Discrete Mathematics Algebraic Structures H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2016	License Example 1 Constraints of the series
Topics Algebraic Structures Introduction Algebraic Families Groups Lattices Partially Ordered Sets Lattices Boolean Algebra	Algebraic Structures algebraic structure: <set, constants="" operations,=""></set,> carrier set operations: binary, unary constants: identity, zero

Operations	Constants
<text><text><list-item><list-item><list-item> every operation is a function binary operation: S × S → T unary operation: A : S → T closed: T ⊆ S example subtraction is closed on Z subtraction is not closed on Z⁺ </list-item></list-item></list-item></text></text>	Definition identity: 1 $x \circ 1 = 1 \circ x = x$ \therefore left identity: $1_{I} \circ x = x$ \therefore right identity: $x \circ 1_{r} = x$ \therefore left zero: $0_{I} \circ x = 0$ \therefore right zero: $x \circ 0_{r} = 0$
Examples of Constants	Examples of Constants
• identity for $< \mathbb{N}$, $max > is 0$ • zero for $< \mathbb{N}$, $min > is 0$ • zero for $< \mathbb{Z}^+$, $min > is 1$	\hat{o} \hat{a} \hat{b} \hat{c} \hat{a} \hat{a} \hat{b} \hat{c} \hat{b} \hat{a} \hat{b} \hat{c} \hat{c} \hat{a} \hat{b} \hat{c} \hat{c} \hat{a} \hat{b} \hat{c} <td< td=""></td<>

Constants			Inverse	
Theorem $\exists 1_{l} \land \exists 1_{r} \Rightarrow 1_{l} = 1_{r}$ Proof. $1_{l} \circ 1_{r} = 1_{l} = 1_{r}$	Theorem $\exists 0_l \land \exists 0_r \Rightarrow 0_l = 0_r$ Proof. $0_l \circ 0_r = 0_l = 0_r$		 x o y = 1: x is a <i>left inverse</i> of y y is a <i>right inverse</i> of x x o y = y o x = 1: x is an inverse of y y is an inverse of x 	
	S	9/71	10 / 7	71
Inverse			Algebraic Families	
Theorem • associative $w \circ x = x \circ y$ Proof. $w = w \circ 1$ $= w \circ (x \circ y)$ $= (w \circ x) \circ y$ $= 1 \circ y$ = y	$y = 1 \Rightarrow w = y$	1/71	 algebraic family: structure and axioms axioms: associativity, commutativity, inverses, 	71

Algebraic Family Examples		Subalgebra	
<pre>> axioms: > $x \circ y = y \circ x$ > $(x \circ y) \circ z = x \circ (y \circ z)$ > $x \circ 1 = x$ > structures for which these axioms hold: > $< \mathbb{Z}, +, 0 >$ > $< \mathbb{Z}, \cdot, 1 >$ > $< \mathcal{P}(S), \cup, \emptyset >$</pre>		• $A = \langle S, \circ, \Delta, k \rangle$ $A' = \langle S', \circ', \Delta', k' \rangle$ • A' is a subalgebra of A : • $S' \subseteq S$ • $k' = k$ • $\forall a, b \in S' \ a \circ' b = a \circ b \in S'$ • $\forall a \in S' \ \Delta' a = \Delta a \in S'$	
	13/71		14 / 71
Subalgebra Examples		Semigroups	
 < Z⁺, +, 0 > is a subalgebra of < Z, +, 0 > < N, -, 0 > is not a subalgebra of < Z, -, 0 > 		Definition semigroup: $\langle S, \circ \rangle$ $\blacktriangleright \forall a, b, c \in S (a \circ b) \circ c = a \circ (b \circ c)$	
	15/71		16 / 71

Semigroup Example	Monoids
 <Σ⁺, & > Σ: alphabet, Σ⁺: strings of length at least 1 &: string concatenation 	Definition monoid: $\langle S, \circ, 1 \rangle$ • $\forall a, b, c \in S \ (a \circ b) \circ c = a \circ (b \circ c)$ • $\forall a \in S \ a \circ 1 = 1 \circ a = a$
17/71	18 / 71
Monoid Example	Groups
 <Σ*, &, ε > Σ: alphabet, Σ*: strings of any length &: string concatenation ε: empty string 	Definition group: $\langle S, \circ, 1 \rangle$ • $\forall a, b, c \in S \ (a \circ b) \circ c = a \circ (b \circ c)$ • $\forall a \in S \ a \circ 1 = 1 \circ a = a$ • $\forall a \in S \ \exists a^{-1} \in S \ a \circ a^{-1} = a^{-1} \circ a = 1$ • Abelian group: $\forall a, b \in S \ a \circ b = b \circ a$
19 / 71	20 / 71

Group Examples	Group Example
▶ $< \mathbb{Z}, +, 0 > \text{is a group}$ ▶ $< \mathbb{Q}, \cdot, 1 > \text{is not a group}$ ▶ $< \mathbb{Q} - \{0\}, \cdot, 1 > \text{is a group}$	• $a \circ b = a + b + ab$ • $is < \mathbb{Z}, \circ > a$ group? • $is \circ associative?$ ($a \circ b$) $\circ c = (a + b + ab) + c + (a + b + ab) \cdot c$ = a + b + ab + c + ac + bc + abc = a + b + c + bc + ab + ac + abc $= a + (b + c + bc) + a \cdot (b + c + bc)$ $= a \circ (b \circ c)$
Group Example	/71 Group Example: Permutations
is there an identity element?	
$a\circ 0=a+0+a\cdot 0=a$	permutation: a bijective function on a set
does every element have an inverse?	$\blacktriangleright A = \{a_1, a_2, \dots, a_n\}$
$a \circ a^{-1} = 0$ $\Rightarrow a + a^{-1} + a \cdot a^{-1} = 0$ $\Rightarrow a + a^{-1} \cdot (1 + a) = 0$ $\Rightarrow a^{-1} = -\frac{a}{1+a}$	$\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ p(a_1) & p(a_2) & \dots & p(a_n) \end{pmatrix}$ • permutation composition:
-1 doesn't have an inverse, not a group	
23	/71 24/71

Permutation Example	Permutation Composition Example
• $A = \{1, 2, 3\}$ $p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ $p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ $p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ $p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ $p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$	• $A = \{1, 2, 3\}$ $p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ $p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ $p_3 \diamond p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
Group Example: Permutations	Group Example: Permutation
 permutation composition is associative identity permutation: 1_A $\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$ 	$ A = \{1, 2, 3, 4\} $ $ A = \{1, 3, 4\} $ $ A =$

- ► Perm(A): set of all permutations of the elements of A
- \blacktriangleright < *Perm*(*A*), \diamond , 1_{*A*} > is a group

27 / 71

2 1

3 2

28 / 71

 p_{12} p_{13} p_{14} p_{15} p_{16} p_{17} p_{18} p_{19} p_{20} p_{21} p_{22} p_{23}

	Group Example: Permutation	
	• $G' = < \{1_A, p_2, p_6, p_8, p_{12}, p_{14}\}, \diamond, 1_A >$ $\frac{\diamond 1_A p_2 p_6 p_8 p_{12} p_{14} p_2 p_2 p_2 1_A p_2 p_6 p_6 p_6 p_1 1_A p_1 p_2 p_8 p_8 p_8 p_1 p_1 p_2 p_1 p_1 p_2 p_2 p_2 p_1 p_6 p_1 1_A p_8 p_2 p_2 p_6 p_1 1_A p_8 p_2 p_2 p_6 1_A p_1 p_1 p_8 p_{12} p_2 p_2 p_6 1_A p_1 p_2 p_6 p_6 1_A p_8 p_2 p_2 p_6 1_A p_8 p_2 p_6 1_A p_8 p_1 p_1 p_8 p_1 p_2 p_6 p_1 p_8 p_1 p_2 p_6 1_A p_8 p_2 p_6 1_A p_8 p_1 p_8 p_$	
29 / 71		30 / 71
	Basic Theorem of Groups	
	Theorem The unique solution of the equation $a \circ x = b$ is: $x = a^{-1} \circ b$ Proof. $a \circ x = b$ $\Rightarrow a^{-1} \circ (a \circ x) = a^{-1} \circ b$ $\Rightarrow 1 \circ x = a^{-1} \circ b$ $\Rightarrow x = a^{-1} \circ b$	
	29/71	Group Example: Permutation • $G' = \langle \{1_A, p_2, p_6, p_8, p_{12}, p_{14}\}, \circ, 1_A \rangle$ $\frac{\diamond \ 1_A p_2 p_6 p_8 p_{12} p_{14} p_{14} p_{12} p_{14} p_{12} p_{14} p_{14} p_{14} p_{14} p_{14} p_{14} p_{14} p_{14} p_{12} p_{12} p_{2} p_{12} p_{14} p_$

Ring	Field
Definition ring: $\langle S, +, \cdot, 0 \rangle$ • $\forall a, b, c \in S (a + b) + c = a + (b + c)$ • $\forall a \in S a + 0 = 0 + a = a$ • $\forall a \in S \exists (-a) \in S a + (-a) = (-a) + a = 0$ • $\forall a, b \in S a + b = b + a$ • $\forall a, b, c \in S (a \cdot b) \cdot c = a \cdot (b \cdot c)$ • $\forall a, b, c \in S$ • $(b + c) = a \cdot b + a \cdot c$ • $(b + c) \cdot a = b \cdot a + c \cdot a$	Definition field: $\langle S, +, \cdot, 0, 1 \rangle$ • all properties of a ring • $\forall a, b \in S \ a \cdot b = b \cdot a$ • $\forall a \in S \ a \cdot 1 = 1 \cdot a = a$ • $\forall a \in S \ \exists a^{-1} \in S \ a \cdot a^{-1} = a^{-1} \cdot a = 1$
References	Partially Ordered Set
 Grimaldi Chapter 5: Relations and Functions 5.4. Special Functions Chapter 16: Groups, Coding Theory, and Polya's Method of Enumeration 16.1. Definitions, Examples, and Elementary Properties Chapter 14: Rings and Modular Arithmetic 14.1. The Ring Structure: Definition and Examples 	Definition partial order relation: reflexive anti-symmetric transitive partially ordered set (poset): a set with a partial order relation defined on its elements

Partial Order Examples	Partial Order Examples
Example (set of sets, \subseteq) $\blacktriangleright A \subseteq A$ $\blacktriangleright A \subseteq B \land B \subseteq A \Rightarrow A = B$ $\blacktriangleright A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$	Example (\mathbb{Z}, \leq) $\blacktriangleright x \leq x$ $\blacktriangleright x \leq y \land y \leq x \Rightarrow x = y$ $\blacktriangleright x \leq y \land y \leq z \Rightarrow x \leq z$
37/71 Partial Order Examples	38/71 Comparability
Example $(\mathbb{Z}^+,)$ $\blacktriangleright x x$ $\blacktriangleright x y \land y x \Rightarrow x = y$ $\blacktriangleright x y \land y z \Rightarrow x z$	 a ≤ b: a precedes b a ≤ b ∨ b ≤ a: a and b are comparable total order (linear order): all elements are comparable with each other
39/71	40 / 71

Comparability Examples	Hasse Diagrams
 Example Z⁺, : 3 and 5 are not comparable Z, ≤: total order 	 a ≪ b: a immediately precedes b ¬∃x a ≤ x ≤ b Hasse diagram: draw a line between a and b if a ≪ b preceding element is below
41/7	1 42 / 71
Hasse Diagram Examples	Consistent Enumeration
Example	
$ \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\} $ the relation $ \begin{cases} 1, 2, 3, 4, 6, 8, 9, 12, 18, 24 \} \\ 4 & 6 & 9 \\ 2 & 3 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} $	 consistent enumeration: f: S → N a ≤ b ⇒ f(a) ≤ f(b) there can be more than one consistent enumeration
43/7	1 44 / 71

Consistent Enumeration Examples	Maximal - Minimal Elements
Example $ \int_{a} \\ b \\ c \\ c \\ d \\ e $ • $\{a \mapsto 5, b \mapsto 3, c \mapsto 4, d \mapsto 1, e \mapsto 2\}$ • $\{a \mapsto 5, b \mapsto 4, c \mapsto 3, d \mapsto 2, e \mapsto 1\}$	Definition maximal element: max $\forall x \in S \text{ max} \leq x \Rightarrow x = \text{max}$ Definition minimal element: min $\forall x \in S \text{ x} \leq \text{min} \Rightarrow x = \text{min}$
Maximal - Minimal Element Examples	Bounds
Example $ \begin{array}{c} & 24 \\ & 4 \\ & 8 \\ & 12 \\ & 1 \\ & 4 \\ & 6 \\ & 9 \\ & 2 \\ & 3 \\ & 1 \end{array} $ $ \begin{array}{c} max : 18, 24 \\ min : 1 \end{array} $	Definition $A \subseteq S$ Definition $A \subseteq S$ M is an upper bound of A: $\forall x \in A \ x \preceq M$ m is a lower bound of A: $\forall x \in A \ x \preceq M$ M(A): set of upper bounds of Am(A): set of lower bound of Asup(A) is the supremum of A: $\forall M \in M(A) \ sup(A) \preceq M$ inf(A) is the infimum of A: $\forall m \in m(A) \ m \preceq inf(A)$

Join Irreducible	Join Irreducible Example
 Definition join irreducible element: a = x ∨ y ⇒ a = x ∨ a = y atom: a join irreducible element which immediately succeeds the minimum 	 Example (divisibility relation) prime numbers and 1 are join irreducible 1 is the minimum, the prime numbers are the atoms
61/71	62 / 71
Join Irreducible	Complement
Theorem Every element in a lattice can be written as the join of join irreducible elements.	Definition a and x are complements: $a \land x = 0 \text{ and } a \lor x = l$
63 / 71	64 / 71

Complemented Lattice	Boolean Algebra
Theorem In a bounded, distributive lattice the complement is unique, if it exists. Proof. $a \land x = 0, a \lor x = 1, a \land y = 0, a \lor y = 1$ $x = x \lor 0 = x \lor (a \land y) = (x \lor a) \land (x \lor y) = 1 \land (x \lor y)$ $= x \lor y = y \lor x = 1 \land (y \lor x)$ $= (y \lor a) \land (y \lor x) = y \lor (a \land x) = y \lor 0 = y$	Definition Boolean algebra: $< B, +, \cdot, \overline{x}, 1, 0 >$ $a + b = b + a$ $a \cdot b = b \cdot a$ $(a + b) + c = a + (b + c)$ $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ $a + 0 = a$ $a \cdot 1 = a$ $a + \overline{a} = 1$ $a \cdot \overline{a} = 0$
6	5/71 66/71
Boolean Algebra - Lattice Relationship	Duality
Definition A Boolean algebra is a finite, distributive, complemented lattice.	Definition dual: + instead of \cdot , \cdot instead of + 0 instead of 1, 1 instead of 0 Example $(1 + a) \cdot (b + 0) = b$ dual of the theorem: $(0 \cdot a) + (b \cdot 1) = b$

Boolean Algebra Examples	Boolean Algebra Theorems
Example $B = \{0, 1\}, + = \lor, \cdot = \land$ Example $B = \{ \text{ factors of 70 } \}, + = lcm, \cdot = gcd$	$a + a = a \qquad a \cdot a = a$ $a + 1 = 1 \qquad a \cdot 0 = 0$ $a + (a \cdot b) = a \qquad a \cdot (a + b) = a$ $(a + b) + c = a + (b + c) \qquad (a \cdot b) \cdot c = a \cdot (b \cdot c)$ $\frac{\overline{a}}{\overline{a}} = a$ $\overline{a + b} = \overline{a} \cdot \overline{b} \qquad \overline{a \cdot b} = \overline{a} + \overline{b}$
69 /	70 / 71
References	
 Required Reading: Grimaldi Chapter 7: Relations: The Second Time Around 7.3. Partial Orders: Hasse Diagrams Chapter 15: Boolean Algebra and Switching Functions 15.4. The Structure of a Boolean Algebra 	
71 /	71