Discrete Mathematics

Algebraic Structures
H. Turgut Uyar Ayșegül Gençata Yayımlı Emre Harmancı

2001-2016

License

(C) 2001-2016 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- NonCommercial - You may not use the material for commercial purposes.
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/
Read the full license:
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Topics

Algebraic Structures
Introduction
Algebraic Families
Groups

Lattices
Partially Ordered Sets
Lattices
Boolean Algebra

Algebraic Structures

- algebraic structure: <set, operations, constants>
- carrier set
- operations: binary, unary
- constants: identity, zero

Operations

- every operation is a function
- binary operation:
o: $S \times S \rightarrow T$
- unary operation:
$\Delta: S \rightarrow T$
- closed: $T \subseteq S$
example
- subtraction is closed on \mathbb{Z}
- subtraction is not closed on \mathbb{Z}^{+}

Examples of Constants

- identity for $<\mathbb{N}, \max >$ is 0
- zero for $<\mathbb{N}, \min >$ is 0
- zero for $<\mathbb{Z}^{+}, \min >$ is 1

Constants

Definition
identity: 1
$x \circ 1=1 \circ x=x$

- left identity: $1_{/} \circ x=x$
- right identity: $x \circ 1_{r}=x$

Definition
zero: 0
$x \circ 0=0 \circ x=0$

- left zero: $0, \circ x=0$
- right zero: $x \circ 0_{r}=0$

Examples of Constants

\circ	a	b	c
a	a	b	b
b	a	b	c
c	a	b	a

- b is a left identity
- a and b are right zeros

Constants

Theorem

$$
\exists 1_{l} \wedge \exists 1_{r} \Rightarrow 1_{l}=1_{r}
$$

Proof.
$1_{l} \circ 1_{r}=1_{l}=1_{r}$

Theorem
$\exists 0_{l} \wedge \exists 0_{r} \Rightarrow 0_{I}=0_{r}$

Proof.
$\square \quad 0, \circ 0_{r}=0_{l}=0_{r}$

Inverse

- $x \circ y=1$:
x is a left inverse of y y is a right inverse of x
- $x \circ y=y \circ x=1$:
x is an inverse of y y is an inverse of x

Inverse

Theorem

- associative

$$
w \circ x=x \circ y=1 \Rightarrow w=y
$$

$$
\begin{aligned}
& \text { Proof. } \\
& \begin{aligned}
w & =w \circ 1 \\
& =w \circ(x \circ y) \\
& =(w \circ x) \circ y \\
& =1 \circ y \\
& =y
\end{aligned}
\end{aligned}
$$

Algebraic Families

- algebraic family: structure and axioms
- axioms: associativity, commutativity, inverses, ...

Algebraic Family Examples

- axioms:
- $x \circ y=y \circ x$
- $(x \circ y) \circ z=x \circ(y \circ z)$
- $x \circ 1=x$
- structures for which these axioms hold:
- $\langle\mathbb{Z},+, 0>$
- $\langle\mathbb{Z}, \cdot, 1\rangle$
- < P $(S), \cup, \emptyset>$

Subalgebra Examples

- $\left.<\mathbb{Z}^{+},+, 0\right\rangle$ is a subalgebra of $\langle\mathbb{Z},+, 0\rangle$
$-\langle\mathbb{N},-, 0\rangle$ is not a subalgebra of $\langle\mathbb{Z},-, 0\rangle$

Subalgebra

- $A=<S, \circ, \Delta, k>$ $A^{\prime}=<S^{\prime}, \circ^{\prime}, \Delta^{\prime}, k^{\prime}>$
- A^{\prime} is a subalgebra of A :
- $S^{\prime} \subseteq S$
- $k^{\prime}=k$
- $\forall a, b \in S^{\prime}$ a $\circ^{\prime} b=a \circ b \in S^{\prime}$
- $\forall a \in S^{\prime} \Delta^{\prime} a=\Delta a \in S^{\prime}$

Semigroups

Definition
semigroup: $\langle S, \circ\rangle$

- $\forall a, b, c \in S(a \circ b) \circ c=a \circ(b \circ c)$

Semigroup Example

- $\left\langle\Sigma^{+}, \&\right\rangle$
- Σ : alphabet, Σ^{+}: strings of length at least 1
- \&: string concatenation

Monoids

Definition
monoid: $\langle S, \circ, 1\rangle$

- $\forall a, b, c \in S(a \circ b) \circ c=a \circ(b \circ c)$
- $\forall a \in S a \circ 1=1 \circ a=a$

Monoid Example

- $\left\langle\Sigma^{*}, \&, \epsilon\right\rangle$
- Σ : alphabet, Σ^{*} : strings of any length
- \&: string concatenation
- ϵ : empty string

Groups

Definition
group: $\langle S, \circ, 1\rangle$

- $\forall a, b, c \in S(a \circ b) \circ c=a \circ(b \circ c)$
- $\forall a \in S a \circ 1=1 \circ a=a$
- $\forall a \in S \exists a^{-1} \in S \quad a \circ a^{-1}=a^{-1} \circ a=1$
- Abelian group: $\forall a, b \in S a \circ b=b \circ a$

Group Examples

- $\langle\mathbb{Z},+, 0\rangle$ is a group
- $\langle\mathbb{Q}, \cdot, 1\rangle$ is not a group
- $<\mathbb{Q}-\{0\}, \cdot, 1>$ is a group

Group Example

- $a \circ b=a+b+a b$
- is $\langle\mathbb{Z}, \circ\rangle$ a group?
- is o associative?

$$
\begin{aligned}
(a \circ b) \circ c & =(a+b+a b)+c+(a+b+a b) \cdot c \\
& =a+b+a b+c+a c+b c+a b c \\
& =a+b+c+b c+a b+a c+a b c \\
& =a+(b+c+b c)+a \cdot(b+c+b c) \\
& =a \circ(b \circ c)
\end{aligned}
$$

Group Example

- is there an identity element?

$$
a \circ 0=a+0+a \cdot 0=a
$$

- does every element have an inverse?

$$
\begin{array}{rlrl}
& & a \circ a^{-1} & =0 \\
\Rightarrow & a+a^{-1}+a \cdot a^{-1} & =0 \\
\Rightarrow & a+a^{-1} \cdot(1+a) & =0 \\
\Rightarrow & a^{-1} & =-\frac{a}{1+a}
\end{array}
$$

-1 doesn't have an inverse, not a group

Group Example: Permutations

- permutation: a bijective function on a set
- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
p\left(a_{1}\right) & p\left(a_{2}\right) & \ldots & p\left(a_{n}\right)
\end{array}\right)
$$

- permutation composition: \diamond

Permutation Example

- $A=\{1,2,3\}$

$$
\begin{array}{ll}
p_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) & p_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) & p_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
p_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) & p_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
\end{array}
$$

Group Example: Permutations

- permutation composition is associative
- identity permutation: 1_{A}

$$
\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n} \\
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right)
$$

- $\operatorname{Perm}(A)$: set of all permutations of the elements of A
$-<\operatorname{Perm}(A), \diamond, 1_{A}>$ is a group

Permutation Composition Example

- $A=\{1,2,3\}$

$$
\begin{gathered}
p_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad p_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \\
p_{3} \diamond p_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
\end{gathered}
$$

Group Example: Permutation

- $A=\{1,2,3,4\}$

A	1_{A}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	p_{7}	p_{8}	p_{9}	p_{10}	p_{11}
1	1	1	1	1	1	1	2	2	2	2	2	2
2	2	2	3	3	4	4	1	1	3	3	4	4
3	3	4	2	4	2	3	3	4	1	4	1	3
4	4	3	4	2	3	2	4	3	4	1	3	1
	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}	p_{18}	p_{19}	p_{20}	p_{21}	p_{22}	p_{23}
1	3	3	3	3	3	3	4	4	4	4	4	4
2	1	1	2	2	4	4	1	1	2	2	3	3
3	2	4	1	4	1	2	2	3	1	3	1	2
4	4	2	4	1	2	1	3	2	3	1	2	1

Group Example: Permutation

$-p_{8} \diamond p_{12}=p_{12} \diamond p_{8}=1_{A}:$ $p_{12}=p_{8}^{-1}, p_{8}=p_{12}^{-1}$
$-p_{14} \diamond p_{14}=1_{A}:$ $p_{14}=p_{14}^{-1}$

- $G=<\left\{1_{A}, p_{1}, \ldots, p_{23}\right\}, \diamond, 1_{A}>$ is a group

Cancellation in Groups

Theorem
$a \circ c=b \circ c \Rightarrow a=b$
$c \circ a=c \circ b \Rightarrow a=b$
Proof.

$$
\begin{aligned}
& a \circ c=b \circ c \\
& \Rightarrow(a \circ c) \circ c^{-1}=(b \circ c) \circ c^{-1} \\
& \Rightarrow \quad a \circ\left(c \circ c^{-1}\right)=b \circ\left(c \circ c^{-1}\right) \\
& \Rightarrow \quad a \circ 1=b \circ 1 \\
& \Rightarrow \quad a=b
\end{aligned}
$$

Group Example: Permutation

- $G^{\prime}=<\left\{1_{A}, p_{2}, p_{6}, p_{8}, p_{12}, p_{14}\right\}, \diamond, 1_{A}>$

\diamond	1_{A}	p_{2}	p_{6}	p_{8}	p_{12}	p_{14}
1_{A}	1_{A}	p_{2}	p_{6}	p_{8}	p_{12}	p_{14}
p_{2}	p_{2}	1_{A}	p_{8}	p_{6}	p_{14}	p_{12}
p_{6}	p_{6}	p_{12}	1_{A}	p_{14}	p_{2}	p_{8}
p_{8}	p_{8}	p_{14}	p_{2}	p_{12}	1_{A}	p_{6}
p_{12}	p_{12}	p_{6}	p_{14}	1_{A}	p_{8}	p_{2}
p_{14}	p_{14}	p_{8}	p_{12}	p_{2}	p_{6}	1_{A}

- G^{\prime} is a subgroup of G

Basic Theorem of Groups

Theorem
The unique solution of the equation $a \circ x=b$ is:
$x=a^{-1} \circ b$
Proof.

$$
\begin{array}{rlrl}
& & a \circ x & =b \\
\Rightarrow & a^{-1} \circ(a \circ x) & =a^{-1} \circ b \\
\Rightarrow & 1 \circ x & =a^{-1} \circ b \\
\Rightarrow & x & =a^{-1} \circ b
\end{array}
$$

Ring

Definition

ring: $\langle S,+, \cdot, 0\rangle$

- $\forall a, b, c \in S(a+b)+c=a+(b+c)$
- $\forall a \in S a+0=0+a=a$
- $\forall a \in S \exists(-a) \in S a+(-a)=(-a)+a=0$
- $\forall a, b \in S a+b=b+a$
- $\forall a, b, c \in S(a \cdot b) \cdot c=a \cdot(b \cdot c)$
- $\forall a, b, c \in S$
- $a \cdot(b+c)=a \cdot b+a \cdot c$
- $(b+c) \cdot a=b \cdot a+c \cdot a$

References

Grimaldi

- Chapter 5: Relations and Functions
- 5.4. Special Functions
- Chapter 16: Groups, Coding Theory, and Polya's Method of Enumeration
- 16.1. Definitions, Examples, and Elementary Properties
- Chapter 14: Rings and Modular Arithmetic
- 14.1. The Ring Structure: Definition and Examples

Field

Definition
field: $\langle S,+, \cdot, 0,1\rangle$

- all properties of a ring
- $\forall a, b \in S a \cdot b=b \cdot a$
- $\forall a \in S a \cdot 1=1 \cdot a=a$
- $\forall a \in S \exists a^{-1} \in S a \cdot a^{-1}=a^{-1} \cdot a=1$

Partially Ordered Set

Definition
partial order relation:

- reflexive
- anti-symmetric
- transitive
- partially ordered set (poset):
a set with a partial order relation defined on its elements

Partial Order Examples

Example (set of sets, \subseteq)

- $A \subseteq A$
- $A \subseteq B \wedge B \subseteq A \Rightarrow A=B$
- $A \subseteq B \wedge B \subseteq C \Rightarrow A \subseteq C$

Partial Order Examples

Example (\mathbb{Z}, \leq)

- $x \leq x$
- $x \leq y \wedge y \leq x \Rightarrow x=y$
- $x \leq y \wedge y \leq z \Rightarrow x \leq z$

Partial Order Examples

Example ($\left.\mathbb{Z}^{+}, \mid\right)$

- $x \mid x$
- $x|y \wedge y| x \Rightarrow x=y$
- $x|y \wedge y| z \Rightarrow x \mid z$

Comparability

- $a \preceq b$: a precedes b
- $a \preceq b \vee b \preceq a: a$ and b are comparable
- total order (linear order):
all elements are comparable with each other

Comparability Examples

Example

- $\mathbb{Z}^{+}, \mid: 3$ and 5 are not comparable
- \mathbb{Z}, \leq total order

Hasse Diagram Examples

Example

$\{1,2,3,4,6,8,9,12,18,24\}$ the relation |

Hasse Diagrams

- $a \ll b$: a immediately precedes b
$\neg \exists x a \preceq x \preceq b$
- Hasse diagram:
- draw a line between a and b if $a \ll b$
- preceding element is below

Consistent Enumeration

- consistent enumeration:
$f: S \rightarrow \mathbb{N}$
$a \preceq b \Rightarrow f(a) \leq f(b)$
- there can be more than one consistent enumeration

Consistent Enumeration Examples

Example

- $\{a \longmapsto 5, b \longmapsto 3, c \longmapsto 4, d \longmapsto 1, e \longmapsto 2\}$
- $\{a \longmapsto 5, b \longmapsto 4, c \longmapsto 3, d \longmapsto 2, e \longmapsto 1\}$

Maximal - Minimal Elements

Definition
maximal element: max
$\forall x \in S$ max $\preceq x \Rightarrow x=\max$
Definition
minimal element: min
$\forall x \in S x \preceq \min \Rightarrow x=\min$

Maximal - Minimal Element Examples

Example

max : 18, 24
min : 1

Bound Example

Example (factors of 36)

inf $=$ greatest common divisor sup $=$ least common multiple

Lattice

Definition
lattice: $<L, \wedge, \vee>$
\wedge : meet, \vee : join

- $a \wedge b=b \wedge a$
$a \vee b=b \vee a$
- $(a \wedge b) \wedge c=a \wedge(b \wedge c)$ $(a \vee b) \vee c=a \vee(b \vee c)$
- $a \wedge(a \vee b)=a$
$a \vee(a \wedge b)=a$

Poset - Lattice Relationship

- If P is a poset, then $<P, \inf , \sup >$ is a lattice.
- $a \wedge b=\inf (a, b)$
- $a \vee b=\sup (a, b)$
- Every lattice is a poset where these definitions hold.

Duality

Definition
dual:
\wedge instead of \vee, \vee instead of \wedge
Theorem (Duality Theorem)

Every theorem has a dual theorem in lattices.

Lattice Theorems

Theorem
$a \wedge a=a$
Proof.
$a \wedge a=a \wedge(a \vee(a \wedge b))$

Lattice Examples

Example

$$
<\mathcal{P}\{a, b, c\}, \cap, \cup>
$$

\subseteq relation

Lattice Theorems

Theorem
$a \preceq b \Leftrightarrow a \wedge b=a \Leftrightarrow a \vee b=b$

Definition
lower bound of lattice L : 0 $\forall x \in L 0 \preceq x$

Theorem
Every finite lattice is bounded

Definition
upper bound of lattice L : I $\forall x \in L x \preceq I$

Distributive Lattice

- distributive lattice:
- $\forall a, b, c \in L a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
- $\forall a, b, c \in L a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$

Counterexamples

Example

$$
a \vee(b \wedge c)=a \vee 0=a
$$

$$
(a \vee b) \wedge(a \vee c)=I \wedge I=I
$$

Counterexamples

Example

$$
\begin{aligned}
& a \vee(b \wedge c)=a \vee 0=a \\
& (a \vee b) \wedge(a \vee c)=I \wedge c=c
\end{aligned}
$$

Distributive Lattice

Theorem

A lattice is nondistributive if and only if it has a sublattice isomorphic to any of these two structures.

Join Irreducible

Definition

join irreducible element:
$a=x \vee y \Rightarrow a=x \vee a=y$

- atom: a join irreducible element which immediately succeeds the minimum

Join Irreducible Example

Example (divisibility relation)

- prime numbers and 1 are join irreducible
- 1 is the minimum, the prime numbers are the atoms

Join Irreducible

Theorem

Every element in a lattice can be written as the join of join irreducible elements.

Complement

Definition
a and x are complements:
$a \wedge x=0$ and $a \vee x=I$

Complemented Lattice

Theorem

In a bounded, distributive lattice
the complement is unique, if it exists.
Proof.
$a \wedge x=0, a \vee x=I, a \wedge y=0, a \vee y=I$

$$
\begin{aligned}
x & =x \vee 0=x \vee(a \wedge y)=(x \vee a) \wedge(x \vee y)=I \wedge(x \vee y) \\
& =x \vee y=y \vee x=I \wedge(y \vee x) \\
& =(y \vee a) \wedge(y \vee x)=y \vee(a \wedge x)=y \vee 0=y
\end{aligned}
$$

Boolean Algebra - Lattice Relationship

Definition
A Boolean algebra is a finite, distributive, complemented lattice.

Boolean Algebra

Definition
Boolean algebra:

$$
\begin{array}{ll}
<B,+, \cdot \bar{x}, 1,0> \\
& \\
& \\
(a+b=b+a & a \cdot b=b \cdot a \\
a+0=a & (a \cdot b) \cdot c=a \cdot(b \cdot c) \\
a+\bar{a}=1 & a \cdot 1=a \\
& a \cdot \bar{a}=0
\end{array}
$$

Duality

Definition
dual:

+ instead of \cdot, . instead of +
0 instead of 1,1 instead of 0
Example
$(1+a) \cdot(b+0)=b$
dual of the theorem:
$(0 \cdot a)+(b \cdot 1)=b$

Boolean Algebra Examples

Example

$B=\{0,1\},+=\vee, \cdot=\wedge$
Example
$B=\{$ factors of 70$\},+=1 \mathrm{~cm}, \cdot=\mathrm{gcd}$

Boolean Algebra Theorems

$$
\begin{array}{ll}
a+a=a & a \cdot a=a \\
a+1=1 & a \cdot 0=0 \\
a+(a \cdot b)=a & a \cdot(a+b)=a \\
(a+b)+c=a+(b+c) & (a \cdot b) \cdot c=a \cdot(b \cdot c) \\
\overline{\bar{a}}=a \\
a+b=\bar{a} \cdot \bar{b} & \overline{a \cdot b}=\bar{a}+\bar{b}
\end{array}
$$

Required Reading: Grimaldi

- Chapter 7: Relations: The Second Time Around
- 7.3. Partial Orders: Hasse Diagrams
- Chapter 15: Boolean Algebra and Switching Functions
- 15.4. The Structure of a Boolean Algebra

