License

Discrete Mathematics		
Ayşegül Gençata Yayımlı	H. Turgut Uyar	
2013-2023		
		1/39

(C) 2013-2023 A. Yayımlı, T. Uyar

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made
- NonCommercial - You may not use the material for commercial purposes
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Topics

Combinatorics
Introduction
Sum Rule
Product Rule

Permutations and Combinations
Permutations
Combinations
Combinations with Repetition

Combinatorics

- combinatorics: study of arrangements of objects
- enumeration: counting of objects with certain properties
- solve a complicated problem:
- break it down into smaller problems
- piece together solutions to these smaller problems

Sum Rule

- task ${ }_{1}$ can be performed in n_{1} distinct ways
- task ${ }_{2}$ can be performed in n_{2} distinct ways
- task k_{1} and task ${ }_{2}$ cannot be performed simultaneously
- perform either task ${ }_{1}$ or task ${ }_{2}$:
$n_{1}+n_{2}$ ways

Sum Rule Example

- one friend has 3 books on "Discrete Mathematics"
- another friend has 5
- n : maximum number of different books that can be borrowed
- $5 \leq n \leq 8$

Sum Rule Example

- 40 books on sociology and 50 books on anthropology
- learn about sociology or anthropology: choose from $40+50=90$ books

Product Rule

- a procedure that can be broken down into two stages
- n_{1} possible outcomes for the first stage
- for each outcome, n_{2} possible outcomes for the second stage
- procedure can be carried out in
$n_{1} \cdot n_{2}$ ways

Product Rule Example

- drama club is holding tryouts for a play
- 6 men and 8 women auditioning for the leading roles
- director can cast leading couple in $6 \cdot 8=48$ ways

Product Rule Example

- license plates with 2 letters, followed by 4 digits
- how many possible plates?
- no letter or digit can be repeated: $26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7=3,276,000$
- repetitions allowed:
$26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10=6,760,000$
- repetitions allowed, only vowels and even digits: $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5=15,625$

Product Rule Example

a byte consists of 8 bits

- a bit has two possible values: 0 or 1
- number of possible values for a byte:
$2 \cdot 2 \cdots 2=2^{8}=256$

Counting Example

- pastry shop menu:

6 kinds of muffins, 8 kinds of sandwiches hot coffee, hot tea, icea tea, cola, orange juice

- buy either a muffin and a hot beverage, or a sandwich and a cold beverage
- how many possible purchases?
- muffin and hot beverage: $6 \cdot 2=12$
- sandwich and cold beverage: $8 \cdot 3=24$
- total: $12+24=36$

Permutation

- permutation: a linear arrangement of distinct objects
- order is significant

Permutation Example

- a class has 10 students: A, B, C, \ldots, I, J
- 4 students to be seated in a row: BCEF, CEFI, ABCF, ...
- how many such arrangements?
- filling of a position: a stage
$10 \cdot 9 \cdot 8 \cdot 7=5,040$

Permutation Example

$$
\begin{aligned}
10 \cdot 9 \cdot 8 \cdot 7 & =10 \cdot 9 \cdot 8 \cdot 7 \cdot \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& =\frac{10!}{6!}
\end{aligned}
$$

Permutations Example

- if size equals number of objects: $r=n$

$$
P(n, n)=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n!
$$

example

- number of permutations of the letters in "COMPUTER": 8!

Arrangements Example

- arrangements of all letters in "DATABASES"
- for each arrangement where A's are indistinguishable, $3!=6$ arrangements where A 's are distinguishable:
$D A_{1} T A_{2} B A_{3} S E S, D A_{1} T A_{3} B A_{2} S E S, D A_{2} T A_{1} B A_{3} S E S$, $D A_{2} T A_{3} B A_{1} S E S, D A_{3} T A_{1} B A_{2} S E S, D A_{3} T A_{2} B A_{1} S E S$
- for each of these, 2 arrangements where S 's are distinguishable: $D A_{1} T A_{2} B A_{3} S_{1} E S_{2}, D A_{1} T A_{2} B A_{3} S_{2} E S_{1}$
- number of arrangements: $\frac{9!}{2!\cdot 3!}=30,240$

Arrangements Example

- number of arrangements of the letters in "BALL"
- two L's are indistinguishable
A B L L
L A B L
A L B L
L A L B
A L L B
L B A L
B $A \quad L$
L B L A
B L A L
L L A B
B L L A
L L B A
- number of arrangements: $\frac{4!}{2}=12$

Generalized Rule

- n objects
- n_{1} indistinguishable objects of type ${ }_{1}$ n_{2} indistinguishable objects of type ${ }_{2}$
n_{r} indistinguishable objects of type e_{r}
- $n_{1}+n_{2}+\ldots+n_{r}=n$
- number of linear arrangements:

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdots n_{r}!}
$$

Arrangements Example

- go from $(2,1)$ to $(7,4)$

- each step one unit to the right (R) or one unit upwards (U)
- RURRURRU, URRRUURR
- how many such paths?
- each path consists of 5 R's and 3 U's
- number of paths: $\frac{8!}{5!\cdot 3!}=56$

Circular Arrangements

- 6 people seated around a round table: A, B, C, D, E, F
- arrangements considered to be the same when one can be obtained from the other by rotation: ABEFCD, DABEFC, CDABEF, FCDABE, EFCDAB, BEFCDA
- how many different circular arrangements?
- each circular arrangement corresponds to 6 linear arrangements
- number of circular arrangements: $\frac{6!}{6}=120$

Combination

- combination: choosing from distinct objects
- order is not significant

Combination Example

- a deck of 52 playing cards
- 4 suits: clubs, diamonds, hearts, spades
- 13 ranks in each suit: Ace, 2, 3, ..., 10, Jack, Queen, King
- draw 3 cards in succession, without replacement
- how many possible draws?

$$
52 \cdot 51 \cdot 50=\frac{52!}{49!}=P(52,3)=132,600
$$

Combination Example

- one such draw:

AH (ace of hearts), 9C (9 of clubs), KD (king of diamonds)

- if order insignificant:

6 permutations correspond to one selection

$$
\frac{52!}{3!\cdot 49!}=22,100
$$

Number of Combinations

- number of combinations:

$$
C(n, r)=\frac{n!}{r!\cdot(n-r)!}
$$

- note that:

$$
\begin{aligned}
& C(n, 0)=1=C(n, n) \\
& C(n, 1)=n=C(n, n-1)
\end{aligned}
$$

Number of Combinations

- n distinct objects
- each combination of r objects: r ! permutations of size r
- number of combinations of size r (where $0 \leq r \leq n$):

$$
C(n, r)=\binom{n}{r}=\frac{P(n, r)}{r!}=\frac{n!}{r!\cdot(n-r)!}
$$

Number of Combinations Example

- Lynn and Patti buy a powerball ticket
- match five numbers selected from 1 to 49
- and then match powerball, 1 to 42
- how many possible tickets?
- Lynn selects five numbers from 1 to 49: $C(49,5)$
- Patti selects the powerball from 1 to 42: $C(42,1)$
- possible tickets: $\binom{49}{5}\binom{42}{1}=80,089,128$

Number of Combinations Examples

- for a volleyball team, gym teacher must select nine girls from junior and senior classes
- 28 junior and 25 senior candidates
- how many different ways?
- if no restrictions: $\binom{53}{9}=4,431,613,550$
- if two juniors and one senior are best spikers and must be on the team: $\binom{50}{6}=15,890,700$
- if there has to be four juniors and five seniors: $\binom{28}{4}\binom{25}{5}=1,087,836,750$

Binomial Theorem Examples

- in the expansion of $(x+y)^{7}$, coefficient of $x^{5} y^{2}$:
$\binom{7}{5}=\binom{7}{2}=21$

Binomial Theorem

Theorem
if x and y are variables and n is a positive integer, then:

$$
\begin{aligned}
(x+y)^{n}= & \binom{n}{0} x^{0} y^{n}+\binom{n}{1} x^{1} y^{n-1}+\binom{n}{2} x^{2} y^{n-2}+\cdots \\
& +\binom{n}{n-1} x^{n-1} y^{1}+\binom{n}{n} x^{n} y^{0} \\
= & \sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
\end{aligned}
$$

- $\binom{n}{k}$: binomial coefficient

Multinomial Theorem

Theorem
For positive integers n, t, the coefficient of $x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} \cdots x_{t}^{n_{t}}$ in the expansion of $\left(x_{1}+x_{2}+x_{3}+\cdots+x_{t}\right)^{n}$ is

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdot n_{3}!\cdots n_{t}!}
$$

where each n_{i} is an integer with $0 \leq n_{i} \leq n$, for all $1 \leq i \leq t$, and $n_{1}+n_{2}+n_{3}+\ldots+n_{t}=n$.

Multinomial Theorem Examples

- in the expansion of $(x+y+z)^{7}$, coefficient of $x^{2} y^{2} z^{3}$:

$$
\binom{7}{2,2,3}=\frac{7!}{2!\cdot 2!\cdot 3!}=210
$$

Combinations with Repetition

- 7 students visit a restaurant
- each of them orders one of the following: cheeseburger (c), hot dog (h), taco (t), fish sandwich (f)
- how many different purchases are possible?

Combinations with Repetition

- enumerate all arrangements of 10 symbols consisting of seven x's and three |'s
- number of different purchases: $\frac{10!}{7!\cdot 3!}=\binom{10}{7}=120$

Number of Combinations with Repetition

- select, with repetition, r of n distinct objects
- considering all arrangements of $r \times$'s and $n-1$ |'s

$$
\frac{(n+r-1)!}{r!\cdot(n-1)!}=\binom{n+r-1}{r}
$$

Number of Combinations with Repetition Example

- distribute 7 bananas and 6 oranges among 4 children
- each child receives at least one banana
- how many ways?
- step 1: give each child a banana
- step 2: distribute 3 bananas to 4 children

1	1	1	0	b	\mid	b	\mid	b	\mid
1	0	2	0	b	\mid	\mid	b	b	\mid
0	0	1	2	\mid	\mid	b	\mid	b	b
0	0	0	3	\mid	\mid	\mid	b	b	b

- $C(6,3)=20$ ways

Number of Combinations with Repetition Example

- step 3: distribute 6 oranges to 4 children

1	2	2	1	0	\mid	0	0	\mid	0	0	\mid	0
1	2	0	3	0	\mid	0	0	\mid	1	0	0	0
0	3	3	0	\mid	0	0	0	\mid	0	0	0	1
0	0	0	6	\mid	\mid	\mid	0	0	0	0	0	0

- $C(9,6)=84$ ways
- step 4: by the rule of product: $20 \cdot 84=1,680$ ways

Required reading: Grimaldi

- Chapter 1: Fundamental Principles of Counting
- 1.1. The Rules of Sum and Product
- 1.2. Permutations
- 1.3. Combinations
- 1.4. Combinations with Repetition

References

