for || > =/T, then x,(¢) is equal to x.(z).

n=-—00

H,(j ) J

T
Ideal reconstruction system _
P T T T T —] T s ()
} ! T T
!
: Convert from rec ;Sﬁ'?]lction ! ®)
—_:..> sequence 1o > Ofilter —-+|—>
xfn] : impulse train | x.(r) H, (i) ‘ x,(r) h(1)
|
| | 1
| T . |
| Sampling i :
! period T [ .
e L J '
~_ TN N e
-4T 23T =T 0 T\ / aT~Ar
()
e N -
/ AN - >
/ - N
// S~ X%
/ T-
!
: t
] t

As suggested by this figure, the ideal lowpass
filter interpolates between the impulses of x,(¢) to construct a continuous-time signal

X (1).

b |

: }

J

| | Convert from . IIIS; ?ll(:tion |
———:-» sequence to > € oﬁlter —-}—-——» > D/C >
"x[n) : impulse train | x,(r) H,3i0) : x,(1) x[n] f x,(1)

| T !

I [ T
’ : Sampling :
I period T i

It is wseful to formalize the preceding discussion by defining an ideal system for
reconstructing a bandlimited signal from a sequence of samples. We will call this system
the ideal discrete-to-continuous-time (D/C) converter.



The properties of the ideal D/C converter are most easily seen in the frequency

domain. To derive an input/output relation in this domain, consider the Fourier trans-
form :

. 43
X(jQ) = > x[n]H,(jQ)e %",

By factoring H,(j$2) out of the sﬁm. we can write
X, (jQ) = H.(jQ)X (/2T (4.28)

Equation (4.28) provides a frequency-domain description of the ideal D/C converter.
According to Eq. (4.28), X (¢/“) is frequency scaled (i.e., w is replaced by 2T). The ideal
lowpass filter H,(j2) selects the base period of the resulting periodic Fourier transform
X (¢/%") and compensates for the 1/ T scaling inherent in sampling, Thus, if the sequence
x[n] has been obtained by sampling a bandlimited signal at the Nyquist rate or higher,
then the reconstructed signal x, (1) will be equal to the original bandlimited signal.
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DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS

|
' Discrete-fime

——— C/D > » p/C >

x (1) | xp] LMy | ¥, (1)
| 1 1 {
' T T [
L ]

If the discrete-time system in Figure is linear and time invariant, we then have
Y(ej‘”) = H(ef'“’)X(ef‘“), (4.33)

where H(e/*) is the frequency response of the system or, equivalently, the Fourier
transform of the unit sample response, and X (e/“)and Y(e/®) are the Fourier transforms
of the input and output, respectively. Combining

Y,(jQ) = H,(jQ)H(e/*T) X (/7). (4.34)
Y.(jQ) = H,(jQ)Y(e/*T)

[ TY (T, Q| <7/T,
10, otherwise.

rGR) = e 3 x(i(2- ). e

k=—oc

If X.(j2) = 0 for |$2| > m/T. then the ideal lowpass reconstruction filter H.(jQ)
cancels the factor 1/ T and selects only the term in Eq. (4.35) for k = 0; i.e.,
o | HESDYX (7R), 19 <x/T.
- Thus, if X.(j) is bandlimited and the sampling rate is above the Nyquist rate, the
output is related to the input through an equation of the form

Y () = Her(j Q) X (j Q). (4.37)
where
. iery, T.
He(j2) = {g(e ) ;g: ; ZT ' (4.38)

Thatis, the overall continuous-time system is equivalent to a linear time-invariant system
whose effective frequency response is given by Eq. (4.38).

Impulse Invariance

Continuous-time Discrete-time
—>1 LTIsystem 1  C/D »{ LTI system » D/C f—t—
Y=y (1)

|
l
0 1 BROHGY | v : xn] | kil He?y | v
|
I

(a)

Hy(JQ) = H ()
(b)



With H.(j2) bandlimited, Eq. (4.38) specifies how to choose Hi
H(e/®) so that He(jQ) = H(j ). Specifically,

H(e!*) = H(jo/ T), lw| < m, (4.49)
with the further requirement that 7 be chosen such that
H.(jQ)=0. |2] > 7/ T. (4.50)

Under the constraints of Eqs. (4.49) and (4.50), there is also a straightforward and useful
relationship between the continuous-time impulse response 4.(¢) and the discrete-time
impulse response A[n]. In particular, as we shall verify shortly,

h[n] = Th(nT): (451)

i.e., the impulse response of the discrete-time system is a scaled, sampled version. of
h.(t). When h[n] and h.(r) are related through Eq. (4.51), the discrete-time system is
said to be an impulse-invariant version of the continuous-time system. :

A Discrete-Time Lowpass Filter Obtained By
Impulse Invariance

Suppose that we wish to obtain an ideal lowpass discrete-time filter with cutoff fre-
quency w, < 7. We can do this by sampling a continuous-time ideal lowpass filter with
cutoff frequency Q. = w./T < 7/ T defined by

. 1. 1€ <.,

The impulse response of this continuous-time system is

in(Q.t
h(_([)_—_— .Sill(___)
!

so we define the impulse response of the discrete-time system to be

Aln) = Th,(nT)=T

sin(2nT) . sin(w.n)
anT an

where . = Q.T. We have already shown that this sequence corresponds to the
discrete-time Fourier transform

; 1. o < w,.
Jooy
H(e™) = {(). we < |lw] < 7.

which is identical to H.(jw/ T). as predicted by Eq. (4.56).

CHANGING THE SAMPLING RATE USING
DISCRETE-TIME PROCESSING

—_— M
x[n) xqla] = x[nM]

Sampling Sampling
period T period T'=MT



Sampling Rate Reduction by an Integer Factor

The sampling rate of a sequence can be reduced by “sampling” it, i.e.. by defining a new
sequence
xq4ln] = x[nM] = x,(nMT). (4.71)

sampling with period 7" = MT. Furthermore, if X.(jQ) = 0 for || > Qu, then x4[n]

is an exact representation of x.(¢) if 7/ T = 7 /(MT) > Qu. That is, the sampling rate -

can be reduced by a factor of M without aliasing if the original sampling rate was at least
M times the Nyquist rate or if the bandwidth of the sequence is first reduced by a factor
of M by discrete-time filtering. In general, the operation of reducing the sampling rate
(including any prefiltering) will be called downsampling. First recall that the

discrete-time Fourier transform of x[n] = x.(nT) is
. 1 & w 2k
oy =— %" (227N 472

Similarly, the discrete-time Fourier transform of x4[n] = x[nM] = x.(nT") with T" =
MTis '

. R fw 2mr
Xq(e”) = F,;m X, (] (‘7‘1‘, - —T—'—)) : ' (4.73)
Now, since T' = MT, we can write Eq. (4.73) as -
: 1 > ® 2mr :
19y = | == —=—=11. 4.74
xate) = 5 3 X (i (n507)) (4.74)

= L8[ S a2 )]

i=0 k=—oc

The term inside the square brackets'in Eq. (4.76) is recognized from Eq. (4.72) as

X( f(w——eri)/M) 1 i v (i w—2mi 2k @77)
¢ T \I\TmMT T T ) '
Thus, we can express Eq. (4.76) as
= .
Xd(e/m) — _M z X(ej(w/M—Zm/M))_ ' | (478)

i:O

, If we compare Egs. (4.73) and
(4.78), we see that X,(e/) can be thought of as being composed of either an infinite set
of copies of X, (j2). frequency scaled through w = 7" and shifted by integer multiples
of 27/ T"(Eq. (4.73)). or M copies of the periodic Fourier transform X (e/), frequency
scaled by M and shifted by integer multiples of 27 (Eq. (4.78)). Either interpretation
makes it clear that X,(e/®) is periodic with period 2x (as are all discrete-time Fouricr
transforms) and that aliasing can be avoided by ensuring that X (e/*) is bandlimited.
ie., :

X(?) =0, owy<]|ol <. (4.79)
and 27 /M > 2wy,

14
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2

(@

_2m 5
T
(b)
X(e)
1
T
/\ L | /\
27 - —wy wn=Q\T Y o OT
(c)
X (efy= % [X(e2) + X(eitw-2m02))
(M=2)
=27 —1r o Yar w=OT"
(d)
=
Q= =

In this example, 27/ T = 4Qy: i.e., the original sampling rate is exactly twice the
minimum rate to avoid aliasing. Thus, when the original sampled sequence is down-
sampled by a factor of M = 2, no aliasing results.



(N

Lowpeass filter
————!  Gain=1 —> M p——
x{n] Cutoff=7/M | ¥[n] Xqln] = x[nM]
Samplin Sampling Samp!ing
perigd 75 period 7 period T"=MT

From the preceding discussion, we see that a geﬁeral system for downsgmpling by
a factor of M is the one shown in Figure . Such a system 1s called a deczmazjor, apd
downsampling by ldwpass filtering followed by compression has been termed decimation

(Crochiere and Rabiner, 1983).

Increasing the Sampling Rate by an Integer Factor

: Lowpass filter
N ‘L Gain=1 |-t
x[n] - x[n] | Cutoff = w/L | < x;]a]
Sampling Sampling Sampling
period T period T'= T/L period T' = 7/L
Figure shows a system for obtaining x; [r] from x[»] using only discrete-time pro-

cessing. The 'system on the left is called a sampling rate expander (see Crochiere and
Rabiner, 1983) or simply an expander. Its output is

_Sxln/L), n=02%L, +21, ...
xeln] = {O, otherwise, (4.84)
or equivalently,
0 X .
xe[n] = > x[kls[n — kL]. v (4.85)
k=—cc

The Fourier transform of x, [n] can be expressed as

Xe(el®) = Z ( i x[k)s[n — kL]) e iwn

Voo e (4.86)
= 3 xlkle itk = x(eiot),
k:—oo

Thus, the Fourier transform of the output of the expander is a frequency-scaled -
version of the Fourier transform of the input; i.e.. w is replaced by wL so that w is now
normalized by

w=QT" | (4.87)

Asin the case of the D/C converter. it is possible to obtain aninterpolation formula
for x;[n] in terms of x[n]. First note that the impulse response of the lowpass filter
is
| sin(rn/L)
hiln) = ———=7
| 1i[n] an/L (4.88)
- Using Eq. (4.85), we obtain

iixwfmhm-wLyu.

m(n—kL)/L (4.89) ..




X&)

Q

X (eh) = X (el

Hi(eh)
L
j 1 | |
-2 —Tr T ki T 27 w=0T
L L

We see that X; (¢/*) can be obtained from X, (/") by correcting the arhplﬂ
tude scale from 1/ T'to 1/ T" and by removing all the frequency-scaled images of X.(jR2)
except at integer multiples of 2. ’

In general, the required gain would be L. since L(/T)=[1/(T/L)] = 1/T', and the
cutoff frequency would be 7/ L. ‘

That system is therefore called an interpolator, since it fills in the missing

samples, and the operation of upsampling is therefore considered to be synonymous

with interpolation.

M



Changing the Sampling Rate by

Interpolator

a Noninteger Factor

Decimator

} !
! !
Lowpass filter | | | Lowpass filter
—L ‘L »{ Gain=1L L :‘; Gain =1 —> ‘M_th._,
x[n] | t[n] | Cutoff=miL | | xlnl | | Cutoff = w/M | %[n] %)
| | |
! ; ! A
Sampling T
period: . T T T ™
L L L L
Lowpass filter
x[n] - 1 . [,,J: g‘iltr:);.—lj i[n]; M p— 7S
’ N min(miL, wiMy| d
Sampling
period: o T T ™
L L L

If we wish to change the sampling period to 7" = (3/2) 1,
we must first interpolate by a factor L = 2 and then decimate by a factor of M = 3.
Since this implies a net decrease in sampling rate, and the original signal was sampled
at the Nyquist rate, we must incorporate additional lowpass filtering in order to avoid
aliasing. If we were interested only in interpolating by a factor of 2. we
could choose the lowpass filter to have a cutoff frequency of w. = 7/2 and a gain
of L = 2. However, since the output of the filter will be decimated by M = 3, we

must use a cutoff frequency of w. = /3, but the gain of the filter should still be
2 as in Figure ’

X Q)
1
Oy Dy 0
X(()j‘”)
- 1
. 7 .
/I\/\/l\
2 -1 ™ 2 w =07
X"(ejw)
1 (L=2)
‘ T
\/I\A/\/J\/I\/
47 21 " T 2T 47 2 w=QT/].
-— -==  -= - = — =27
L L L L L L
H (el
(I( ) (M: 3)
L
] | ] |
-2 - k. w=T T 27 w =0T/
M M



Xi(ef®y = H (e/) X, (e™)

S . w = OTM/L

2 -
Note that the shaded regions show the aliasing that would

have occurred if the cutoff frequency of the interpolation lowpass filter had been z/2
instead of /3.

Prefiltering to Avoid Aliasing

In processing analog signals using discrete-time systems..it 18 generally .desirabbltlz to

minimize the sampling rate. This is because the amount of arithmeticprocessing required

to implement the system is proportional to the number of samples. to be. processpd.

If the input is not bandlimited or if the Nyquist frequency of the Input is too high,
- prefiltering may be necessary.

Anti- Discrete-

> aliasing > C/D >l time »  D/C
x(n | filter | x@) x[n] | system |yin] y:(1)

HaaG0) ! f
’ In this context, the lowpass

filter that precedes the C/D converteris called an antiauasing filter. Ideally, the frequency
response of the antialiasing filter would be

. LRl < Q. <n/T, '
Ha(j) = {o, ;Q: - Q. (4.108)

,__....___..._...._____.__...___.__.___

i

I {

. Sharp )

Simple ' il
=——>! antialiasing > /D — ;* am]f?lltl::mg > M ;
(1 1 X, (7 . L

X(( ) filter n( ) T \’[IIJ " Cutoff = /M [l \’,/[Il]

i |

, With Q denoting the highest frequency
component to eventually be retained after the antialiasing filtering is completed, we
first apply'a very simple antialiasing filter that has a gradual cutoff with significant
attenuation at MQy. Next, implement the C/D conversion at a sampling rate much
higher than 2Q,. €.8., at 2MQy. After that, sampling rate reduction by a factor of M
that includes sharp antialiasing filtering is implemented in the discrete-time domain.
Subsequent discrete-time processing can then be -done at the low sampling rate to
minimize computation.



Analog-to-Digital {A/D) Conversion

An ideal C/D converter converts a continuous-time signal into a discrete-time signal,
where each sample is known with infinite precision. As an approximation to this for
digital signal processing, the system of Figure converts a continuous-time (analog)
signal into a digital signal, i.e., a sequence of finite-precision or quantized samples.

: Sample
—] and — /1/Dt
X, () hold | x,(r) | SOnverter fB[i"]
T T

However, the conversion is not
instantaneous, and for this reason, a high-performance A/D system typically includes
a sample-and-hold. - The ideal sample-and-hold system is the system
whose output is

o0

xo({) = Z X[);l]ho(t —-nT), (4]11)
where x[n] = Xa(nT) are the ideal samples of x
of the zero-order-hold system, i.e.,

_J1, 0<t<T,
ho() - {0, otherwise. (4.112)

«(t) and ho(ylk)iriﬂs'the impu]se response

If we note that Eq. (4.111) has the equivalent form

oc

xo(t) = ho(t)* Y x,(nTY8(t — nT), B (4.113)

s N=—0C

we see that the ideal Sample-and—ho]d is equivalent to impulse train modulation followed
by linear filtering with the zero-order-hold system.

Xp(1)

pd

X (2) :—
! ! I | T 127 /

-3T ~2T ~-T 0 T !

Analysis of Quantization Errors

‘The quantizer is a nonlinear system whose purpose is to transform the input sample
x[n] into one of a finite set of prescribed values, We represent this operation as

£[n] = Q(x[n]) (4.114)
and réfer to £[n] as the quantized sample. Quantizers can be defined with either uniform-

ly or nonuniformly spaced quantization levels; however, when numerical calculations
are to be done on the samples, the quantization steps usually are uniform.

—»1 C/D > Quantizer —>1 Coder —-
x,(1) x{n] x[n] xg[n]

f

T




From Figure we see that the quantized sample %[r] will generally pe @if—
ferent from the true sample value x[n]. The difference between them is the quantization
error, defined as

e[n] = x[n] — x[n]. ' (4.117)

A simplified, but useful, model of the quantizer is depicted in Figure In this
model, the quantization error samples are thought of as an additive noise signal. The
model is exactly equivalent to the quantizer if we know e[n]

The statistical
representation of quantization errors is based on the following assumptions:

1. The error sequence e[n] is a sample sequence of a stationary random process.
2. The error sequence is uncorrelated with the sequence x[n].

3. The random variables of the error process are uncorrelated; i.c., the error is a
white-noise process.

4. The probability distribution of the error process is uniform over the range of
quantization error. :

- DI/A Conversionv

D/A
i f[n] converter Xpa(P)
(a)
Scale by Convert to Zero-order
—] >i > | E—
2aln] X, z[n] impulses hold xpa(D)
(b)
. } In terms of Fourier transforms, the
reconstruction is represented as
X, (J) = X (/%) H,(j9), | (4.127)

where X (e/®) is the discrete-time Fourie
X:(j2) is the Fourier transform of the re
reconstruction filter is

I transform of the sequence of samples and
constructed continuous-time signal. The ideal

iy [T 1Rl <7/T,
,AHr(]Q)*{O, Q| > /T, (4.128)

xpa(ty = 3" Xykalnlho(t — nT)
N=-oc

- o (4130)
= > x[nlho(t —nT),

N=-—oC
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To simplify our discussion, we define

7

x(t) = Y x[nlho(t —nT), (4.132)
e(t)= Y e[nlhy(t —nT). (4.133)

so that Eq. (4.131) can be written as
XDA([) = X()(f) -+ 60([). . _ (4134)

The signal component xy(t) is related to the input signal x,(t), since x[n] = x, (nT).
The noise signal ep(¢) depends on the quantization-noise samples e[n] in the same
way that xy(r) depends on the unquantized signal samples.

: 1 & , 27k
k=woc
" if we define a compensated reconstruction filter as
3 . Hr(]Q)
H.(jQ) = — T (4.138
(i) Hy(j$2) ' ( )

then the output of the filter will be X, () if the in

put s x(r). The frequency response of
the zero-order-hold filter is easily shown to be '

H,(j)|
. 1
o T ldegl interpqlating
Zero-order / \/ filter H,(j€)
: hold ,
{Hy (O .
o) | , <
T T
2m _m 0 m r 0 QTR .
T T T T . _— / USE oY <n/T.
H,(jQ)={ sin(QT/2)
' 0. IR >n/T.
Compensated ‘
D/A | reconstruction
£n) converter ] filter =
XDA(’) Hr(Q) X,(I)
In other words, the output would be
(1) =xu(t) +ear), . (4.142)

where e,(2) would be a bandlimited white-noise signal.

H(e’*"} is the frequency response of the discrete-time system. Similarly,
assuming that the quantization noise introduced by the A/D converter js white noise
with variance 67 = A?/12,it can be shown that the power spectrum of the output noise is

F.(jQ) = | H,(jQ) Ho(j ) H(e/T) o2, (4.145)

i.e., the input quantization noise is changed by the successive stages of discrete- and
continuous-time filtering,
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TRANSFORM ANALYSIS OF
LINEAR TIME-INVARIANT
SYSTEMS

, LTI system can be completely characterized in the
time domain by its impulse response h{n], with the output y[n] due to a given input x[n]
specified through the convolution sum

oo
yln] = x[nl* h[n) = > x[klA[n - k). (5.1)
k=~00 7
transform, and we showed that Y(z), the z-transform of the output of an LTI system, is
related to X{(z), the z-transform of the input, and H(z), the z-transform of the system
impulse response, by

Y(2) = H(2) X(2), (52)

. H(z) is referred to as the system function.
Since the z-transform and a sequence form a unique pair, it follows that any LTI system

is completely characterized by its system function, again assuming convergence.
THE FREQUENCY RESPONSE OF LTI SYSTEMS

The frequency response H(e/”) of an LTI system was defined ‘as the

complex gain (eigenvalue) that the system applies to the complex exponential input
(eigenfunction) e/“”. Furthermore,

Y(e/*) = H(el®) X(e/), (5.3)

where X(e/*) and Y (e/*) are the Fourier transforms of the system input and output,
respectively. With the frequency response expressed in polar form, the magnitude and
. Phase of the Fourier transforms of the system input and output are related by

1Y (/) = | H(e)] . | X(e/®)), (5.42)
QY (¢9°) = qH(e/*) + <X (/). | (5.4b)

|H(e/®)|is referred to as the magnitude response or the gain of the system, and <H(e/*)
1is referred to as the phase response or phase shift of the system. For example, the

ideal lowpass filter was defined as the discrete-time linear time-invariant system whose
frequency response is

Hlp(ejw) — {1, lo] < w.,

0, @ <ol <, (55)
The corresponding impulse response was shown in " tobe
sin w.n A
h = - . 5.6
1pln] = — 00 <N <00 ( )

Analogously, the ideal highpass filter is defined as

th(ejw) = {(1)v lwl < g, ‘ (5-7)

we < |w| < 7,
and since Hp,(e/®) =1 — Hi(e’®), its impulse response is

sin w.n

hipln) = 8[n) — hp[n] = 8[n] — (5.8)

mn
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The ideal lowpass filters are noncausal, and their impulse responses extend from
—00 to +o0. Therefore, it is not possible to compute the output of either the ideal
lowpass or the ideal highpass filter either recursively or nonrecursively; i.e., the systems
are not computationally realizable.

Phase Distortion and Delay

To understand the effect of the phase of a linear system, let us first consider the ideal
delay system.

| Hia(e!®)| = 1, (5.11a)
<Ha(e’) = ~wng, || <x, (5.11b)
with periodicity 27 in w assumed. For now, we will assume that n, is an integer.
In many applications, delay distortion would be considered a rathér mild form
of phase distortion, since its effect is only to shift the sequence in time.

For example, an ideal lowpass
filter with linear phase would be defined as

0, we < |w| <.

) —jony /
Hip(e!®) = { e ol < o, (5.12)

Its impulse response is

igln] = sinw.(n ~ ny)

i ——— —00 < 1 < 00. (5.13)

With phase specified as a continuous function of w, th o |
defined as @, the group delay of a system is

(@) = g H(e/*)] = ~oL fargl (eI, (5.15)

The deviation of the group delay from a constant indicates the degree of nonlinearity
of the phase. '
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SYSTEM FUNCT iONS FOR SYSTEMS CHARACTERIZED
BY LINEAR CONSTANT-COEFFICIENT DIFFERENCE
EQUATIONS

While ideal frequency-selective filters are useful conceptually, they cannot be imple-

mented with finite computation. Therefore, it is of interest to consider a class of systems
that can be implemented as approximations to ideal frequency-selective filters.

N M
Z aryln — k] = Zbkx[n — k.
k=0 k=0
‘ Z az*Y(2) = Z bz ¥ X(z),

k=0
N
(Z akz”‘> Y(z) (Z brz™ ) X(z).
k=0 M
D bz
_Y(@) =
az*
k=0
M
o H(l —cxzY)
HE = (2) 5 (5.19)

H(l ~ di 7!

Each of the factors (1 — c;z!) in the numerator contributes a zero at z = ¢, and a pole
at z = 0. Similarly, each of the factors (1 — dxz~!) in the denominator contributes a zero

at z=0and a pole at z = d;.
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Suppose that the system function of a linear time-invariant system is
1+ 271
(t-327) (1+327)
14277 +272  Y()
1+iz1-3272 X(2)

H(x) = . (5.20)

H(z) =

Thus,
(1+3z1 -2 Y(@) = 1+ 227" + 772 X(2),
and the difference equation is

y[nl + %y[n -1]- %y[n = 2] =x[n] +2x[n — 1] + x[n = 2].

Stability and Causality
For a given ratio of polynomials, each
possible choice for the region of convergence will lead to a different impulse response, -
but they will all correspond to the same difference equation. However, if we assume that
the system is causal, it follows that h[n] must be a right-sided sequence, and therefore,
the region of convergénce of H(z) must be outside the outermost pole. Alternatively, if
we assume that the system is stable, then

> lhin)l < oo | (5.23)

n=—00

Since Eq. (5.23) is identical to the condition that

i lh[n)z7"| < o0 ~ (5.24)

n=—co

for |z] = 1, the condition for stability is equivalent to the condition that the ROC of
H(z) include the unit circle.

In order for a linear time-invariant system whose input and output satisfy a
difference equation of the formof Eq. (5.16) to be both causal and stable, the ROC of
the corresponding system function must be outside the outermost pole and include the
unit circle. Clearly, this requires that all the poles of the system function be inside the
unit circle. ' ‘

Inverse Systems

For a given linear time-invariant system with system function H(z), the corresponding
inverse system is defined to be the system with system function H;(z) such that if it is
~cascaded with H(z), the overall effective system function is unity; i.e.,

G(2) = H(z)H;(2) = 1. (5.27)

Many systems do have inverses, and the class of systems with rational system
functions provides a very useful and interesting example. Specifically, consider

M
H(1 -z )
kel -

e (5.31)
H(l —dezh)
k=1

with zeros at z = ¢, and poles at z = d, in addition to possible zeros and/or poles at
Zz=0and z = ooc.



&

Then

N
-z

N

[]a dez™")

a =
Hi (Z) = b—z k;!l [
H(l -~ ckz'l)
k=1

i.e., the poles of H;(z) are the zeros of H(z) and vice versa.

; (5.32)

Let H(z) be
1--0.57"1
H&) = g5,
with ROC |z| > 0.9. Then H;(z) is
| 1--09z
B = g5

Since H;(z) has only one pole, there are only two possibilities for its ROC, and
, _the only choic¢ for the ROCof H;(z) that overlaps with|z| > 0.9is |z] > 0.5. Therefore,

the impulse response of the inverse system i3

hi[n] = (0.5)"u[n] - 0

In this case, the inverse system is both causa

A generalization

zerosatcy, k= 1,..., M, then its inverse system

the region of convergence,

Izl > max je

with H;(z). If we also require that the invers
convergence of H;(z) must include the unit circ

‘m,?x fcrl <

i.e., all the zeros of H(z) must be inside the u

system is stable and causal and also has a stabli

9(0.5)" tufn=1]. .
I and stable.

is that if H(z) is a causal .system with
will be causal if and only if we associate
"kl

system be stable, then the region of
le. Therefore, it must be true that

—

3

it circle. Thus, a linear time-invariant
> and causal inverse if and only if both

the poles and the zeros of H(z) are inside the unit circle. Such systems are referred to

as minimum-phase systems,
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: Recall that any rational function of z~! with only first-order
poles can be expressed in the form

H S B S A 534
(2) = ZB'Z +Zi"_—7kz—“f’ : (5:34)
r=0 k=1

where the terms in the first summation would be obtained by long division of the denom-
inator into the numerator and would be present onlyif M > N.

If the system is assumed
to be causal, then the ROC is outside all of the polss in Eq. (5.34), and it follows that
M~N N
hin)= 3" Bsln—r1+ > Avdfuln), (5.35) .
r=0 : k=

L
where the first summation is included only if M > N.

A First-Order IR Sy;tem
Considei' a causal s;'stem whose input and output satisfy the difference equation’

yln] — ay[n — 1] = x[n]. (5.36)

- The system function is (by inspection)

(5.37)

1
$m z-plane H(z) = 1-az 1

Unit circle

¥
a

Re

—

__For the second class of s'ySteiﬁS;;H("z) 7ha§_n:)kpplp'sAégcept;atr;zTV:vO;_i_.e;,'M'N:_=’.‘ 0,

M
H@z) =) bzt (5.39)
k=0 ’

R B “The region of cénvergence is |z} > la|,
and the condition for stability is [2| < 1. The inverse z-transform of H(z)is

h{n] = a"ufn]. (5.38)

]

(We assume, without loss of generality, that ap = 1.) In this case, H(z) is determined to
within a constant multiplier by its zeros. From Eq. (5.39), h[n]is seen by inspection to be

M
h[n]=zbka[n_k]={g:' 0<n=<mM, (5.40)

otherwise.
k=0 '

In this case, the impulse response is finite in length; i.e., it is zero outside a finite interval.
Consequently, these systems are called finite impuise response (FIR) systems. Note that

for FIR systems, the difference equation of Eq. (5.16) is identical to the convolution
sum, i.e.,

M
yinl =" bex[n-- &]. : (5.41)

k=0




FREQUENCY RESPONSE FOR R
FUNCTIONS

M
Z bke-jwk
H*) =20

k=0 -

H(e

ATIONAL SYSTEM

v e
(1 —cke""")
bg H v

= .
[1Q - dei=y
k=1

111 = ceeio)
: bo | i
Joy — |20
| H(e ')I 20| N .
H 11— dee™ /o
k=1

e =

M

.

H(l — k2 ®)(1 —clel®)

o bo\? iz

IH(e]a))I2= (a_z) kNl
[Ia-a
k=1

 The function 20log,q | H(e*)| is referred o as
expressed in decibels (dB). Sometimes this quantity

Gain in dB = 201log,, | H

20 ldgm |H(el®)is negative. This would be the case,
frequency-selective filter. It is common practice to ds

Attenuation in dB = —2¢ log

N = ~Gain |

v - Another advantage to expressing the magnit
- which, after taking logarithms of both sides, becor

IOV — del®)

'he log magnitude of H(e/*) and is |
is called the gain in dB; ie.,
(e/?)]. (5.51)

When |H(e/®)| "< 1, the quantity
for example, in the stopband of a
fine
o | H(e/™))

5.52

ndB. (5:52)
ide in decibels stems from Eq. (5.4a),
nes

201ogy 1Y (/)] = 20log,q | H(e/®)| + 20 10g,0 1 X(e/%)). (5.53)

- The phase response for a rational system fi

. byl Mt
qH(e!*) = « ,:—OJ + Z 1 - cpe
@l 3
The corresponding group delay for a rationa
N

grd[HE™)] = 3 L (arg(t — dye~re]) -
k=1

where arg[ ] represents the continuous phase.

inction has the form

N
1= Al - deie]. (5.54)
k=1 .
| system function is
M

d . :
——(arg[1 — cxe~/*)), (5.55)
; dw k
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When the angle of a complex number is com
subroutine on a calculator or with a computer syst
obtained. The principal value of the phase of H(e/®

-1 < ARG[H(e/®)

Any other angle that gives the correct complex
represented in terms of the principal value as

<H(e/*) = ARG[H(e/®)
where r(w) is a positive ‘or negative integer that
If the principal value is used to compute th

then ARG[H(e/“)] may be a discontinuous func
by taking the principal value will be jumps of 2.

Except at the discontinuities of ARG[H(e/?)] «
and -,

d o d
o tarelH(e™™)]) = =~ (A

Consequently, the group delay can be obtained £
ating, except at the discontinuities. Similarly, we
of the ambiguous phase < H(e/®) as

grd[H(e ) == L,

with the ihterpretation that impulses caused by «
are ignored.

;:puted, with the use of an arctangent
=m subroutine, the principal value is
)is denoted as ARG[ H(e/*)], where

|<m. (5.57)

alue of the function H(e/®) can be

+ 2nr(w), | (5.58)

>an be different at each value of o,

e phase response as a function of o,
tion. The discontinuities introduced
T radians.

orresponding to jumps between -+

RG[H(e/*)]}. (5.62)

"om the principal value by differenti-
can express the group delay in terms

(H(e™™)), (5.63)

liscontinuities of size 27 in < H(e/*)
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| Frequency Response of a Single Zero or Pole

The square of the magnitude of such a factor is

[1~relfe /®)? = (1~refe /)1 —re %e/*) = 141> —2r cos(w—8). (5.64)

The principal value phase for such a factor is

o iemjey _ rsin(w — 6)
ARG[1 —re’’e ]—arCtan[l—rcos(a)—Q) . (5.66)

Differentiating the right-hand side of Eq. (5.66) (except at discontinuities) gives the
group delay of the factor as

2 _ _ 2 _ —
re —rcos(w — 6) T r cos(w — 6) (5.67)

58

~grd[1 — ref®e=i?) = == ——
grd] ] 14r2 —2rcos(w — 6) 11 —reife-jo|2
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0 1' - 3 o 0 zz_r T §21r
2 Radian frequency (w) 2 \ Radian frequency (w)
A simple geometric construction is often very useful in approximate sketching of
frequency-response functions directly from the pole-zero plot.
gm * z-plane ,
11— reffeiv) el ~rell = Lvi,
el vl
e z—rel?
H() = (1~ rel*z1) = ¢ 2 \o <
' The corresponding phas‘e is -
(1 —relfem?) = q(e/® —rel?) — <(e/*) = a(v3) — <(v1) (5:70)

=¢3—¢1=¢3 — 0.
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Typically, a vector such as v3 from a zero to the unit circle is referred to as a zero vector, 5 g
and a vector from a pole to the unit circle is called a pole vector. Thus, the contribution
of asingle zero factor (1—re/? z~!) to the magnitude function at frequency eis the length
of the zero vector v; from the zero to the point z = e/* on the unit circle. The vector has
minimum length when w = 6. This accounts for the sharp dip in the magnitude function

atw = 6. Note that the pole vector v; from the pole at z = 0to z = e/¢
always has unit length. Thus, it does not have any effect on the magnitude response.
¥

z-plane

m
' 5}
U3 Uy
v
Y b\
| y )

~ z-plane

Unit circle

Re

The geometric construction for a zero on the unit circle at z = —1 is shown,
Indicated are vectors for two different frequencies, w = (7 — ¢) and w =
(m + &), where ¢ is small. Two observations can be made. First, the length of the vector
v3 approaches zero as w approaches the angle of the zero vector (¢ — 0). Therefore,
the multiplicative contribution to the frequency response is zero (—oo dB). Second, the
vector vs changes its angle discontinuously by  radians as w goes from (7 — &) to (7 +¢).



Radians

Ifr > 1, the log magnitude function
behaves similarly to the case r < 1; i.e., it dips more sharply as r — 1.

The phase function in Figure - shows a discontinuity of 27 radi-
ans at w = 0 for all values of r > 1. The source of this discontinuity can be seen from
Figure 5.14, which shows vectors forw = (7 — ¢) and w = (7 + ). Note that the pole
vector v, has an angle of w, which varies continuously from w = 0to w = 2. The angle
of the zero vector vs is labeled ¢ in the figure. If this angle is measured positively in the
counterclockwise direction, the figure shows that ¢, Jumps from zero to 27 radians as
w goes from (7 —¢) to (7 +¢). :

Sm o z-planew

Unit circle

If the factor represents a pole of H(z), then all the contributions -
will enter with opposite sign. Thus, the contribution of a pole z = re’® would be the
negative of the curves in Figures 5.8 and 5.11. Instead of dipping toward zero (—oo dB),
the magnitude function would peak around @ = 9. The dependence on r would be the

same as for a zero; i.e., the closer  isto 1, the more peaked will be the contribution to

the magnitude function. For stable and causal systems, there will, of course, be no poles
outside the unit circle; i.e., r will always be less than 1.
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LINEAR SYSTEMS WITH GENERALIZED
LINEAR PHASE

In designing filters and other signal-processing systems that pass some portion of the
frequency band undistorted, it is desirable to have approximately constant frequency-
response magnitude and zero phase in that band. For causal systems, zero phase is
not attainable, and consequently, some phase distortion must be allowed.

o For example, consider a more general
frequency response with linear phase, i.e., ‘ '
H(e'®) = |H(e!®)|e~ /2, lw| < 7. < (5.126)
The signal x[n] is filtered
by the zero-phase frequency response | H(e/)|, and the filtered output is then “time

shifted” by the (integer or noninteger) amount .. Suppose, for example, that H(e/) is
the linear-phase ideal lowpass filter

oy _ e’ ol < w,,
Hye) = {577 Wiz oe (5:127)
The Corresponding impulse response is
sinw.(n — a)
= - (5128

o - e Specifically, a system is referred to
‘asageneralized linear-phase system if its frequency response can be expressedin the form

H(e'®) = A(el®)e~iawtiP, (5.135)
where o and B are constants and A(e/?) is a real (possibly bipolar) function of w. |

However, if we ignore any discontinuities that result from the addition of constant phase
over all or part of the band |w| < 7, then'sucha system can be characterized by constant -
group delay. That is, the class of systems such that

: d .
7(w) = grd[H(e"*)] = ~ o larg[H(e™)]) = a (5.136)

have linear phase of the more general form ' ’
arg[H(e’“)| =B —wa, O<w<n, (5.137)

- where g and o are both real constants.

Type I FIR Linear-Phase Systems
A type I system is defined as a system that has a symmetric impulse response

hin] = h[M — n], 0 sn= M, (5.148)

with M an even integer. The delay M/2 is an integer. The frequency response is K

M
H(e’*) = hlnje™/*". (5.149)
=0 '



By applying the symmetry condition, Eq. (5.148), the sum in Eq. (5.149) can be rewritten
in the form :

M/2
H(e/®) = e~ ioM/I2 (Za[k] cos cok) , (5.150a)
=0
where : Pv’; 0) /L\/:-_ ‘_{9{_:/(
a[0} = h{M/2], (5.150b)
a[k] = 2h[(M/2) — k], k=1,2,..., M/2. (5.150¢c)
i Center of |
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If the impulse responSe is

1, O s'r‘z <4,
hln) = {0, otherwise, '
v S The fre-
quency response is —
4 .
joy —juwn 1- e—/wS
H(ej )—ZC_} = R
=0 (5.156)
= w2 SID0w/2)
- sin(w/2)
* Type II FIR Linear-Phase Systems ‘ ..
A type II system has a symmetric impulse response , with M an odd
“integer. H(e/®) for this case can be expressed as
' (M+1)/2
H(el®y=e~iM2 8 N " blk]cos [w (k—3)] ¢, (5.151a)
k=1
:0 e M :N +l/)
where ‘B ) L33 N+3
bk = 2h{(M+1)2~K, k=12,....(M+1)/2.. (5.151b)
| _Centerof
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- Ifthe length of the impulse response of the previous example is exteﬁdé’d' by one sam-
ple, we obtain the impulse response

» —jwss2 SIN(3
- H(e/*)=e"/ 5/2_“'_51'; (Eo;"z)). (5.157)
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Type III FIR Linear-Phase Systems
If the system has an antisymmetric impulse response

hln]=-hM-n], O=<n=<M, (5.152)

with M an even integer, then H(e/“) has the form

M/2 ,
H(e!®) = je /M2 [Zc[k] sin a)k] , ’ (5:153a)
k=1
I M
where P: oy Ly
clk] = 2h[(M/2) — K], k=1,2,..., M/2. (5.153b)
| o Center‘of |
1 IA/Symmetry
!
-— ] l M=2 , . S
0 1 i T n
I
ot
If the impulse response is
h[n] = 8] — 8[n =2], (5.158)
as in Figure 5.36(c), then
H(e/®) = 1 —e™i2e
- . (5.159)
= J[2sin(w)]e™ 7.
Type 1V FIR Linear-Phase Systems
If the impulse response is antisymmetric as in Eq. (5.152) and M is odd, then
(M+1)/2 :
H(el*) = je=/*M? 1" N~ diK]sin (o (k- )] |, (5.154a)
k=1
, - T R
where F?: ZRL,., Zz%”)\\“'i@
dlk] =2h[(M + 1)/2 — k], k=12,...,(M+1)/2. (5.154b)
' Center of 7
1% L symmetry
{
-~ I ]lM =1_ . *——o—o—0
0! l i i i n
In this case (Figure 5.36(d)), the impuise response is
h[n] = 8[n} — 8[n — 1], (5.160)
for which the frequency response is
H(e®) =1—e™1® (5.161)

= j[2sin(w/2)]e~ 7/,
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FILTER DESIGN TECHNIQUES ~ °

Filters are a particularly important class of linear time-invariant systems. Strictly speak-
ing, the term frequency-selective filter suggests a system that passes certain frequency
components and totally rejects all others, but in a broader context any system that
modifies certain frequencies relative to others is also called a filter.

~—» C/D > H(e/) > DIC |
x,(1) T x[n] y[n] T Ya()
T T

-~ if a linear time-
invariant discrete-time system is used as in Figure 7.1, and if the input is bandlimited
and the sampling frequency is high enough to avoid aliasing, then the overall system
behaves as a linear time-invariant continuous-time system with frequency response

. QT , Q T,
Hen(j$2) = {(I)q “ PN (7.12)

In such cases, it is straightforward to convert from specifications on the effective
continuous-time filter to specifications on the discrete-time filter through the relation
w = QT. That is, H(e’*) is specified over one period by the equation

H(e/®) = Hy (1;) , lw] < . (7.1b)

, e e |
IH. (GO 1=001, : 1H ()1
Qp = 27(2000),

Qs = 27(3000),

Stopband

ideal passband pain in decibels =20log,(1) =0dB"
maximum passband gain in decibels = 20 log;(1.01) = 0.086 dB
maximum stopband gain in decibels = 20log,,(0.001) = —60 dB

Filter Design by Impulse Invariance

In the impulse invariance design procedure for transforming continuous-time fil- -
ters into discrete-time filters, the impulse response of the discrete-time filter is chosen
proportional to equally spaced samples of the impulse response of the continuous-time
filter; i.e., '

hin] = Tiho(nTy), (7.4)



, had @ 2
19) = —+ j—=k]. 7.5
HE™ = Y He (i +i7k) (1.5)
k=—-00 o
If the continuous-time filter is bandlimited, so that ,
H.(jR) =0, IR > n/Ty, ‘ (7.6)
then
H(e/®) = H, ( j—‘i) , lw| <m; 7.7)
1y

However, if the continuous-time filter approaches zero at high frequencies, the
aliasing may be negligibly small, and a useful discrete-time filter can result from the
sampling of the impulse response of a continuous-time filter. :

In the impulse invariance design procedure, the discrete-time filter specifications
are first transformed to continuous-time filter specifications through the use of Eq. (7.7).
Assuming that the aliasing involved in the transformation from H.(jQ) to H(el*) will
be negligible, we obtain the specifications on H.(j2) by applying the relation

Q=w/Ty (7.8)
While the impulse invariance transformation from continuous time to discrete

time is defined in terms of time-domain sampling, it is easy to carry out as a transforma-
tion on the system function.

N

Ay
H.(s) = . .
=3 (7.9)
The corresponding impulse response is '
N
Ae™) >0,
he(t) = :L; k _> (7.10)
_ 0, t <.
The impulse response of the discrete-time filter obtained by sampling Tih (1) is
, N
hln] = Tihe(nTy) = 3 T; A Tuln]
k=1 »
N (7.11)
= Z Ta Ar(e™ ™Y ufn].
k=1
The system function of the discrete-time filter is therefore given by
N
T A
If the

continuous-time filter is stable, corresponding to the real part of 5, being less than zero,
then the magnitude of e%” will be less than unity, so that the corresponding pole in the
discrete-time filter is inside the unit circle.

Impulse Invariance with a Butterworth Fiiter

Let us consider the design of a lowpass discrete-time filter by applying impulse invari-
ance to an appropriate Butterworth continuous-time filter.? The specifications for the
discrete-time filter are

0.89125 < [H(e/) <1,  0<|w] <027, (7.13a)
|H(e/*)| < 0.17783, 0.37 < |w| < 7. " (7.13b)

Since the parameter 7, cancels in the impulse invariance procedure, we can choose
« e -
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form

Specifically, the magnitude-squared function of a Butterworth filter is of the

. 1
[He(j Q)1

14 (Q/ QPN
so that the filter design process consists of determining the parameters N and Q, to
meet the desired specifications.

(7.16)
Because of the preceding considerations, we want to design a continuous-time
Butterworth filter with magnitude function |H-(jS2)) for which

0.89125 < |H.(jQ)| <1,

0<|Q <02r, (7.14a)
|H (jQ)| < 0.17783, 037 <|Q] < . (7.14b)
Since the magnitude response of an analog Butterworth filter is a monotoni¢ function
of frequency, Egs. (7.14a) and (7.14b) will be satisfied if
' |H(j0.27)| > 0.89125 (7.15a)
“and
|H(j0.37)| <0.17783. - (7.15b)
2N . 4 i 2 4
0.2x : 1 .
= ——e 7.17a
I+ ( Q. ) (0.89125) ' (7172)
and - . .
| LA AT
t\a ) =\oi7ss) -

(7.17b)
The solution of these two equations is N = 5.8858 and . = 0.70474. The pa-

rameter N, however, must be an integer. Therefore, so that the specifications are met or
exceeded, we must round N up to the nearest integer, N = 6.

With Q. = 0.7032 and with N = 6, the 12.poles of the magnitude-squared function
Hc(s)Hc(—5) = 1/[1 + (5/jR¢)*"'] are uniformly distributed in angle on a circle of
_ ‘radius 2, = 0.7032.

m™w
\\"’”E\*’/ s-plane
oy
\ / _
XTI :
VoY Pole pair 1: —0.182 + j(0.679),
/% \ |/ X P
o \ /Q,\Q'b% % Pole pair 2: —0.497 £ j(0.497),
19 b
{ T Pole pair 3: —0.679 = j(0.182),
X X
\ /
% X
X l-x”

Therefore,

Hc(s) =

0.12093
(52 + 0.3640s + 0.4945)(s2 + 0.9945s + 0.4945)(s? + 1.3585s + 0.4945)
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Amplitude

0 027 04r 0.6m 0.8 , £
Radian frequency (w)
0.2871 — 0446671 ~2.1428 + 1.14557-1

H =
(2) 1-1.2971z71 +0.6949z-2 " 1 = 1.0691z-1 4+ 0.36997~2

1.8557 — 0.6303z~!
1~099727-1 +0.2570z-2"

+

Bilinear Transformation

The technique discussed in this subsection avoids the problem of aliasing by using ‘

the bilinear transformation, an algebraic transformation between the variables s and b4
that maps the entire jQ-axis in the s-plane to one revolution of the unit circle in the

z-plane.

_ With H,(s) denoting the continuous-time system function and H(z) the discrete-
time system function, the bilinear transformation corresponds to replacing s by

oo 2 f1—z1\ »
T h\1+z1)° ~(7‘20)
that is,
2 /1—-z71\7 . '
H@=H | (=2 )|, :
ORvAE <1+z‘1)] | (721)

To develop the properties of the algebraic transformation specified in Eq. (7.20),

we solve for z to obtain

_ 1+ (T/2)s (7.22)

T 1—(Ty/2)s’

and,’substituting §'= o+ jQinto Eq. (7.22), we obtain

X 2 - .
_1+oTu/2+ jQTy/2 (7.23)

1-0Tu/2~ jQT,/2°

'If o < 0, then, from Eq. (7.23), it follows that |z] < 1 for any value of Q. Similarly, if
o > 0, then |z| > 1 for all . That is, if a pole of H.(s) is in the left-half s-plane, its
image in the z-plane will be inside the unit circle. Therefore, causal stable continuous-
time filters map into causal stable discrete-time filters,
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-plane
$m P

Image of
s = jQ (unit circle)

Image of
left half-plane

'Next, to show that the j Q-akis of ihe s-plane maps dhtd the unit circle, we substi-
tute s = jQ into Eq. (7.22), obtaining

_1+jery2
T 1-jQT2

From Eq. (7.24), it is clear that Izl = 1 for all values of s on the JQ-axis. That is, the
J2-axis maps onto the unit circle, so Eq. (7.24) takes the form

o _ 1+ QT2

(7.24)

=1z jann (7.25)
2 [1=e i .
= 7.26
T (1 m e‘l‘”) (726)
or, equivalently, ‘
2 [2e79P(jsinw/2)] 2 :
= Q= — . =t 2). 7.27
s=ot = [ 261972 (cos w/2) J 7, on(e/2) (727)
Equating real and imaginary parts on both sides of Eq. (7.27) leads to the relations
o =(0and ,
2 ,
Q2 = — tan(w/2), (7.28)
7
or A
o = 2arctan(Q7;/2). (7.29)-
o

w=2 arétan (%)
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' ‘Bilinéar Transformation
of a Butterworth Filter

Consider the discrete-time filter §
the impulse invariance techni

pecifications of Example 7.2, in which we illustrated
que for the design of a discrete-tim

e filter. The specifica-
tions on the discrete-time filter are ' '
0.89125 < |H(e*)l <1, 0<w<02r, (7.30a)
|H(e/™) < 0.17783, 037 <w <. (7.30b)

' 2 0.2
0.89125 < |H.(jQ)| < 1, 0<Q< = tan (-———) R (7.31a)

d 2
-2 037
|He(j )] < 0.17783, 2 tan (T) <Q<oo.  (131b)
For convenience, we choose T} =1.
| and | |He(j2tan(0.17))] > 0.89125
|H.(j2tan(0.157))| < 0.17783. - (7.32b)

The form of the magnitude-squared function for the Butterworth filter is

1
|H(jQ)I* = T+ (Q/99 " (7.33)



Solving for N and . with the equality sign in Egs. (7.32a) and (7.32b), we obtain

2N 2
2tan(0.17) (1 A '
1+ (_.__Q ) - (m) (7.34a)
and
2tan(0.157)\*¥ /1 \?
( 1+ (_r ) =\o1s ) (7.34b)

and solving for N in Egs. (7.34a) and (7.34b) gives

L (GO VACORD]R

"~ 2log[tan(0.157)/ tan(0.17)] : (7.35)
= 5.305.

Since N must be an integer, we choose N = 6. Substituting N = 6 into
"Eq. (7.34b), we obtain 2, = 0.766. For this value of 2., the passband specifications
are exceeded and the stopband specifications are met exactly. This is reasonable for
the bilinear transformation, since we do not have to be concerned with aliasing. That
is, with proper prewarping, we can be certain that the resulting discrete-time filter will
meet the specifications exactly at the desired stopband edge.

0.20238
(s? +0.3996s + 0.5871)(s? + 1.08365 +0.5871)(s? + 1.48025 + 0.5871)"

(7.36)

The system function for the discrete-time filteris then obtained by applying the bilinear
transformation to H,.(s) with T; =1. The result is

H(s) =

0.0007378(1 + z71)¢

H =
@) (1 - 1.2686z T +0.70512-2)(1 — 1.0106z-1 + 0.35837-2)

(7.37)
5 1
(1=0.9044z1 +0.2155z-2)"
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DESIGN OF FIR FILTERS BY WINDOWING

The simplest method of FIR filter design is called the window method. This method
generally begins with an ideal desired ﬁequenc_:y response that can be represented as

Hd(eib) = i ha[nle=/on, (7.40)

n=—00

where hg[n] is the corresponding impulse response sequence, which can be expressed

in terms of H(e/®) as
| 1

7[ .
hgln) = — Hi(e'®)e/*"dew. (7.41)
2n J_,

‘The simplest way to obtain a causal FIR filter from haln] is to define a new system
with impulse response A[n] given by’

0, otherwise.

h[n] = {h“["]’ O=n=M, | (7.42)

More generally, we can represent A[n] as the product of the desired impulse response
and a finite-duration “window” w[n]; i.e.,

hln] = ha[n]w[n], (7.43)
where, for simple truncation as in Eq. (7.42), the window is the rectangular window
1, 0Osn<M, '
= T 7.44
, w[r'z] {0, otherwise, (7.44)

It follows from the modulation, or windowing, theorem (Section 2.9.7) that

4 . y
H(e/®) = % Hy(e’YW(e/“~)qg, (7.45)

-N

Ifw[n] = 1foralln (i.c., if we do not truncate at all), W(e/*) is a periodic impulse

train with period 27, and therefore, H(ei®) = Hy(eiv).

Consequently, the choice of window is governed by the desire to have wln]
as short as possible in duration, so as to minimize computation in the implementation
of the filter, while having W(e/«) approximate an impulse.

1 — e—jo(M+1) — oM sin[w(M + 1)/2]
1—eje sin{w/2)

M

W(e'®) = Zefj“’" = (7.46)
n=0

-As M increases, the width of the “main lobe” decreases. The main lobe is usually
defined as the region between the first zero-crossings on either side of the origin. For
the rectangular window, the width of the main lobe is A,,, = 47 /(M + 1). However,
for the rectangular window, the side lobes are large, and in fact, as M increases, the

peak amplitudes of the main lobe and the side lobes grow in a manner such that the -

area under each lobe is a constant while the width of each lobe decreases with M.
Consequently, as W(e/(“~9) “slides by” a discontinuity of Hs(e/®) with increasing w,
-the integral of W(e/“=9)) H,(e/%) will oscillate as each side lobe of W(e/“~9)) moves
past the discontinuity.

In the theory of Fourier series, it is well known that this nonuniform convergence,
the Gibbs phenomenon, can be moderated through the use of a less abrupt truncation
of the Fourier series. By tapering the window smoothly to zero at each end, the height
of the side lobes can be diminished:; however, this is achieved at the expense of a wider
main lobe and thus a wider transition at the discontinuity.
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Rectangular

1, 0<n<M ’ '
== ’ - - ’ 7.47a
winl { 0, otherwise ( )

Bartlet (triangular)
2n/M, 0=<n=< M2,

wnl=<¢2-2n/M, M/2<n=<M, (7.47b)
0, otherwise
Hanning ,
0.5—0.5cos(2nn/M), 0<n< M,
wln] = ( ] (7.47¢)
0, otherwise
Hamming
0.54 —0.46cos(2rn/M), 0<n< M,
wln] = ¢ ¢ : (7.47d)
0, otherwise -
Blackman . V
0.42 — 0.5cos(2rn/M) + 0.08cos(4nn/M), 0<n< M,
wln] = , (7.47¢)
- 10, otherwise
 Peak Transition
Peak Approximation  Equivalent Width
Side-Lobe  Approximate °  Error, Kaiser of Equivalent
Type of Amplitude Width of 20log;y 8 Window, Kaiser
Window (Relative) Main Lobe | (dB) B Window
Rectangular -13 4z/(M+1) -21 0 181n/M
Bartlett =25 8x/M =25 1.33 237n/M
Hanning =31 8n/M —44 3.86 50ln/M
Hamming —41 8n/M —53 4.86 6.27x/M
Blackman -57 12n/M - =74 7.04 9.197/M

Incorporation of 'Generallzed Linear Phase

- In designing many types of FIR filters, it is desirable to obtain causal systems with a -

generalized linear phase response.

Specifically, note that all the windows have the property that
wn] = wlM—n], 0<n<M,
— 10, otherwise;

i.e., they are symmetric about the point M/2. As a result, their Fourier transforms are
of the form

(7.48)

. W) = W(eT)e M, , (7.49)
where W,(e/?) is a real, even function of w. '

if ha[M — n] = hyln] H(e/®) = A(el)eToM2, (7.50)

where A.(e/*) is real and is an even function of w.

if ha[M ~n] = ~haln]  H(e/*) = j A, (e/®)e~oMP, | (751
where A,(e/?) is real and is an odd function of w.
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Linear-Phase Lowpass Fliter

The desired frequency response is defined as

o e oML | < w,
Higlel®) = {O, fol < (7.56)

where the generalized linear phase factor has been incorporated into the definition of
the ideal lowpass filter. The corresponding ideal impulse response is
_ sinfwc(n — M/2)]

1 e —jw jw
hipln] = 5 / e joM2pjong, — Y7 (7.57)

for —oo < n < co. Itis easily shown that hjp[ M — n] = hyp[n], so if we use a symmetric
window in the equation

(7.58)

Wo(eie-9)

7/ \ ! N\ A
NS w N T %

Clearly, the windows with the smaller side lobes yield bet-

ter approximations of the ideal response at a discontinuity . Also, the third column,
which shows the width of the main lobe, suggests that narrower transition re gions can
be achieved by increasing M. Thus, through the choice of the shape and duration of
the window, we can control the properties of the resulting FIR filter.

The Kaiser Window Filter Design Method

The trade-off between the main-lobe width and side-lobe area can be quantified by

seeking the window function that is maximally concentrated around @ = 0 in the )

frequency domain.
The Kaiser window is defined as

Ll — [(n — @)/e])1?]
wln] = 1o(B) ’
, otherwise,

O<n<M, (7.59)

where & = M/2, and Iy(-) represents the zeroth-order modified Bessel function of the
first kind.
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Given that § is fixed, the passband cutoff frequency w), of the lowpass filter
is defined to be the highest frequency such that |H(e/#)| > 1 — 5. The stopband cutoff

frequency wy is defined to be the lowest frequency such that |H(e/*)| < 4. Therefore,
the transition region has width -

Aw = ws — wp (760)
Defining o I
A=-20log,5, | (7.61)
Kaiser determined empirically that the value of 8 needed to achieve a specified value
of Ais given by
0.1102(A - 8.7), A> 50,
B = { 0.5842(A—21)%¢ 10.07886(A4~21), 21 < A< 50, (7.62)
0.0, . A<2L Furthermore,
Kaiser found that to achieve prescribed values of A and Aw, M must satisfy
- A—-8
= 4-s 7.63)
2.285Aw (7.63)

Equation (7.63) predicts M to within +2 over a wide range of values of Aw and A. Thus,
with these formulas, the Kaiser window design method requires almost no iteration or
trial and error.

Kaiser Window Design of a Lowpass Filter

For this example, we use the same specifications as in Examples 7.4,
7.5,and 7.6, i.e., wp = 04x,w; = 0.6x,8; = 0.01, and 8, = 0.001. Since filters
designed by the window method inherently have 8, = &,, we must set § = 0.001.

The cutoff frequency of the underlying ideal lowpass filter must be found. Due

to the symmetry of the approximation at the discontinuity of H,(e/?), we would
set ;

Wp +ws
We =

= 0.57.

To determine the parameters of the Kaiser window, we first compute
Aw = g — wp = 0.271', A= —20 log103= 60.

- We substitute thése two quantities into Eqgs. (7.62) and (7.63) to obtain the
required values of 8 and M. For this example the formulas predict

B=5653, M=37.

The impulse response of the filter is computed using Egs. (7.58) and (7.59). We
obtain ‘

sinwc(n—a) I[A(1 - [(n — @) ja)?]
Hnj={ n(n—-a) Io(B)

0, otherwise,

, 0<n<M,

where @ = M/2 = 37/2 = 18.5. Since M = 37 is an odd integer, thé resulting
linear-phase system would be of type II.
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IH (/)]
mb Nmb -4

1
i
i
|
G ’ :
3 w) w, Wy m «
~ This generalized multiband filter includes lowpass, highpass, band-
pass, and bandstop filters as special cases. If such a magnitude function is multiplied by
a linear phase factor e=/«M/2_the corresponding ideal impulse response is

sinwy(n — M/2)
w(n— M/2)

N
henp[n] = Z(Gk = Giq1) (7.68)
k=1 :

wpere Nmb is the number of bands and Gy, +1 = 0. If hmy[n] is multiplied by a Kaiser
window, the type of approximations that we have observed at the single discontinuity of
the lowpass and highpass systems will occur at each of the discontinuities,

OPTIMUM APPROXIMATIONS OF FIR FILTERS

That is,

hd[n]’ OENE M, V 5 )
hin] = {0, otherwise, (7.72)

minimizes the expression

=5 [ ate) - o, o (3)
b 50 . ,

S e

. ‘However, as we have seen, this approximation criterion leads to
-adverse behavior at discontinuities of H;(e’®).

In designing a causal type I linear-phase FIR filter, it is convenient first to consider
the design of a zero-phase filter, i.e., one for which
he[n] = he[—n], (7.74)

and then to insert a delay sufficient to make it causal. o o
The corresponding frequency response is given by

L
A(e’®y =" he[n]e™im, O (275)
with' L= M/2 an integer, or
L
 Ac(el®)y = hJ0] + > 2h.[n) cos(wn). (7.76)

Note théi Ae(ef @) ié a real, even, and periodic function of w. A causal system can be ob-
tained from h.[n] by delaying it by L = M/2 samples.
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The Parks-McClellan algorithm is based on reformulating the filter design prob-
- lem as a problem in polynomial approximation. Specifically, the terms cos(wn) in
Eq. (7.76) can be expressed as a sum of powers of cos w in the form

- cos(wn) = T,(cos w), (7.79)

Tn(x) is the nth-order Chebyshev polynomial, defined as Tj,(x) = cos(ncos x).

‘ } Conseqﬁehtly, Eq. (7.76) can be rewritten as
an Lth-order polynomial in cos o, namely,

L
Ae(e®) =) a(cos w)F, » (7.80)
k=0 : :
where the a;’s are constants that are related to 4, [n], the values of the impulse response.
With the substitution x = cos w, we can express Eq. (7.80) as

Ae(ejw) = P(x)|:=cosar ‘ ‘ (7.81)
where P(x) is the Lth-order polynomial .
L .
P(x) = Zakxk. ’ ' (7.82)
k=0

To forralize the approximation problem in this case, let us define an approxi-
mation error funiction .
E(0) = W(w)[Ha(e™) — Ac(e/)], (7.83)

~ where the weighting function W(w) incorporates the approximation error parameters
into the design process. In this design method, the error function E(w), the weighting
function W(w), and the desired frequency response Hy(e/*) are defined only over closed

subintervals of 0 < & < 7.

_ For example, suppose that we wish to obtain an approximation as in Figure 7.31,
where L, w,, and w; are fixed design parameters. For this case, ‘
. I, 020 =<w,
Hy(e/®) = (7.84)

0, wy<w<n.

The weighting function W(w) allows us to weight the approximation errors differently
in the different approximation intervals.

-1— O<w<w :
W(m):{ K - -7 (7.85)

where K = 8,/5;.
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The particular criterion used in this design procedure is the so-called minimax or
Chebyshev criterion, where

. E ) ’
pin . (max| Bw)

where F is the closed subset of 0 s'w <msuchthat0 <w < Wp OTw; < w < 7.

Alternation Theorem: Let Fp denote the closed subset consisting of the disjoint union of
closed subsets of the real axis x. Then

r

P(x) = Z agxck

k=0
is an rth-order polynbmial.AAlso, Dp(x) denotes a given desired function of x that is
continuous on Fp; Wp(x) is a positive function, continuous on Fp,and ' '
Ep(x) = Wp(x)[Dp(x) -~ P(x)].
is the weighted error. The maximum error is defined as

HEY = max|Ep(x)].
xerp

A' necessary and sufficient condition that P(x) be the unique rth-order polynomial that
minimizes || E|j is that Ep(x) exhibit at least (r + 2) alternations; i.e., there must exjst at
least (r + 2) values x; in Fpsuchthatxyy < xp < .. < Xr+2 and such that Ep(x;) =
~Ep(xip1) =% || E|fori=1,2, ... y(r+1).

The Parks-McClellan Algprithm

The alternation theorem gives necessary and sufficient conditions on the error for op-
timality in the Chebyshev or minimax sense. Although the theorem does not state -
explicitly how to find the optimum filter, the conditions that are presented serve as the
basis for an efficient algorithm for finding it.

From the alternation theorem, we know that the optimum filter A.(e/°)will satisfy
the set of equations

W(w)[Ha(e!) ~A(el)] = (=1)+5, =1, 2,00 (L+2), (199
- where § is the optimum error.

i 1 2 L | 1 |
X X Ve X B - .
1 1 1 W(al)l ) ap v - Hd (efwl )
2 L _ jew
1w x T W || H"’(f“’ ) . (7.100)
, _1. L42 8 Hd(ejwl.+2)
1 2 L ( )

where X; = cosw;. This set of equations serves as the basis for an iterative algorithm
for finding the optimum A,(e’*). The procedure begins by guessing a set of alternation
frequencies w; for i = 1,2,..., (L + 2). Note that wp and w; are fixed and

' are necessarily members of the set of alternation
frequencies. Specifically, if w, = wp, then wey; = wy.



Parks and McClellan (1972a, 1972b) found
that, for the given set of the extremal frequencies,

L2 )

v Zkad(erk)

_ k=l '

= ————_—-—Lif R , (7.101)

k=1 W(wi)
where

L+2 : .
H (xk—x. (7.102)
x;ék

and, as before, x; = cos w;.

Now, since A.(e’*) is known to be an Lth-order trigonom-
etric polynomial, we can interpolate a trigonometric polynomial through (L + 1) of the
(L +2) known values E(w;) (or equivalently, 4,(e/*)). Parks and McClellan used the
Lagrange interpolation formula to obtain

L+1

Z[dk/ (x —x)]C
Ac(e’®) = P(cosw) = L+] . (7.103a)
Z[dk/ (x —x1)]
k=1 .
where x = cos w, Jé,— =cosw;,
. (—1)k+15 ‘
- oy T
Ck Hd(e ) W(wk) s . (7.103b)
and
L+l 1 .
] dk == E m = bk(xk' - xL+2). o (7103C)
itk

: The polynomial of Eq. (7.103a) can be
used to evaluate A.(e/*) and also E (a)) on a dense set of frequencies in the passband and
stopband. If | E(w)| < ¢ for all w in the passband and stopband, then the optimum ap-
proximation has been found. Otherwise we must find a new set of extremal frequencies.
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from samp

Initial guess of
(L +2) extremal frequencies

Changed

g

y

Calculate the optimum
8 on extremal set

T

Interpolate through (L + 1)
points to obtain A_(e/*)

'

Calculate error E(w)
and find local maxima
where IE(w)l 2§

More than
(L+2)
extrema?

e

Yes

Retain (L + 2)
largest
extrema

k

After the algorithm has converged, the impulse response can be computed
les of the polynomial representation using the discrete Fourier transform.

Check whether the
extremal points changed

y Unchanged

L Best approximation ‘]
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THE DISCRETE FOURIER
TRANSFORM

REPRESENTATION OF PERIODIC SEQUENCES:
- THE DISCRETE FOURIER SERIES

Consider a sequence X[n] that is periodic! with period N, so that ¥[n] = ¥[n +rN] for
any integer valuesof nand r.

#n] = ~ Z X[k]e/@n/Nkn,

ex[n] in Eq (8.1) are identical for values of k separated by N ie.,
eo[n] = en[n), e[n] = en+1[n], and, in general,

ek+({N[n] — e}(Zn/N)(k+€N)n . ej(2n/N)ere]27r(rx _ e/(Zn/N)kn — Ek[n], , (83)

where ¢ is an integer. Consequently, the set of N periodic complex exponentials eo[n].

e[n], ..., en_1[n] defines all the distinct periodic complex exponentials with frequencies
thatare mteger multiples of (27t/N)

= j@x/N)kn
¥[n] = N E 0 .[k]e ]

Thus, the Fourier series‘éoéfﬁcients X[k] in Eq. (8.4) are obtained from x[n] by the
relation Nel '

X[k] =" *[u]emier/Nn, ' (8.9)
n=(} _
Note that the sequence X[k] is periodic with period N:ie., X[0] = X[N], X 1] =
X[N+ 1].
For convenience in notation, the

se equations are often written in terms of
the complex quantlty '

Wy = e—i@r/N)

(8.10)
With this notation, the DES analysis-synthesis pair is expressed as follows:
) i N-1
Analysis equation:  X[k] = Y x[n] W, (8.11)
: n=0
N-1
Syathesis equation: ¥[n] Z [k]W . (8.12)

l\=

In both'of these equations, X{k] and %[n]
find it convenient to use the notation

#n] 253 Xy | (8.13)

The Discrete Fourier Serles of a Penodlc
Rectangular Pulse Train

are periodic sequences. We will sometimes

For this example, %[n] is the sequence shown in Figure 8.1, whose period is N = 10,

X[n}

*——0—0—0

‘"
-9
wv
>
~9®
o8
=7
=
3



X[kl = Z whi = Ze—j(ln/l())kn_ ®.17)
n=(} n=(
This finite sum has the closed form
Sk .
/?[k] - 1 - Wll:.) — e_/'(4nk/|(,) 511](77"(/2) '
AT sin(rk/10)

(8.18)

The magnitude and phase of the periodic sequence X[k] are

Rk $X[K]
fs .v |
10

]h RN | RN A
90=T'=1Ts-T= 20 . & 1 ‘ I : '1 ‘
. ' x denotes indeterminate &

. (magnitude = Q)

PROPERTIES. OF THE DISCRETE FOURIER SERIES
Linearity

Consider two periodic seqﬁences *[n] and %,[n], both with period N, such that

DFS- &

%i[n] < X,[k] (8.19a)
and
g %[n] 222 %4 (8.19b)
Then _ : - .
axi[n] + bx[n) €53 @ X\ [K] + bX,[K]. (8.20)

Shiﬂ of a Séquence
If a periodic sequence #[n] has Fourier coefficients X[k], then X[n - m] is a shifted
version of ¥[n], and : :

x[n =m] &3 wkm 1k, (8.21)

Wi sln] &5 Xk — o).

Duality

Becauge of the_strong similarity between the Fourier analysis and synthesis equations
In continuous time, there is a duality between the time domain and frequency domain.

If
#[n] 225 X[k, (8.25a)
then _
| X[n) Z3 Nz[-k]. ) (8.25b)

Periodic Convolution
In summary, ,

N-1
> xlmlnln - m) 23 [k X[K).
m=0



Periodic Convolution )N
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The duality theorem (Section 8.2.3) suggests that if
- B[] = ) [n][n), (8.33)
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mn

where ¥;[n] and %;[n] are periodic sequences, each with period N, has the discrete
Fourier series coefficients given by '

N-1 '
X[k} = -11\_, > Xi[e) X[k — 2], (8.34)
=0

SAMPLING THE FOURIER TRANSFORM

In this section, we discuss with more generality the relationship between an aperiodic
sequence with Fourier transform X(e/») and the periodic sequence for which the DFS
coefficients correspond to samples of X (e/*) equally spaced in frequency.

Im

. z-plane
2

N

Vi

Unit
circle

N




Consider an aperiodic sequence x[n] with Fourier transform X (e/®), and assume
that a sequence X[k] is obtained by sampling X (e/”) at frequencies wy = 2mk/N;i.e.,
X[K] = X () omian/npp = X(eI@/N ). (8.49)

Since the Fourier transform is periodic in w with period 27, the resulting sequence is
periodic in k with period N.

Note that thf: sequence of samples X [k], being periodic with period N, could be
the sequence of discrete Fourier series coefficients of a sequence X[n]. To obtain that
Sequence, we can simply substitute X[k] obtained by sampling into Eq. (8.12):

=z

= ©

o
(=]

X[Kwgkn, (8.51)

S}lbstituting Eq. (8.52) into Eq (849) and then substituting the resulting expression for
X[k] into Eq. (8.51) gives

N-1 oo
¥[n] = % Z [ Z x[m]e"j(z”/N)"'"J Wy ke, (8.53)

k=0 Lm=—oc

which, after we interchange the order of summation, be¢omes

00 N—-1 00 |
gnl= Y x[m] HZW,;"‘"""’} = > x[mlpln — m). (854)

m=—00 '. =0 m=—00

. 1= —k(n—m; - N M . ”

p[n—m]zﬁg_WN =r§o6[n~m—rN] , (8.55)
and therefore,

%[n] = x[n] % Z 8[n—rN]= Z x[n—rNj, - (8.56)

_ If x[n] has finite Iength and we
take a sufficient number of equally spaced samples of its Fourier transform (specifically,
a number greater than or equal to the length of x[n]), then the Fourier transform is
recoverable from these samples, and, equivalently, x[n] is recoverable from the corre-
sponding periodic sequence ¥[n] through the relation

_f#n, 0<n<N-1,
xlnl = {0, otherwise. (8.57)

FOURIER REPRESENTATION OF FINITE-DURATION
SEQUENCES: THE DISCRETE FOURIER TRANSFORM

We begin by considering a finite-length sequence x[r] of length N samples such
that x[r] = 0 outside the range 0 < n < N — 1. In many instances, we will want to
assume that a sequence has length N even if its length is M < N. In such cases, we
simply recognize that the last (N — M) samples are zero. To each finite-length sequence
of length N, we can always associate a periodic sequence

00

#[n)= > x[n—-rN]. A (8.58a)



Vs

[n], 0<n<N-1, 5
x[n] = {0_ otherwise. - (8.58b)

Recall from Section 8.4 that the DFS coefficients of ¥[n] are samples (spaced in
frequency by 27/ N) of the Fourier transform of x[n). Since x[n] is assumed to have
finite length MV, there is no overlap between the terms x[n —r N]for different values of

r. Thus, ¥[n] = X[((n))N] _

.  Thus, the DFT, X[k], is related to the DFS
coefficients, X[k], by 'v i

, X[k, O0<k<N-1,
X[k]:{

(8.61):
0, otherwise, _
and
. X[k] = X[(k modulo N)] = X)) (8.62)
N-1 o
x[n]WE", 0<k<N-1,
0, otherwise,
T,
S 2 XIKWR*", 0<n<N-1,
x[n]=4 N g KWy ’ (8.66)
0, otherwise.
. . . - - : N,_l _;..;.., S—
Analysis equation: X [£] = Zx[n]W,fj". (8.67)
n=0
. _ 1 V-l _ ‘
Synthesis equation: x[n] = 5 > X[Kwgtn, " (8.68)
k=0

That is, the fact that X[k] = Ofor k outside the interval0 <k < N

— I and that x[n] =0
for n outside the interval 0 < n <N

— lisimplied, but not always stated explicitly.

In defining the DFT representation, we are simply
recognizing that we are interested in values of x[n] only in the interval 0 Sn<N-1

because x[n] is really zero outside that interval, and we are interested in values of X [k]
only inthe interval 0 < k < N—1 because these are the only values needed in Eq. (8.68).

The DFT of a Rectangular Pulse

4
X1k = Ze—j(an/S)n _

n=0

{5. k=0, %5, +10....,

0, otherwise;

1 — e—jan
1— e J@rkf5)
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If, instead, we consxder x[n]to be of length N =

= 10, then the underlying periodic
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PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

Finite-Length Sequence (Length N)

N-point DFT (Length N)

1. x[n] X [k]
2. x[n] xz[n] X1[k), X3[k]
3. ax[n]+ bxyfn] a X[k} -+ bX2[k]
4 X[n] Nx[((—k)n] -
5. x[((n - m)n) WA X (k]
6. Wyx[n] X[k~ 0)n]
N=1
T xnlml((n - m)w) X1[K) Xak]
m=0
-1
8. xlnlxaln] 3 3 XiOXal(Gk— )]
=0
9. x[n] X H(=R)A)
10. x*{(-m))n] - X* (k] 4
11 Relx[n]) Xeplk] = LIX ()W) + X*[((~))w])
12, jImix[n]) XoplK] = SUXU(D)IN] — X*{((~K))w]}
13. xepln] = S {x{n] + x*[((-m))w]) Rel X[k} |
14, Xop[n] = %{x[n] = x*[((=n))N]) - JIm{ X[k}

Properties 15-17 apply only when x[n] is real.

15,

16
17.

-Xep[n] =
" Xopfn] =

Symmetry properties

2 Wxln] + x[((=m)w))
3 (xln] = x[((=m) )}

X[K] = X*[((=k))N)
Re(X[k]} = Re{ X[((—K)n])
Im(X[K]} = —Tm{ X[((—k)N])
I X[ = | X[((—k))w]|
UX[K) = ~<UX[((—k)N]}

ReX[k])
JTmiX R

i
e
I,
e 3 ‘
e d

'3

®

[ ]

Circular Convolution with a Delayed Impulse

x;[m] _
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L

2e
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0
] x][m]

gl

x[((0-m)y}.0=m=N-1

x,[((1 —r_n))N],Osm =N-1

i
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—
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x3fn] = x;[n] @ xy[n]
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_ Circular Convolution of Two
Rectangular Puises

As another example of circular convolution, let

§2

1, O<n<L~-1,

xilnl = xpfn] = {0’ otherwise, (8.122)

If we let N denote the DFT length, then, for N = L, the

N-point DFTs are
: N—1
: N, k=0
— — kn . ’ ’
Xilk] = X[k = z_; Wy = {0. otherwise. (8.123)
If we explicitly multiply X1[k] and X»[k], we obtain
N k=0, .
X3[k] = X1[k]) X,[k] = { 0. otherwise, (8.124)
from which it follows that - | |
x3[n]=N, O<n<N-1. (8.125)

It is, of course, possible to consider x;[n] and x[n] as 2L-point sequences
by augmenting them with L zeros,

Note that for N = 2L,

X[k = X[k = L= Wi

1w

s0 the DFT of the triangular-shaped sequence x3[n] in Figure 8.16(e) is

1= wik\?
X3[k1=(1 WN,()

W

with N =2L.

(-l 0=n=N-1

SO



LINEAR CONVOLUTION USING THE DISCRETE
FOURIER TRANSFORM

(@) Compute the N-point discrete Fourier transforms X[k] and X,[K] of the two
sequences x;[n] and x;[n], respectively.

(b) Compute the product X;[k] = Xi[k) Xa[k] forO <k < N—1.

(¢) Compute the sequence x3[n] = x1[n] @ x2[n] as the inverse DFT of X 3[k].

In most applications, we are interested in implementing a linear convolution of two
sequences; i.e., we wish to implement a linear time-invariant system.

To obtain a linear convolution, we must ensure that circular convolution
has the effect of linear convolution. '

Consider a sequence x;[n] whose length is L points and a sequence , [n] whose length

is P points, and suppose that we wish to combine these two sequences by linear convo-

lution to obtain a third sequence

- _
x3[n] = Z xi[m]xa[n — m]. (8.129)
o o M=—oc B ) —
Therefore, (L+ P — 1) is the maximum length of the sequence x3[n] resulting from the
- linear convolution of a sequence of length L with a sequence of length P.

- As we showed , if xy[n] has
length L and x,[n] has length P, then x3[n] has maximum length (L+ P—1). Therefore,
the circular convolution corresponding to Xi[k] X,[k] is identical to the linear con-
volution corresponding to X1(e/?) X2(e/?) if N, the length of the DFTs, satisfies
N>L+P-1.

1 KR \ x1[n] = xy[n],

O



As Example points out, time aliasing in the circular convolution of two finite- g /_{
length sequences can be avoided if N > L + P —1. Also, it is clear that if N = [, = P,
all of the sequence values of the circular convolution may be different from those
of the linear convolution. However, if P < L, some of the sequence values in an
L-point circular convolution will be equal to the corresponding sequence values of the
linear convolution. The time-aliasing interpretation is useful for showing this.
Implementing Linear Time-Invariant Systems
Using the DFT

multiplying the DFTs of x[#] and A[n]. Since we want the product to represent the DET
of the linear convolution of x[#] and h[n], which has length (L+ P— 1), the DFTs thatwe
compute must also be of at least that length, i.e., both x[n] and h[n] must be augmented
with sequence values of zero amplitude. This processis oftenreferred to as zero-padding.

x3[n]

gII” IT | ,,Jy[” ' -

IR A II& . ,,

L+P-1

x3p[n] = x,[n] ®) x,[n], p -_
[ l’ | NeL X35l = 51 [n) ® 3l
. N=L +P-1 .
0 ' L ' ' n | o
P-1 0 N

0

This procedure permits the computation of the linear convolution of two finite-
length sequences using the disérete Fourier transform; i.e., the output of an FIR system
whose input also has finite length can be computed with the DFT. -

block convolution.

900990 000-0-000005000 0




Henceforth, we will assume that x[n] = 0 for n < 0 and that
the length of x[n] is much greater than P. The sequence x[n] can be represented as a
sum of shifted finite-length segments of length L; i.e.,

where

" that

where

fos)
x[n) = xn-ri], (8.140)
=0 .
_{xln+rL], 0sn<L-1,
xrln] = {0, , otherwise. - (8.141)
" Because convolution isa linear time-invariant operation, it follows from Eq. (8.140)
. .
yln] = x[n]xh[n] =Y y[n—rL], (8.142)
-0
yr[n] = x[n] * A[n]. (8.143)
b o ' i
0 i 1 """" " -

rﬂﬂHﬂ} _____ - ak

1 — ;

5050000

Since the sequences x, [n] have only L nonzero points and h[n] is of length P, each

“of the terms y,[n] = x,[n] * h[n] has length (L + P — 1). Thus, the linear convolution
x,;[n} % &[n] can be obtained by the procedure described earlier using N-point DFTs,
where N > L4 P — 1. Since the beginning of each input section is separated from its
neighbors by L points and each filtered section has length (L + P — 1), the nonzero
points in the filtered sections will overlap by (P — 1) points, and these overlap samples
must be added in carrying out the sum required

oG

(J“\



COMPUTATION OF THE
DISCRETE FOURIER
TRANSFORM |

Consequently, computation of the N-point DFT
corresponds to the computation of N samples of the Fourier transform at N equally
- Spaced frequencies wy = 27k/N, ie., at N points on the unit circle in the z-plane. In
| this chapter, we discuss several methods for computing values of the DFT. Thé major

focus of the chapteris a particularly efficient class of algorithms for the digital computa-
tion of the N-point DF T. Collectively, these efficient algorithms are called fast Fourier
transform (FFT) algorithms. ‘

the DFT of a finite-length sequenéé of length N is
N-1 ~

X[ =3"xnW,  k=0,1,...,N—1, - (9.0)
n=0

where Wy = e~/(2%/N)_The inverse discrete Fourier transforfn is given by

e | .
*nl =53 XKW, n=0,10 N-1. 9:2)
k=0 .

To compute all N values thérefdré"fequireé a total of N? complex multiblicéiions

and N(N — 1) complex additions.

Most approaches to improving the efficiency of the computation of the DFT ex-
ploit the symmetry and periodicity properties of W specifically,

L W,f,[N = Wikn = (Wkny (complex conjugate symmetry);
2, Wkr = W,'f,("fN) = W,f,k+N)" (periodicity in n and k).

FFT algorithms are based on the fundamental principle of decomposing the com-
putation of the discrete Fourier transform of a sequence of length N into successively
smaller discrete Fourier transforms. The manner in which this principle is implemented
leads to a variety of differentalgorithms, all with comparable improvements in computa-
tional speed. - :

DECIMATION-IN-TIME FFT ALGORITHMS

In computing the DFT, dramatic efficiency results from decomposing the computation
into successively smaller DFT computations. In this process, we exploit both the sym-
metry and the periodicity of the complex exponential WE" = ¢=/@7/N)kn_Algorithms in
which the decomposition is based on decomposing the sequence x[n] into successively
-smaller subsequences are called decimation-in-time algorithms.

With X[k] given by
N-1 :
XK= "x[n]Wr,  k=0,1,..., N—1, (9.10)
n=0 . ‘ .
and separating x[n] into its even- and odd-numbered points, we obtain
XK= > x[n]wik+ > Wik, (9.11)

n even n odd
or, with the substitution of variables 7 = 2r for n evenandn = 2r + 1 for n odd,

86



If N/2is even,

(N/2)-1 (N/2)-1
XK= 3 x2rWh*+ S x[or + 1]w@ Dk

=0 r=0

' (9.12)

(Nj2)-1 (N/2)-1

= Y x2rl(Why*t + wk > x[er + 1) (W,
r=0 ) r=0 }
Wy = e 2@IN) — o=i2n/(ND) (9.13)
{N/2)-1 (N/2)-1 ’
XK=y x[2rTWE, + wk Z x[2r + W, " 14
r=0 r=0 . .

= Glk]+ W{H[K], k=01,...,N—1.

Although the index kranges over N values, k= 0,1, ..., N —1, each of the sums must be |

computed only for k between 0 and (N/2) — 1, since G [k] and H[k] are each periodic in
k with period N/2.

G[0] |
x[0] o—>— ——— > X0}
\ /yg
G[1]
x[2] o—— N . > > : X1}
= —point wl
x[4lo—f  DFT x12]
. N/ 2
| W”
x[6] o> _ S e
X X X
x{1] o-—— k > 4){[4]

3] o >0 X[5
T Y [T AN .
DFT AN
x[5] o—»—o e %X[ﬂ
(7] o | ——%x11]

H[3] [ Wy .
Eq. (9.14) requires the computation of two (N/2)-point DFTs, which in turn requires
2(N/2)? complex multiplications and approximately 2(N/2)? complex additions if we
do the (N/2)-point DFTs by the direct method. Then the two (N/2)-point DFTs must
be combined, requiring N complex multiplications, corresponding to multiplying the
second sum by W¥, and N complex additions, corresponding to adding the product
obtained to the first sum. Consequently, the computation of Eq. (9.14) for all values
of k requires at most N+ 2(N/2)? or N + N%/2 complex multiplications and complex
additions. It is easy to verify that for N > 2, the total N + N2/2 will be less than N2.
(N/2)~1 (N/4)-1 (N/4)-1

{

2
=

.

Glk="3 slriwif,= > gRaWi+ Y glze+ 1wl (915)
) r=0 £=0 =0
or A
(N/4)~1 , (N/4)~1 ;
Glkl= Y gl2aWi,+ Wk, 3 gl2e+ 11w, (9.16)
=0 £=0 o

Similarly, H[k] would be represented as

, (N/4)-1 (NA-1
Hlk= Y hROWHE+WE, S h2e+ 11w, (9.17)
£=0 =0
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DFT 4
. x[6] o> >0 > X[3] DFT
: w

x[1] o——]

x[5] o]

N : 4
DFT_ |~ < —% X[5]

W,e:]

x[3] o——

' ’x [7} o>

%—point N ‘&3‘ “
' x[4 »>
DFT > >0 X[7] Wy = W= -1
w

Because of the shape of the flow graph, this elementary computation
is called a butterfly. Since ‘

Wyt = e J@RININE _ pmim Ly, (9.18)
the factor Wy;t"/? can be written as |
WitN? = whlwr — _wr | (9.19)

. When the (N/2)-point trans-
forms are decomposed into (N/4)-point transforms, the factor of (N/2)? is replaced by
N/2 + 2(N/4)?, so the overall computation then requires N + N + 4(N/4)? complex
multiplications and additions. If N =2, this can be done at most v = log, N times,
so that after carrying out this decomposition as many times as possible, the number of
complex multiplications and additions is equal to Nv = Nlog, N.

For example, if N = 210 1024,

then N? = 220 = 1,048,576, and N log, N = 10,240, a reduction of more than two
orders of magnitude! -

DECIMATION-IN-FREQUENCY FFT ALGORITHMS

The decimation-in-time FET algorithms are all based on structuring the DFT compu-
tation by forming smaller and smaller subsequences of the input sequence x[r]. Alter-
natively, we can consider dividing the output sequence X[k] into smaller and smaller
subsequences in the same manner. FFT algorithms based on this procedure are com-
monly called decimation-in-frequency algorithms. ‘

Since
N-1 | ,
X[ =>"x[n]Wik,  k=0,1,...,N-1, (9.23)
n=0 '

the even-numbered frequency samples are

N-1 ’
X@rl=3 sAnWi®,  r=01,..,(N2)-1, (924)

n=0




which can be expressed as

(N)-1 N-1 L ' '
X[2rl= 3" x[nwi+ Y Wi, (9.25)
' n=0 n=N/2

With a substitution of variables in.the second summation

(N/2)-1 (N/2)-1

n=0

X[2r1= 3 x[nWE + Y xln+ (N2 W] (9.26)
. n=0 n=0
WZ'["+(N/2)] W2rn WrN — WI%Im’ - ‘ (9.27)
(N/2)-1 o Y
Xer]= > ]+ x[n - (NDW, r=01,..,(N/2)=1. (9.28)

We can now consider obtaining the odd-numbered freqﬁency points, given by

. N-1

X[2r+1] = Zx[n]W"(z’“) r=0,1,L(N2)-1. (929
n=0
(V)1 N4
X2r+11= 3 w4 37 mwiery, (9.30)
n=0 n=N/2 .
N-1 - (N/2)-1 _ ,
Z x[n]W;;(Zr-{-l) = Z x[n+( N/z)]wgr+(N/2)](zr+1)
n=N/2 n=0
N, N1 | |
W( /2)(2’+1) Z n+(N/2)]Wn(2r+l)
n=0
(N/2)-1 -
== xln+(N2WRerD, (9.31)
n=0 [

where we have used the fact that W% = 1 and WM = 1,

(V/2)-1 |
X(2r+1]1= " (x[n] - x[n+ (N2)h WD, 9.32)

n=0

or, since W§ = Wy,
(N/2)-1
X[2r +1] Z (x[n] — x[n+ (1\7/2)])“’"l N2>
2 (933)
r=0.1,....(N/2) 1.
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same for the decimation

x[0] i 7&] > ——o X[0] x[0]
gll] '
x[1] \\/7 > ]21_ point ——o X[2] x[1]
X[Z] > §E] > DFT —)—-OX[4] x[2] -1
g[3]
x[3] ——o X[6] x[3] )
| R[0] W2 Wy
x[4] > X[y x[4] —
N | Wy
x[S] » ‘\fl [1] rN N N ——b—-oX[3] x[5] ‘ _
(6] ;;{{[2] Wi DFT o x[5] x[6] - ]: 2
3 ~ W,
x[7] Z ;_31[3] Wy o XI[7] x[7 ; -1 ~ :1

Wr |-

w3

90

N
- — point
3 P
DFT

o X[0]

——0 X[4]

% - point
DFT

X2

——o X|6]

N .

—_— t

7~ poin
DFT

——o X[1]

o X[5]

%— point
DFT

——0 X[3]

>—o X17]

Thus, the total number ot computations is the

-in-frequency and the decimation-in-time algorithms,




Algorithms for More General Values of N

Although the special case of N a power of 2 leads to algorithms that have a simple
structure, this is not the only restriction on N that can lead to areduction in computation
inthe DFT. Indeed, in many cases it is desirable to evaluate the DFT efficiently for other
values of N, and the same principles that were applied in the power of 2 decimation-in-
time and decimation-in-frequency algorithms can be employed when N is a composite
integer, i.e., the product of two or more integer factors. For example, if N = RO, it
is possible to express an N-point DFT as either the sum of R O-point DFTs or as the
sum of ) R-point DFTs and thereby obtain reductions in the number of computations.
If N has many factors, the process can be repeated for each of the factors, Algorithms
_ for general composite N involve more complicated indexing than the power of 2 case.

The Chirp Transform Algorithm

Another algorithm based on expressing the DFT as a convolution is referred to as
the chirp transform algorithm (CTA).

To derive the CTA, we let x[n] denote an N-point sequence and X (e/*) its Fourier
transform. We consider the evaluation of M samples of X(e/“) that are equally spaced
in angle on the unit circle

wk=w0+kAw, k=0,1,...,Mf?1, (9.36)

where the starting frequency wo and the frequency incremeht Aw can be chosen ar-
bitrarily. ’ - .
N-1

X(@*) = xnlei*", T k=0,1,...,M-1, (9.37)
n=0 !
or, with W defined as
W = e_iAw 2 (938)
— L
X(e/9) = Z x[n]e~Iwonypynk (9.39)
n=0

To expréss X(e/*)asa convolution, we use the identity

nk=3ln*+k ~(k—n)?] (9.40)
N-1 A : ,
X(ej“”‘) - Z x[n]e—ja)on Wn2/2Wk2/2Wi(k—n) /2. (941)
n=0 ‘
Letting |
gln] = x[n]e'—iwonwnzﬂ, (9.42)

we can then write

n=0

N-1
X(eio) = Wk (Z gln] W-(k—n)Z/z) . k=0,1,..., M—1. (9.43)
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N-1 1
X(elony = wr'r2 (Z g[k]w-<"-’<>2/2) y  n=0,1,...,M-1. (9.44)
k=0

The sequence W~""/2 can be thought of as a complex exponential sequence
with linearly increasing frequency nAw. In radar systems, such signals are called chirp

w-n 21 ' X .
x[n] gln] X (efomy

e Jegnyyn¥2 W2

Since g[n] is of ﬁhitezduration, only a finite portion of the éequence W=r*/2 is used in
- obtaining g[n] x W-"/2 gyer the intervaln = 0, 1, .. M1 specifically, that portion
fromn=~(N—1)ton=M—l.Letusdeﬁne ‘

hln] = {W'”Z/Z» ~(N-1) <n<M=q,

0, otherwise. (9.45)
g« W = elnl xhn], n=o01, M=, ~(9.46)
h(n]
x[n] - gln] yln] iy
.,e:l'wonWHZIZ : WRZ/Z . X(e]wn:) = y[n], n= Ov 1» ey M- 1.
Evaluation of frequency samples using the procedure - has

a number of potential advantages. In general, we do not require N = M as in the FFT

algorithms, and neither N nor M need be composite numbers. In fact, they may be

prime numbers if desired. Furthermore, the parameter wy is arbitrary. This increased

flexibility over the FFT does not preclude efficient computation, since the convolution
can beimplemented efficiently using an FFT algorithm




FOURIER ANALYSIS OF SIGNALS
USING THE DISCRETE
FOURIER TRANSFORM

s aliac Continuous-to-
— S&tl;il;?is;;gr > discrete-time —
s) P x{t) | conversion Vik]
H,(j2)

wn)

The conversion of x.(t) to the sequence of samples x[n] is represented in the
frequency domain by periodic replication and frequency normalization, 1.e.,

X(efw)— = Z X ( + ]g;ﬁ) (10.1)

Asindicated, the sequence x[n] is typically multiplied by a finite-duration win"d'ow
w[n], since the input to the DFT must be of finite duration. This produces the finite-
| length sequence v[n] = w[n]x[n]. The effect in the frequency domain is a periodic

convolution, i.e.,
o |
V(ef‘”)=§-1— / X (el YW (/@) do. (102)
T Jx

If w[n] is constant over the
range of n for which it is nonzero, it is referred to as a rectangular window. However, as
we will see, there are good reasons to taper the window at its edges. ‘

At this point, it is sufficient to observe that
- convolution of W(e/*) with X (e/%) will tend to smooth sharp peaks and discontinuities

in X (/). The DFT of the win-
dowed sequence v[n] = w(njx[n] is )

N-1
VK =D wfn]e/@m/Nkn g =0,1,...,N=1, (10.3)

n=0

where we assume that the window length L is less than or equal to the DFT length N.
- V[k], the DFT of the finite-length sequence v[n], corresponds to equally spaced samples
of the Fourier transform of v[n}; i.e.,

VIk] = V(e/®)] (10.4)

w=2nk/N"

Since the spacing between
DFT frequencies is 27/ N, and the relationship between the normalized discrete-time
frequency variable and the continuous-time frequency variable is w = Q7, the DFT
frequencies correspond to the contmuous time frequencies

2k
Q= NT (10.5)

L



DFT ANALYSIS OF SINUSOIDAL SIGNALS

The discrete-time Fourier transform of a sinusoidal signal Acos(won +¢) is a pair of im-
pulses at +wo and —wyp (repeating periodically with period 2x). In analyzing sinusoidal
signals using the DFT, windowing and spectral sampling have an important effect.

Let us consider a continuous-time signal consisting of the sum of two sinusoidal com-
ponents; i.e.,
sc(t) = Agcos(Q2t + o) + A} cos(¢ + 61), —00 <t < 00. +(10.6)

Assuming ideal sampling with no aliasing and no quantization error, we obtain the

discrete-time signal
x[n] = Ao cos(won + 6p) + A cos(win + 61), —00 <n'<co, (10.7)

where wy = Q4T and w; = , T. The windowed sequence v[n]

L
B

v[n] = Aow[n]cos(won + 85) + A w[n] cos(wn + ;). (10.8)
A L . ¢
v[n] = —Z—Ow[n]e”"’e”"f’" + izqw[n]e—'looe—]a}on ]
+ TIW[n]ejg‘ejw’" + —z—lw[n]e‘ﬂ"e‘f‘vm,
V(efw) — A_dejQOW(ef(w‘wO)) + _%_O_e—f(?o W(ej(w+w0))
? (10.10)
+ A1 o iy A oy gitoron)
2 2
e 1/T = 10 kH 32 |- Y Qo = (2n/6) x 10
o4 . - : ﬂ ) ﬂ Q) = 4
rectangular window : 1 (27/3) x 10
length 64
! Ao =1and Ay = 075 A -
6y = 04 = 0.
320t 16
H : . I
Mmmmww L L '“'"" l ln\”'"m
- _Zm 2w 0 2
» 0 T @ P 6 ?
IV (e2)l IV (e/)
30 - . 40
L ) B |
N “o= —1141- Wy = 21—17
15 |- 2w 20~
wy = ELl _ 2_‘77
EY) 1=




Reduced resolution and leakage are the two primary effects on the spectrum as a
result of applying a window to the signal. The resolution is influenced primarily by the
width of the main lobe of W(e/“), while the degree of leakage depends on the relative
amplitude of the main lobe and the side lobes of W(e/®).

The rectangular window, which has Fourier transform
L1 . '
~ . - L/2)
W.(e/®y = e~ — »—jw(l.—1)/2 sn:l(w )
(e") HZ:% € sin(w/2)
has the narrowest main lobe for a given length, but it has the largest side lobes of all
-the commonly used windows. As defined in Chapter 7. the Kaiser window is

h[p(1 = [(n - @)/a]?)'"?]
wi(n] = 1y(B) ’
, otherwise,

(10.11)

O=n=L-1, (10.12)

where o = (L — 1)/2 and Jy(:) is the zeroth-order modified Bessel function of the first
kind. We have already seen in the context of
the filter design problem that this window has two parameters, 8 and L. which can be
used to trade between main-lobe width and relative side-lobe amplitude. (Recall that
the Kaiser window reduces to the rectangular window when g = 0.) The main-lobe
width Ay, is defined as the symmetric distance between the central zero-crossings. The
relative side-lobe level Ag is defined as the ratio in dB of the amplitude of the main lobe
to the amplitude of the largest side lobe.

The trade-off between main-lobe width, relative side-lobe
amplitude, and window length is displayed by the approximate relationship

| o 2r(Ag#12)
= 155A0

which was also given by Kaiser and Schafer (1980).

+1, (10.14)

Let us consider the same parameters Jde,Ag =1,
Ay = 075wy = 2n/14, @ = 4w/15, and 6, = 6, = 0 in Eg. (10.8). w[n] is a
rectangular window of length 64. Then

ofn] = cos (%n) +0.75¢cos <%n> . O0< nys 63, (10.15)
0. ‘otherwise.
32 —
VK]
Y] ) ‘r P
' E [ ] T
'E; 6 1 !
. _.,TI Ir hmmmm"rmnmmmnmmm” 1] I Y

6 32 63 &



As is the usual convention in displaying the DFT of a
time sequence, we display the DFT values in the range fromk = 0tok = N — 1,
- corresponding to displaying samples of the discrete-time Fourier transform in the
. frequency range 0 to 2x. Because of the inherent periodicity of the discrete-time
Fourier transform, the first half of this range corresponds to the positive continuous-
time frequencies, i.e., Q between zero and 7 /T, and the second half of the range to the
negative frequencies, i.e., 2 between —r/ Tand zero.

32~ ﬁ IV (el

Amplitude
[y
(oY
|

2 2
ofn] = cos (En) + 0.75 cos (?n> . 0<n<63, (10.16)
0, otherwise,

Again, a rectangular window is used with N = [, = 64. This
is very similar to the previous example, except that in this case, the frequencies of the
cosines coincide exactly with two of the DFT frequencies. Specifically, the frequency
w) =21 /8 = 27 8/64 corresponds exactly to the DFT sample k = 8 and the frequency
wo =27 /16 =274/64 to the DFT sample k = 4.

2 _ 1 Wk
= L ] 9
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= 16+
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. DFT Analysis of Sinusoi .
Using a Kaiser Window y usoidal Signals

Let us return to the frequency, ampli
. , amplitude, and phase parameters of E
now with a Kaiser window applied, so that P i rample 103 but

v[n] = wi[n] cos <21§—n) + 0.75wg[n] cos (%n) . (16.17)

where wy({n] is the Kaiser window as gi i ' 1
. given by Eq. (10.12). We will select th
w;ndow parameter B to be equal to 5.48. ) <

15r L IV{k]l
1
1P [ ]
o 10_ q" L=64 P‘
3 r
=
g
<
5
LMl Sl
0 32 63 k
8 : IVk}
!, , 7
ot ( |
) L=32.
]
2
= 4 * ’
E
<
gl ¢ T::::::::::::::==c4=,-
0 16 , 31 k

For a complete representation of a sequence of length L, the L-point DFT is suf-
ficient, since the original sequence can be recovered exactly from it. However, as we
saw in the preceding examples, simple examination of the L-point DFT can result in
misleading interpretations. For this reason, it is common to apply zero-padding so that
the spectrum is sufficiently oversampled and important features are therefore read-
ily apparent. With a high degree of time-domain zero-padding or frequency-domain
oversampling, simple interpolation (e.g., linear interpolation) between the DFT val-
ues provides a reasonably accurate picture of the Fourier spectrum, which can then be
used, for example, to estimate the locations and amplitudes of spectral peaks.

9
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THE TIME-DEPENDENT FOURIER TRANSFORM

The time-dependent Fourier transform of a signal x[n] is defined as

X[n.r)y= i x[n + mlw[m)e=*" (10.18)

M=—=

where w(n] is a window sequence. In the time-dependent Fourier representation! the
one-dimensional sequence x[n], a function of a single discrete variable, is converted into
a two-dimensional function of the time variable n. which is discrete, and the frequency
variablé A, which is continuous.? Note that the time-dependent Fourier transform is
periodic in A with period 27, and therefore, we need consider only values of A for
0 <A <27 or any other interval of length 27.

x[n] = cos(won?). wo =27 x 7.5 % 1079, (10.19)
corresponding to a linear frequency modulation (i.e., the “instantaneous frequency” is

2on). Typically. w[n] in Eq. (10.18) has finite

length around m = (, so that X [n. ) displays the frequency characteristics of the signal
around time 1. '

/,\\/w[m]

amsnnIaniIaTm
IAVAVAVATATRAA bbb i

o 4} ———»]

Y wim] ' x[865 +m}
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3200 6400 9600 12.800 16,000 19.200 22400 25.600 28.800
Sample number (n)

The magnitude of the time-dependent Fourier transform of x[n] =
cos(wpn?) using a Hamming window of length 400.



Since X[n, A) is the discrete-time Fourier transform of x[n + m)w[m), the time-
dependent Fourier transform is invertible if the window has at least one nonzero sample.

2

x[n+ mlw[m] = E.L X[n, A)e*mdx, —00 < M < 00, (10.20)
T Jo
from which it follows that
1 2
= , AdA 10.21
Ml =5 [ Xln) (1021)
ifw[0] £ 0. X[n, A) can be written as
o0 . '
X[na)= D" x[m]w[~(n — m'))er™or—m), (10.22)
m'=—-00

Equation (10.22) can be interpreted as the convolution

X[n. 2) = x[n] * hy[n], : (10.23a)

where ' _
hin] = w[—nle*". (10.23b)
Hy(e7) = W(e/*-o), (10.24)

In general, a window that is nonzero for positive time will be called a noncausal
window, since the computation of X [7, 2) using Eq. (10.18) requires samples that follow
sample nin the sequence. Equivalently, in the linear-filtering interpretation, the impulse
response 4, [n] = w[—n]e/*" is noncausal.
- Another possibility
is to shift the window as n changes, keeping the time origin for Fourier analysis fixed

This leads to a definition for the time-dependent
Fouricr transform of the form

)?[n. A) = Z x[mlw[m — nle™/*" = e“""”XA[n. A) (10.25)

M= =

The Effect of the Window

The primary purpose of thé window in the time-dependent Fourier transform is to limit
the extent of the sequence o be transformed so that the spectral characteristics are
reasonably stationary.over the duration of the window. The more rapidly the signal
characteristics change, the shorter the window should be.

If we consider the time-dependent Fourier transform for fixed n, then it follows
from the properties of Fourier transforms that

27
X|n, x):% /0 e’ X (e YW(e! " dp: (10.28)

i.e., the Fourier transform of the shifted signal is convolved with the Fourier transform

of the window. In Section 10.2 we saw that the ability to resolve two
narrowband signal components depends on the width of the main lobe of the Fourier
transform of the window, while the degree of leakage of one component into the vicinity
of the other depends on the relative side-lobe amplitude. The case of no window at al]
corresponds to w[n] = 1 for all . In this case W(e/*) = 28(w) for — < w < m,which
gives precise frequency resolution, but no time resolution. '

m



The preceding discussion suggests that if we are using the time-dependent Fourier
transform to obtain a time-dependent estimate of the frequency spectrum of a signal,
it is desirable to taper the window to lower the side lobes and to use as long a window
as feasible to improve the frequency resolution.

Sampling in Time and Frequency

wlm] =0  outside the interval 0 < m < L — 1. (10.29)

If we sample X[n, 1) at N equally spaced frequencies Ay = 2nk/N, with N > L then
we can still recover the original sequence from the sampled time-dependent Fourier
transform. Specifically, if we define X[n, k] to be
L-] '
X[n k] = X[n.27k/N) =" x[n + mlw[m]e /mNkn < k < N, (10.30)
m=(0 ’

then X[n, k] is the DFT of the windowed sequence x[n + m)w[m]. Using the inverse
DFT, we obtain

1 N-1 ' ' »
x[n +mlwlm] = iy > X[n. kle/@m/Nkm g < <1, (10.31)
k=0

Since we assume that the window w[m] # 0for0 <m < L= 1,the sequence values can
be recovered in the interval from n through (n + L — 1) using the equation

N—1
D Xln k]el@rIMkm g < m < L1, (10.32)
k=0

where it is assumed that w[m] # 0 for0 < m <L~ 1.

1
Nw[m]

x[n+m] =

Eq. (10.30) can be
rewritten as

X[n k] = x[n] s a[nl. O<k<N—1, (10.33a)
where ' . -
B[] = w[—n]e/@r/Mkn_ ‘ (10.33b)
> hy 1] p————
X{n.N-1]
xln] > Al —TITI
H,
Filter bank
—> fyln] —————  representation of the time-dependent
Xm0l Fourier transform,
H(e!®) = W(e/I@mk/N)~u]y, (10.34)

Our discussion suggests that x[n] for —co < n < 0o can be reconstructed if X [n. 1)

or X{n, k] is sampled in the time dimension as well. Specifically, using Eq. (10.32), we

- can reconstruct the signal in the interval ny < ri < ny + L — 1 from X[no. k], and we

can reconstruct the signal in the interval ng + L < n < no+2L -1 from X[ng + L, k],

etc. Thus, x[n] can be reconstructed exactly from the time-dependent Fourier transform
sampled in both the frequency and the time dimension.
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we define this sampled time-dependent
Fourier transform as :

1.—1
X[rR k] = X[rR.2xk/N) =" x[r R-+ m]w[m]e~ in/ Nk (10.35)
m=0

where r and k are integers such that Qoo <r <ooand ) < k < N — 1. To further
simplify our notation, we define

X[kl = X[rR.K|= X[rR A).  —oco<r<oo, O<k<N—1. (10.36)

where A = 2rk/N. This notation denotes explicitly that the sampled time-dependent

Fourier transform is simply a sequence of N-point DFTs of the windowed signal seg-
ments

X, [m] = x[rR + m]w[m]. —co<r<oo. O<m<lL—1. (10.37)

with the window position moving in jumps of R samples in time.

koo N=10and R=3
2m X,[k] =X[R. k] X,[k] = X[2R. K] X,[k] = X[3R. k]
N_ l [ ] L J ®
® [ ®
2—7T ® L J *®
N 'y ‘. 'y
_L 'Y ® L ]
[ ® ®
T ® ® ®
e L ] *
[ ] ) L ] ®
° 9% % 2R 3R "
0 1 2 3 r

Equation (10.35) involves the following integer parameters: the window length
L; the number of samples in the frequency dimension, or the DFT length N; and the
sampling interval in the time dimension, R. However, not all choices of these parameters
will permit exact reconstruction of the signal. The choice L < N guarantees that we can
reconstruct the windowed segments x, [m] from the block transforms X, k. If R < L,
the segments overlap, but if R > L, some of the samples of the signal are not used
and therefore cannot be reconstructed from X, [k]. Thus, in general, the three sampling
_parameters should satisfy the relation N > L > R.

BLOCK CONVOLUTION USING
" THE TIME-DEPENDENT FOURIER TRANSFORM

Assume that x[n] = Oforn < 0, and suppose that we compute the time-dependent
Fourier transform for R = L and a rectangular window. In othe.r words, the sampled
time-dependent Fourier transform X, [k] consists of a set of N-point DFTs of segments
of the input sequence

x.[m] = x[rL+ m]. O<m<L-1. (10.38)

Since each sample of the signal x[n] is included and the blocks do not overlap. it follows
that

x[n] = i x[n—rL]. (10.39) .

r={)
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Now suppose that we define a new time-dependent Fourier transform
Y (k] = H[K]X,[k].  O0<k=<N-1. (10.40)

where H[k] is the N-point DFT of a finite-length unit sample sequence A[n] such th?t
h[n} = Ofor n < Oand forn > P—1.If we compute the inverse DFT of ¥,[k], we obtain

N-1 N-1
bl = ~ 3" VMO N = S [hl(m - )a). (1041)
N k=0 =0

Thatis, y.[m]is the N-point circular convolution of A[m] and x, [m]. Sincfe hm] has.length
P samples and x,[m] has length L samples, it follows from the discussion of Section E_§.7
thatif N > L+ P —1, then y,[m] will be identical to the linear convqlution ofl?[m] with
x,[m] in the interval 0 < m < L+ P — 2, and it will be zero otherwise. Thus, it follows

that if we construct an output signal

y[nl = ‘Zyr [n—rL]. ' (10.42)_

r=0
then y[n] is the output of a linear time-invariant system with impulse response k[n}].
The procedure just described corresponds exactly to the overlap~add method of block
convolution.

FOURIER ANALYSIS OF STATIONARY RANDOM
SIGNALS: THE PERIODOGRAM

Let us consider the problem of estimating the power density spectrum P () of a
continuous-time signal s.(¢).

The antialiasing lowpass filter creates a new stationary random signal whose
power spectrum is bandlimited, so that the si gnal can be sampled without aliasing. Then
x[n] is a stationary discrete-time random signal whose power density spectrum Py (w)
is proportional to Py(2) over the bandwidth of the antialiasing filter: i.e.. '

1
P.\’.\'(w) = ?Pss (‘;‘3) s lwf < 7, (1050)

where we have assumed that the cutoff frequency of the antialiasing filter is 7/ T
and that 7 is the sampling pefiod. '

Consequently, a reasonable estimate of Pyx(w) will provide
a reasonable estimate of Py (Q2). The window w(n] in Figure 10.1 selects a finite-length
segment (L samples) of x[n], which we denote v[n], the Fourier transform of which is

L-1
V(') =Y wln]x[n]e~/on, (10.51)

n=0

Consider as an estimate of the power spectrum the quantity

I(w) = Zl—[le(e"‘”)lz, \ (10.52)

where the constant U anticipates a need for normalization to remove bias in the spectral
estimate. When the window w[n]is the rectangular window sequence, this estimator for
the power spectrum is called the periodogram. If the window is not rectangular, 7 (w)
is called the modified periodogram. Clearly, the periodogram has some of the basic

properties of the power spectrum. It is nonnegative, and for real signals, it is a real and
even function of frequency. '



Specifically, samples of the periodogram are given

1 L]
U= _ 2 .
(k) = —LI—UIV[k]lz, ngnn (10.55)

by

where V[k] is the N-point DFT of wln]x[n]. If we want to choose N to be greater
than the window length appropriate zero-padding would be applied to the sequence
wln]x[n].

If a random signal has a nonzero mean, its power spectrum has an impulse at
zero frequency. If the mean is relatively large, this component will dominate the spec-
trum estimate, causing low-amplitude, low-frequency components to be obsciired by
leakage. Therefore, in practice the mean is often estimated using Eq. (10.48), and the
resulting estimate is subtracted from the random signal before computing the power

spectrum estimate. . - -
P ima However, it has been shown (see Jenk-

ins and Watts, 1968) that over a wide range of conditions, as the window length increases,
‘ var[I(w)] ~ P2.(«w). (10.65)

That is, the variance of the periodogram estimate is approximately the same size as the
square of the power spectrum that we are estimating. Therefore, since the variance does
not asymptotically approach zero with increasing window length, the periodogram is
not a consistent estimate.

Periodbgram Averaging

The averaging of periodograms in spectrum estimation was first studied extensively by
Bartlett (1953); later, after fast algorithms for computing the DFT were developed,
Welch (1970) combined these computational algorithms with the use of a data window
w[n] to develop the method of averaging modified periodograms. In periodogram aver-
aging, a data sequence x[n],0 < n < Q- 1,is divided into segments of length- L samples,
with a window of length L applied to each i.e., we form the segments

X, (n)=x[rR+nlwln], O<n<L-1. -(10.57) ‘

: The
periodogram of the rth segment is

@)= I R  (1068)

where X, (e/#)is the discrete-time Fourier transform of x,{n}. Each I,(w) has the prop-
erties of a periodogram, ‘as described previously. Periodogram averaging consists of
averaging together the K periodogram estimates /,(w): i.e., we form the time-averaged
periodogram defined as

K~1
Iw) = 2 3 b (10.69)
r=0

To examine the variance, we use the fact that, in general, the variance of the aver-
age of K independent identically distributed random variables is 1/ K times the variance

of each individual random variable. (See Papoulis, 1991.) Therefore,

1

var[l(w)] =~ % P? (w). (10.76)

Consequently, the variance of J (w) is inversely proportional to the number of peri-
odograms averaged, and as K increases, the variance approaches zero.
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