	License
	BY NC SA C 2013-2023 A. Yayımlı, T. Uyar
Discrete Mathematics	
Counting	You are free to:
	 Share – copy and redistribute the material in any medium or format Adapt – remix, transform, and build upon the material
Ayşegül Gençata Yayımlı – H. Turgut Uyar	Under the following terms:
	 Attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
2013-2023	NonCommercial – You may not use the material for commercial purposes.
	 ShareAlike – If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
	For more information:
	https://creativecommons.org/licenses/by-nc-sa/4.0/
	1/39
Topics	Combinatorics
Combinatorics Introduction	
Sum Rule	 combinatorics: study of arrangements of objects enumeration: counting of objects with cortain properties
Product Rule	enumeration: counting of objects with certain properties
	solve a complicated problem:
Permutations and Combinations	 break it down into smaller problems piece together solutions to these smaller problems
Permutations Combinations	piece together solutions to these smaller problems
Combinations with Repetition	
	3/39

Sum Rule	Sum Rule Example
 <i>task</i>₁ can be performed in <i>n</i>₁ distinct ways <i>task</i>₂ can be performed in <i>n</i>₂ distinct ways <i>task</i>₁ and <i>task</i>₂ cannot be performed simultaneously perform either <i>task</i>₁ or <i>task</i>₂: <i>n</i>₁ + <i>n</i>₂ ways 	 40 books on sociology and 50 books on anthropology learn about sociology or anthropology: choose from 40 + 50 = 90 books
5/39 Sum Rule Example	۶/ Product Rule
 one friend has 3 books on "Discrete Mathematics" another friend has 5 n: maximum number of different books that can be borrowed 5 ≤ n ≤ 8 	 a procedure that can be broken down into two stages n₁ possible outcomes for the first stage for each outcome, n₂ possible outcomes for the second stage procedure can be carried out in n₁ · n₂ ways
7 / 39	8/

Product Rule Example	Product Rule Example
 drama club is holding tryouts for a play 6 men and 8 women auditioning for the leading roles director can cast leading couple in 6 · 8 = 48 ways 	 license plates with 2 letters, followed by 4 digits how many possible plates? no letter or digit can be repeated: 26 · 25 · 10 · 9 · 8 · 7 = 3, 276, 000 repetitions allowed: 26 · 26 · 10 · 10 · 10 · 10 = 6, 760, 000 repetitions allowed, only vowels and even digits: 5 · 5 · 5 · 5 · 5 · 5 = 15, 625
Product Rule Example	10/39 Counting Example
 a byte consists of 8 bits a bit has two possible values: 0 or 1 number of possible values for a byte: 2 · 2 · · · 2 = 2⁸ = 256 	 pastry shop menu: 6 kinds of muffins, 8 kinds of sandwiches hot coffee, hot tea, icea tea, cola, orange juice buy either a muffin and a hot beverage, or a sandwich and a cold beverage how many possible purchases? muffin and hot beverage: 6 · 2 = 12 sandwich and cold beverage: 8 · 3 = 24 total: 12 + 24 = 36
11	/ 39

Permutation	Permutation Example
 permutation: a linear arrangement of distinct objects order is significant 	 a class has 10 students: A, B, C,, I, J 4 students to be seated in a row: BCEF, CEFI, ABCF, how many such arrangements? filling of a position: a stage 10 · 9 · 8 · 7 = 5,040
Permutation Example	^{3/39} Permutations
$10 \cdot 9 \cdot 8 \cdot 7 = 10 \cdot 9 \cdot 8 \cdot 7 \cdot \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$ $= \frac{10!}{6!}$	 <i>n</i> distinct objects number of permutations of size <i>r</i> (where 1 ≤ <i>r</i> ≤ <i>n</i>): <i>P</i>(<i>n</i>, <i>r</i>) = <i>n</i> · (<i>n</i> − 1) · (<i>n</i> − 2) · · · (<i>n</i> − <i>r</i> + 1) = <i>n</i>! (<i>n</i> − <i>r</i>)! if repetitions are allowed: <i>n^r</i>
1	5/39

Permutations Example

• if size equals number of objects: r = n

$$P(n,n) = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n$$

example

number of permutations of the letters in "COMPUTER": 8!

Arrangements Example

- number of arrangements of the letters in "BALL"
- two L's are indistinguishable
- A
 B
 L
 L
 A
 B
 L

 A
 L
 B
 L
 L
 A
 L
 B

 A
 L
 L
 B
 L
 B
 A
 L
 B

 A
 L
 L
 B
 A
 L
 B
 A
 L
 A

 B
 A
 L
 L
 B
 L
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 B
 A
 B
 B
 A
 B
 B
 A
 B
 B
 A
 B
 B
 A
 B
 B
 A
 B
 B
 A
 B
 B
 B
 A
 B
 B
 B
 A
 B
 B
 B
 A
 B
 B
 B
 A
 B
 B
 B
 B
 A
 B
 B
 B
 A
 B
 B
 B
 A
 B
 B
 B
 B
 B
 B
 B
 B

• number of arrangements: $\frac{4!}{2} = 12$

17 / 39

Arrangements Example Generalized Rule ▶ *n* objects ▶ arrangements of all letters in "DATABASES" \triangleright n_1 indistinguishable objects of type₁ ▶ for each arrangement where A's are **indistinguishable**, n_2 indistinguishable objects of $type_2$ 3! = 6 arrangements where A's are **distinguishable**: DA₁ TA₂ BA₃SES, DA₁ TA₃BA₂SES, DA₂ TA₁ BA₃SES, n_r indistinguishable objects of $type_r$ DA2 TA3 BA1 SES, DA3 TA1 BA2 SES, DA3 TA2 BA1 SES ▶ $n_1 + n_2 + ... + n_r = n$ ▶ for each of these, 2 arrangements where S's are distinguishable: number of linear arrangements: $DA_1 TA_2 BA_3 S_1 ES_2$, $DA_1 TA_2 BA_3 S_2 ES_1$ $\frac{n!}{n_1! \cdot n_2! \cdots n_r!}$ • number of arrangements: $\frac{9!}{2!\cdot 3!} = 30,240$ 19/39

18 / 39

Combination Example

- one such draw:
 AH (ace of hearts), 9C (9 of clubs), KD (king of diamonds)
- if order insignificant:6 permutations correspond to one selection

$$\frac{52!}{3! \cdot 49!} = 22,100$$

Number of Combinations

- ▶ *n* distinct objects
- each combination of r objects: r! permutations of size r
- number of combinations of size r (where $0 \le r \le n$):

$$C(n,r) = \binom{n}{r} = \frac{P(n,r)}{r!} = \frac{n!}{r! \cdot (n-r)!}$$

26 / 39

Number of Combinations

number of combinations:

$$C(n,r) = \frac{n!}{r! \cdot (n-r)!}$$

note that:

$$C(n,0) = 1 = C(n,n)$$

 $C(n,1) = n = C(n,n-1)$

Number of Combinations Example

- Lynn and Patti buy a powerball ticket
- match five numbers selected from 1 to 49
- ▶ and then match powerball, 1 to 42
- how many possible tickets?
- Lynn selects five numbers from 1 to 49: C(49,5)
- ▶ Patti selects the powerball from 1 to 42: C(42, 1)

• possible tickets:
$$\binom{49}{5}\binom{42}{1} = 80,089,128$$

25 / 39

Number of Combinations Examples **Binomial Theorem** Theorem ▶ for a volleyball team, gym teacher must select nine girls if x and y are variables and n is a positive integer, then: from junior and senior classes ▶ 28 junior and 25 senior candidates $(x+y)^{n} = \binom{n}{0}x^{0}y^{n} + \binom{n}{1}x^{1}y^{n-1} + \binom{n}{2}x^{2}y^{n-2} + \cdots$ how many different ways? $+\binom{n}{n-1}x^{n-1}y^1+\binom{n}{n}x^ny^0$ • if no restrictions: $\binom{53}{9} = 4,431,613,550$ ▶ if two juniors and one senior are best spikers $= \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$ and must be on the team: $\binom{50}{6} = 15,890,700$ ▶ if there has to be four juniors and five seniors: $\binom{28}{4}\binom{25}{5} = 1,087,836,750$ \triangleright $\binom{n}{k}$: binomial coefficient 29 / 39 30 / 39

Multinomial Theorem

Theorem

For positive integers n, t, the coefficient of $x_1^{n_1}x_2^{n_2}x_3^{n_3}\cdots x_t^{n_t}$ in the expansion of $(x_1 + x_2 + x_3 + \cdots + x_t)^n$ is

 $\frac{n!}{n_1! \cdot n_2! \cdot n_3! \cdots n_t!}$

where each n_i is an integer with $0 \le n_i \le n$, for all $1 \le i \le t$, and $n_1 + n_2 + n_3 + ... + n_t = n$.

31 / 39

Binomial Theorem Examples

 $\binom{7}{5} = \binom{7}{2} = 21$

• in the expansion of $(x + y)^7$, coefficient of x^5y^2 :

Multinomial Theorem Examples	Combinations with Repetition
► in the expansion of $(x + y + z)^7$, coefficient of $x^2y^2z^3$: $\binom{7}{2,2,3} = \frac{7!}{2! \cdot 2! \cdot 3!} = 210$	 7 students visit a restaurant each of them orders one of the following: cheeseburger (c), hot dog (h), taco (t), fish sandwich (f) how many different purchases are possible?
33/39 Combinations with Repetition	34/3 Number of Combinations with Repetition
$ \begin{array}{c} c \ c \ h \ h \ t \ f \ f \ x \ x \ \ x \ x \ \ x \ x \ \ x \ x$	 select, with repetition, r of n distinct objects considering all arrangements of r x's and n - 1 's ^{(n+r-1)!}/_{r! · (n-1)!} = (n+r-1)/_r
consisting of seven x's and three 's • number of different purchases: $\frac{10!}{7! \cdot 3!} = \binom{10}{7} = 120$	

