License

Discrete Mathematics

Sets
H. Turgut Uyar Ayșegül Gençata Yayımlı Emre Harmancı

2001-2023
(C) 2001-2023 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- NonCommercial - You may not use the material for commercial purposes
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/
Topics
Sets
Introduction
Set Operations
Principle of Inclusion-Exclusion

Infinite Sets
Counting Sets
Infinity

Set

Definition
set: a collection of elements that are

- distinct
- unordered
- non-repeating

Set Representation

- explicit representation
elements are listed within braces: $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- implicit representation
elements that validate a predicate: $\{x \mid x \in G, p(x)\}$
- \emptyset : empty set
- $a \in S: a$ is an element of S
$a \notin S: a$ is not an element of S
- $|S|$: number of elements in S (cardinality)

Set Dilemma

- There is a barber who lives in a small town

He shaves all those men who don't shave themselves.
He doesn't shave those men who shave themselves.
Does the barber shave himself?

- yes \rightarrow but he doesn't shave men who shave themselves \rightarrow no
- no \rightarrow but he shaves all men who don't shave themselves \rightarrow yes

Notation Examples

$$
\begin{array}{ll}
\{3,8,2,11,5\} & \left\{x \mid x \in \mathbb{Z}^{+}, 20<x^{3}<100\right\} \equiv\{3,4\} \\
11 \in\{3,8,2,11,5\} & \left\{2 x-1 \mid x \in \mathbb{Z}^{+}, 20<x^{3}<100\right\} \equiv\{5,7\} \\
|\{3,8,2,11,5\}|=5 & \{n \mid n \in \mathbb{N}, \exists k \in \mathbb{N}[n=2 k]\}
\end{array}
$$

Set Dilemma

- S: set of sets that are not an element of themselves $S=\{A \mid A \notin A\}$
$S \stackrel{?}{\in} S$
- $S \in S \rightarrow$ but the predicate is not valid \rightarrow no
- $S \notin S \rightarrow$ but the predicate is valid \rightarrow yes

Subset

Definition
$A \subseteq B \Leftrightarrow \forall x[x \in A \rightarrow x \in B]$

- set equality:
$A=B \Leftrightarrow(A \subseteq B) \wedge(B \subseteq A)$
- proper subset:
$A \subset B \Leftrightarrow(A \subseteq B) \wedge(A \neq B)$
- $\forall S[\emptyset \subseteq S]$

Power Set

Definition

power set $\mathcal{P}(S)$: set of all subsets of S, including \emptyset and S
example
$\mathcal{P}(\{1,2,3\})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

- $|S|=n \Rightarrow|\mathcal{P}(S)|=2^{n}$

Subset

$A \nsubseteq B$

$$
\begin{aligned}
A \nsubseteq B & \Leftrightarrow \neg \forall x[x \in A \rightarrow x \in B] \\
& \Leftrightarrow \exists x \neg[x \in A \rightarrow x \in B] \\
& \Leftrightarrow \exists x \neg[\neg(x \in A) \vee(x \in B)] \\
& \Leftrightarrow \exists x[(x \in A) \wedge \neg(x \in B)] \\
& \Leftrightarrow \exists x[(x \in A) \wedge(x \notin B)]
\end{aligned}
$$

Set Operations

complement
$\bar{A}=\{x \mid x \notin A\}$
intersection
$A \cap B=\{x \mid(x \in A) \wedge(x \in B)\}$

- if $A \cap B=\emptyset$ then A and B are disjoint
union
$A \cup B=\{x \mid(x \in A) \vee(x \in B)\}$

Set Operations

difference

$$
A-B=\{x \mid(x \in A) \wedge(x \notin B)\}
$$

- $A-B=A \cap \bar{B}$
- symmetric difference:
$A \triangle B=\{x \mid(x \in A \cup B) \wedge(x \notin A \cap B)\}$

Cartesian Product

Cartesian product
$A \times B=\{(a, b) \mid a \in A, b \in B\}$
$A \times B \times C \times \cdots \times K=\{(a, b, \ldots, k) \mid a \in A, b \in B, \ldots, k \in K\}$

- $|A \times B \times C \times \cdots \times K|=|A| \cdot|B| \cdot|C| \cdots|K|$

Cartesian Product Example

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \\
& B=\left\{b_{1}, b_{2}, b_{3}\right\} \\
& A \times B=\left\{\begin{array}{l}
\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right), \\
\\
\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right), \\
\\
\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right), \\
\\
\left(a_{4}, b_{1}\right),\left(a_{4}, b_{2}\right),\left(a_{4}, b_{3}\right)
\end{array}\right\}
\end{aligned}
$$

Equivalences

Double Complement
$\overline{\bar{A}}=A$

Commutativity

$A \cap B=B \cap A$	$A \cup B=B \cup A$
Associativity	
$(A \cap B) \cap C=A \cap(B \cap C)$	$(A \cup B) \cup C=A \cup(B \cup C)$

Idempotence
$A \cap A=A \quad A \cup A=A$

Inverse
$A \cap \bar{A}=\emptyset \quad A \cup \bar{A}=\mathcal{U}$

Equivalences

Identity

$$
\begin{array}{ll}
A \cap \mathcal{U}=A & A \cup \emptyset=A \\
\text { Domination } & \\
A \cap \emptyset=\emptyset & A \cup \mathcal{U}=\mathcal{U}
\end{array}
$$

Distributivity
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Absorption
$A \cap(A \cup B)=A$
$A \cup(A \cap B)=A$

DeMorgan's Laws
$\overline{A \cap B}=\bar{A} \cup \bar{B}$
$\overline{A \cup B}=\bar{A} \cap \bar{B}$

DeMorgan's Law

Theorem
$\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof.

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin(A \cap B)\} \\
& =\{x \mid \neg(x \in(A \cap B))\} \\
& =\{x \mid \neg((x \in A) \wedge(x \in B))\} \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\
& =\{x \mid(x \notin A) \vee(x \notin B)\} \\
& =\{x \mid(x \in \bar{A}) \vee(x \in \bar{B})\} \\
& =\{x \mid x \in \bar{A} \cup \bar{B}\} \\
& =\bar{A} \cup \bar{B}
\end{aligned}
$$

Example

Theorem

Example

$$
\left.\begin{array}{l}
A \subseteq B \Rightarrow A \cup B=B . \\
A \cup B=B \Leftrightarrow A \cup B \subseteq B \wedge B \subseteq A \cup B \\
\\
B \subseteq A \cup B \quad x \in A \cup B
\end{array}\right] x x \in A \vee x \in B \begin{array}{ll}
& \\
A \subseteq B & \Rightarrow x \in B \\
& \Rightarrow A \cup B \subseteq B
\end{array}
$$

Example

$$
\begin{aligned}
& A \cup B=B \Rightarrow A \cap B=A \\
& A \cap B=A \Leftrightarrow A \cap B \subseteq A \wedge A \subseteq A \cap B
\end{aligned}
$$

$A \cap B \subseteq A$

$$
\begin{aligned}
y \in A & \Rightarrow y \in A \cup B \\
A \cup B=B & \Rightarrow y \in B \\
& \Rightarrow y \in A \cap B \\
& \Rightarrow A \subseteq A \cap B
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example } \\
& \qquad \begin{aligned}
A \cap B=A \Rightarrow \bar{B} \subseteq \bar{A} . & \\
z \in \bar{B} & \Rightarrow z \notin B \\
& \Rightarrow z \notin A \cap B \\
A \cap B=A & \Rightarrow z \notin A \\
& \Rightarrow z \in \bar{A} \\
& \Rightarrow \bar{B} \subseteq \bar{A}
\end{aligned}
\end{aligned}
$$

Example

$$
\bar{B} \subseteq \bar{A} \Rightarrow A \subseteq B .
$$

$$
\begin{aligned}
\neg(A \subseteq B) & \Rightarrow \exists w[w \in A \wedge w \notin B] \\
& \Rightarrow \exists w[w \notin \bar{A} \wedge w \in \bar{B}] \\
& \Rightarrow \neg(\bar{B} \subseteq \bar{A})
\end{aligned}
$$

Principle of Inclusion-Exclusion

- $|A \cup B|=|A|+|B|-|A \cap B|$
- $|A \cup B \cup C|=|A|+|B|+|C|-(|A \cap B|+|A \cap C|+|B \cap C|)+|A \cap B \cap C|$

Theorem

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|= & \sum_{i}\left|A_{i}\right|-\sum_{i, j}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{i, j, k}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& \cdots+-1^{n-1}\left|A_{i} \cap A_{j} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

Inclusion-Exclusion Example

- sieve of Eratosthenes
- a method to identify prime numbers

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
18	19	20	21	22	23	24	25	26	27	28	29	30			
2	3		5		7		9		11		13		15		17
	19		21		23		25		27		29				
2	3	5		7				11		13			17		
	19			23		25			29						
	3		5		7				11		13				
	19	5		23					29			17			

Inclusion-Exclusion Example

- number of primes between 1 and 100
- numbers that are not divisible by $2,3,5$ and 7
- A_{2} : set of numbers divisible by 2
- A_{3} : set of numbers divisible by 3
- A_{5} : set of numbers divisible by 5
- A_{7} : set of numbers divisible by 7
- $\left|A_{2} \cup A_{3} \cup A_{5} \cup A_{7}\right|$

Inclusion-Exclusion Example

- $\left|A_{2}\right|=\lfloor 100 / 2\rfloor=50$
- $\left|A_{2} \cap A_{3}\right|=\lfloor 100 / 6\rfloor=16$
- $\left|A_{3}\right|=\lfloor 100 / 3\rfloor=33$
- $\left|A_{2} \cap A_{5}\right|=\lfloor 100 / 10\rfloor=10$
- $\left|A_{5}\right|=\lfloor 100 / 5\rfloor=20$
- $\left|A_{2} \cap A_{7}\right|=\lfloor 100 / 14\rfloor=7$
- $\left|A_{7}\right|=\lfloor 100 / 7\rfloor=14$
- $\left|A_{3} \cap A_{5}\right|=\lfloor 100 / 15\rfloor=6$
- $\left|A_{3} \cap A_{7}\right|=\lfloor 100 / 21\rfloor=4$
- $\left|A_{5} \cap A_{7}\right|=\lfloor 100 / 35\rfloor=2$

Inclusion-Exclusion Example

- $\left|A_{2} \cap A_{3} \cap A_{5}\right|=\lfloor 100 / 30\rfloor=3$
- $\left|A_{2} \cap A_{3} \cap A_{7}\right|=\lfloor 100 / 42\rfloor=2$
- $\left|A_{2} \cap A_{5} \cap A_{7}\right|=\lfloor 100 / 70\rfloor=1$
- $\left|A_{3} \cap A_{5} \cap A_{7}\right|=\lfloor 100 / 105\rfloor=0$
- $\left|A_{2} \cap A_{3} \cap A_{5} \cap A_{7}\right|=\lfloor 100 / 210\rfloor=0$

Inclusion-Exclusion Example

$$
\begin{aligned}
\left|A_{2} \cup A_{3} \cup A_{5} \cup A_{7}\right| & =(50+33+20+14) \\
& -(16+10+7+6+4+2) \\
& +(3+2+1+0) \\
& -(0) \\
& =78
\end{aligned}
$$

- number of primes: $(100-78)+4-1=25$

Subset Cardinality

- $A \subset B \Rightarrow|A|<|B|$
- not necessarily true for infinite sets
example
$\mathbb{Z}^{+} \subset \mathbb{N}$
but
$\left|\mathbb{Z}^{+}\right|=|\mathbb{N}|$
- how can we compare the cardinalities of infinite sets?

Counting Sets Example

$$
|\mathbb{Q}|=|\mathbb{N}|
$$

	1	2	3	4	5	\ldots
1	$1 / 1$	$2 / 1$	$3 / 1$	$4 / 1$	$5 / 1$	\ldots
2	$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	\ldots
3	$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	\ldots
4	$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	$5 / 4$	\ldots
5	$1 / 5$	$2 / 5$	$3 / 5$	$4 / 5$	$5 / 5$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	

- pair off row-wise:

$$
1 / 1 \rightarrow 0 \quad 2 / 1 \rightarrow 1 \quad 3 / 1 \rightarrow 2 \quad 4 / 1 \rightarrow 3 \quad 5 / 1 \rightarrow 4
$$

- pair off diagonally:
$1 / 1 \rightarrow 0 \quad 2 / 1 \rightarrow 1 \quad 1 / 2 \rightarrow 2 \quad 3 / 1 \rightarrow 3 \quad 2 / 2 \rightarrow 4$
$1 / 3 \rightarrow 5 \quad 4 / 1 \rightarrow 6 \quad 3 / 2 \rightarrow 7 \quad 2 / 3 \rightarrow 8 \quad 1 / 4 \rightarrow 9$

Uncountable Sets

$|\mathbb{R}| \stackrel{?}{=}|\mathbb{N}|$

- $\{x \mid x \in \mathbb{R}, 0<x \leq 1\}$
- elements represented by non-terminating expansions: $0.4 \overline{9}$ instead of 0.5
$0 . a_{11} a_{12} a_{13} a_{14} \ldots \rightarrow 0$
$0 . a_{21} a_{22} a_{23} a_{24} \ldots \rightarrow 1$
$0 . a_{31} a_{32} a_{33} a_{34} \ldots \rightarrow 2$
- consider $0 . b_{1} b_{2} b_{3} \ldots$ where
\vdots
$0 . a_{n 1} a_{n 2} a_{n 3} a_{n 4} \ldots \rightarrow n-1 \quad \forall k \in \mathbb{N} r \neq r_{k}$
\vdots
- Cantor's Diagonal Construction

Infinity

- $|\mathbb{R}|$ is uncountable
- $|\mathbb{R}|>|\mathbb{N}|$
- C: set of all possible computer programs
- P : set of all possible problems
- $|C|=|\mathbb{N}|$
- $|P|=|\mathbb{R}|$
- there are problems which cannot be solved using computers

References

Required reading: Grimaldi

- Chapter 3: Set Theory
- 3.1. Sets and Subsets
- 3.2. Set Operations and the Laws of Set Theory
- Chapter 8: The Principle of Inclusion and Exclusion
- 8.1. The Principle of Inclusion and Exclusion
- Appendix 3: Countable and Uncountable Sets

