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Three Steps to Chaos-Part I: Evolution 
Michael Peter Kennedy 

Abstract-Linear system theory provides an inadequate char- 
acterization of sustained oscillation in nature. In this two-part 
exposition of oscillation in piecewise-linear dynamical systems, we 
guide the reader from linear concepts and simple harmonic mo- 
tion to nonlinear concepts and chaos. By means of three worked 
examples, we bridge the gap from the familiar parallel RLC 
network to exotic nonlinear dynamical phenomena in Chua’s 
circuit. Our goal is to stimulate the reader to think deeply about 
the fundamental nature of oscillation and to develop intuition into 
the chaos-producing mechanisms of nonlinear dynamics. 

In order to exhibit chaos, an autonomous circuit consisting of 
resistors, capacitors, and inductors must contain 

i) at least one nonlinear element 
ii) at least one locally active resistor 
iii) at least three energy-storage elements. 

Chua’s circuit is the simplest electronic circuit that satisfies 
these criteria. In addition, this remarkable circuit is the only 
physical system for which the presence of chaos has been proven 
mathematically. The circuit is readily constructed at low cost 
using standard electronic components and exhibits a rich variety 
of bifurcations and chaos. 

In Part I of this two-part paper, we plot the evolution of our 
understanding of oscillation from linear concepts and the parallel 
RLC resonant circuit to piecewise-linear circuits and Chua’s 
circuit. We illustrate by theory, simulation, and laboratory ex- 
periment the concepts of equilibria, stability, local and global 
behavior, bifurcations, and steady-state solutions. In Part 11, we 
study bifurcations and chaos in a robust practical implementation 
of Chua’s circuit. 

I. MOTIVATION 
ESPITE THE FACT that many common phenomena D observed daily in circuits and signal processing systems 

can be explained only in terms of nonlinear models, the study 
of nonlinear dynamics is still a great uncharted territory in 
systems analysis. The common rule in engineering education 
has been “linearize; then analyze.” With such a deep-rooted 
philosophy, it comes as a great surprise to many practicing 
engineers when the linear concepts long-since engrained in 
their minds are unable to account for experimentally observed 
phenomena. 

Throughout the history of science, complex nonlinear phe- 
nomena have been noticed by experimentalists but, more often 
than not, have been disregarded because the concepts for 
explaining them simply did not exist. A classic example of 
this is the driven neon bulb oscillator circuit examined by 
the eminent Dutch electrical engineer and physicist van der 
Pol. He reported his oscillator experiment in Nature magazine 
in 1927 [l], noting that “often an irregular noise is heard” 
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in the circuit. He dismissed this “noise” as ‘‘a subsidiary 
phenomenon” not worthy of further investigation. It is only in 
more recent times that the conditions under which such noise 
is generated are becoming understood [2]. A new vocabulary 
of nonlinear science has emerged as we begin to grapple 
with a variety of unusual but ubiquitous and robust dynamical 
behaviors; this is the language of attractors, bifurcations, and 
chaos [3], [4]. 

It is important that we should understand the ideas of non- 
linear dynamics at a deep level so that no naturally occurring 
phenomenon can be considered strange. Even in this field, the 
steady-state behavior of a chaotic system has been termed a 
“strange” attractor [3], [ 5 ] .  We now know that such attractors 
are not at all strange or unusual but pervade throughout 
the natural and physical world. Complicated waveforms that 
are characteristic of strange attractors and so often mistaken 
for experimental noise commonly occur in digital filters [6], 
phase-locked loops [7], and synchronization circuits [8]. 

By virtue of their complexity, exotic nonlinear behaviors 
such as these have stubbornly refused to yield to the simple 
analysis we apply to linear systems. In stark contrast to 
linear systems, it is not possible to obtain explicit solutions 
for most nonlinear systems. Nevertheless, there is “order” 
and “universality” in large classes of nonlinear phenomena 
that make them ideally suited to qualitative analysis. Many 
complex systems, although multidimensional, exhibit behavior 
that can be described by models of low order. In particular, 
the nonlinear dynamics of high-dimensional circuits can often 
be understood by examining their projections onto 2-D planes. 
These lower order models are often adequate to describe the 
behavior of the system. One such technique (the 2-D Hopf 
bifurcation theorem [9]) can be used successfully to predict 
the onset of oscillation in systems of higher order. 

For example, the microwave oscillator designer seldom 
takes account of every parasitic capacitance and inductance 
when developing a circuit. Implicit in her design methodology 
is an understanding that the steady-state output of the circuit is 
similar to that of a lower dimensional circuit. It is only when 
the predictions of the lower dimensional model fail to match 
experimental observations that more “parasitic” elements are 
added to the model. 

It is very important, therefore, to investigate these low- 
order systems completely with a view to classifying behaviors 
and simplifying models of higher order systems. It is for 
precisely this reason that the RLC resonant circuit is the es- 
tablished paradigm for understanding simple linear oscillatory 
behavior. With the great advances in nonlinear circuit theory 
over the past 30 years (see, for example, [lo]-[12]), it is 
now possible to explain highly complex nonlinear behaviors 
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Fig. 1. Chua’s circuit consists of a linear inductor L .  two linear capacitors 
(C2. Cl), a linear resistor I?, and a voltage-controlled nonlinear resistor .VH. 

with simple models and minor extensions to linear circuit 
theory. 

One of the simplest and most widely studied real nonlinear 
dynamical systems is Chua’s circuit [13], which is shown in 
Fig. 1. This consists of a linear inductor L,  a linear resistor 
R, two linear capacitors C1 and C2, and a single voltage- 
controlled‘ nonlinear resistor , ! ! R  called a Chua diode [ 141. 
This remarkable circuit is the only physical system for which 
the presence of chaos (in the sense of Shilnikov) has been 
established experimentally, confirmed numerically, and proven 
mathematically [13]. The circuit is readily constructed at low 
cost using standard electronic components [ 141 and exhibits a 
rich variety of bifurcations and chaos [ 151. 

Just as the parallel RLC circuit is the system of lowest order 
that can model the onset of oscillation in a dynamical system, 
so Chua’s circuit is the system of lowest order that can capture 
the rich nonperiodic dynamics of higher order systems. 

11. OUTLINE 

In this tutorial paper, we venture into the exciting world 
of nonlinear dynamics. With elementary linear and piecewise- 
linear circuit theory, we guide the reader in three steps from 
sinusoidal oscillation in a linear RLC circuit to chaos in Chua’s 
circuit. By means of background theory and worked examples, 
we study the concepts of steady-state solutions, equilibrium 
points, stability, bifurcations, limit cycles, and chaos. 

In Part I, we review some basic ideas in dynamical systems 
theory using the linear parallel RLC resonant circuit as our 
example. We illustrate the concepts by means of theory, 
simulation, and laboratory experiment. 

We introduce piecewise-linear circuit theory as a logical and 
trivial extension of linear circuit theory that enables us to study 
simple nonlinear concepts. Building on this solid theoretical 
foundation, we show how the parallel linear RLC resonant 
circuit (the simplest paradigm for understanding periodic 
steady-state phenomena in linear circuits) evolves through two 
second-order piecewise-linear circuits into Chua’s circuit (the 
simplest paradigm for studying nonperiodic phenomena in 
nonlinear circuits). 

In Part 11, we concentrate on Chua’s oscillator. Using the 
piecewise-linear circuit theory introduced in Part I, we focus 
our attention on third-order dynamics. By means of theory, 
computer simulation, and laboratory experiment, we describe 
in detail the geometric structure, bifurcations, and periodic and 
nonperiodic oscillatory phenomena in Chua’s circuit. We begin 
with the classic linear parallel RLC circuit. 

’ A two-terminal nonlinear resistor is called voltage-controlled if the current 
into its terminals may be written as a function of the voltage across it. 

Fig. 2. Linear parallel RLC resonant circuit 

111. THE LINEAR RLC CIRCUIT IS A POOR MODEL OF REALITY 

Consider the familiar parallel-tuned RLC resonant circuit 
shown in Fig. 2 .  This consists of two linear, lossless, passive, 
energy-storage elements (a linear inductor L and a linear 
capacitor Cz) and a linear resistor R with conductance G = 
1/R. We assume throughout this paper that L and C2 are both 
positive. 

In this section, we use this circuit to illustrate elementary 
concepts in dynamical systems theory. We show that although 
the circuit is a useful framework in which to introduce ideas of 
stability and oscillation, its linear nature restricts its usefulness. 
In particular, we explain why the linear RLC circuit is a 
poor model of sustained oscillation in nature and use this 
argument to motivate the introduction of piecewise-linear 
circuit theory. We begin with a qualitative physical description 
of the behavior of the model. 

3. I .  Qualitative Description 
Assume that the current in the inductor at time t = 0 is 130 

and that the capacitor is initially charged to a voltage V20. The 
total energy stored in the magnetic field of the inductor, and the 
electric field of the capacitor is thus $1302 + $C2V202 [16]. 
What happens for t > O? There are three cases to consider: 

If G is positive, the resistor is said to be dissipative. The 
energy initially stored in the capacitor and inductor is dissi- 
pated as heat in the resistor as the magnetic and electric fields 
collapse. V2 ( t )  and I3(t) approach zero either monotonically 
(in which case we call the response overdamped) or in the 
form of exponentially decaying sinusoids (underdamped) as 
shown in Fig. 3(a). 

If G is negative, the resistor has negative dissipation; it 
supplies energy to the rest of the circuit. In this case, the energy 
stored in the circuit increases with time: V2(t) and I3(t) have 
exponentially growing envelopes. This is illustrated in Fig. 
303). 

If G is identically equal to zero (corresponding to an open 
circuit), the circuit is said to be undamped. The energy that 
was initially stored in the capacitor and inductor cannot be 
dissipated (there are no resistive losses) but simply oscillates 
back and forth between these two elements. The voltage 
and current waveforms VZ(t) and 1 3 ( t )  are sinusoidal. In 
the absence of damping, this sinusoidal oscillation continues 
indefinitely; the circuit is then called a harmonic oscillator. 
Typical voltage and current waveforms for the harmonic 
oscillator are shown in Fig. 3(c). 

To obtain a quantitative description of this circuit, we 
first develop a mathematical formulation of the problem. AS 
electrical engineers, circuit theory provides us with a modeling 
framework for analyzing the behavior of physical systems. 
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different directions. In particular, trajectories of a 2-D system 
cannot cross each other; this has important implications for 
the possible solutions of two-dimensional systems. 

The parallel RLC circuit of Fig. 2 is characterized by a pair 
of ordinary differential equations and an initial state. Choosing 
V2 and I ,  as state variables, we write the state equations 

h j  
. .-...--- 

-._-- 

(a) 

Fig. 3. Typical voltage and current waveforms for the linear parallel RLC 
circuit shown in Fig. 2 with L = lSmH and C2 = 100nF: (a) G = 500pS 
(positive damping, underdamped); (b) G = -5OOpS (negative damping, 
underdamped); (c) G = 0 (undamped). Horizontal axis: time, 23ps/div; 
vertical axis: 13 (dashed line), 200pA/div, 1; (solid line), 100mV/div. 

3.2. Quantitative Description 

State Equations, Vector Fields, and Trajectories: A lumped' 
circuit containing resistive elements (resistors and voltage and 
current sources) and n energy-storage elements (capacitors 
and/or inductors) can be described by a system of ordinary 
differential equations of the form: 

X(t) = F(X(t),  t ) ,  X(0) = Xo 

~ dV2 = -1.3 1 - - I  1 

= -1, 1 - -v2 G 

dt c 2  e 2  

c 2  c 2  

with I3(O) = I.30 and V2(0) = V,,,. 
We illustrate the vector field by drawing vectors at uniformly 

spaced points in the 2-D state space defined by (Is,  V2). 

Starting from a given initial condition (130,  V20), the solution 
of the differential equation is the locus of points plotted out 
by the state as it moves through the vector field following 
the direction of the arrow at every point. Fig. 4 shows typical 
vector fields and trajectories of the circuit. 

Equilibrium Point(s): An equilibrium point of (1) is a state 
XQ at which the vector field is zero. Thus, F(XQ) = 0 and 
X Q ( ~ )  = XQ; a trajectory starting from an equilibrium point 
remains indefinitely at that point. An equilibrium point of an 
electronic circuit is simply a dc solution. 

Turning to our linear RLC resonant circuit once more and 
solving for the equilibrium points of (2) and (3) ,  we find just 
one solution (130;  VzQ) = (0,O). This corresponds to the 
zero-energy state of the circuit. 

Linear and Aflne Systems: The vector field F(X) of an 

XO is the initial condition, and X(t)  denotes the derivative 
of X(t) with respect to time. This is called the initial value 
problem [17], and a solution X(t) is called a trajectov. 

In the nonlinear dynamics literature, F(X(t) ,  t) is called 
a vectorjeld because it defines the direction and speed of 
a trajectory at every point in the state space and at every 
instant of time. If the vector field depends only on the state 
and is independent of time t ,  then the system is said to be 
autonomous and may be written as 

X(t) = F(X(t)), X(0) = Xo 

or simply 

X = F(X): X(0) = Xo. ( 1 )  

Each of the circuits that we study in this paper is au- 
tonomous. 

X = AX,X(O) = Xo. 

For example, the state equations of the linear parallel RLC 
circuit may be rewritten 

A vector field of a linear system is zero only at the origin 
so that the system has just one equilibrium point (as we have 
seen for our RLC circuit). 

Closely related to a linear system and of particular interest 
for the analysis of piecewise-linear circuits is an aflne system. 
An aflne system is one that is described by 

X = AX + b,X(O) = Xo 

By definition, the vector field of an autonomous circuit is a 
function and is therefore unique at every point X in the state 
space. An important consequence of this is that a trajectory 
of the system cannot go through the same point twice in two 

where b is a constant vector. Clearly, when b ~ 0, the system 
is linear. 

If A - ~  exists, the equilibrium point xQ of an affine system 
is defined by 

'A  lumped circuit is one whose physical dimensions are small compared 
to the wavelengths of its voltage and current waveforms 1161. XQ = -A-lb. 
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(C) 

Fig. 4. Typical vector fields for the linear parallel RLC resonant circuit 
with L = 18mH and C2 = 100nF: (a) G = 500~s (> 0); trajectories 
are pushed together as they spiral toward the origin; (b) G = -500pS 
(< 0); trajectories are stretched apart as they spiral uwuyfrom the origin; (c) 
G = 0; trajectories follow closed paths with an amplitude defined by the initial 
conditions. Horizontal axis: 13, 250pNdiv vertical axis: L5, 100mV/div. 

Linearization: To analyze the behavior of a dynamical 
system in the neighborhood of a point X Q ,  we write X = 
XQ + x and substitute into (1) to obtain 

XQ + X = F ( X g  + X) 

zc V X Q )  + JF(XQ)X (4) 

where we have kept just the first two terms of the Taylor series 
expansion of F(X) about XQ. The Jacobian matrix JF(x)is 

the matrix of partial derivatives of F (X) :  

Subtracting F ( X Q )  from both sides of (4), we obtain t& 
linear system 

X = JF(XQ)X (5 )  

where the Jacobian matrix is evaluated at XQ. 
This linearization describes the behavior of the circuit in 

the vicinity of XQ;  we call this the local behavior. The 
linearization is simply the small-signal equivalent circuit at 
the operating point XQ. In general, the local behavior of a 
system depends on the operating point XQ. For example, a 
pn-junction diode exhibits a small incremental resistance under 
forward bias but a large small-signal resistance under reverse 
bias. Note that for a linear or afJine system, however, the 
Jacobian matrix JF is independent of XQ;  it is simply the 
system matrix A. 

Retuming to our example of the parallel RLC circuit, a small 
perturbation ( i s ,  v 2 )  about a point (13, V 2 )  is described by 

d i g  1 - - dt -Eu2 

Note that the global behavior of the parallel RLC circuit 
described by (2) and (3) has precisely the same form as the 
local behavior (6) and (7) at every point (13, V 2 )  in the state 
space. This is a unique property of linear systems. 

Stability: Qualitatively, an equilibrium point is said to be 
stable if trajectories starting close to it remain nearby for all 
future time [17] and unstable otherwise. 

If XQ is an equilibrium point of (l), a complete description 
of its stability is contained in the eigenvalues of the lineariza- 
tion of (1) about XQ. These are defined as the roots X of the 
characteristic equation 

det(X1- JF (XQ))  = 0 (8) 

where I is the identity matrix. 
If none of the eigenvalues of JF(XQ) has a positive real 

part, and those that have zero real parts are simple zeros3 of 
(S), then the equilibrium point XQ is classified as stable. If 
the real parts of all of the eigenvalues are strictly negative, the 
equilibrium point is asymptotically stable and is called a sink 
because all nearby trajectories converge toward it. 

If any of the eigenvalues has a positive real part, the 
equilibrium point is unstable; if all of the eigenvalues have 
positive real parts, the equilibrium point is called a source. 

Returning to our example, the stability of the single equi- 
librium point (0,O) of the parallel RLC circuit is completely 

A simple zero of the characteristic equation has multiplicity one. 
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determined by the eigenvalues of 

The characteristic equation is 

The eigenvalues are thus 

Node, Focus, and Center: Because of our assumption that 
L and Cz are both positive, the term under the square root is 
smaller than IG/(2Cz)l. 

If G2/(4C2) > 1 / L ,  then both eigenvalues are real. If, 
in addition, G is positive, then the real eigenvalues are both 
negative, and the origin is a stable node; the resonant circuit 
is said to be overdamped. If G is negative, both eigenvalues 
are positive, and the origin is an unstable node. 

If G2/(4cz)  < l /L ,  then the eigenvalues of JF are 
complex conjugates. If G is positive, they have negative 
real parts, and the equilibrium point is a stable fucus; the 
time waveform is a sinusoid with an exponentially decaying 
envelope. If G is negative, they have positive real parts, and 
the equilibrium point is an unstable focus; the corresponding 
time waveform is a sinusoid with an exponentially increasing 
amplitude. 

Consider the parallel RLC circuit once more, with L = 18 
mH and CZ = 100 nF as before. We find that the origin is 
a stable focus (trajectories spiral toward it) if G = 500,uS, 
and an unstable focus (trajectories spiral away from it) if 
G = -500,uS. In the special case that G 0, the eigenvalues 
are purely imaginary, and XQ is called a center and is said to 
have neutral stability; the corresponding steady-state4 solution 
is a sinusoidal oscillation (again, see Fig. 4). 

Energy Considerations: If our RLC circuit has an asymp- 
totically stable equilibrium point (a sink) at the origin, energy 
is dissipated until none remains in the system; thus, every 
initial condition converges to the origin and the steady-state 
solution is 4 = V2 = 0. 

Similarly, if the circuit has an unstable equilibrium point 
at the origin, energy is pumped into the system, and every 
trajectory diverges from the origin. This is a nonphysical 
solution. No real circuit can exhibit an unbounded solution 
since this would require that the energy stored in the system 
should increase indefinitely. This energy is provided by the 
active (negative) resistor; every physical resistor is eventually 
passive [16], meaning that for a large enough voltage across its 
terminals, it dissipates power. This in tum limits the maximum 
values of 1131 and IVzI. 

In the special case of zero damping, the system is called 
conservative. The energy of the circuit is constant; it merely 
oscillates back and forth between the energy-storage elements. 
The voltage and current waveforms are sinusoidal of the form 

4The steady-state solution is the behavior after any initial transient has died 
out. 

Fig. 5.  Parallel RLC circuit of Fig. 2 modified by adding a nonlinear resistor 
in parallel with R. 

13 = Acos(wt + 4) and VZ = A m s i n ( &  + 4), where 
w = 1 / a  and A and 4 are determined by the initial 
conditions. 
Sinusoidal Solutions, Structural Stability, and Bifurcations: 
The way to characterize a sinusoid is to specify its frequency 
and amplitude. The radial frequency of the oscillation in 
the undamped parallel RLC resonant circuit is defined by 
the parameters of the circuit: w = l/m. Because the 
amplitude is specified by the initial conditions, two different 
sets of initial conditions will usually produce two different 
sinusoids. Mathematically, we say that the sinusoidal solution 
of the linear RLC circuit is not structurally stable. 

Structural stability refers to the sensitivity of a phenomenon 
to small changes in the parameters of the system. In the 
parallel RLC circuit, the steady-state solution is a sinusoidal 
oscillation only if G is identically equal to zero. If G is 
negative, the amplitude of the oscillation grows exponentially; 
if G is positive, the amplitude decays to zero. In the special 
case when G 0, the slightest perturbation of G will turn the 
equilibrium point into a source or a sink. If we think of the 
system as being parametrized by G, then the vector field is 
not structurally stable at G = 0. We say that the equilibrium 
point undergoes a bifurcation (from stability to instability) as 
the value of the bijiucation parameter G is increased through 
the bijiurcation point G = 0. 

We know from experience that most real-world oscillations 
are insensitive to small perturbations; they are structurally 
stable. Therefore, although a linear RLC circuit provides a 
convenient model for analysis purposes, it represents a poor 
model of reality. A real oscillator must possess a nonlinearity 
to control the amplitude of the oscillation. 

Thus, if we are to develop insights into oscillatory phenom- 
ena, we must appreciate the fundamental role of nonlinearity 
in the process. 

IV. CONTINUOUS CHAOS NEEDS 
THREE DEGREES OF FREEDOM 

We have seen that steady-state sinusoidal oscillation in 
the linear parallel RLC circuit is not a structurally stable 
phenomenon. In this section, we add a nonlinearity to the 
the resistive part of the circuit in order to produce sustained 
periodic oscillation. The most natural extension of linear 
theory to the world of nonlinear circuits is through piecewise- 
linear modeling. Therefore, we modify the parallel RLC circuit 
by placing in parallel with R a piecewise-linear nonlinear 
resistor N R ,  as shown in Fig. 5. 

The driving-point (DP) characteristic of NR (shown in Fig. 
6) is defined analytically by 
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Fig. 6.  Driving-point characteristic of the nonlinear resistor :V, shown in (a) (b) 
Fig. 5. 

-E -E 
+ 

(Ga-Gb)E Gb 

Fig. 7. Parallel combination of R and .VR is equivalent to a single nonlinear 
resistor :VA. 

where E > 0, Gb > 0,  and G, < 0. 
We can simplify this circuit by combining the two resistive 

elements R and N R  into a single nonlinear resistor Nk that 
has the same DP characteristic [16] (see Fig. 7). 

The DP Characteristic of Nk may be determined analytically 
by applying Kirchhoff‘s laws. Consider Fig. 7; we have that 
Vfi = V = VR and Ik = I + I,. Thus 

Ik = GVfi + f (  Vfi) 

= f’(Vfi) 
G/,Vfi+(Gb-G,)E if Vfi < -E 

if - E <  Vfi S E  
GbVfi+(G,-Gb)E if Vfi > E 

(9) 

where G/, = (G + G a )  and Gb = (G + Gb). 
The DP characteristic of Nk may also be determined graph- 

ically by adding the characteristics of R and NR vertically; for 
each value of Vfi, add the corresponding values of I and Ik  
[16]. We demonstrate this graphical procedure in Fig. 8 for 
two typical cases: GL < 0 and GL > 0. 

4.1. Piecewise-Linear Description of the Circuit 

Combining R and N R  into a single nonlinear resistor Nk,  
we obtain the reduced equivalent circuit shown in Fig. 9. This 
circuit may be described by a pair of ordinary differential 
equations. Choosing I ,  and V2 as state variables, as before, 

(e) (0 

Fig. 8. DP characteristic of :Vb may be determined graphically by adding the 
characteristics of R and ,VR as shown. By Kirchhoff‘s laws, t; = t7  = l ” ~  
and I ;  = I + IR .  When GL < 0, the characteristics of resistor R (a) 
and iV, (b) sum to give a nonmonotone characteristic (c). When Gh > 0, 
the characteristics of resistor R (d) and .I’R (e) sum to give a monotone v-i 
characteristic (0. 

Fig. 9. Simplified equivalent circuit for Fig. 5 obtained by grouping R and 
A r ~  into an equivalent resistor ,Vk with DP characteristic defined by (9). 

Piecewise-linear analysis is a means by which the state 
space of a nonlinear dynamical system is divided into a set 
of separate affine regions that may be studied in isolation and 
then “glued together” along their boundaries. In this case, our 
circuit may be decomposed into three distinct affine regions: 
V2 < -E, lV~l 5 E ,  and V2 > E. We call these the DLl, 
06, and 0; regions, respectively. 

Using piecewise-linear analysis, we examine each region 
separately and then glue the pieces together. We look at the 
middle region first. 
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L@+ - 

Fig. IO. Equivalent circuit of Fig. 5 in the 0; region. Rh = l/Gh = 1/ 
(G + Ga) .  

4.2. The Middle Region (IV2l 5 E )  
When IV2l 5 E, the circuit is described by 

d 4  1 - = --v2 
dt L 

The Db equivalent circuit is simply the linear parallel RLC 
circuit shown in Fig. 10. 

This linear circuit has a single equilibrium point 0’ at 
the origin whose stability is completely specified by the 
eigenvalues of 

namely 

Our standing assumption that L and C2 are both positive 
ensures that the real parts of both eigenvalues are negative 
when G’, is positive. The system has positive damping in this 
region, and 0‘ is a stable equilibrium point; trajectories in 
Db move toward the origin. If GL < 0, the real parts of both 
eigenvalues are positive; the equilibrium point is then unstable, 
and trajectories move away from the origin. 

4.3. The Outer Regions (IV.1 > E )  

is described by 
In the outer regions, the piecewise-linear circuit of Fig. 5 

d l 3  1 
dt L 

dV2 1 1 
~ = -1, - G”bv2 - -1’ ( 1 0 )  

dt C2 C2 C2 

where I’ = (Gb - G,)E when V2 < -E (the D’, region) 
and I’ = (G, - Gb)E when V2 > E (the 0: region). 

The DLl and 0; affine equivalent circuits5 consist of a 
linear parallel RLC circuit with resistance Rb = l/Gb and a 
shunt dc carrent source l’, as shown in Fig. 11. 

The equilibrium points PL and P i  (dc solutions) of the 
D l  and 0: equivalent circuits are ( 1 3 p  , V z p ~ )  = ((Gb - 
G,)E, O) ,  and (Z3p; ,  V 2 p )  = ( ( G ,  - GbYE, O ) ,  respectively. 
We remark that these equilibrium points are simply the points 

_ -  - --v2 

’The Dyl and 0; equivalent circuits are not small-signal (local) equiva- 
lent circuits; they model the large-signal (global) behavior of the system in 
the outer regions. 

Fig, 11 .  Equivalent circuit of Fig. 5 for the outer regions. RI = 1/Gb = 1/ 
(G + Gb). I’ = (Gb - G,)E when 1; < -E and I’ = (G, - Gb)E 
when b; > E. 

of intersection of the DP characteristic of N k  with the Zk 
axis, as indicated in Fig. 8. 

If the equilibrium point of the DLl equivalent circuit lies 
outside the DL1 region, then it is called a virtual equilibrium 
point (denoted by an open circle in Fig. 8). Although this is 
a valid solution of the affine DLl equivalent circuit described 
by (lo), it is not an equilibrium point of the piecewise-linear 
circuit itself. 

We can determine the stability of the equilibrium points and 
the dynamics of the outer regions by examining the Jacobian 
matrix 

J F b = [ ?  cz I&] c 2  

whose eigenvalues are 

x = -2 G’ * /( S) - 1 
2c2 

With GA > 0, the circuit has positive damping in the outer 
regions and a trajectory will converge toward the correspond- 
ing virtual equilibrium until it crosses the boundary and enters 
the 06 region. 

4.4. Global Behavior 

The vector field for the piecewise-linear circuit in Fig. 5 is 
formed by gluing together the vector fields of the three regions 
DYl, Db,, and 0:. This is illustrated in Fig. 12. 

We consider two cases in detail: G’, > 0 and GL < 0. In 
each case, the circuit has a unique equilibrium point 0’ at the 
origin. 

If Gb > 0, the circuit is dissipative everywhere, and 
all trajectories collapse toward the inner region. The unique 
steady-state solution of the circuit is the stable dc equilibrium 
condition I3 = V2 = 0. 

If G’, < 0, the equilibrium point at the origin is unstable, 
and the vector field in the 06 region pushes trajectories 
away from it. In the outer regions, trajectories are pulled by 
the dissipative vector field toward the corresponding virtual 
equilibria Pl_ and P;. The resulting balance of forces produces 
a periodic steady-state trajectory called a limit cycle, which 
is approached asymptotically by all initial conditions of this 
circuit. 

This limit cycle is termed attracting (stable) because nearby 
trajectories move toward it and is structurally stable in the 
sense that a small change in the parameters of the circuit has 
little effect on it. 

The basin of attraction of a stable limit cycle is the set of 
all initial conditions from which trajectories converge to the 
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(b) 
Fig. 12. Vector fields for the nonlinear RLC circuit in Fig. 14. L = 18mH, 
Ro = 12.X2, C2 = 100nF, G ,  = -757.576pS, G,, = 15.155pS, 
E = 0.47V. (a) G = 1mS: all trajectories converge to the origin. (b) 
G = 5 0 0 p S :  the unique steady-state solution is a limit cycle. Horizontal 
axis: In, 400pAldiv; vertical axis: VZ, 200mV/div. 

Fig. 13. Piecewidinear  oscillator circuit. L is a wirewound inductor 
(TOKO type IORB or equivalent) with nominal inductance 18 mH and a 
measured series resistance of 12.5 ( 2 .  CZ is a 100-nF capacitor. R is a 2 k i l  
multiturn potentiometer. -41 is a BiFET operational amplifier (Analog Devices 
type AD712, Texas Instruments type TL082, or equivalent). RI is a 3.3 kf2 
resistor, RZ and R3 are 22 kC2 resistors, and Rq is a 2.2 ki2 resistor. 

Fig. 14. Equivalent circuit for Fig. 13. The series resistance of the inductor 
is modeled by Ro. 

Circuit Description: Consider the op-amp based oscillator 
circuit shown in Fig. 13. The subcircuit NE consisting of 
A1 and R I - R ~ ~  may be modeled by a nonlinear resistor 
NR with driving-point characteristic as shown in Fig. 6 [14]. 
When R2 = R3, G, = -l/R1 - l /R4, Gb = 1/R3, and 
E = R1R4Esat/(R1R2 + R1R4 + R2R4), where Esat is the 
saturation level of the op amp. With R2 = R3 = 22 kR, 
RI = 3.3 kR, R4 = 2.2 kR, and Esat = 8.3 V, G, = -50/66 
mS = -757.576 pS, Gb = 1/22 mS = 45.455 pS, and E E 

0.47 V. 
R in parallel with NR is equivalent to a single nonlinear 

resistor Nk whose DP characteristic is shown in Fig. 8. By 
varying the conductance of the potentiometer R, we can adjust 
the slopes GL and GI of this characteristic. 

The simplified equivalent circuit is shown in Fig. 14. Here, 
we model the real inductor as a series connection of an ideal 
linear inductor L and a linear resistance RO.' 

Steady-State Solutions: 
Stable equilibrium point: Consider the case when R is 
0 a; this is equivalent to short circuiting the LC resonant 
circuit. The unique solution (V2 = 13 = 0) corresponds to 
a dc equilibrium point at the origin. 
Bifurcation and limit cycle: Increase R until the equi- 
librium point at the origin undergoes a bifurcation and 
becomes unstable; at this point, the circuit begins to oscil- 
late. Increasing R further causes the oscillation to increase 
in amplitude. 
Measured typical steady-state behaviors are shown in Fig. 

15. 

4.6. Uniqueness of Solution 

We have seen that depending on the parameters, this circuit 
can have a stable equilibrium point or limit cycle as a solution. 
Can it exhibit more complicated steady-state behavior? 

Because the vector field is uniquely defined and trajectories 
of the system are tangent to the vector field everywhere, a 
trajectory cannot cross itself [IS]. The implication of this is 
that a second-order autonomous circuit whose trajectories lie 

limit cycle. 
Gb < 0 is 

The basin of attraction 
the entire state space. 

in the plane can exhibit just two types of steady-state behavior: 
an equilibrium point or a limit cycle. 

A different choice of nonlinearity in this example might 
yield more equilibrium points or limit cycles, but an au- 
tonomous circuit containing just two energy storage elements 

Of the limit cyc1e when 

4.5. Laboratory Experiment: Piecewise-Linear 
Oscillator with One Equilibrium Point We show two resistors R I  and R4 in Darallel rather than a single resistor - .  

this experiment, we demonstrate the concepts outlined 
above: an equilibrium point, stabiliv, a bifurcation, and a limit 

of 1320 fl simply because we wish to use the same set of components in all 
of the experiments in this two-part paper. 

71f no is sufficiently small, it has negligible qualitative effect on the global 
cycle. behavior of the circuit. 
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(b) 

Fig. 15. Measured steady-state behaviors for the experimental circuit shown 
in Fig. 13. L = 18 mH, Ro = 12.5!1, CL) = 100 nF, G, = -757.576pS, 
Gb = 45.455pS, E = 0.47 V. (a) R = 012: The unique steady-state solution 
is a dc equilibrium point at the origin. (b) R = 2000!1(G = 5 O O p S ) :  The 
unique steady-state solution is a limit cycle. Horizontal axis: time, 100  psldiv; 
vertical axis: b>(t),  200 mV/div. 

Fig. 16. Nonlinear RLC circuit with X in series with .VR. 

Fig. 17. Series combination of R and .\‘R in Fig. 16 is equivalent to a single 
nonlinear resistor whose DP characteristic is shown in Fig. 18. 

cannot produce a steady-state behavior that is more compli- 
cated than this.’ In particular, a continuous system described 

*The only possible solutions of an autonomous 2-D dynamical system are 
equilibrium points, closed orbits, and unions of equilibrium points and the 
trajectories connecting them; of these, only equilibrium points and limit cycles 
are structurally stable (see [17], 141). 

by an autonomous second-order diffential equation cannot 
exhibit chaos; for that, we need at least three degrees of 
freedom. 

v. CONTINUOUS-TIME CHAOS NEEDS A HORSESHOE 

Thus far, we have seen that a linear parallel RLC resonant 
circuit cannot produce structurally stable oscillations. The 
addition of a single nonlinear element causes the circuit 
to exhibit robust periodic oscillation or a dc solution but 
nothing more complicated than this. By confining the circuit’s 
dynamics to a 2-D state space, we have limited its possible 
steady-state behaviors. 

In order to produce more complex dynamics, we use the 
same building blocks as before but follow a slightly different 
evolutionary path from the RLC circuit. This time, instead 
of placing the nonlinear resistor N R  in parallel with R, 
we connect it  in series, as shown in Fig. 16. This minor 
rearrangement of our four components leads to a fundamental 
change in the dynamics of the circuit, as we shall see. 

Once again, we try to simplify the analysis by replacing the 
series combination of R and N E  by a single nonlinear resistor 
Ng that has the same DP characteristic. Unlike in the previous 
case, where the DP characteristic of the equivalent resistor N k  
could be written in terms of the port variables, the current 
1; into iV$ cannot always be written explicitly as a function 
of the voltage (or current) across its terminals. Nevertheless, 
we can still express the driving-point characteristic of the 
compound resistor N{ by means of a parametric representation 
in V R :  

where VR(= Vfl - V )  is the voltage across the termi- 
nals of N R  (see Fig. 17), G: = GG,/(G + Ga) ,  and 
G[ = GGb/(G + Gb). Note that G: is simply the equivalent 
conductance of the series connection of R and l /Ga  and 
that G: is the equivalent conductance of R and 1/Gb in 
series. 

The DP characteristic of N$ may be determined graphically 
by adding the U- i  characteristics of R and IVR horizontally 
as dictated by Kirchhoff‘s laws [16]: For each value of 1; 
(= I = IR), add the corresponding values of V and VR as 
shown in Fig. 18 for two cases: G: < 0 and GE > 0. 

What happens in practice if one tries to measure the driving- 
point Characteristic of the series combination of R and NR 
by increasing either the voltage across or current into the 
terminals is that one observes a “hysteresis” effect [19]. This 
apparent “hysteresis” is due to the fact that the model of a real 
nonmonotone voltage-controlled nonlinear resistor such as NR 
must always include a parasitic transit capacitance across the 
terminals of the resistor [20]. In the following discussion, we 
will proceed as far as we can by ignoring this fact until the 
transit capacitance is forced on us by our inability to explain 
the circuit’s dynamics when it is omitted. 
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Fig. 18. DP characteristic of lVg can be determined graphically by adding the characteristics of R and ~VR as shown. By Kirchhoff's laws, Ifi = I = I R  
and Vk = 1.- + VR. When G:: < 0, the characteristics of resistor R (a) and .VR (b) sum to give a voltage-controlled characteristic (c). When G: > 0,  
the characteristic that results from the addition of (d) and (e) is neither voltage-controlled nor current-controlled (0. 

Fig. 19. Simplified equivalent circuit for Fig. 16 obtained by grouping R 
and IVR into an equivalent resistor jVg with DP characteristic given defined 
by (11) .  

5.2. The Outer Regions IVll > E 
When Vl < -E (the DY1 region), the algebraic constraint 

(14) for Vl in terms of V2 and substituting into (13), we find 
that trajectories of the circuit evolve according to 

(14) becomes G(V2 - VI) = GbVl + (Gb - G,)E. Solving 

d13 1 
- = --V2 
d t  L 

5.1. Piecewise-Linear Description of the Circuit 

circuit in Fig. 16 may be described by two state equations 
Choosing I3 and V2 as state variables, the nonlinear RLC 

= - I ~  1 - -(V2 G - VI) 
G2 (32 

and an algebraic equation relating V2 and Vl: 

This algebraic equation is simply an expression of Kirch- 
hoff's current law (KCL) at node N in Fig. 16; it represents 
a constraint that VI (and Vz) must satisfy while the dynamics 
of the circuit evolve in the 2-D ( I 3 ,  V2) state space. 

We have seen that the series combination of R and N R  
is equivalent to a single nonlinear resistor Nfi with DP 
characteristic as shown in Fig. 18. Thus, we can substitute 
Nfi for the series combination of R and Nn in Fig. 16; this 
yields the simplified piecewise-linear equivalent circuit shown 
in Fig. 19. We now decompose this circuit into its three affine 
regions and consider the behavior in each region separately. 
We first look at the outer regions, which we denote DY1 and 
0:'. 

where I" = G(Gb - G,)E/(G + Gb). 
The equivalent circuit for the DYl region is the affine 

parallel RLC circuit shown in Fig. 20. The DY equivalent 
circuit has the same form but with I" = G(G, - Gb)E/(G + 

The DY1 region has an equilibrium point at ( 1 3 p ~ ~ ,  - V z y )  = 
(G(Gb - G,)E/(G + Gb),0) and the DY region has an 
equilibrium point at (13P~jrV2P;)  = (G(G, - Gb)E/(G + 
Gb), 0) .  We remark that &ese equilibrium points are simply 
the points of intersection of the DP characteristic of Nfi with 
the Ifi  axis, as shown in Fig. 18(c) and (f). As before, if they 
lie within their respective domains of applicability, they are 
true equilibrium points (denoted by solid discs P!! and PT in 
Fig. 18(f)); if not, they are called virtual equilibria (which we 
denote by circles in Fig. 18(c)). 

The dynamics of the outer regions are determined by the 
Jacobian matrix: 

Gb). 

JF; = [: 
The eigenvalues of the equilibrium points P! and PT are 

With our standing assumption that C and Lz are both 
positive, we make the following observations. When G t  > 0, 
the circuit has positive damping in the outer regions, and a 
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Fig. 20. Equivalent circuit of Fig. 16 for the outer regions. Rt = l / G t  = 
(G  + Gb)/(GCT'b). This circuit has a unique equilibrium point ( 1 3 ,  
V2) = ( 1 " , 0 ) .  When R(I > 0, the equilibrium point is stable. 

Fig. 21. Equivalent circuit of Fig. 16 for Fig. 22. Relationship between and 15: G(12 - 1.1) - f ( \ ; )  = 0: (a) 
the 0 6  region. R: = l/G:; - (9 . 4- When G:: < 0, is uniquely determined by 1,;; (b) when G: > 0, L,i 
Ga)/(GGa). When Rt  < 0 (Fig. 18(c)), the equilibrium cannot be written as a function of L,;. ['I is the plane defined by \; E E ;  
point at the origin is unstable; when R i  > 0 (Fig. 18(f)), the circuit is stable. 

- 

similarly, [T- is the separating plane 1 i -E. 

trajectory will converge toward the corresponding equilibrium 
point. When G: < 0, the circuit has negative damping in 
the outer regions, and a trajectory will diverge from the 
corresponding equilibrium point. In the following discussion, 
we consider only the case when G i  > 0; this corresponds to 
Rt > 0 in the equivalent circuits for the outer regions (Fig. 
20). 

5.3. The Middle Region 1 VI 1 5 E 
When IVll 5 E ,  f (V l )  = G,V, and (14) reduces to 

G(V2 - Vl) = G,Vl. Substituting for Vl in (13), the circuit 
may be modeled as a 2-D dynamical system: 

The 0: equivalent circuit is simply the linear parallel RLC 
circuit shown in Fig. 21. This circuit has a single equilibrium 
point at the origin whose stability may be determined by 
analyzing the Jacobian matrix 

whose eigenvalues are 

Now, if c: is positive (corresponding to Fig. 18(f)), the real 
parts of both eigenvalues are negative, the 0 0  equivalent cir- 
cuit has positive damping, and the origin is stable. Trajectories 
in 0; move toward the origin. 

If G i  is negative (corresponding to Fig. 18(c)), the real parts 
of both eigcnvalucs are positive, and the origin is therefore 
unstable. When IVzl < E ,  the circuit system has negative 
damping, and trajectories move away from the origin. 

5.4. Global Behavior 
In order to gain some intuition on the dynamics in each 

region, we refer to Figs. 18 and 19 once more. An equilibrium 
point (dc solution) of Fig. 19 may be found by short circuiting 
L and open circuiting C2; this is simply a point of intersection 
of the DP characteristic of N{ with the 1; axis (where 
V2 = Vfl = 0). The stability of an equilibrium point is 
determined by the slope of the DP characteristic of Nfi at that 
point: If the slope is positive, the equilibrium point is stable; 
if the slope is negative, the equilibrium point is unstable. 

Referring to Fig. 18(c), we see that points P! and Pg 
are stable virtual equilibria, and the origin is an unstable 
equilibrium point of Fig. 19 when G l  < 0. Similarly, we 
recognize from Fig. 18(f) that Pf, O", and P? are all stable 
equilibria of Fig. 19 when GZ > 0. 

In determining the dynamical behavior of the circuit in each 
region, we solved (14) for VI in terms of V2 and substituted 
into (13) to obtain a 2-D equivalent circuit. Consider now 
the relationship between VI and V2 as expressed by the 
algebraic constraint (14) and shown graphically in Fig. 22. 
When G l  < 0, VI is uniquely determined by V2 but not when 
GY > 0. We consider these two cases in detail. 

5.5. G; < 0 

Equilibrium Points: When G: < 0, the dissipative outer 
regions have stable virtual equilibria Pf and P;' in the 0: 
region (see Fig. 18); the 0: region itself has an unstable 
equilibrium point at the origin. Thus, the circuit has a unique 
unstable equilibrium point 0". 

When G: < 0, V2 = VI + f ( V I ) / G  = g(V1) is a monotone 
increasing function of VI. This enables us to write VI explicitly 
as a function of V2 and to express the global dynamics of the 
circuit in the form 

d l 3  1 - = --V2 
dt  L 
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f v, /-/^-- 

I 
Fig. 23. When G: > 0, the planes in the 3-D (13  V2, VI) coordinate system 
defined by the constraint (14) meet at obtuse angles (a). The circuit of Fig. 16 
possesses a single unstable equilibrium point: 0” at the origin. Trajectories 
in the outer regions collapse towards the stable virtual equilibria at PT and 
P! in the middle region. A trajectory crossing the boundary VI = E from 
the 0;’ region moves slowly through 0:: and enters D‘‘l, where it is turned 
back and crosses back to DY; a limit cycle results (b). (c) The projection of 
this limit cycle onto the 13-Vz plane is a smooth closed curve (the Vz half 
axis scale represents 5 V; the 13 half axis scale is 15 mA). 

Geometrical Structure of the Dynamics: In the 3-D ( I3 ,  V2, 
V I )  coordinate system, the constraint ( 14) defines three planes 
that meet at obtuse angles as shown in Fig. 23(a). Note that a 
cross section through these planes with a constant I ,  is simply 
the KCL constraint (14), which is shown graphically in Fig. 
22(a). In each region, a trajectory is constrained to lie on the 
corresponding plane that relates V2 and V I .  

The global behavior of the circuit can be determined by 
gluing these planes together. Since we have an explicit ex- 

pression for the dynamics in each region, we concern ourselves 
here with what happens at the boundaries where these planes 
meet. 

A trajectory starting in the 0:’ region moves toward the 
virtual equilibrium point Py until it crosses into the 0; 
region. Once in the D; region, the trajectory is repelled by 
the unstable equilibrium point at 0” until it crosses into the 
DY1 region. By symmetry, this trajectory in the D’ll region is 
attracted back toward its virtual equilibrium point P!! until it 
crosses back into the 0: region. It is not surprising, therefore, 
that the resulting steady-state behavior is a stable limit cycle, 
as shown in Fig. 23(b). Indeed, this limit cycle is the unique 
steady-state solution of this circuit. 

The Kink: One can think of the dynamics of this oscillator 
as similar to that of the previous example with GL < 0. In that 
case, the steady-state solution was a limit cycle on a plane. 
Here, we have introduced a kink (in the VI direction) into the 
(13, V2) plane on which the dynamics are evolving. The 2-D 
global dynamics (17) is simply the projection of trajectories 
in the ( 1 3 ,  V , ,  VI) coordinate system onto the (13 ,  V2) plane, 
as shown in Fig. 23(c). 

5.6. G; > 0 

Because of the fold in the DP characteristic of N{ when 
G; > 0, the vector field described by (12) and (13) can 
assume any of three different values in the region of overlap, 
depending on the value of Vl. Since V2 is a nonmonotone 
function of VI in this case, Vl cannot be expressed globally as 
a function of V2. In marked contrast with the previous case, 
this means that we cannot write global state equations for the 
circuit when GZ > 0. Indeed, the circuit no longer behaves 
in a 2-D manner so that our simplistic 2-D analysis fails. 
Nevertheless, the problem can be resolved by adding a transit 
capacitor in parallel with NR in Fig. 16, as we shall see. 

Equilibrium Points: When GZ > 0, the circuit of Fig. 16 
has three equilibrium points that we label P!!, 0”, and Py. 
With G i  > 0 and GZ > 0, our 2-D piecewise-linear analysis 
suggests that all three equilibrium points are stable. One might 
expect, therefore, that all trajectories would settle to one or 
other of these stable equilibria. In particular, it should be 
possible for a trajectory to remain indefinitely at 0”. 

Geometrical Structure of the Dynamics: In the 3-D (Is, V2, 
V I )  coordinate system, the constraint (14) defines three planes 
that now meet at acute angles, as illustrated in Fig. 24(a). Note 
once again that a cross section through these planes with a 
constant 4 is simply the KCL constraint (14), which is shown 
graphically in Fig. 22(b). 

As before, we have explicit expressions for the dynamics in 
each region. A qualitative picture of the global behavior of the 
circuit may be gleaned by separately considering the evolution 
of (12)-( 14) in each region and the transitions between regions. 

Let us consider a trajectory starting in the Dy region with 
V2 large enough that the 2-D vector field defined by (12) and 
(1 3) is unique. Because the system is dissipative in the outer 
region, a trajectory evolving on the constraint plane E(P;’) 
in the Dy region moves toward the equilibrium point at Py, 
where E(P;I) is defined by GV2 = (G+Gb)Vl+(Gb-G,)E). 

Authorized licensed use limited to: ULAKBIM UASL  ISTANBUL TEKNIK UNIV. Downloaded on December 21,2021 at 09:40:34 UTC from IEEE Xplore.  Restrictions apply. 



652 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 40, NO. 10, OCTOBbR 1993 

Once the trajectory enters the region of overlap in the DP 
characteristic, the vector field becomes triple valued, and the 
dynamics are not well defined. 

Nevertheless, let us assume that the trajectory remains on 
E ( P y )  (where its evolution is governed by (15) and (16)) and 
see what happens. Although it is converging toward P;’ along 
E(Py) ,  this trajectory may reach a point X+ = (13’, V2’: V:) 
on the separating plane U1 (defined by Vl E )  between the 
DY and 0: regions before it reaches PT. 

Now, every trajectory reaching U1 along E(PT) from the 
DY region has the property that dVz/dt 5 0 at U1.9 A 
trajectory reaching the same boundary point X+ from the 
D: region along E(0”) also has dVz/dt 5 0 at Ul .  In 
particular, if dVz/dt is negative at the boundary point, then 
our assumed trajectory reaching this point from the DY region 
cannot continue along the constraint plane E(P$”; X+ is 
called an “impasse point” [21], [22]. 

The impasse may be resolved by applying the “jump rule” 
[16]; we postulate that the trajectory reaching U1 from the D[ 
region at a point (I3’? V2’: V:) on E(P;’) “jumps” through 
the D: region to another point X- = (Is’, V z ’ :  V;) on the 
constraint plane E(P!) in the DY1 region that has the same 
2-D state (13’, Vz’). This is illustrated in Fig. 24(a). 

If the trajectory crosses repeatedly between the D!!, and DY 
regions by jumping through D[, then the steady-state solution 
of this circuit might be a limit cycle (see Fig. 24(bj). 

This solution is not unique, however, since we know from 
our 2-D analysis that a trajectory starting on the plane E(PT)  
will be attracted toward the equilibrium point P;’. In particular, 
trajectories starting at the Py will remain there indefinitely, 
and trajectories starting close to Py converge asymptotically to 
the equilibrium point without ever reaching the boundary plane 
U1. Indeed, both PT and P! are stable equilibrium points of 
this circuit. 

Consider now a trajectory originating on the plane E(0”) 
in the D[ region (where E(0”) is defined by G1/2 = (G + 
G,)V1 j. Because the DP characteristic of Nfl has a positive 
slope at the origin when G: > 0, the second-order linear 
equivalent circuit for the middle region is stable, and we might 
expect the origin to be a stable equilibrium point of the circuit 
shown in Fig. 16. We will see that the origin of this circuit 
is in fact unstable when an arbitrarily small positive parasitic 
capacitance is added in parallel with NR.  

The Fold: When G: < 0, we saw that the resulting geo- 
metrical structure was akin to putting a kink in the plane of 
the vector field; here, G: > 0, and we have instead folded the 
planes on which the dynamics of the system are evolving. 

The projection of the vector field in each region onto the 
(13? Vz) plane now produces a nonunique (triple valued) vector 
field in the region of overlap. By definition, the vector field of 
an autonomous dynamical system must be unique at every 
point in its state space. It is for precisely this reason that 
the global state equations are undefined. Nevertheless, the 
projection of the limit cycle (Fig. 24(b)) onto the (13, VZ)  plane 
(Fig. 24(c)) is smooth; only Vl experiences jumps. 

’Consider Fig. 22(b). A trajectory lying along the constraint plane E ( P t )  
in the 0;‘ region an infinitesimal distance away from the separating plane 
I.,. 1 - = E moves away from 9 if d V 2 / d t  > 0. 

Because it is not possible to write global state equations 
for Fig 16 when G: > 0, we simulated the behavior of 
the circuit using the augmented circuit shown in Fig. 28 
with the following parameter values: L = 18 mH; Cz = 100 
nF; G, = -757.576~s; Gb = 45.455~s;  E = 470 mV. 
Fig. 24 shows the simulated behavior of the circuit when 
G = 1/R = 1.56 mS (G: = -1.47 mS < 0), and Fig. 
23 shows the case G = 500pS (Gt = 1.47 mS > 0). 

In addition to the components of Fig 16, this circuit contains 
two parasitic elements: Ro = 12.50 that accounts for the 
series resistance of the real inductor and a parasitic transit 
capacitor C1 = 100 pF that completes the model of the 
nonmonotone voltage-controlled resistor IVR and allows us to 
write well-defined global state equations for the circuit. We 
will see in the following section that the circuit in Fig. 28 
reduces to that in Fig. 16 as Ro + 0 and as C1 + 0. 

VI. THE FINAL EVOLUTIONARY 
STEP--THE THIRD DIMENSION 

In studying the geometry of the ( I3 VZ? Vl )  coordinate space 
of this circuit when G t  > 0, we noticed that the planes 
along which the second-order dynamics are evolving meet at 
acute angles, leading to a fold. In the region of the fold, the 
dynamics depend explicitly on the “hidden” variable VI.  By 
adding an infinitesimal (positive) parasitic transit capacitance 
C1 in parallel with NR,  as shown in Fig. 25, we can keep 
track of VI; the circuit then becomes well defined, and we can 
write global state equations. Having done this, the circuit is no 
longer described by a second-order system and an algebraic 
equation but is now completely described by a system of three 
ordinary differential equations called Chua’s circuit equations. 

1 G 
dt  cz c, 

d t  c1 c1 

5 = -13 - -(V2 - VI) 

!!!5 = “(VZ - VI) - --f(V,)  1 

6. I .  Qualitative Analysis of the Parasitic Dynamics 

Because the time constant associated with the infinitesimal 
(positive) parasitic capacitance C1 in the third equation is SO 

much smaller than those associated with the first two, this 
modified circuit is said to possess what are called slow-fast 
dynamics. The fast parasitic dynamics cause trajectories of 
the circuit in the outer regions to lie on the constraint planes 
defined by (14) where the dynamics evolve like a 2-D system. 
Consequently, an analysis of these 2-D dynamics is normally 
sufficient to understand the operation of the circuit excepr 
at the folds. At the fold, however, a trajectory reaching an 
impasse point from one of the outer planes comes under the 
influence of the “fast” dynamics and “jumps” through the D&’ 
region. 

To appreciate the jump mechanism, consider (20) with an 
infinitesimal capacitance C1. The right-hand side (G(V2 - 
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Fig. 24. When G: > 0 ,  the planes in the 3-D (13,15, \,I) coordinate system 
defined by the constraint (14) meet at acute angles (a). The circuit of Fig. 16 
possesses three equilibrium points: Py. 0” and P!. Trajectories in the outer 
regions either converge toward the stable equilibria at P t  and Pq or “jump” 
repeatedly through the 0 6  region to produce a limit cycle (b). (c) When 
projected onto the 13-15 plane, this limit cycle appears as a smooth closed 
curve (the 1.5 half-axis scale represents 5 V; the 13 half-axis scale is 15 mA). 

L + T h V $ &  - - - 
‘3 

Fig. 25. By adding the necessary parasitic transit capacitance C1 in parallel 
with IVR, the circuit of Fig. 16 becomes Chua’s circuit. I 

VI) - f(V1)) defines a relationship between V2 and V I ,  as 
shown in Fig. 22. 

If V2 lies to the left of this curve, G(Vz - V I )  -  VI) < 0,  
dVl/dt < 0,  and VI decreases with a time constant inversely 

(b) 

Fig. 26. Parasitic dynamics associated with the oscillator: (a) G:: < 0; 
(b) G:: > 0. We have added arrows to Fig. 22 to indicate the direction 
of the VI component of the 3-D vector field defined by (18)-(20). When 
G( V i  - 1’1 ) - f( ti ) < 0, r/; is decreasing; when G( 1.3 - 1,; ) - f (  1.1 ) > 0, 
111 is increasing. 

proportional to C1 until it satisfies the constraint. Similarly, if 
V2 lies to the right of the curve, G(V2 - V I )  - f (V1)  > 0, 
dVl/dt > 0,  and VI increases with time. If we draw arrows 
on Fig. 22 to indicate the direction of the component of the 
3-D vector field associated with the parasitic dynamics (20), as 
shown in Fig. 26, we see clearly why a trajectory entering the 
middle region from the upper region quickly “jumps” across 
to the other side. 

We also realize why the origin is not a stable equilibrium 
point of the circuit. Although the eigenvalues of JF: suggest 
that the origin is stable (along the plane defined by GV2 = 
(G + G,)Vl) when G t  > 0, the parasitic dynamics in the 0: 
region cause the origin to be unstable “in the VI direction.” A 
trajectory lying on the plane defined by G( V, -VI) - G, VI = 0 
will converge toward the origin along that plane. However, 
trajectories above and below the plane will be pushed away 
toward the outer regions. 

6.2. Laboratov Experiment: Piecewise-Linear 
Oscillator with Multiple Equilibria 

In this experiment, we demonstrate the concepts of multiple 
equilibria, multiple solutions, bistability, and limit cycles. 

Circuit Description: Consider the circuit shown in Fig. 21. 
The potentiometer R is now in series with the nonlinear 
resistor NR,  giving an effective driving point characteristic 
as shown in Fig. 18. The subcircuit N R  consisting of A1 and 
R~-R,z may be modeled as before by a nonlinear resistor with 
driving-point characteristic as shown in Fig. 6. 

The equivalent circuit for this example is shown in Fig. 28, 
where we have included a parasitic capacitor C1 in parallel 
with N R .  The real inductor is modeled by a series connection 
of an ideal linear inductor L and a linear resistance Ro, as 
before. 

Steady-State Solutions: Consider the case when R is 0 R 
(G: < 0). This circuit has a single unstable equilibrium point 
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Fig, 27. Practical realization of the piecewise-linear circuit in Fig. 16 
Components values are as in Fig. 13. 

Fig. 28. Equivalent circuit for Fig. 27. Ru models the series resistance of 
the inductor. Ci is a parasitic transit capacitance. 

0” at the origin and is dissipative in its outer regions. The 
unique steady-state solution is a stable limit cycle. 

Fig. 29(a) is an oscilloscope plot of the measured voltage 
waveform Vl(t) for R = OR. The corresponding projection 
of the dynamics onto the VI-V, plane is shown in Fig. 29(b); 
compare this with Figs. 23 and 26. 

Increasing R, the DP characteristic of the series combination 
of R and NR develops a fold. As the characteristic passes 
through the 1, axis, two new (stable) equilibria at PT and P! 
are bom. The circuit then possesses three different steady-state 
solutions. Which one is observed experimentally depends on 
the initial conditions of I,,-,. V&, and Vl0. 

Equilibrium point: By short circuiting C2 momentarily, 
one can force 1 3 0 3  Vzo, and Vlo to the unstable equilibrium 
point at the origin from which the trajectory converges either 
to P;’ or to P!. 
Fig. 30(a) is an oscilloscope plot of the measured dc voltage 
waveform Vl(t)  for R = 20000; this corresponds to the 
stable equilibrium point Py. 
Limit cycle: These stable outer equilibrium points can be 
made to disappear by reducing R until the fold is smoothed 
out, and the circuit bursts into limit cycle oscillation once 
more. If P! and Py are then made to reappear by increasing 
R back to its initial value, the circuit remains in limit cycle 
behavior. 
Fig. 30(a) is an oscilloscope plot of the measured voltage 

waveform Vl(t) for R = 2000R; this corresponds to the limit 
cycle shown in Fig. 24(b). The projection of the dynamics onto 
the Vl-V, plane is shown in Fig. 30(c) and seems to exhibit 
“hysteresis” [19]; compare this with Figs. 24 and 26. 

Note that the voltage waveform Vl(t )  is smooth when 
Gh/ < 0 and that it exhibits abrupt “jumps” once the fold 
appears (G; > 0). 

(b) 

Fig. 29. Measured data for Fig, 27 with R = 495!2; the solution is a smooth 
limit cycle: (a) horizontal axis: time, 100pddiv; vertical axis: 1,; ( t ) ,  1 V/div; 
(b) projection of the limit cycle onto the I.-\,; plane-horizontal axis: \,>(t), 
I V/div; vertical axis: 1.; ( t ) ,  1 V/div. 

6.3. Eigenvalues and Eigenvectors 

Thus far, we have talked in general terms about the “fast” 
dynamics, “jumps” in the “VI direction,” and evolution of the 
dynamics in the (13,  V,. Vl) coordinate system along planes 
defined by G(V, - Vl) = f(V1). Expressions for these 
directions, planes, and associated dynamics can be derived 
explicitly by studying the eigenvalues and eigenvectors of the 
Jacobian matrices in each region of the 3-D system (18)-(20). 

Considering (20), we see that when C1 is extremely small, 
VI changes rapidly (“jumps”) until it satisfies G(V2 - VI) - 
f(V1) = 0. Indeed, we can recover the original system 
(12)-(14) from Chua’s circuit equations by setting C1 = 0. 
This is called a singular perturbation because it changes (20) 
from a differential equation to an algebraic equation. 

We have the following result from the theory of singular 
perturbations:” If either (G + G,) < 0 or at least one of the 
eigenvalues of J F ~  has a positive real part, then there exists 
CI such that the equilibrium point at the origin of the 3-0 
circuit ( 1  8)-(20) is unstable for all 0 < C1 < CI. Indeed, as 
C1 .+ 0, two eigenvalues (A+ and A-) of 0” approach those 
of J F ~ ,  whereas the third (7) approaches -(G + G,)/Cl. 

“This result follows from Theorem (37) on page 129 of [18] 
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corresponding eigenvectors span a plane in the (1,. Vz, V I )  
coordinate system, which is called a complex eigenplane. 
When C1 = 0, this plane is defined by G(V2 - V I )  = G,Vl. 

When G i  > 0, the real parts of the eigenvalues of JF: 
are negative. We concluded from our analysis of the reduced 
system (17) that the origin is a stable equilibrium point of the 
system. By definition, trajectories on the complex eigenplane 
remain indefinitely on that plane. Indeed, trajectories in the 0; 
region that lie on this stable eigenplane spiral toward the origin 
along the plane. However, any trajectory in 0:’ lying above or 
below the eigenplane will be repelled toward the outer regions 
by the fast parasitic dynamics along the eigenvector associated 
with y. 

By a similar analysis, it can be shown that (as long as 
GY > 0) the outer equilibrium points are stable even when 
the parasitic dynamics are included. 

We have seen that our 2-D 0; equivalent circuit has a 
stable equilibrium point at the origin when G l  < 0 if we 
neglect the parasitic transit capacitor C1. When we include an 
infinitesimal positive capacitance, the origin becomes unstable. 
Thus, although the origin of the singularly perturbed system 
(12)-( 14) is stable, an arbitrarily small positive capacitance 
C1 will render it unstable; failure to include this parasitic 
completely changes the stability properties of the origin. It is 
therefore imperative that the transit capacitance C1 be included 
in parallel with N R  to complete the circuit model of Fig. 16. 
The resulting well-defined system of three ordinary differential 
equations describes Chua’s circuit. 

Fig. 30. Measured waveforms for Fig. 27 with R = 2000!2; the circuit 
has multiple steady-state solutions. (a) dc equilibrium point (P;i)-horizontal 
axis: time, 100ps/div; vertical axis: 1) ( t ) .  lV/div; (b) limit cycle enclosing 
all three equilibrium points-horizontal axis: time, 100/‘s/div; vertical axis: 
1 i ( t ) ,  IV/div. Note that the voltage waveform I; ( t )  exhibits “jumps”; (c) 
projection of the limit cycle onto the 12-I; plane-horizontal axis: 1 l ( t ) ,  
lV/div: vertical axis: 1; ( t ) .  lV/div. 

VII. CONCLUDING REMARKS 

The 3-D continuous-time dynamical system (1 8)-(20) to 
which we have evolved in three steps from the parallel linear 
RLC circuit is simply Chua’s circuit. We have seen that 
for a particular choice of parameters, this circuit can exhibit 
equilibrium point and limit cycle behavior. When can it exhibit 
chaos? 

At this point, we invoke Shilnikov’s theorem [13]. If the 
origin of our third-order autonomous circuit is an equilibrium 
point with a pair of stable complex eigenvalues o 4= j w  
(a  < 0.u  # 0) and an unstable real eigenvalue y satisfying 
1 0 1  < y and the vector field has a homoclinic orbit” through 
the origin, then the circuit can exhibit horseshoes [4] and 
chaos. 

We have seen that when C1 4 0 and (GE)’ < 3Cz/L, 
the origin of Chua’s circuit has a stable pair of complex 
eigenvalues o f j w  (the real and imaginary parts of whose 
eigenvectors span the plane G(Vz - Vl) = G,VI) and an 
unstable real eigenvalue y whose eigenvector points along 
the VI axis. For sufficiently small C1, -, > 1 0 1 .  This set of 
parameters satisfies all but one of the conditions for chaos in 
the sense of Shilnikov; the missing ingredient is a homoclinic 
orbit. 

Chua realized that such an orbit could be produced by 
using unstable dynamics in the outer region of his circuit to 

As C1 - 0, the eigenvalue y is the largest of the three 
in magnitude. The corresponding eigenvector aligns itself 
with the V1 axis; we call this the “fast” eigenvector because 
it is associated with the largest eigenvalue. Furthermore, if 
(Gf)’ < 4Cz/L, A, and A- are complex conjugates of 
the form f jw, l  I The real and imaginary of the ‘’A hornoclinic orbit ‘h! is the union of an equilibrium point E and a 

trajectory 7 that approaches E asymptotically as t + 3c and as t + - - 3 ~  

“We denote a by J .  141. 
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close a homoclinic trajectory onto itsef; this requires that the 
slope Gb of the outer segments of the Chua diode NR should 
be negative. In Part I1 of this paper, we study the chaotic 
dynamics of Chua’s circuit when Gb is negative. 
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