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Relation

Definition
relation: α ⊆ A× B × C × · · · × N

▶ tuple: element of relation

▶ binary relation: α ⊆ A× B

▶ aαb : (a, b) ∈ α
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Relation Example

A = {a1, a2, a3, a4},B = {b1, b2, b3}
α = {(a1, b1), (a1, b3), (a2, b2), (a2, b3), (a3, b1), (a3, b3), (a4, b1)}

Mα =

b1 b2 b3





a1 1 0 1
a2 0 1 1
a3 1 0 1
a4 1 0 0

5 / 82

Relation Composition

Definition
relation composition:
α ⊆ A× B, β ⊆ B × C
αβ = {(a, c) | a ∈ A, c ∈ C , ∃b ∈ B [aαb ∧ bβc]}

example
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Relation Composition

▶ Mαβ = Mα ·Mβ

▶ using logical operations:
1 : T 0 : F · : ∧ + : ∨

example

Mα =




1 0 0
0 0 1
0 1 1
0 1 0
1 0 1




Mβ =




1 1 0 0
0 0 1 1
0 1 1 0


 Mαβ =




1 1 0 0
0 1 1 0
0 1 1 1
0 0 1 1
1 1 1 0
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Relation Composition Associativity

(αβ)γ = α(βγ).

(a, d) ∈ (αβ)γ

⇔ ∃c [(a, c) ∈ αβ ∧ (c, d) ∈ γ]

⇔ ∃c [∃b [(a, b) ∈ α ∧ (b, c) ∈ β] ∧ (c, d) ∈ γ]

⇔ ∃b [(a, b) ∈ α ∧ ∃c [(b, c) ∈ β ∧ (c, d) ∈ γ]]

⇔ ∃b [(a, b) ∈ α ∧ (b, d) ∈ βγ]

⇔ (a, d) ∈ α(βγ)
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Relation Composition Theorems

α(β ∪ γ) = αβ ∪ αγ.

(a, c) ∈ α(β ∪ γ)

⇔ ∃b [(a, b) ∈ α ∧ (b, c) ∈ (β ∪ γ)]

⇔ ∃b [(a, b) ∈ α ∧ ((b, c) ∈ β ∨ (b, c) ∈ γ)]

⇔ ∃b [((a, b) ∈ α ∧ (b, c) ∈ β)

∨ ((a, b) ∈ α ∧ (b, c) ∈ γ)]

⇔ (a, c) ∈ αβ ∨ (a, c) ∈ αγ

⇔ (a, c) ∈ αβ ∪ αγ
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Converse Relation

Definition
α−1 = {(b, a) | (a, b) ∈ α}
▶ Mα−1 = MT

α
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Converse Relation Theorems

▶ (α−1)−1 = α

▶ (α ∪ β)−1 = α−1 ∪ β−1

▶ (α ∩ β)−1 = α−1 ∩ β−1

▶ α−1 = α−1

▶ (α− β)−1 = α−1 − β−1
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Converse Relation Theorems

α−1 = α−1.

(b, a) ∈ α−1

⇔ (a, b) ∈ α

⇔ (a, b) /∈ α

⇔ (b, a) /∈ α−1

⇔ (b, a) ∈ α−1
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Converse Relation Theorems

(α ∩ β)−1 = α−1 ∩ β−1.

(b, a) ∈ (α ∩ β)−1

⇔ (a, b) ∈ (α ∩ β)

⇔ (a, b) ∈ α ∧ (a, b) ∈ β

⇔ (b, a) ∈ α−1 ∧ (b, a) ∈ β−1

⇔ (b, a) ∈ α−1 ∩ β−1
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Converse Relation Theorems

(α− β)−1 = α−1 − β−1.

(α− β)−1 = (α ∩ β)−1

= α−1 ∩ β
−1

= α−1 ∩ β−1

= α−1 − β−1
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Relation Composition Converse

Theorem
(αβ)−1 = β−1α−1

Proof.

(c, a) ∈ (αβ)−1

⇔ (a, c) ∈ αβ

⇔ ∃b [(a, b) ∈ α ∧ (b, c) ∈ β]

⇔ ∃b [(b, a) ∈ α−1 ∧ (c, b) ∈ β−1]

⇔ (c, a) ∈ β−1α−1
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Relation Properties

▶ α ⊆ A× A

▶ α2: αα

▶ αn: αα · · ·α

▶ identity relation: E = {(a, a) | a ∈ A}
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Reflexivity

reflexive
α ⊆ A× A
∀a ∈ A [aαa]

▶ E ⊆ α

▶ irreflexive:
∀a ∈ A [¬(aαa)]
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Reflexivity Examples

R1 ⊆ {1, 2} × {1, 2}
R1 = {(1, 1), (1, 2), (2, 2)}

▶ R1 is reflexive

R2 ⊆ {1, 2, 3} × {1, 2, 3}
R2 = {(1, 1), (1, 2), (2, 2)}

▶ R2 is not reflexive

▶ also not irreflexive
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Reflexivity Examples

R ⊆ {1, 2, 3} × {1, 2, 3}
R = {(1, 2), (2, 1), (2, 3)}

▶ R is irreflexive
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Reflexivity Examples

R ⊆ Z× Z
R = {(a, b) | ab ≥ 0}

▶ R is reflexive
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Symmetry

symmetric

α ⊆ A× A
∀a, b ∈ A [aαb ↔ bαa]

▶ α−1 = α

▶ antisymmetric:
∀a, b ∈ A [aαb ∧ bαa → a = b]
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Symmetry Examples

R ⊆ {1, 2, 3} × {1, 2, 3}
R = {(1, 2), (2, 1), (2, 3)}

▶ R is not symmetric

▶ also not antisymmetric

22 / 82

Symmetry Examples

R ⊆ Z× Z
R = {(a, b) | ab ≥ 0}

▶ R is symmetric
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Symmetry Examples

R ⊆ {1, 2, 3} × {1, 2, 3}
R = {(1, 1), (2, 2)}
▶ R is symmetric and antisymmetric
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Transitivity

transitive
α ⊆ A× A
∀a, b, c ∈ A [aαb ∧ bαc → aαc]

▶ α2 ⊆ α

▶ antitransitive:
∀a, b, c ∈ A [aαb ∧ bαc → ¬(aαc)]
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Transitivity Examples

R ⊆ {1, 2, 3} × {1, 2, 3}
R = {(1, 2), (2, 1), (2, 3)}

▶ R is antitransitive
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Transitivity Examples

R ⊆ Z× Z
R = {(a, b) | ab ≥ 0}

▶ R is not transitive

▶ also not antitransitive
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Converse Relation Properties

Theorem
Reflexivity, symmetry, and transitivity are preserved
in the converse relation.
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Closures

▶ reflexive closure:
rα = α ∪ E

▶ symmetric closure:
sα = α ∪ α−1

▶ transitive closure:
tα =

⋃
i=1,2,3,... αi = α ∪ α2 ∪ α3 ∪ · · ·
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Special Relations

predecessor - successor

R ⊆ Z× Z
R = {(a, b) | a− b = 1}

▶ irreflexive

▶ antisymmetric

▶ antitransitive
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Special Relations

adjacency

R ⊆ Z× Z
R = {(a, b) | |a− b| = 1}

▶ irreflexive

▶ symmetric

▶ antitransitive
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Special Relations

strict order
R ⊆ Z× Z
R = {(a, b) | a < b}

▶ irreflexive

▶ antisymmetric

▶ transitive
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Special Relations

partial order

R ⊆ Z× Z
R = {(a, b) | a ≤ b}

▶ reflexive

▶ antisymmetric

▶ transitive
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Special Relations

preorder

R ⊆ Z× Z
R = {(a, b) | |a| ≤ |b|}

▶ reflexive

▶ transitive
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Special Relations

limited difference
R ⊆ Z× Z,m ∈ Z+

R = {(a, b) | |a− b| ≤ m}

▶ reflexive

▶ symmetric
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Special Relations

comparability

R ⊆ U× U
R = {(a, b) | (a ⊆ b) ∨ (b ⊆ a)}

▶ reflexive

▶ symmetric
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Special Relations

▶ siblings?

▶ irreflexive

▶ symmetric

▶ transitive

▶ can a relation be symmetric and transitive, but irreflexive?
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Compatibility Relations

Definition
compatibility relation: γ

▶ reflexive

▶ symmetric

▶ when drawing, lines instead of arrows

▶ matrix representation as a triangle matrix
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Compatibility Relation Example

A = {a1, a2, a3, a4}
R = {(a1, a1), (a2, a2),

(a3, a3), (a4, a4),

(a1, a2), (a2, a1),

(a2, a4), (a4, a2),

(a3, a4), (a4, a3)}
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Compatibility Relation Example

A = {a1, a2, a3, a4}
R = {(a1, a1), (a2, a2),

(a3, a3), (a4, a4),

(a1, a2), (a2, a1),

(a2, a4), (a4, a2),

(a3, a4), (a4, a3)}

a1 a2 a3 a4





a1 1 1 0 0
a2 1 1 0 1
a3 0 0 1 1
a4 0 1 1 1

a1 a2 a3[ ]a2 1
a3 0 0
a4 0 1 1
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Compatibility Relations

▶ αα−1 is a compatibility relation

example

▶ P: persons, L: languages

▶ P = {p1, p2, p3, p4, p5, p6}
▶ L = {l1, l2, l3, l4, l5}
▶ α ⊆ P × L
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Compatibility Relation Example

Mα =

l1 l2 l3 l4 l5





p1 1 1 0 0 0
p2 1 1 0 0 0
p3 0 0 1 0 1
p4 1 0 1 1 0
p5 0 0 0 1 0
p6 0 1 1 0 0

Mα−1 =

p1 p2 p3 p4 p5 p6





l1 1 1 0 1 0 0
l2 1 1 0 0 0 1
l3 0 0 1 1 0 1
l4 0 0 0 1 1 0
l5 0 0 1 0 0 0
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Compatibility Relation Example

▶ αα−1 ⊆ P × P

Mαα−1 =

p1 p2 p3 p4 p5 p6





p1 1 1 0 1 0 1
p2 1 1 0 1 0 1
p3 0 0 1 1 0 1
p4 1 1 1 1 1 1
p5 0 0 0 1 1 0
p6 1 1 1 1 0 1
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Compatibility Block

Definition
compatibility block: C ⊆ A
∀a, b [a ∈ C ∧ b ∈ C → aγb]

▶ maximal compatibility block:
not a subset of another compatibility block

▶ an element can be a member of more than one MCB

▶ complete cover: Cγ

set of all MCBs
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Compatibility Block Example

▶ C1 = {p4, p6}
▶ C2 = {p2, p4, p6}
▶ C3 = {p1, p2, p4, p6} (MCB)

Cγ = {{p1, p2, p4, p6},
{p3, p4, p6},
{p4, p5}}
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Equivalence Relations

Definition
equivalence relation: ϵ

▶ reflexive

▶ symmetric

▶ transitive

▶ equivalence classes (partitions)

▶ every element is a member of exactly one equivalence class

▶ complete cover: Cϵ
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Equivalence Relation Example

R ⊆ Z× Z
R = {(a, b) | ∃m ∈ Z [a− b = 5m]}

▶ R partitions Z into 5 equivalence classes
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Functions

Definition
function: f : X → Y
∀x ∈ X ∀y1, y2 ∈ Y [(x , y1), (x , y2) ∈ f → y1 = y2]

▶ X : domain, Y : codomain

▶ y = f (x) : (x , y) ∈ f

▶ y : image of x under f

▶ f : X → Y , X ′ ⊆ X
subset image: f (X ′) = {f (x) | x ∈ X ′}
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Subset Image Examples

f : R → R
f (x) = x2

f (Z) = {0, 1, 4, 9, 16, . . . }
f ({−2, 1}) = {1, 4}
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Range

Definition
f : X → Y
range: f (X )
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One-to-One Functions

Definition
f : X → Y is one-to-one (or injective):
∀x1, x2 ∈ X [f (x1) = f (x2) → x1 = x2]
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One-to-One Function Examples

▶ one-to-one

f : R → R
f (x) = 3x + 7

f (x1) = f (x2)
⇒ 3x1 + 7 = 3x2 + 7
⇒ 3x1 = 3x2
⇒ x1 = x2

▶ not one-to-one

g : Z → Z
g(x) = x4 − x

g(0) = 04 − 0 = 0
g(1) = 14 − 1 = 0
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Onto Functions

Definition
f : X → Y is onto (or surjective):
∀y ∈ Y ∃x ∈ X [f (x) = y ]

▶ f (X ) = Y
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Onto Function Examples

▶ onto

f : R → R
f (x) = x3

▶ not onto

f : Z → Z
f (x) = 3x + 1
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Bijective Functions

Definition
f : X → Y is bijective:
f is one-to-one and onto
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Function Composition

Definition
f : X → Y , g : Y → Z

g ◦ f : X → Z
(g ◦ f )(x) = g(f (x))

▶ not commutative

▶ associative: f ◦ (g ◦ h) = (f ◦ g) ◦ h
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Composition Commutativity Example

f : R → R
f (x) = x2

g : R → R
g(x) = x + 5

g ◦ f : R → R
(g ◦ f )(x) = x2 + 5

f ◦ g : R → R
(f ◦ g)(x) = (x + 5)2

58 / 82

Composite Function Theorems

Theorem
f : X → Y , g : Y → Z
f is one-to-one ∧ g is one-to-one ⇒ g ◦ f is one-to-one

Proof.

(g ◦ f )(x1) = (g ◦ f )(x2)
⇒ g(f (x1)) = g(f (x2))
⇒ f (x1) = f (x2)
⇒ x1 = x2
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Composite Function Theorems

Theorem
f : X → Y , g : Y → Z
f is onto ∧ g is onto ⇒ g ◦ f is onto

Proof.
∀z ∈ Z ∃y ∈ Y g(y) = z
∀y ∈ Y ∃x ∈ X f (x) = y
⇒ ∀z ∈ Z ∃x ∈ X g(f (x)) = z
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Identity Function

Definition
identity function: 1X

1X : X → X
1X (x) = x
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Inverse Function

Definition
f : X → Y is invertible:
∃f −1 : Y → X [f −1 ◦ f = 1X ∧ f ◦ f −1 = 1Y ]

▶ f −1: inverse of function f

62 / 82

Inverse Function Examples

f : R → R
f (x) = 2x + 5

f −1 : R → R
f −1(x) = x−5

2

(f −1 ◦ f )(x) = f −1(f (x)) = f −1(2x + 5) = (2x+5)−5
2 = 2x

2 = x

(f ◦ f −1)(x) = f (f −1(x)) = f ( x−5
2 ) = 2 x−5

2 + 5 = (x − 5) + 5 = x
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Inverse Function

Theorem
If a function is invertible, its inverse is unique.

Proof.
f : X → Y

g , h : Y → X
g ◦ f = 1X ∧ f ◦ g = 1Y
h ◦ f = 1X ∧ f ◦ h = 1Y

h = h ◦ 1Y = h ◦ (f ◦ g) = (h ◦ f ) ◦ g = 1X ◦ g = g
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Invertible Function

Theorem
A function is invertible if and only if it is one-to-one and onto.
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Invertible Function

If invertible then one-to-one.
f : X → Y

f (x1) = f (x2)

⇒ f −1(f (x1)) = f −1(f (x2))

⇒ (f −1 ◦ f )(x1) = (f −1 ◦ f )(x2)
⇒ 1X (x1) = 1X (x2)

⇒ x1 = x2

If invertible then onto.
f : X → Y

y

= 1Y (y)

= (f ◦ f −1)(y)

= f (f −1(y))
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Invertible Function

If bijective then invertible.

f : X → Y

▶ f is onto ⇒ ∀y ∈ Y ∃x ∈ X f (x) = y

▶ let g : Y → X be defined by x = g(y)

▶ is it possible that g(y) = x1 ̸= x2 = g(y) ?

▶ this would mean: f (x1) = y = f (x2)

▶ but f is one-to-one
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Pigeonhole Principle

Definition
pigeonhole principle (Dirichlet drawers):
If m pigeons go into n holes and m > n,
then at least one hole contains more than one pigeon.

▶ f : X → Y
|X | > |Y | ⇒ f is not one-to-one

▶ ∃x1, x2 ∈ X [x1 ̸= x2 ∧ f (x1) = f (x2)]
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Pigeonhole Principle Examples

▶ Among 367 people, at least two have the same birthday.

▶ In an exam where the grades are integers between 0 and 100,
how many students have to take the exam to make sure that
at least two students will have the same grade?
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Generalized Pigeonhole Principle

Definition
generalized pigeonhole principle:
If m objects are distributed to n drawers,
then at least one of the drawers contains ⌈m/n⌉ objects.

example

Among 100 people, at least ⌈100/12⌉ = 9 were born
in the same month.
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Pigeonhole Principle Example

Theorem
S = {1, 2, 3, . . . , 9},T ⊂ S , |T | = 6
∃s1, s2 ∈ T [s1 + s2 = 10]
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Pigeonhole Principle Example

Theorem
S ⊆ Z+, ∀a ∈ S [a ≤ 14], |S | = 6
T = P(S)− ∅
X = {ΣA | A ∈ T}, ΣA : sum of the elements in A
|X | < |T |

Proof Attempt

▶ holes:
1 ≤ ΣA ≤ 9 + · · ·+ 14 = 69

▶ pigeons: 26 − 1 = 63

Proof.
consider T − S

▶ holes:
1 ≤ sA ≤ 10 + · · ·+ 14 = 60

▶ pigeons: 26 − 2 = 62
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Pigeonhole Principle Example

Theorem
S = {1, 2, 3, . . . , 200},T ⊂ S , |T | = 101
∃s1, s2 ∈ T [s2|s1]
▶ first, show that:

∀n ∃!p [n = 2rp ∧ r ∈ N ∧ ∃t ∈ Z [p = 2t + 1]]

▶ then, use this to prove the main theorem
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Pigeonhole Principle Example

Theorem
∀n ∃!p [n = 2rp ∧ r ∈ N ∧ ∃t ∈ Z [p = 2t + 1]]

Proof of existence.
n = 1: r = 0, p = 1
n ≤ k: assume n = 2rp
n = k + 1:
n = 2 : r = 1, p = 1
n prime (n > 2) : r = 0, p = n
¬(n prime) : n = n1n2

n = 2r1p1 · 2r2p2
n = 2r1+r2 · p1p2

Proof of uniqueness.

if not unique:

n = 2r1p1 = 2r2p2
⇒ 2r1−r2p1 = p2
⇒ 2|p2
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Pigeonhole Principle Example

Theorem
S = {1, 2, 3, . . . , 200},T ⊂ S , |T | = 101
∃s1, s2 ∈ T [s2|s1]

Proof.
▶ P = {p | p ∈ S , ∃i ∈ Z [p = 2i + 1]}, |P| = 100

▶ f : S → P, r ∈ N, s = 2rp → f (s) = p

▶ |T | = 101 ⇒ at least two elements have the same image in P:
f (s1) = f (s2) ⇒ s1 = 2r1p, s2 = 2r2p

s1
s2

=
2r1p

2r2p
= 2r1−r2
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Recursive Functions

Definition
recursive function: a function defined in terms of itself

f (n) = h(f (m))

▶ inductively defined function: a recursive function
where the size is reduced at every step

f (n) =

{
k if n = 0

h(f (n − 1)) if n > 0
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Recursion Examples

f 91(n) =

{
n − 10 if n > 100

f 91(f 91(n + 11)) if n ≤ 100

n! =

{
1 if n = 0

n · (n − 1)! if n > 0

77 / 82

Greatest Common Divisor

gcd(a, b) =

{
b if b | a
gcd(b, a mod b) if b ∤ a

gcd(333, 84) = gcd(84, 333 mod 84)

= gcd(84, 81)

= gcd(81, 84 mod 81)

= gcd(81, 3)

= 3
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Fibonacci Sequence

Fn = fib(n) =





1 if n = 1

1 if n = 2

fib(n − 2) + fib(n − 1) if n > 2

F1 F2 F3 F4 F5 F6 F7 F8 . . .
1 1 2 3 5 8 13 21 . . .
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Fibonacci Sequence

Theorem∑n
i=1 Fi

2 = Fn · Fn+1

Proof.
n = 2 :

∑2
i=1 Fi

2 = F1
2 + F2

2 = 1 + 1 = 1 · 2 = F2 · F3
n = k :

∑k
i=1 Fi

2 = Fk · Fk+1

n = k + 1 :
∑k+1

i=1 Fi
2 =

∑k
i=1 Fi

2 + Fk+1
2

= Fk · Fk+1 + Fk+1
2

= Fk+1 · (Fk + Fk+1)

= Fk+1 · Fk+2
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Ackermann Function

ack(x , y) =





y + 1 if x = 0

ack(x − 1, 1) if y = 0

ack(x − 1, ack(x , y − 1)) if x > 0 ∧ y > 0
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