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Shil’nikov’ s Theorem-A Tutorial 
Christopher P. Silva, Member, ZEEE 

Abstract- The phenomenon of chaos has been observed in 
many nonlinear deterministic systems in both experimental and 
computer-simulation contexts. Given the nature of this phenom- 
enon, however, an analytical tool is needed to ensure that what 
is observed is not an artifact of the device used to measure or 
simulate the given system. This paper provides a tutorial look 
at one of the few and most useful of such tools: Shil’nikov’s 
theorem and its various extensions. This exposition presents the 
basic terminology and concepts related to Shil’nikov’s results, 
a formal statement and subsequent discussion of its two basic 
versions for 3-D systems, as well as two example applications of 
Shil’nikov’s method to a piecewise-linear system. 

I. INTRODUCTION 
HE APPARENTLY random phenomenon of chaos has T become increasingly observed in the behavior of myr- 

iad nonlinear deterministic systems, that is, those described 
accurately by partial or ordinary differential equations or dif- 
ference equations. These observations are being made not only 
experimentally, but also in computer simulations. Examples 
abound in a wide gamut of disciplines ranging from solid- 
state physics to cosmology, from electrical engineering to 
biology. Chaos is found in systems that are forced or unforced 
(also known as nonautonomous or autonomous, respectively), 
lossless or dissipative, discrete in time and of any dimension, 
or continuous in time and of dimension three or higher. A 
2-D glimpse of this phenomenon is shown in Fig. 1, which 
depicts a simulation of the nonlinear, third-order, autonomous, 
dissipative electrical circuit known as Chua’s circuit (which 
will be discussed in Example 2.1). 

As the study of chaos evolved, a working definition was 
developed that is used to this day. A dynamical system is 
informally called chaotic if it contains bounded behavior 
exhibiting several fundamental features, three of which are 
as follows: 

1) A basically continuous, and possibly banded, Fourier or 
power spectrum. This property indicates that the motion 
is nonperiodic and justifies the often-made analogy of 
chaos with noise. 

2) Nearby orbits that diverge exponentially fast, thus caus- 
ing an extreme sensitivity to initial conditions. Although 
this attribute is shared by many dynamical systems and 
does contribute to highly complicated dynamics, it alone 
does not guarantee chaotic behavior. 

3) Ergodicity and mixing of the orbits in the bounded por- 
tion B of the phase space where the orbits exist. The first 
characteristic implies that any given orbit explores all 
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Fig. 1. Computer-simulated view of the complex bounded behavior that is 
the hallmark of chaos. The view is constructed by plotting two of the three 
state variables against each other (in this case the normalized form of the 
capacitor voltages in Chua’s circuit) with time as the parameter. This “set of 
chaotic orbits” is termed a strange attractor because outside trajectories are 
typically drawn into its vicinity in the steady state. 

of B. The second means that the simple relationships 
between initial points in any finite portion of B are 
essentially eliminated by the dispersive dynamics. 

The above working definition of chaos has recently been 
formalized by Wiggins [ l ]  for both discrete and continuous 
systems. Upon closer inspection of the above properties, 
however, an important objection might be raised: Because 
computer simulations have finite precision and experimental 
measurements have finite ranges (e.g., time or frequency), 
might not the behavior witnessed be either an artifact of the 
observation device, or might it not be actually regular but 
with a period or bandwidth beyond the limits capturable by 
the device? In fact, cases have arisen in which supposed 
chaotic behavior turned out to be a periodic orbit with a very 
long period. To allay these anxieties, an analytical approach 
is needed that guarantees that chaotic behavior exists in a 
formal sense. One of the most useful exponents of such a 
tool for autonomous systems is based on the fundamental 
work of Shil’nikov [ 2 ] ,  [3] and subsequent embellishments 
and extensions. We will collectively term these approaches 
the Shil ’nikov method. 

In order to keep this presentation brief, we will restrict our 
scope to 3-D dissipative continuous systems. However, there 
are also Shil’nikov results for higher dimensional systems 
and those that are lossless (see Wiggins [4] for a detailed 
overview of such findings). We will begin with a self-contained 
description of the basic concepts and terminology needed to 
understand the results of Shil’nikov theory. A formal statement 
of two basic varieties of the Shil’nikov method, as well as two 
example applications, will be presented. The tutorial will close 
with a discussion of topics for further pursuit. 
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11. THE SHIL’NIKOV METHOD 

A. Basic Concepts and Terminology 

Consider the third-order dynamical system 

dx - = [(x), t E R, x E R3 
d t  

where the vector field [ :  R3 4 R3 is p-times differentiable 
( p  2 1) with a continuous derivative (called class C p ) ,  and 

4t(x) the flow of (l), that is, given the initial condition 
z(0)  = xo7 @(a,) denotes the position of the orbit originating 
from xo at time t .  We say that x, E R3 is an equilibrium point 
for (1) if ,$(xe) = 0 because the x-motion is seen to be fixed 
at x, for all time. We call an equilibrium point xe for (1 j 
a hyperbolic saddle focus (or saddle focus, for short) if the 

derivative of E at xer are of the form 

R3 stands for the real space of dimension three. Denote by (a) cc 
eigenvalues of the 3 x 3 real matrix D<(ze), the Jacobian 

y: 0 f j w ,  0y < 0, w # 0 

W? 
(b) 

Fig. 2. Illustration of typical homoclinic and heteroclinic orbits in R3.  The 
arrowheads indicate the forward evolution of time. (a) Homoclinic orbit ‘H 

(2) 

where ?, g, and 
point 

are real. ~ ~ ~ ~ ~ i ~ ~ ~ d  with this equilibrium 
be a 2-D eigenplane EC(xe) corresponding to the 

based at a hyperbolic saddle focus z, having a positive red equilibrium 
eigenvalue (the other case is similar). The existence of this orbit forms the 
basis of the homoclinic Shil’nikov method (Theorem 2.1). (b) Heteroclinic 

complex conjugate eigenvalues CT f j w  and a I-D eigenline 
 ET(^,) corresponding to the real eigenvalue y, ~h~~~ sets will 
be invariant to the flow of the linearized dynamical system 

loop ‘ H l  that includes the two heteroclinic orbits ‘HI and ‘Hz and the two 
distinct hyperbolic saddle foci xtl and xe2 having negative real equilibrium 
eigenvalues (the other case is similar). The existence of this loop forms the 
basis for the heteroclinic Shil’nikov method (Theorem 2.2). 

dx 
d t  - = D<(x,)x (3) 

which approximates (1) near 2,. This means that an orbit of ( 3 )  
that initiates in these sets will remain in them for all forward 
or reverse time thereafter. The motion in EC(xe )  will be that 
of the usual stable or unstable focus, depending on whether 
g is negative or positive, respectively, while the motion in 
E‘(x,) will obviously be along a line with a direction that is 
determined by the sign of y. 

Fig. 2 presents the two very special orbits that lie at the heart 
of the Shil’nikov approach. By a homoclinic orbit we mean a 
bounded dynamical trajectory of (1 ) that is doubly asymptotic 
to an equilibrium point (that is, as time approaches *CO; see 
Fig. 2(a) for the case of a saddle focus). A heteroclinic orbit 
is similar except that there are two distinct saddle foci being 
connected, one corresponding to the forward asymptotic time 
limit and the other to the reverse asymptotic time limit (see 
Fig. 2(bj). A heteroclinic loop is formed by the union of two or 
more heteroclinic orbits (see Fig. 2(b)). We will use the term 
Shil’nikov sysfem when referring to (l) ,  where these special 
orbits based at saddle-focus-type equilibrium points are present 
in the dynamics. 

Another important concept needed here is that of a Poincare‘ 
map, which is a stroboscopic means of analyzing the dynamics 
of certain nonlinear systems. For ( I ) ,  this technique amounts 
to using a plane C c R2 to cut transversely across recurrent 
behavior (as occurs local to a homoclinic or heteroclinic orbit); 
this in turn defines a 2-D map P :  U c C ---t C, called the 
PoincarC map, where the neighborhood U designates those 
points that retum to C at least once under the flow. This map 
takes a point 20 in U to the first intersection P(x0) = &r (xo) 
of the dynamical orbit from xo with the C-plane (tr is the 

transit time for this orbit).’ Fig. 3 depicts a case in which a 
PoincarC map is constructed in the neighborhood of a periodic 
orbit A (which itself is seen to correspond to a$rst-orderfied 
point of P ,  that is, P ( x * )  = x*j. Observe that P defines a 
2-D discrete dynamical system 

that characterizes (1). With this approach, one may then study 
the reduced system in (4) instead of the original 3-D system in 
(1). For example, the stability properties of A are reflected in 
the stability of the fixed point z* .  For the case of a homoclinic 
orbit (a heteroclinic orbit or loop is similar), a characteristic 
local PoincarC map P (called the Shil’nikov map) can be 
constructed from two constituent maps: $e ,  which corresponds 
to the linearized flow near the equilibrium point (that is, the 
flow governed by (3)), while the second one, $h,  describes 
the behavior in a neighborhood of the homoclinic orbit away 
from the equilibrium point (see Fig. 4). 

The final concept needed here is that of the Smale horseshoe 
map and its associated invariant 2-D set A, called the Smale 
horseshoe (see [SI). This is the set analytically detected by the 
Shil’nikov method in the discrete dynamics generated by the 
Shil’nikov map (that is, in (4)), and which guarantees that the 
original system [equation (I)] is chaotic in a rigorous sense. 
In fact. it can be shown that when the Smale horseshoe A is 

‘Note that if P ( z 0 )  Cr, then P(’)(zo):  = POP(z0) will not be defined. 
This “escape” of zo from U can occur for any higher number of iterations 
under P .  
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Fig. 3. Illustration of the Poincark map P : I’ + Y local to a periodic orbit 
A. We call the plane .T a local cross secfion at z*. The transversality of S 
to the flow means that [(z) is not parallel to Y for all z in Y,  A sample 
orbit initiating at 2 1  E Y and intersecting Y twice more at z2 and z3 is 
shown. In terms of P, this implies that 2 2  = P ( z l ) ,  2 3  = P ( q ) ,  and 
hence, 2 3  = P(*)(z1). 

-1- 

Fig. 4. i CO U ‘0 for the case of a homoclinic 
orbit ‘H based at the saddle focus 2,. Here, V is a small section of the 
cylindrical surface Co. The map $+ : CO i E1 characterizes the behavior 
local to ze, whereas 7$), : E1 + CO U 20 takes care of the behavior local to 
the portion of 3-1 that is not in the neighborhood of zt, 

The Shil’nikov map P : 

embedded in (4), then there exist the following orbits in (1) 
that typify chaotic behavior: 

1) a countable infinity (that is, the number can be put in 
one-to-one correspondence with the natural numbers) of 
periodic orbits consisting of orbits of all periods 

2 )  an uncountuble infinity (that is, the number can be put 
in one-to-one correspondence with the real numbers) of 
nonperiodic orbits 

3 )  a dense orbit, that is, one that passes arbitrarily closely 
to any point in A. 

In its simplest form, the Smale horseshoe map can be written 
as f : S i R2, where S is the unit square in R2. Its basic 
operation (see Fig, 5 )  is that of contracting S in the 2-direction, 
expanding it in the y-direction, folding the result (which is in 
the shape of a horseshoe), and placing this result back over 
S.  Note how pieces of S fall outside of S under the action of 
f s, and how the horizontal rectangles Ho and H I  become the 
vertical ones V, and VI ,  respectively. By repeating iterations 
under f s ,  which corresponds to evolving the discrete dynamics 
generated by fs, and retaining only those points in S that 
remain invariant under f s ,  one arrives at a very complex set 
of points in S (in the limit of an infinite number of iterations) 
that is the Smale horseshoe. This set is reminiscent of a 2-D 
version of the familiar Cantor set (wherein the middle-third 
interval is removed from the unit interval, the same is done 
for the remaining two subintervals, and this process is repeated 
ad injnitum). The basic process of the Shil’nikov method is 
then to show that the Shil’nikov map behaves qualitatively 
the same as the map f s ,  thereby ensuring the existence of the 
Smale horseshoe in the map’s discrete dynamics-and hence 
finally horseshoe chaos in the original third-order continuous 
system, as indicated above. 

B. Formal Statement of Results 

Given the background just presented, we are now ready to 
state the two basic versions of the Shil’nikov method: one 
based on the presence of a homoclinic orbit and one assuming 
the existence of a heteroclinic loop. 

Theorem 2.1 (Homoclinic Shil ’nikov Method}: Given the 
third-order autonomous system in (l),  where 5 is a C2 vector 
field on R3. Let ze be an equilibrium point for (1). Suppose 
the following: 

1) The equilibrium point is a saddle focus whose charac- 
teristic eigenvalues satisfy the Shil’nikov inequalio, that 
is, 

IYI > 101 0. ( 5 )  

2) There exists a homoclinic orbit ‘Ft based at 2,. 
Then 
1) The Shil’nikov map defined in a neighborhood of ‘FI 

possesses a countable number of Smale horseshoes in 
its discrete dynamics. 

2) For any sufficiently small C1-perturbation C of (*, the 
perturbed system 

dz  
- = [(x), z E R3 
d t  

2Roughly, this means that the norm of the difference [ - ( and its first 
derivative are sufficiently small in a neighborhood containing 7-1. 
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Fig. 5. Geometric illustration of the simplified Smale horseshoe map f,. Its basic characteristics of 1 )  mapping disjoint regions (such as Ho and H I )  
over themselves (note 1;: = fs( H A ) ,  i = 0. 1) and 2) “strong” stretching and contraction in complementary directions are representative of the Poincari 
maps for many of the continuous dynamical systems that exhibit chaotic behavior. 

has at least a finite number of Smale horseshoes in the 
discrete dynamics of the Shil’nikov map defined near ‘H. 

3) Both the original system [equation ( l ) ]  and the perturbed 
one [equation (6)] exhibit horseshoe chaos (also known 
as homoclinic chaos). 

R =  1IG 

+ 
Remarks 

i) This result was put forth originally by Shil’nikov, with 
the Smale horseshoe aspects added later. It has also been 
extended to piecewise-C2 vector fields (that is, vector 
fields that are C2 in pieces that are regions whose union 
is R’)), provided that 1) 2, is in the interior of one of the 
pieces, and 2) ‘If is bounded away from any equilibrium 
point other than 2, and is not tangent to any of the 
boundary surfaces between the pieces. The details of this 
extension can be found in [6]. 

ii) Conclusions 2 and 3 indicate what is called the struc- 
tural stability property of homoclinic chaos, that is, 
it remains in existence despite minor changes in the 
vector field. This has important implications for both 
the numerical and experimental investigation of chaos, 
since the environmental parameters in these contexts 
do vary with time and are known to only a finite 
precision. Unlike homoclinic chaos, the existence of 
the homoclinic orbit itself is not guaranteed to be 
structurallp stable. 

iii) It tums out that the (first) Shil’nikov inequality in (5) is 
very crucial, in that if it is reversed, the Smale horse- 
shoes go away and no chaos appears. The boundary 
1 0 1  = Iy( is an interesting bifurcation point between 
regular and chaotic behavior. 

iv) The most difficult part of applying this method is the 
formal establishment of the homoclinic orbit’s exis- 

Fig. 6.  Chua’s circuit, an example system for which the Shil’nikov method 
can be applied. The only nonlinear element is the resistor R, which has a 
piecewise-linear currentholtage characteristic and is locally active. 

tence. The following example indicates how this can 
be done for the case of a piecewise-linear system. 

Example 2. I (Chua’s Circuit: Homoclinic Orbit from a Saddle 
Fucus): Chua’s circuit, shown in Fig. 6, has become a para- 
digm for chaos, being one of the simplest systems manifesting 
the complex phenomenon of chaos in both laboratory and 
computer environments (see [7]). The only nonlinear element 
in this third-order circuit is the active piecewise-linear resistor 
R, which is described through the relation 

where mo and ml are negative slopes and Bp is a breakpoint 
parameter. For the practical realization of the circuit, this 
resistor must be eventually passive for I V R (  on the order 
of several volts. In this way, the experimental observation 
of chaos will match the computer one made using the ideal 
globally active characteristic in (7). 

A formal analysis of the general double-scroll vector field 
family (which contains Chua’s circuit as a special case) is 
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given in [8], which includes a general qualitative analysis 
culminating in a demonstration of the presence of homoclinic 
chaos, along with a detailed bifurcation analysis (wherein 
the qualitative behavior is studied as a circuit parameter is 
varied). The vector fields here are 1)  piecewise-linear (and 
hence piecewise C" (smooth)), consisting of three regions 
with two parallel planes as the boundary surfaces, and 2) are 
odd symmetric with respect to the origin. This can be readily 
seen from the dimensionless form of the state equation, which 
is given by 

1 

-1 

d r  
d r  - = a[-?/ - .r - !(.)I 
z = J - - ? / f Z  d?J 

dz  
d r  - = -[jy ( 8 4  

b.c + a - b. .I' 2 1 
f ( J 7 ) : =  a.r, 1.4 51 (8b) { b z - a + b ,  J7 5 -1. 

(I, p, a,  and b are parameters defined in terms of the original 
circuit parameters, and r is a normalized time. 

The system possesses three distinct saddle foci, one in 
the interior of each region (in particular, one at the origin, 
and the Other two odd-symmetrically and located at 
(fk. 0. F k ) ,  where k = ( b  - u ) / ( b  4- 1)). Because of the 
piecewise-linear nature of the vector fields, a precise analysis 

(b) 

Fig 7. Numerical simulation of a homoclinic orbit in the dynamics of Chua's 
circuit (see Example 2 I )  (a) A view of the complete orbit. (b) A magnified 
view of the orbit near the equilibrium point at the origin. 

where 

of the qualitative dynamics in each region is tenable. This, 
coupled with the parameterization of the vector fields, makes 
it possible to establish formally the existence of an odd- 
symmetrically related pair of homoclinic orbits %* based at 
the origin. This nontrivial demonstration was first done in [8]. 

Fig. 7 is a computer-generated illustration of one such 
homoclinic orbit, with the following parameter values in (8): 

I Q = 11.5996022, (1 = 15, IL = T ~ L O  = -1.142857143, 
b = 7rbl  = -0.7142857143 (9) 

and with an initial condition of 

~ ( 0 )  = 0.00866911, ~ ( 0 )  = 0.000958759: 

~ ( 0 )  = -0.00489156. (10) 
The integration was performed on an IBM-compatible personal 
computer using the INSITE software package,3 employing 
a Runge-Kutta-Fehlberg-45 routine with an absolute and 
relative tolerance of l o p 7  and 10V8, respectively. Although 
we encourage readers to replicate this simulation, we caution 
them that this is a delicate and sensitive operation. In general, 
the reason for this sensitivity is that the spiral portion of the 
homoclinic orbit quickly escapes the stable manifold W" (0) 
[this manifold is the nonlinear generalization of the eigenplane 
E"(O)], since it is a 2-D subset of the 3-D space and any 
computer has only finite precision.4 As a result, one can follow 

3This software is a user-friendly analysis tool for nonlinear systems 

'For the piecewise-linear system considered here, 1i7"(0) = E ' ( 0 )  in the 
designed for the nonspecialist (see [SI). 

interior of the inner region (where 1.d 5 1) that contains 0. 

such an orbit for only a moderate amount of time before the 
simulation begins to veer away into another set of dynamics. 
This latter effect can be seen in Fig. 8(a). Fig. 8(b) and (c) 
show what occurs when a parameter such as a is slightly 
perturbed from its nominal value given in (9). Observe how 
the orbit is deflected either above or below W"(0)  and thus 
does not form a closed orbit. Conversely, by the continuity 
of solutions of differential equations with respect to their 
parameters, one could use these opposing-orbit deviations to 
argue intuitively for the existence of some homoclinic orbit in 
the dynamics of (8). 

The numerical sensitivity issues and intuitive arguments just 
discussed indicate that a rigorous proof is needed to ensure 
the existence of such an orbit, as was performed in [8]. With 
the parameters in (9), one also finds that the characteristic 
eigenvalues of the origin are 

y = 2.9399 and n * j w  = -1.1414 h j2 .6743  (11) 

thus satisfying the Shil'nikov inequality in (5). An application 
of the extended homoclinic Shil'nikov method (see Remark i) 
to Theorem 2.1) to this system then proves the existence of 
chaos in (8). 

Theorem 2.2 (Heteroclinic Shil 'nikov Method): Given the 
third-order autonomous system in ( l ) ,  where 5 is as in 
Theorem 2.1. Let f , ~  and xe2  be two distinct equilibrium 
points for (1). Suppose the following: 
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z 

z 

(c) 

Fig. 8. Illustration of the sensitivity of the homoclinic orbit observed in 
Fig. 7 to finite numerical precision and small parameter perturbations. (a) 
Simulation resulting from letting the integration continue for a longer period 
of time than in Fig. 7(a). Ideally, the spiral portion of the orbit should take an 
infinite amount of time to reach the equilibrium point. Instead, finite computer 
error causes this orbit to deviate from its properly closed form. (b) Simulation 
resulting from perturbing the parameter N to the slightly lower value of 1 1.598. 
Observe how the orbit is deflected below the 2-D stable manifold W’c(0). 
(c) Simulation resulting from a being increased to the value of I 1 5 1 .  In this 
case, the trajectory is deflected above M ” ( 0 ) .  

1) Both z,1 and z , ~  are saddle foci that satisfy the 
Shil’nikov inequality 

Iy;( > (mi l  > 0 ( i  = 1, 2) (12a) 

Then, conclusions 1-3 of Theorem 2.1 hold again, with ‘FI 
replaced by ‘HI, the equilibrium point z, by z,i ( i  = 1, a), 
and homoclinic chaos by the corresponding term heteroclinic 
chaos. 

Remarks 

i) This result is a generalization of the basic finding of 
Shil’nikov. Like Theorem 2.1, it has also been extended 
to the piecewise-C2 case with the requirement that 1) each 
equilibrium point be in the interior of a piece (this could be 
the same piece for both points), and 2) the heteroclinic orbits 
be bounded away from any equilibria other than xez and not 
be tangent to any boundary surface of any piece. Again the 
details can be found in [6]. 

ii) Remarks similar to ii) through iv) above hold here as 
well. 
Example 2.2 (Chua’s Circuit: Heteroclinic Orbit Between Two 
Saddle Foci): The double-hook vector-field family is closely 
related to its double-scroll counterpart. In fact, the major 
difference between the vector field families is that the origin 
for (1) is a saddle-node equilibrium point instead; that is, 
the characteristic eigenvalues of D [ ( z e )  are all real, nonzero, 
and not all of the same sign. The experimental, simulative, 
and analytical aspects of the double-hook dynamics can be 
found in [lo] and [ l l ]  and in the detailed dissertation of 
[ 121. In this case, a single odd-symmetric heteroclinic loop 
7-1~ that joins the outer two saddle foci (similar to the loop 
illustrated in Fig. 2(b)) is analytically found to be a first- 
order fixed point of an appropriate Poincark map constructed 
to characterize the double-hook system. Then the extended 
heteroclinic Shil’nikov method (see Remark i) to Theorem 
2.2) is applied to a parameterized version of the system to 
conclude formally that chaos is present. 

The computer simulations in Fig. 9, which are analogous 
to Figs. 7 and 8 for the homoclinic orbit in Chua’s circuit, 
illustrate 1) the heteroclinic loop El, which consists of two 
homoclinic orbits and 2) the sensitivity of the simulations to 
small perturbations in the parameter a. These simulations turn 
out to be even more difficult to perform than those for the 
homoclinic-orbit case, since 7-11 connects the two widely sep- 
arated (with respect to finite-precision concems) saddle foci5 

z,, = (4122.32. 0, ~ 2 2 . 3 2 ) ~ .  i = 1, 2 (13) 

which are separated by a Euclidean distance of 63.13. . .. In 
addition, z,, ( i  = 1, 2) has reversed stability (that is, cr and y 
have changed sign) compared to the saddle focus at the origin 
in Example 2.1 above (consider (11), and (16), below). Con- 
sequently, we also had to perform our simulations in reverse 
time, that is, with the right-hand side of (8a) reversed in sign. 

The presentation of ‘FI, in Fig. 9(a) was developed with the 
following parameter values: 

with the further constraint Q: = -4.50746268737, ,i? = -3.3373353844, 

a = -2.4924, b = -0.93 (14) 
cr1m > 0 or 7 1 7 2  > 0. (1 2b) 

2, There is a heteroclinic loop joining z e l  to ze2 that 5Note that the upper (lower) signs in (13) correspond to / = 1. 2. This 
is made up of two heteroclinic orbits 7-1i(z = 1, 2). convention holds throughout. 
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to reverse time) manifold6 Wc(z,,) because of numerical 
error. Fig. 9(b) and (c) illustrate the deflection of the orbit 
initiating at the point zl(0) in (15) above and below Wc(ze2) 
(with respect to the z-coordinate) when (Y is slightly changed 
from its value in (14). This reflects the extreme sensitivity of 
these simulations to parameter perturbations. In this case the 
characteristic eigenvalues for z,, (z  = 1, 2) are given by the 
single set 

7% = -0.9506607987, 
(T, i j w ,  = 0.1330915934 f j1.044002616, 

i - 1 . 2  (16) 

and are seen to satisfy the necessary conditions in (12) of 
Theorem 2.2. 

111. CONCLUSION 

This paper has given a brief introduction into the method 
of Shil'nikov used to detect analytically the presence of 
chaos in continuous autonomous systems. This powerful tool 
should be employed whenever possible, since the nature of 
chaos can make it precarious to rely simply on experimental 
measurements or computer simulations-which are subject 
to limitations on time duration, bandwidth, and numerical 
precision. This tutorial should serve as a springboard to study 
this diagnostic further, so that its importance and potential can 
be appreciated, as well as to obtain the detailed information 
needed for its hands-on application (the books by Wiggins [I], 
[4] are highly recommended). In fact, it has been conjectured 
that lurking behind most chaotic behavior is the existence 
of some homoclinic orbit or heteroclinic loop, making the 
significance of the Shil'nikov approach quite evident. If such 
pursuits are undertaken, be forewarned that the field of nonlin- 
ear dynamics is engaging and exciting, and that the nonlinear 
toolkit has many more tools with which one can gain insight 
into the challenging problems currently arising in a whole 
spectrum of fields. 

--i5 z 
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