
Chapter 13
Key Establishment

With the cryptographic mechanisms that we have learned so far, in particular sym-
metric and asymmetric encryption, digital signatures and message authentication
codes (MACs), one can relatively easily achieve the basic security services (cf.
Sect. 10.1.3):

� Confidentiality (with encryption algorithms)
� Integrity (with MACs or digital signatures)
� Message authentication (with MACs or digital signatures)
� Non-repudiation (with digital signatures)

Similarly, identification can be accomplished through protocols which make use of
standard cryptographic primitives.

However, all cryptographic mechanisms that we have introduced so far assume
that keys are properly distributed between the parties involved, e.g., between Alice
and Bob. The task of key establishment is in practice one of the most important and
often also most difficult parts of a security system. We already learned some ways
of distributing keys, in particular Diffie–Hellman key exchange. In this chapter we
will learn many more methods for establishing keys between remote parties. You
will learn about the following important issues:

� How keys can be established using symmetric cryptosystems
� How keys can be established using public-key cryptosystems
� Why public-key techniques still have shortcomings for key distribution
� What certificates are and how they are used
� The role that public-key infrastructures play

C. Paar, J. Pelzl, Understanding Cryptography, 331
DOI 10.1007/978-3-642-04101-3 13, c© Springer-Verlag Berlin Heidelberg 2010

332 13 Key Establishment

13.1 Introduction

In this section we introduce some terminology, some thoughts on key freshness and
a very basic key distribution scheme. The latter is helpful for motivating the more
advanced methods which will follow in this chapter.

13.1.1 Some Terminology

Roughly speaking, key establishment deals with establishing a shared secret be-
tween two or more parties. Methods for this can be classified into key transport and
key agreement methods, as shown in Fig. 13.1. A key transport protocol is a tech-
nique where one party securely transfers a secret value to others. In a key agreement
protocol two (or more) parties derive the shared secret where all parties contribute
to the secret. Ideally, none of the parties can control what the final joint value will
be.

Fig. 13.1 Classification of key establishment schemes

Key establishment itself is strongly related to identification. For instance, you
may think of attacks by unauthorized users who join the key establishment protocol
with the aim of masquerading as either Alice or Bob with the goal of establishing a
secret key with the other party. To prevent such attacks, each party must be assured
of the identity of the other entity. All of these issues are addressed in this chapter.

13.1.2 Key Freshness and Key Derivation

In many (but not all) security systems it is desirable to use cryptographic keys which
are only valid for a limited time, e.g., for one Internet connection. Such keys are
called session keys or ephemeral keys. Limiting the period in which a cryptographic
key is used has several advantages. A major one is that there is less damage if the

13.1 Introduction 333

key is exposed. Also, an attacker has less ciphertext available that was generated un-
der one key, which can make cryptographic attacks much more difficult. Moreover,
an attacker is forced to recover several keys if he is interested in decrypting larger
parts of plaintext. Real-world examples where session keys are frequently gener-
ated include voice encryption in GSM cell phones and video encryption in pay-TV
satellite systems; in both cases new keys are generated within a matter of minutes
or sometimes even seconds.

The security advantages of key freshness are fairly obvious. However, the ques-
tion now is, how can key updates be realized? The first approach is to simply execute
the key establishment protocols shown in this chapter over and over again. However,
as we see later, there are always certain costs associated with key establishment, typ-
ically with respect to additional communication connections and computations. The
latter holds especially in the case of public-key algorithms which are very compu-
tationally intensive.

The second approach to key update uses an already established joint secret key
to derive fresh session keys. The principal idea is to use a key derivation function
(KDF) as shown in Fig. 13.2. Typically, a non-secret parameter r is processed to-
gether with the joint secret kAB between the users Alice and Bob.

Fig. 13.2 Principle of key derivation

An important characteristic of the key derivation function is that it should be a
one-way function. The one-way property prevents an attacker from deducing kAB

should any of the session keys become compromised, which in turn would allow the
attacker to compute all other session keys.

One possible way of realizing the key derivation function is that one party sends
a nonce, i.e., a numerical value that is used only once, to the other party. Both users
encrypt the nonce using the shared secret key kAB by means of a symmetric cipher
such as AES. The corresponding protocol is shown below.

334 13 Key Establishment

Key Derivation with Nonces

Alice Bob
generate nonce r

r←−−−−−−−−−−
derive key derive key
kses = ekAB(r) kses = ekAB(r)

An alternative to encrypting the nonce is hashing it together with kAB. One way
of achieving this is that both parties perform a HMAC computation with the nonce
serving as the “message”:

kses = HMACkAB(r)

Rather than sending a nonce, Alice and Bob can also simply encrypt a counter
cnt periodically, where the ciphertext again forms the session key:

kses = ekAB(cnt)

or compute the HMAC of the counter:

kses = HMACkAB(cnt)

Using a counter can save Alice and Bob one communication session because, unlike
the case of the nonce-based key derivation, no value needs to be transmitted. How-
ever, this holds only if both parties know exactly when the next key derivation needs
to take place. Otherwise, a counter synchronization message might be required.

13.1.3 The n2 Key Distribution Problem

Until now we mainly assumed that the necessary keys for symmetric algorithms
are distributed via a “secure channel”, as depicted in the beginning of this book in
Fig. 1.5. Distributing keys this way is sometimes referred to as key predistribution
or out-of-band transmission since it typically involves a different mode (or band)
of communication, e.g., the key is transmitted via a phone line or in a letter. Even
though this seems somewhat clumsy, it can be a useful approach in certain practical
situations, especially if the number of communicating parties is not too large. How-
ever, key predistribution quickly reaches its limits even if the number of entities in a
network is only moderately large. This leads to the well-known n2 key distribution
problem.

We assume a network with n users, where every party is capable of communi-
cating with every other one in a secure fashion, i.e., if Alice wants to communicate
with Bob, these two share a secret key kAB which is only known to them but not to

13.1 Introduction 335

any of the other n−2 parties. This situation is shown for the case of a network with
n = 4 participants in Fig. 13.3.

Fig. 13.3 Keys in a network with n = 4 users

We can extrapolate several features of this simple scheme for the case of n users:

� Each user must store n−1 keys.
� There is a total of n(n−1) ≈ n2 keys in the network.
� A total of n(n−1)/2 =

(n
2

)
symmetric key pairs are in the network.

� If a new user joins the network, a secure channel must be established with every
other user in order to upload new keys.

The consequences of these observations are not very favorable if the number
of users increases. The first drawback is that the number of keys in the system is
roughly n2. Even for moderately sized networks, this number becomes quite large.
All these keys must be generated securely at one location, which is typically some
type of trusted authority. The other drawback, which is often more serious in prac-
tice, is that adding one new user to the system requires updating the keys at all
existing users. Since each update requires a secure channel, this is very burdensome.

Example 13.1. A mid-size company with 750 employees wants to set up secure e-
mail communication with symmetric keys. For this purpose, 750×749/2 = 280,875
symmetric key pairs must be generated, and 750×749 = 561,750 keys must be dis-
tributed via secure channels. Moreover, if employee number 751 joins the company,
all 750 other users must receive a key update. This means that 751 secure channels
(to the 750 existing employees and to the new one) must be established.

�

Obviously, this approach does not work for large networks. However, there are
many cases in practice where the number of users is (i) small and (ii) does not
change frequently. An example could be a company with a small number of branches
which all need to communicate with each other securely. Adding a new branch does
not happen too often, and if this happens it can be tolerated that one new key is
uploaded to any of the existing branches.

336 13 Key Establishment

13.2 Key Establishment Using Symmetric-Key Techniques

Symmetric ciphers can be used to establish secret (session) keys. This is somewhat
surprising because we assumed for most of the book that symmetric ciphers them-
selves need a secure channel for establishing their keys. However, it turns out that it
is in many cases sufficient to have a secure channel only when a new user joins the
network. This is in practice often achievable for computer networks because at set-
up time a (trusted) system administrator might be needed in person anyway who can
install a secret key manually. In the case of embedded devices, such as cell phones,
a secure channel is often given during manufacture, i.e., a secret key can be loaded
into the device “in the factory”.

The protocols introduced in the following all perform key transport and not key
agreement.

13.2.1 Key Establishment with a Key Distribution Center

The protocols developed in the following rely on a Key Distribution Center (KDC).
This is a server that is fully trusted by all users and that shares a secret key with each
user. This key, which is named the Key Encryption Key (KEK), is used to securely
transmit session keys to users.

Basic Protocol

A necessary prerequisite is that each user U shares a unique secret key KEK kU

with the key distribution center which predistributed through a secure channel. Let’s
look what happens if one party requests a secure session from the KDC, e.g., Alice
wants to communicate with Bob. The interesting part of this approach is that the
KDC encrypts the session key that will eventually be used by Alice and Bob. In
a basic protocol, the KDC generates two messages, yA and yB, for Alice and Bob,
respectively:

yA = ekA(kses)
yB = ekB(kses)

Each message contains the session key encrypted with one of the two KEKs. The
protocol looks like this:

13.2 Key Establishment Using Symmetric-Key Techniques 337

Basic Key Establishment Using a Key Distribution Center

Alice KDC Bob
KEK: kA KEK: kA, kB KEK: kB

RQST(IDA,IDB)−−−−−−−−−→
generate random kses

yA = ekA (kses)
yB = ekB (kses)

yA←−−−−−−−− yB−−−−−−→
kses = e−1

kA
(yA) kses = e−1

kB
(yB)

y = ekses (x)
y−−−−−−−−→ x = e−1

kses
(y)

The protocol begins with a request message RQST(IDA, IDB), where IDA and
IDB simply indicate the users involved in the session. The actual key establishment
protocol is executed subsequently in the upper part of the drawing. Below the solid
line is, as an example, shown how Alice and Bob can now communicate with each
other securely using the session key.

It is important to note that two types of keys are involved in the protocol. The
KEKs kA and kB are long-term keys that do not change. The session key kses is an
ephemeral key that changes frequently, ideally for every communication session.
In order to understand this protocol more intuitively, one can view the predis-
tributed KEKs as forming a secret channel between the KDC and each user.
With this interpretation, the protocol is straightforward: The KDC simply sends a
session key to Alice and Bob via the two respective secret channels.

Since the KEKs are long-term keys, whereas the session keys have typically a
much shorter lifetime, in practice sometimes different encryption algorithms are
used with both. Let’s consider the following example. In a pay-TV system AES
might be used with the long-term KEKs kU for distributing session keys kses. The
session keys might only have a lifetime of, say, one minute. The session keys are
used to encrypt the actual plaintext (the digital TV signal in this example) with a fast
stream cipher. A stream cipher might be required to assure real-time decryption. The
advantage of this arrangement is that even if a session key becomes compromised,
only one minute’s worth of multimedia data can be decrypted by an adversary. Thus,
the cipher that is used with the session key does not necessarily need to have the
same cryptographic strength as the algorithm which is used for distributing the ses-
sion keys. On the other hand, if one of the KEKs becomes compromised, all prior
and future traffic can be decrypted by an eavesdropper.

It is easy to modify the above protocol such that we save one communication
session. This is shown in the following:

338 13 Key Establishment

Key Establishment Using a Key Distribution Center

Alice KDC Bob
KEK: kA KEK: kA, kB KEK: kB

RQST(IDA,IDB)−−−−−−−−−→
generate random kses

yA = ekA (kses)
yB = ekB (kses)

yA,yB←−−−−−−−−
kses = e−1

kA
(yA)

y = ekses (x)
y,yB−−−−−−−−→

kses = e−1
kB

(yB)
x = e−1

kses
(y)

Alice receives the session key encrypted with both KEKs, kA and kB. She is able
to compute the session key kses from yA and can use it subsequently to encrypt the
actual message she wants to send to Bob. The interesting part of the protocol is that
Bob receives both the encrypted message y as well as yB. He needs to decrypt the
latter one in order to recover the session key which is needed for computing x.

Both of the KDC-based protocols have the advantage that there are only n long-
term symmetric key pairs in the system, unlike the first naı̈ve scheme that we en-
countered, where about n2/2 key pairs were required. The n long-term KEKS only
need to be stored by the KDC, while each user only stores his or her own KEK. Most
importantly, if a new user Noah joins the network, a secure channel only needs to
be established once between the KDC and Noah to distribute the KEK kN .

Security

Even though the two protocols protect against a passive attacker, i.e, an adversary
that can only eavesdrop, there are attacks if an adversary can actively manipulate
messages and create faked ones.

Replay Attack One weakness is that a replay attack is possible. This attack makes
use of the fact that neither Alice nor Bob know whether the encrypted session key
they receive is actually a new one. If an old one is reused, key freshness is violated.
This can be a particularly serious issue if an old session key has become compro-
mised. This could happen if an old key is leaked, e.g., through a hacker, or if the
encryption algorithm used with an old key has become insecure due to cryptanalyt-
ical advances.

If Oscar gets hold of a previous session key, he can impersonate the KDC and
resend old messages yA and yB to Alice and Bob. Since Oscar knows the session
key, he can decipher the plaintext that will be encrypted by Alice or Bob.

13.2 Key Establishment Using Symmetric-Key Techniques 339

Key Confirmation Attack Another weakness of the above protocol is that Alice
is not assured that the key material she receives from the KDC is actually for a
session between her and Bob. This attack assumes that Oscar is also a legitimate
(but malicious) user. By changing the session-request message Oscar can trick the
KDC and Alice to set up session between him and Alice as opposed to between
Alice and Bob. Here is the attack:

Key Confirmation Attack

Alice Oscar KDC Bob
KEK: kA KEK: kO KEK: kA, kB, kO KEK: kB

RQST(IDA ,IDB)−−−−−−−−−−→
� substitute

RQST(IDA ,IDO)−−−−−−−−−−→
random kses

yA = ekA (kses)
yO = ekO (kses)

yA ,yO←−−−−−−−
kses = e−1

kA
(yA)

y = ekses (x)
y,yO−−−−−−−→

� intercept
kses = e−1

kO
(yO)

x = e−1
kses

(y)

The gist of the attack is that the KDC believes Alice requests a key for a session
between Alice and Oscar, whereas she really wants to communicate with Bob. Alice
assumes that the encrypted key “yO” is “yB”, i.e., the session key encrypted under
Bob’s KEK kB. (Note that if the KDC puts a header IDO in front of yO which asso-
ciates it with Oscar, Oscar might simply change the header to IDB.) In other words,
Alice has no way of knowing that the KDC prepared a session with her and Oscar;
instead she still thinks she is setting up a session with Bob. Alice continues with the
protocol and encrypts her actual message as y. If Oscar intercepts y, he can decrypt
it.

The underlying problem for this attack is that there is no key confirmation. If key
confirmation were given, Alice would be assured that Bob and no other user knows
the session key.

13.2.2 Kerberos

A more advanced protocol that protects against both replay and key confirmation
attacks is Kerberos. It is, in fact, more than a mere key distribution protocol; its
main purpose is to provide user authentication in computer networks. Kerberos was
standardized as an RFC 1510 in 1993 and is in widespread use. It is also based on

340 13 Key Establishment

a KDC, which is named the “authentication sever” in Kerberos terminology. Let’s
first look at a simplified version of the protocol.

Key Establishment Using a Simplified Version of Kerberos

Alice KDC Bob
KEK: kA KEK: kA, kB KEK: kB

generate nonce rA
RQST(IDA ,IDB ,rA)−−−−−−−−−−−−→

generate random kses

generate lifetime T
yA = ekA (kses,rA,T, IDB)
yB = ekB (kses, IDA,T)

yA ,yB←−−−−−−−−−−−
kses,r‘A,T, IDB = e−1

kA
(yA)

verify r′A = rA

verify IDB

verify lifetime T
generate time stamp TS

yAB = ekses (IDA,TS)
yAB ,yB−−−−−−−−−−−→

kses, IDA,T = e−1
kB

(yB)
IDA‘,TS = e−1

kses
(yAB)

verify IDA‘ = IDA

verify lifetime T
verify time stamp TS

y = ekses (x)
y−−−−−−−−−−−→ x = e−1

kses
(y)

Kerberos assures the timeliness of the protocol through two measures. First, the
KDC specifies a lifetime T for the session key. The lifetime is encrypted with both
session keys, i.e., it is included in yA and yB. Hence, both Alice and Bob are aware
of the period during which they can use the session key. Second, Alice uses a time
stamp TS, through which Bob can be assured that Alice’s messages are recent and
are not the result of a replay attack. For this, Alice’s and Bob’s system clocks must
be synchronized, but not with a very high accuracy. Typical values are in the range
of a few minutes. The usage of the lifetime parameter T and the time stamp TS

prevent replay attacks by Oscar.
Equally important is that Kerberos provides key confirmation and user authenti-

cation. In the beginning, Alice sends a random nonce rA to the KDC. This can be
considered as a challenge because she challenges the KDC to encrypt it with their
joint KEK kA. If the returned challenge r′A matches the sent one, Alice is assured that
the message yA was actually sent by the KDC. This method to authenticate users is
known as challenge-response protocol and is widely used, e.g., for authentication of
smart cards.

Through the inclusion of Bob’s identity IDB in yA Alice is assured that the session
key is actually meant for a session between herself and Bob. With the inclusion of
Alice’s identity IDA in both yB and yAB, Bob can verify that (i) the KDC included
a session key for a connection between him and Alice and (ii) that he is currently
actually talking to Alice.

13.2 Key Establishment Using Symmetric-Key Techniques 341

13.2.3 Remaining Problems with Symmetric-Key Distribution

Even though Kerberos provides strong assurance that the correct keys are being
used and that users are authenticated, there are still drawbacks to the protocols dis-
cussed so far. We now describe remaining general problems that exist for KDC-
based schemes.

Communication requirements One problem in practice is that the KDC needs to
be contacted if a new secure session is to be initiated between any two parties in the
network. Even though this is a performance rather than a security problem, it can be
a serious hindrance in a system with very many users. In Kerberos, one can alleviate
this potential problem by increasing the lifetime T of the key. In practice, Kerberos
can run with tens of thousands of users. However, it would be a problem to scale
such an approach to “all” Internet users.

Secure channel during initialization As discussed earlier, all KDC-based proto-
cols require a secure channel at the time a new user joins the network for transmit-
ting that user’s key encryption key.

Single point of failure All KDC-based protocols, including Kerberos, have the
security drawback that they have a single point of failure, namely the database that
contains the key encryption keys, the KEKs. If the KDC becomes compromised,
all KEKs in the entire system become invalid and have to be re-established using
secure channels between the KDC and each user.

No perfect forward secrecy If any of the KEKs becomes compromised, e.g.,
through a hacker or Trojan software running on a user’s computer, the consequences
are serious. First, all future communication can be decrypted by the attacker who
eavesdrops. For instance, if Oscar got a hold of Alice’s KEK kA, he can recover the
session key from all messages yA that the KDC sends out. Even more dramatic
is the fact that Oscar can also decrypt past communications if he stored old
messages yA and y. Even if Alice immediately realizes that her KEK has been com-
promised and she stops using it right away, there is nothing she can do to prevent
Oscar from decrypting her past communication. Whether a system is vulnerable if
long-term keys are compromised is an important feature of a security system and
there is a special terminology used:

Definition 13.1. A cryptographic protocol has perfect forward secrecy (PFS) if the
compromise of long-term keys does not allow an attacker to obtain past session
keys.

Neither Kerberos nor the simpler protocols shown earlier offer PFS. The main
mechanism to assure PFS is to employ public-key techniques, which we study in
the following sections.

342 13 Key Establishment

13.3 Key Establishment Using Asymmetric Techniques

Public-key algorithms are especially suited for key establishment protocols since
they don’t share most of the drawbacks that symmetric key approaches have. In fact,
next to digital signatures, key establishment is the other major application domain
of public-key schemes. They can be used for both key transport and key agreement.
For the former, Diffie–Hellman key exchange, elliptic curve Diffie–Hellman or re-
lated protocols are often used. For key transport, any of the public-key encryption
schemes, e.g., RSA or Elgamal, is often used. We recall at this point that public-key
primitives are quite slow, and that for this reason actual data encryption is usually
done with symmetric primitives like AES or 3DES, after a key has been established
using asymmetric techniques.

At this moment it looks as though public-key schemes solve all key establishment
problems. It turns out, however, that they all require what is termed an authenticated
channel to distribute the public keys. The remainder of this chapter is chiefly devoted
to solving the problem of authenticated public key distribution.

13.3.1 Man-in-the-Middle Attack

The man-in-the-middle attack1 is a serious attack against public-key algorithms.
The basic idea of the attack is that the adversary, Oscar, replaces the public keys
sent out by the participants with his own keys. This is possible whenever public
keys are not authenticated. The man-in-the-middle (MIM) attack has far-reaching
consequences for asymmetric cryptography. For didactical reasons we will study
the MIM attack against the Diffie–Hellman key exchange (DHKE). However, it is
extremely important to bear in mind that the attack is applicable against any asym-
metric scheme unless the public-keys are protected, e.g., through certificates, a topic
that is discussed in Sect. 13.3.2.

We recall that the DHKE allows two parties who never met before to agree on a
shared secret by exchanging messages over an insecure channel. For convenience,
we restate the DHKE protocol here:

1 The “man-in-the-middle attack” should not be confused with the similarly sounding but in
fact entirely different “meet-in-the-middle attack” against block ciphers which was introduced in
Sect. 5.3.1.

13.3 Key Establishment Using Asymmetric Techniques 343

Diffie–Hellman Key Exchange

Alice Bob
choose random a = kpr,A choose random b = kpr,B

compute A = kpub,A ≡ αa mod
p

compute B = kpub,B ≡ αb mod
p

A−−−−−−−−−−−−→
B←−−−−−−−−−−−−

kAB ≡ Ba mod p kAB ≡ Ab mod p

As we discussed in Sect. 8.4, if the parameters are chosen carefully, which in-
cludes especially a prime p with a length of 1024 or more bit, the DHKE is secure
against eavesdropping, i.e., passive attacks. We consider now the case that an adver-
sary is not restricted to only listening to the channel. Rather, Oscar can also actively
take part in the message exchange by intercepting, changing and generating mes-
sages. The underlying idea of the MIM attack is that Oscar replaces both Alice’s
and Bob’s public key by his own. The attack is shown here:

Man-in-the-Middle Attack Against the DHKE

Alice Oscar Bob
choose a = kpr,A choose b = kpr,B

A = kpub,A ≡ αa mod
p

B = kpub,B ≡ αb mod
p

A−−−−−−→� substitute Ã ≡ αo Ã−−−−−−→
B̃←−−−−−−� substitute B̃ ≡ αo B←−−−−−−

kAO ≡ (B̃)a mod p kAO ≡ Ao mod p kBO ≡ (Ã)b mod p
kBO ≡ Bo mod p

Let’s look at the keys that are being computed by the three players, Alice, Bob
and Oscar. The key Alice computes is:

kAO = (B̃)a ≡ (αo)a ≡ αoa mod p

which is identical to the key that Oscar computes as kAO = Ao ≡ (αa)o ≡αao mod p.
At the same time Bob computes:

kBO = (Ã)b ≡ (αo)b ≡ αob mod p

which is identical to Oscar’s key kBO = Bo ≡ (αb)o ≡ αbo mod p. Note that the two
malicious keys that Oscar sends out, Ã and B̃, are in fact the same values. With use
different names here merely to stress the fact that Alice and Bob assume that they
have received each other‘s public keys.

344 13 Key Establishment

What happens in this attack is that two DHKEs are being performed simultane-
ously, one between Alice and Oscar and another one between Bob and Oscar. As
a result, Oscar has established a joined key with Alice, which we termed kAO, and
another one with Bob, which we named kBO. However, neither Alice nor Bob is
aware of the fact that they share a key with Oscar and not with each other!
Both assume that they have computed a joint key kAB.

From here on, Oscar has much control over encrypted traffic between Alice and
Bob. As an example, here is how he can read encrypted messages in a way that goes
unnoticed by Alice and Bob:

Message Manipulation After a Man-in-the-Middle Attack

Alice Oscar Bob
message x
y = AESkAO (x)

y−−−−−−−→� intercept

decrypt x = AES−1
kAO

(x)
re-encrypt y‘ =
AESkBO (x)

y‘−−−−−−−→
decrypt x = AES−1

kBO
(y‘)

For illustrative purposes, we assumed that AES is used for the encryption. Of course,
any other symmetric cipher can be used as well. Please note that Oscar can not only
read the plaintext x but can also alter it prior to re-encrypting it with kBO. This can
have serious consequences, e.g., if the message x describes a financial transaction.

13.3.2 Certificates

The underlying problem of the man-in-the-middle attack is that public keys are not
authenticated. We recall from Sect. 10.1.3 that message authentication ensures that
the sender of a message is authentic. However, in the scenario at hand Bob receives
a public key which is supposedly Alice’s, but he has no way of knowing whether
that is in fact the case. To make this point clear, let’s examine how a key of a user
Alice would look in practice:

kA = (kpub,A, IDA),

where IDA is identifying information, e.g., Alice’s IP address or her name together
with date of birth. The actual public key kpub,A, however, is a mere binary string,
e.g., 2048 bit. If Oscar performs a MIM attack, he would change the key to:

kA = (kpub,O, IDA).

13.3 Key Establishment Using Asymmetric Techniques 345

Since everything is unchanged except the anonymous actual bit string, the receiver
will not be able to detect that it is in fact Oscar’s. This observation has far-reaching
consequences which can be summarized in the following statement:

Even though public-key schemes do not require a secure channel, they require authen-
ticated channels for the distribution of the public keys.

We would like to stress here again that the MIM attack is not restricted to the DHKE,
but is in fact applicable to any asymmetric crypto scheme. The attack always pro-
ceeds the same way: Oscar intercepts the public key that is being sent and replaces
it with his own.

The problem of trusted distribution of private keys is central in modern public-
key cryptography. There are several ways to address the problem of key authentica-
tion. The main mechanism is the use of certificates. The idea behind certificates is
quite easy: Since the authenticity of the message (kpub,A, IDA) is violated by an ac-
tive attack, we apply a cryptographic mechanism that provides authentication. More
specifically, we use digital signatures.2 Thus, a certificate for a user Alice in its most
basic form is the following structure:

CertA = [(kpub,A, IDA),sigkpr
(kpub,A, IDA)]

The idea is that the receiver of a certificate verifies the signature prior to using the
public key. We recall from Chap. 10 that the signature protects the signed message
— which is the structure (kpub,A, IDA) in this case — against manipulation. If Oscar
attempts to replace kpub,A by kpub,O it will be detected. Thus, it is said that certifi-
cates bind the identity of a user to their public key.

Certificates require that the receiver has the correct verification key, which is a
public key. If we were to use Alice’s public key for this, we would have the same
problem that we are actually trying to solve. Instead, the signatures for certificates
are provided by a mutually trusted third party. This party is called the Certification
Authority commonly abbreviated as CA. It is the task of the CA to generate and issue
certificates for all users in the system. For certificate generation, we can distinguish
between two main cases. In the first case, the user computes her own asymmetric
key pair and merely requests the CA to sign the public key, as shown in the following
simple protocol for a user named Alice:

2 MACs also provide authentication and could, in principle, also be used for authenticating pub-
lic keys. However, because MACs themselves are symmetric algorithms, we would again need a
secure channel for distributing the MAC keys with all the associated drawbacks.

346 13 Key Establishment

Certificate Generation with User-Provided Keys

Alice CA
generate kpr,A,kpub,A

RQST(kpub,A, IDA)
−−−−−−−−−−−−→

verify IDA

sA = sigkpr ,CA(kpub,A, IDA)
CertA = [(kpub,A, IDA),sA]

CertA←−−−−−−−−−−−−

From a security point of view, the first transaction is crucial. It must be assured
that Alice’s message (kpub,A, IDA) is sent via an authenticated channel. Otherwise,
Oscar could request a certificate in Alice’s name.

In practice it is often advantageous that the CA not only signs the public keys
but also generates the public–private key pairs for each user. In this case, a basic
protocol looks like this:

Certificate Generation with CA-Generated Keys

Alice CA

request certificate
RQST(IDA)−−−−−−−−−−−−→

verify IDA

generate kpr,A,kpub,A
sA = sigkpr ,CA(kpub,A, IDA)
CertA = [(kpub,A, IDA),sA]

CertA,kpr,A←−−−−−−−−−−−−

For the first transmission, an authenticated channel is needed. In other words:
The CA must be assured that it is really Alice who is requesting a certificate, and
not Oscar who is requesting a certificate in Alice’s name. Even more sensitive is the
second transmission consisting of (CertA, kpr,A). Because the private key is being
sent here, not only an authenticated but a secure channel is required. In practice,
this could be a certificate delivered by mail on a CD-ROM.

Before we discuss CAs in more detail, let’s have a look at the DHKE which is
protected with certificates:

13.3 Key Establishment Using Asymmetric Techniques 347

Diffie–Hellman Key Exchange with Certificates

Alice Bob
a = kpr,A b = kpr,B

A = kpub,A ≡ αa mod p B = kpub,B ≡ αB mod p
CertA = [(A, IDA),sA] CertB = [(B, IDB),sB]

CertA−−−−−−−−−−−−→
CertB←−−−−−−−−−−−−

verify certificate: verify certificate:
verkpub,CA (CertB) verkpub,CA (CertA)
compute session key: compute session key:
kAB ≡ Ba mod p kAB ≡ Ab mod p

One very crucial point here is the verification of the certificates. Obviously, with-
out verification, the signatures within the certificates would be of no use. As can be
seen in the protocol, verification requires the public key of the CA. This key must
be transmitted via an authenticated channel, otherwise Oscar could perform MIM
attacks again. It looks like we haven’t gained much from the introduction of cer-
tificates since we again require an authenticated channel! However, the difference
from the former situation is that we need the authenticated channel only once,
at set-up time. For instance, public verification keys are nowadays often included
in PC software such as Web browsers or Microsoft software products. The authen-
ticated channel is here assumed to be given through the installation of original soft-
ware which has not been manipulated. What’s happening here from a more abstract
point of view is extremely interesting, namely a transfer of trust. We saw in the
earlier example of DHKE without certificates, that Alice and Bob have to trust each
other’s public keys directly. With the introduction of certificates, they only have to
trust the CA’s public key kpub,CA. If the CA signs other public keys, Alice and Bob
know that they can also trust those. This is called a chain of trust.

13.3.3 Public-Key Infrastructures (PKI) and CAs

The entire system that is formed by CAs together with the necessary support mecha-
nisms is called a public-key infrastructure, usually referred to as PKI. As the reader
can perhaps start to imagine, setting up and running a PKI in the real world is a
complex task. Issues such as identifying users for certificate issuing and trusted dis-
tribution of CA keys have to be solved. There are also many other real-world issues;
among the most complex are the existence of many different CAs and revocation of
certificates. We discuss some aspects of using certificate systems in practice in the
following.

348 13 Key Establishment

X.509 Certificates

In practice, certificates not only include the ID and the public key of a user, they
tend to be quite complex structures with many additional fields. As an example,
we look at the a X.509 certificate in Fig. 13.4. X.509 is an important standard for
network authentication services, and the corresponding certificates are widely used
for Internet communication, i.e., in S/MIME, IPsec and SSL/TLS.

Fig. 13.4 Detailed structure of an X.509 certificate

Discussing the fields defined in a X.509 certificate gives us some insight into
many aspects of PKIs in the real world. We discuss the most relevant ones in the
following:

1. Certificate Algorithm: Here it is specified which signature algorithm is being
used, e.g., RSA with SHA-1 or ECDSA with SHA-2, and with which parameters,
e.g., the bit lengths.

2. Issuer: There are many companies and organizations that issue certificates. This
field specifies who generated the one at hand.

3. Period of Validity: In most cases, a public key is not certified indefinitely but
rather for a limited time, e.g., for one or two years. One reason for doing this
is that private keys which belong to the certificate may become compromised.
By limiting the validity period, there is only a certain time span during which
an attacker can maliciously use the private key. Another reason for a restricted
lifetime is that, especially for certificates for companies, it can happen that the

13.3 Key Establishment Using Asymmetric Techniques 349

user ceases to exist. If the certificates, and thus the public keys, are only valid for
limited time, the damage can be controlled.

4. Subject: This field contains what was called IDA or IDB in our earlier examples. It
contains identifying information such as names of people or organizations. Note
that not only actual people but also entities like companies can obtain certificates.

5. Subject’s Public Key: The public key that is to be protected by the certificate
is here. In addition to the binary string which is the public key, the algorithm
(e.g., Diffie–Hellman) and the algorithm parameters, e.g., the modulus p and the
primitive element α , are stored.

6. Signature: The signature over all other fields of the certificate.

We note that for every signature two public key algorithms are involved: the one
whose public key is protected by the certificate and the algorithm with which the
certificate is signed. These can be entirely different algorithms and parameter sets.
For instance, the certificate might be signed with an RSA 2048-bit algorithm, while
the public key within the certificate could belong to a 160-bit elliptic curve scheme.

Chain of Certificate Authorities (CAs)

In an ideal world, there would be one CA which issues certificates for, say, all In-
ternet users on planet Earth. Unfortunately, that is not the case. There are many dif-
ferent entities that act as CAs. First of all, many countries have their own “official”
CA, often for certificates that are used for applications that involve government busi-
ness. Second, certificates for websites are currently issued by more than 50 mostly
commercial entities. (Most Web browsers have the public key of those CAs pre-
installed.) Third, many corporations issue certificate for their own employees and
external entities who do business with them. It would be virtually impossible for a
user to have the private keys of all these different CAs at hand. What is done instead
is that CAs certify each other.

Let’s look at an example where Alice’s certificate is issued by CA1 and Bob’s by
CA2. At the moment, Alice is only in possession of the public key of “her” CA1,
and Bob has only kpub,CA2. If Bob sends his certificate to Alice, she cannot verify
Bob’s public key. This situation looks like this:

Two Users with Different Certificate Authorities

Alice Bob
kpub,CA1 kpub,CA2

CertB = [(kpub,B, IDB),sigkpr,CA2
(kpub,B, IDB)]

CertB←−−−−−−−−−−−−

Alice can now request CA2’s public key, which is itself contained in a certificate
that was signed by Alice’s CA1:

350 13 Key Establishment

Verification of a CA Public Key

Alice CA2

RQST(CertCA2)−−−−−−−−−−−−→
CertCA2←−−−−−−−−−−−−

verkpub,CA1(CertCA2)
⇒ kpub,CA2 is valid
verkpub,CA2(CertB)
⇒ kpub,B is valid

The structure CertCA2 contains the public key of CA2 signed by CA1, which
looks like this:

CertCA2 = [(kpub,CA2, IDCA2),sigkpr,CA1
(kpub,CA2, IDCA2)]

The important outcome of the process is that Alice can now verify Bob’s key.
What’s happening here is that a certificate chain is being established. CA1 trusts

CA2 which is expressed by CA1 signing the public key kpub,CA2. Now Alice can
trust Bob’s public key since it was signed by CA1. This situation is called a chain
of trust, and it is said that trust is delegated.

In practice, CAs can be arranged hierarchically, where each CA signes the public
key of the certificate authorities one level below. Alternatively, CAs can cross-certify
each other without a strict hierarchical relationship.

Certificate Revocation Lists

One major issue in practice is that it must be possible to revoke certificates. A com-
mon reason is that a certificate is stored on a smart card which is lost. Another
reason could be that a person left an organization and one wants to make sure that
she is not using the public key that was given to her. The solution in these situations
seems easy: Just publish a list with all certificates that are currently invalid. Such
a list is called a certificate revocation list, or CRL. Typically, the serial numbers of
certificates are used to identify the revoked certificates. Of course, a CRL must be
signed by the CA since otherwise attacks are possible.

The problem with CLRs is how to transmit them to the users. The most straight-
forward way is that every user contacts the issuing CA every time a certificate of
another user is received. The major drawback is that now the CA is involved in
every session set-up. This was one major drawback of KDC-based, i.e., symmetric-
key, approaches. The promise of certificate-based communication was that no online
contact to a central authority was needed.

An alternative is that CRLs are sent out periodically. The problem with this ap-
proach is that there is always a period during which a certificate is invalid but users

13.4 Discussion and Further Reading 351

have not yet been informed. For instance, if the CRL is sent out at 3:00 am every
morning (a time with relatively little network traffic otherwise), a dishonest person
could have almost a whole day where a revoked certificate is still valid. To counter
this, the CRL update period can be shortened, say to one hour. However, this would
be a tremendous burden on the bandwidth of the network. This is an instructive ex-
ample for the tradeoff between costs in the form of network traffic on one hand, and
security on the other hand. In practice, a reasonable compromise must be found.

In order to keep the size of CRLs moderate, often only the changes from the last
CRL broadcast are sent out. These update-only CRLs are referred to as delta CRLs.

13.4 Discussion and Further Reading

Key Establishment Protocols In most modern network security protocols, public-
key approaches are used for establishing keys. In this book, we introduced the
Diffie–Hellman key exchange and described a basic key transport protocol in
Chap. 6 (cf. Fig. 6.5). In practice, often considerably more advanced asymmetric
protocols are used. However, most of them are based on either the Diffie–Hellman
or a key transport protocol. A comprehensive overview on this area is given in [33].

We now give a few examples of generic cryptographic protocols that are of-
ten preferred over the basic Diffie–Hellman key exchange. The MTI (Matsumoto–
Takashima–Imai) protocols are an ensemble of authenticated Diffie–Hellman key
exchanges which were already published in 1986. Good descriptions can be found
in [33] and [120]. Another popular Diffie–Hellman extension is the station-to-station
(STS) protocol. It uses certificates and provides both user and key authentication.
A discussion about STS variants can be found in [60]. A more recent protocol for
authenticated Diffie–Hellman is the MQV protocol which is discussed in [108]. It is
typically used with elliptic curves.

A prominent practical example for a key establishment protocol is the Internet
Key Exchange (IKE) protocol. IKE provides key material for IPsec, which is the
“official” security mechanism for Internet traffic. IKE is quite complex and offers
many options. At its core, however, is a Diffie–Hellman key agreement followed
by an authentication. The latter can either be achieved with certificates or with pre-
shared keys. A good starting point for more information on IPsec and IKE is the
RFC [128] and, more accessibly, reference [161, Chapter 16].

Certificates and Alternatives During the second half of the 1990s there was a
belief that essentially every Internet user would need a certificate in order to com-
municate securely, e.g., for doing ebusiness transactions. “PKI” was a buzzword for
some time, and many companies were formed that provided certificates and PKI ser-
vices. However, it turned out that there are major technical and practical hurdles to a
PKI that truly encompasses all or most Internet users. What has happened instead is
that nowadays many servers are authenticated with certificates, for instance Internet
retailers, whereas most individual users are not. The needed CA verification keys

352 13 Key Establishment

are often preinstalled in users’ Web browsers. This asymmetric set-up — the server
is authenticated but the user is not — is acceptable since the user is typically the one
who provides crucial information such as her credit card number. A comprehensive
introduction to the large field of PKI and certificates is given in the book [2]. An in-
teresting and entertaining discussion about the alleged shortcomings of PKI is given
in [74], and an equally instructive rebuttal is online at [107].

We introduced certificates and a public-key infrastructure as the main method
for authenticating public keys. Such hierarchical organized certificates are only one
possible approach, though this is the most widely used one. Another concept is the
web of trust that relies entirely on trust relationships between parties. The idea is
as follows: If Alice trusts Bob, it is assumed that she also wants to trust all other
users whom Bob trusts. This means that every party in such a web of trust implicitly
trusts parties whom it does not know (or has never met before). The most popular
example for such a system are Pretty Good Privacy (PGP) and Gnu Privacy Guard
(GPG), which are widely used for signing and encrypting emails.

13.5 Lessons Learned

� A key transport protocol securely transfers a secret key to other parties.
� In a key agreement protocol, two or more parties negotiate a common secret key.
� In most common symmetric protocols, the key exchange is coordinated by a

trusted third party. A secure channel between the third party and each user is
only required at set-up time.

� Symmetric key establishment protocols do not scale well to networks with large
numbers of users and they provide typically no perfect forward secrecy.

� The most widely used asymmetric key establishment protocol is the Diffie–
Hellman key exchange.

� All asymmetric protocols require that the public keys are authenticated, e.g., with
certificates. Otherwise man-in-the-middle attacks are possible.

Problems 353

Problems

13.1. In this exercise, we want to analyze some variants of key derivation. In prac-
tice, one masterkey kMK is exchanged in a secure way (e.g. certificate-based DHKE)
between the involved parties. Afterwards, the session keys are regularly updated by
use of key derivation. For this purpose, three different methods are at our disposal:

(1) k0 = kMK ; ki+1 = ki +1
(2) k0 = h(kMK); ki+1 = h(ki)
(3) k0 = h(kMK); ki+1 = h(kMK ||i||ki)

where h() marks a (secure) hash function, and ki is the ith session key.

1. What are the main differences between these three methods?
2. Which method provides Perfect Forward Secrecy?
3. Assume Oscar obtains the nth session key (e.g., via brute-force). Which sessions

can he now decrypt (depending on the chosen method)?
4. Which method remains secure if the masterkey kMK is compromised? Give a

rationale!

13.2. Imagine a peer-to-peer network where 1000 users want to communicate in an
authenticated and confidential way without a central Trusted Third Party (TTP).

1. How many keys are collectively needed, if symmetric algorithms are deployed?
2. How are these numbers changed, if we bring in a central instance (Key Distribu-

tion Center, KDC)?
3. What is the main advantage of a KDC against the scenario without a KDC?
4. How many keys are necessary if we make use of asymmetric algorithms?

Also differentiate between keys which every user has to store and keys which are
collectively necessary.

13.3. You have to choose the cryptographic algorithms for a KDC where two differ-
ent classes of encryption occur:

� ekU,KDC(), where U denotes an arbitrary network node (user),
� ekses() for the communication between two users.

You have the choice between two different algorithms, DES and 3DES (Triple-
DES), and you are advised to use distinct algorithms for both encryption classes.
Which algorithm do you use for which class? Justify your answer including aspects
of security as well as celerity.

13.4. This exercise considers the security of key establishment with the aid of a
KDC. Assume that a hacker performs a successful attack against the KDC at the
point of time tx, where all keys are compromised. The attack is detected.

1. Which (practical) measures have to be taken in order to prevent decryption of
future communication between the network nodes?

354 13 Key Establishment

2. Which steps did the attacker have to take in order to decipher data transmissions
which occurred at an earlier time (t < tx)? Does such a KDC system provide
Perfect Forward Secrecy (PFS) or not?

13.5. We will now analyze an improved KDC system. In contrast to the previous
problem, all keys ekU,KDC() are now refreshed in relatively short intervals:

� The KDC generates a new (random) key: k(i+1)
U,KDC

� The KDC transmits the new key to user U , encrypted with the old one:

e
k(i)
U,KDC

(k(i+1)
U,KDC)

Which decryptions are possible, if a staff member of the KDC is corruptible and
“sells” all recent keys e

k(i)
U,KDC

of the KDC at the point of time tx? We assume that

this circumstance is not detected until the point of time ty which could be much later,
e.g., one year.

13.6. Show a key confirmation attack against the basic KDC protocol introduced in
Sect. 13.2.1. Describe each step of the attack. Your drawing should look similar to
the one showing a key confirmation attack against the second (modified) KDC-based
protocol.

13.7. Show that PFS is in fact not given in the simplified Kerberos protocol. Show
how Oscar can decrypt past and future communications if:

1. Alice’s KEK kA becomes compromised
2. Bob’s KEK kB becomes compromised

13.8. Extend the Kerberos protocol such that a mutual authentication between Alice
and Bob is performed. Give a rationale that your solution is secure.

13.9. People at your new job are deeply impressed that you worked through this
book. As the first job assignment you are asked to design a digital pay-TV system
which uses encryption to prevent service theft through wire tapping. As key ex-
change protocol, a strong Diffie–Hellman with, e.g., 2048-bit modulus is being used.
However, since your company wants to use cheap legacy hardware, only DES is
available for data encryption algorithm. You decide to use the following key deriva-
tion approach:

K(i) = f (KAB ‖ i). (13.1)

where f is an irreversible function.

1. First we have to determine whether the attacker can store an entire movie with
reasonable effort (in particular, cost). Assume the data rate for the TV link is
1 Mbit/s, and that the longest movies we want to protect are 2 hours long. How
many Gbytes (where 1M = 106 and 1G = 109) of data must be stored for a 2-hour
film (don’t mix up bit and byte here)? Is this realistic?

Problems 355

2. We assume that an attacker will be able to find a DES key in 10 minutes using
a brute-force attack. Note that this is a somewhat optimistic assumption from an
attacker’s point of view, but we want to provide some medium-term security by
assuming increasingly faster key searches in the future.
How frequently must a key be derived if the goal is to prevent an offline decryp-
tion of a 2-hour movie in less than 30 days?

13.10. We consider a system in which a key kAB is established using the Diffie–
Hellman key exchange protocol, and the encryption keys k(i) are then derived by
computing:

k(i) = h(kAB ‖ i) (13.2)

where i is just an integer counter, represented as a 32-bit variable. The values of i
are public (e.g., the encrypting party always indicates which value for i was used
in a header that precedes each ciphertext block). The derived keys are used for the
actual data encryption with a symmetric algorithm. New keys are derived every
60 sec during the communication session.

1. Assume the Diffie–Hellman key exchange is done with a 512-bit prime, and the
encryption algorithm is AES. Why doesn’t it make cryptographic sense to use the
key derivation protocol described above? Describe the attack that would require
the least computational effort from Oscar.

2. Assume now that the Diffie–Hellman key exchange is done with a 2048-bit
prime, and the encryption algorithm is DES. Describe in detail what the advan-
tages are that the key derivation scheme offers compared to a system that just
uses the Diffie–Hellman key for DES.

13.11. We reconsider the Diffie–Hellman key exchange protocol. Assume now that
Oscar runs an active man-in-the-middle attack against the key exchange as explained
in Sect. 13.3.1. For the Diffie–Hellman key exchange, use the parameters p = 467,
α = 2, and a = 228, b = 57 for Alice and Bob, respectively. Oscar uses the value
o = 16. Compute the key pairs kAO and kBO (i) the way Oscar computes them, and
(ii) the way Alice and Bob compute them.

13.12. We consider the Diffie–Hellman key exchange scheme with certificates. We
have a system with the three users Alice, Bob and Charley. The Diffie–Hellman
algorithm uses p = 61 and α = 18. The three secret keys are a = 11, b = 22 and
c = 33. The three IDs are ID(A)=1, ID(B)=2 and ID(C)=3.

For signature generation, the Elgamal signature scheme is used. We apply the
system parameters p′ = 467, d′ = 127, α ′ = 2 and β . The CA uses the ephemeral
keys kE = 213, 215 and 217 for Alice’s, Bob’s and Charley’s signatures, respec-
tively. (In practice, the CA should use a better pseudorandom generator to obtain
the kE values.)

To obtain the certificates, the CA computes xi = 4×bi + ID(i) and uses this value
as input for the signature algorithm. (Given xi, ID(i) follows then from ID(i) ≡
xi mod 4.)

1. Compute three certificates CertA, CertB and CertC.

356 13 Key Establishment

2. Verify all three certificates.
3. Compute the three session keys kAB, kAC and kBC.

13.13. Assume Oscar attempts to use an active (substitution) attack against the
Diffie–Hellman key exchange with certificates in the following ways:

1. Alice wants to communicate with Bob. When Alice obtains C(B) from Bob, Os-
car replaces it with (a valid!) C(O). How will this forgery be detected?

2. Same scenario: Oscar tries now to replace only Bob’s public key bB with his own
public key bO. How will this forgery be detected?

13.14. We consider certificate generation with CA-generated keys. Assume the sec-
ond transmission of (CertA, kpr,A) takes place over an authenticated but insecure
channel, i.e., Oscar can read this message.

1. Show how he can decrypt traffic which is encrypted by means of a Diffie–
Hellman key that Alice and Bob generated.

2. Can he also impersonate Alice such that he computes a DH key with Bob without
Bob noticing?

13.15. Given is a user domain in which users share the Diffie–Hellman parame-
ters α and p. Each user’s public Diffie–Hellman key is certified by a CA. Users
communicate securely by performing a Diffie–Hellman key exchange and then en-
crypting/decrypting messages with a symmetric algorithm such as AES.

Assume Oscar gets hold of the CA’s signature algorithm (and especially its pri-
vate key), which was used to generate certificates. Can he now decrypt old cipher-
texts which were exchanged between two users before the CA signature algorithm
was compromised, and which Oscar had stored? Explain your answer.

13.16. Another problem in certificate systems is the authenticated distribution of the
CA’s public key which is needed for certificate verification. Assume Oscar has full
control over all of Bob’s communications, that is, he can alter all messages to and
from Bob. Oscar now replaces the CA’s public key with his own (note that Bob has
no means to authenticate the key that he receives, so he thinks that he received the
CA public key.)

1. (Certificate issuing) Bob requests a certificate by sending a request containing
(1) Bob’s ID ID(B) and (2) Bob’s public key B from the CA. Describe exactly
what Oscar has to do so that Bob doesn’t find out that he has the wrong public
CA key.

2. (Protocol execution) Describe what Oscar has to do to establish a session key
with Bob using the authenticated Diffie–Hellman key exchange, such that Bob
thinks he is executing the protocol with Alice.

13.17. Draw a diagram that shows a key transport protocol shown in Fig. 6.5 from
Sect. 6.1, in which RSA encryption is used.

Problems 357

13.18. We consider RSA encryption with certificates in which Bob has the RSA
keys. Oscar manages to send Alice a verification key kpr,CA which is, in fact, Oscar’s
key. Show an active attack in which he can decipher encrypted messages that Alice
sends to Bob. Should Oscar run a MIM attack or should he set up a session only
between himself and Alice?

13.19. Pretty Good Privacy (PGP) is a widespread scheme for electronic mail se-
curity to provide authentication and confidentiality. PGP does not necessarily re-
quire the use of certificate authorities. Describe the trust model of PGP and how the
public-key management works in practice.

	Key Establishment
	Introduction
	Some Terminology
	Key Freshness and Key Derivation
	The n2 Key Distribution Problem

	Key Establishment Using Symmetric-Key Techniques
	Key Establishment with a Key Distribution Center
	Kerberos
	Remaining Problems with Symmetric-Key Distribution

	Key Establishment Using Asymmetric Techniques
	Man-in-the-Middle Attack
	Certificates
	Public-Key Infrastructures (PKI) and CAs

	Discussion and Further Reading
	Lessons Learned
	Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

