Discrete Mathematics Relations and Functions H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2023	 License EVENCE SA C 2001-2023 T. Uyar, A. Yayımlı, E. Harmancı You are free to: Share – copy and redistribute the material in any medium or format Adapt – remix, transform, and build upon the material Under the following terms: Attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. NonCommercial – You may not use the material for commercial purposes. ShareAlike – If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. For more information: https://creativecommons.org/licenses/by-nc-sa/4.0/
	1/82
Topics	Relation
Relations Introduction Relation Properties Equivalence Relations Functions Introduction Pigeonhole Principle Recursion	Definition relation: $\alpha \subseteq A \times B \times C \times \cdots \times N$ • tuple: element of relation • binary relation: $\alpha \subseteq A \times B$ • $a\alpha b$: $(a, b) \in \alpha$
	3/82 4/82

Reflexivity	Reflexivity Examples
reflexive $\alpha \subseteq A \times A$ $\forall a \in A \ [a\alpha a]$ $\models E \subseteq \alpha$ \models irreflexive: $\forall a \in A \ [\neg(a\alpha a)]$	$ \begin{array}{ll} \mathcal{R}_1 \subseteq \{1,2\} \times \{1,2\} & \mathcal{R}_2 \subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R}_1 = \{(1,1),(1,2),(2,2)\} & \mathcal{R}_2 = \{(1,1),(1,2),(2,2)\} \\ \bullet \ \mathcal{R}_1 \text{ is reflexive} & \bullet \ \mathcal{R}_2 \text{ is not reflexive} \\ \bullet \text{ also not irreflexive} \end{array} $
17/82	18 / 82
Reflexivity Examples	Reflexivity Examples
$\mathcal{R} \subseteq \{1,2,3\} imes \{1,2,3\} \ \mathcal{R} = \{(1,2),(2,1),(2,3)\}$	$egin{aligned} \mathcal{R} \subseteq \mathbb{Z} imes \mathbb{Z} \ \mathcal{R} = \{(a,b) \mid ab \geq 0\} \end{aligned}$
$\blacktriangleright \mathcal{R} \text{ is irreflexive}$	$\blacktriangleright \mathcal{R} \text{ is reflexive}$
19/82	20/82

Symmetry	Symmetry Examples	
symmetric $\alpha \subseteq A \times A$ $\forall a, b \in A \ [a\alpha b \leftrightarrow b\alpha a]$ $\bullet \ \alpha^{-1} = \alpha$ $\bullet \ antisymmetric:$ $\forall a, b \in A \ [a\alpha b \land b\alpha a \to a = b]$	$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\} \\ \mathcal{R} = \{(1, 2), (2, 1), (2, 3)\} \\ \blacktriangleright \ \mathcal{R} \text{ is not symmetric} \\ \blacktriangleright \text{ also not antisymmetric} $	
	21 / 82	22 / 82
Symmetry Examples	Symmetry Examples	
$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid ab \ge 0\}$ $\blacktriangleright \mathcal{R} \text{ is symmetric}$	$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$ $\mathcal{R} = \{(1, 1), (2, 2)\}$ $\blacktriangleright \mathcal{R}$ is symmetric and antisymmetric	
	23/82	24 / 82

Transitivity	Transitivity Examples
transitive $\alpha \subseteq A \times A$ $\forall a, b, c \in A [a\alpha b \land b\alpha c \rightarrow a\alpha c]$ $\land \alpha^2 \subseteq \alpha$ $\land antitransitive:$ $\forall a, b, c \in A [a\alpha b \land b\alpha c \rightarrow \neg(a\alpha c)]$	$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$ $\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$ $\blacktriangleright \mathcal{R} \text{ is antitransitive}$
25 / 82	26 / 82
Transitivity Examples	Converse Relation Properties
$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid ab \ge 0\}$ $\blacktriangleright \mathcal{R} \text{ is not transitive}$ $\blacktriangleright \text{ also not antitransitive}$	Theorem Reflexivity, symmetry, and transitivity are preserved in the converse relation.
27 / 82	28 / 82

Closures		Special Relations	
 reflexive closure: r_α = α ∪ E symmetric closure: s_α = α ∪ α⁻¹ transitive closure: t_α = ⋃_{i=1,2,3,} αⁱ = α ∪ α² ∪ α³ ∪ ··· 		predecessor - successor $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid a - b = 1\}$ • irreflexive • antisymmetric • antitransitive	
Special Relations	29 / 82	Special Relations	30 / 82
adjacency $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid a - b = 1\}$ • irreflexive • symmetric • antitransitive		strict order $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid a < b\}$ • irreflexive • antisymmetric • transitive	
	31 / 82		32 / 82

Special Relations	Special Relations	
partial order $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid a \leq b\}$ • reflexive• antisymmetric• transitive	preorder $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid a \le b \}$ • reflexive • transitive	
	33 / 82	34 / 82
Special Relations	Special Relations	
limited difference $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}, m \in \mathbb{Z}^+$ $\mathcal{R} = \{(a, b) \mid a - b \leq m\}$ • reflexive• symmetric	comparability $\mathcal{R} \subseteq \mathbb{U} \times \mathbb{U}$ $\mathcal{R} = \{(a, b) \mid (a \subseteq b) \lor (b \subseteq a)\}$ \blacktriangleright reflexive \blacktriangleright symmetric	
	35 / 82	36 / 82

ecial Relations	Compatibility Relations
 siblings? irreflexive symmetric transitive can a relation be symmetric and transitive, but irreflexive? 	 Definition compatibility relation: γ reflexive symmetric when drawing, lines instead of arrows matrix representation as a triangle matrix
npatibility Relation Example	37/82 Compatibility Relation Example
$A = \{a_{1}, a_{2}, a_{3}, a_{4}\}$ $\mathcal{R} = \{(a_{1}, a_{1}), (a_{2}, a_{2}), (a_{3}, a_{3}), (a_{4}, a_{4}), (a_{1}, a_{2}), (a_{2}, a_{1}), (a_{2}, a_{4}), (a_{4}, a_{2}), (a_{3}, a_{4}), (a_{4}, a_{3})\}$	$\begin{array}{rcl} \mathcal{A} &=& \{a_1, a_2, a_3, a_4\} &&& a_1 & a_2 & a_3 & a_4 \\ \mathcal{R} &=& \{(a_1, a_1), (a_2, a_2), &&& a_3 & a_4 \\ && (a_1, a_2), (a_2, a_2), &&& a_2 & a_3 \\ && (a_1, a_2), (a_2, a_1), &&& a_4 & 0 & 1 & 1 \\ && (a_2, a_4), (a_4, a_2), &&& & & \\ && (a_3, a_4), (a_4, a_3)\} &&& a_1 & a_2 & a_3 \\ && a_3 & \begin{bmatrix} 1 & & & & & & & \\ 0 & 0 & 1 & 1 & & & \\ && & & & & & \\ && & & & $
$(a_3, a_4), (a_4, a_3)$ }	$ \begin{array}{c cccc} (a_3, a_4), (a_4, a_3) \\ & & a_1 & a_2 & a_3 \\ & & a_2 & 1 & & \\ & & a_3 & 0 & 0 \\ \end{array} $

Compatibility Relations	Compatibility Relation Example
 αα⁻¹ is a compatibility relation example P: persons, L: languages P = {p₁, p₂, p₃, p₄, p₅, p₆} L = {l₁, l₂, l₃, l₄, l₅} α ⊆ P × L 	$M_{\alpha} = \begin{cases} h_{1} & h_{2} & h_{3} & h_{4} & h_{5} \\ p_{1} & \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ p_{2} & \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ p_{5} & \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$ $M_{\alpha^{-1}} = \begin{cases} h_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$
41/82 Compatibility Polation Example	2 42/82
Compatibility Relation Example • $\alpha \alpha^{-1} \subseteq P \times P$ $M_{\alpha \alpha^{-1}} = \begin{pmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ p_2 & p_3 & p_4 & p_5 & p_6 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$	Compatibility Block Definition compatibility block: $C \subseteq A$ $\forall a, b \ [a \in C \land b \in C \rightarrow a\gamma b]$ • maximal compatibility block: not a subset of another compatibility block • an element can be a member of more than one MCB • complete cover: C_{γ} set of all MCBs
43 / 83	2 44/82

Functions		Subset Image Examples
Definition function: $f : X \to Y$ $\forall x \in X \ \forall y_1, y_2 \in Y \ [(x, y_1), (x, y_2) \in f \to y_1 = y_2]$ • X: domain, Y: codomain • $y = f(x)$: $(x, y) \in f$ • y: image of x under f • $f : X \to Y, \ X' \subseteq X$ subset image: $f(X') = \{f(x) \mid x \in X'\}$		$f : \mathbb{R} \to \mathbb{R}$ $f(x) = x^{2}$ $f(\mathbb{Z}) = \{0, 1, 4, 9, 16, \dots\}$ $f(\{-2, 1\}) = \{1, 4\}$
	49 / 82	50 / 82
Range		One-to-One Functions
Definition $f: X \rightarrow Y$ range: $f(X)$		Definition $f: X \rightarrow Y$ is one-to-one (or injective): $\forall x_1, x_2 \in X \ [f(x_1) = f(x_2) \rightarrow x_1 = x_2]$
	51 / 82	52/82

One-to-One Function Examp	les	Onto Functions	
• one-to-one $f : \mathbb{R} \to \mathbb{R}$ $f(x) = 3x + 7$ $f(x_1) = f(x_2)$ $\Rightarrow 3x_1 + 7 = 3x_2 + 7$ $\Rightarrow 3x_1 = 3x_2$ $\Rightarrow x_1 = x_2$	• not one-to-one $g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = x^4 - x$ $g(0) = 0^4 - 0 = 0$ $g(1) = 1^4 - 1 = 0$	Definition $f: X \to Y$ is onto (or surjective): $\forall y \in Y \exists x \in X [f(x) = y]$ $\blacktriangleright f(X) = Y$	
	53 / 82	5	54 / 82
Onto Function Examples		Bijective Functions	
• onto $f : \mathbb{R} \to \mathbb{R}$ $f(x) = x^3$	• not onto $f: \mathbb{Z} \to \mathbb{Z}$ f(x) = 3x + 1	Definition $f: X \rightarrow Y$ is bijective: f is one-to-one and onto	
	55 / 82	5	56 / 82

Function Composition		Composition Commutativity Example	
Definition $f: X \to Y, g: Y \to Z$ $g \circ f: X \to Z$ $(g \circ f)(x) = g(f(x))$ • not commutative • associative: $f \circ (g \circ h) = (f \circ g) \circ h$		$f: \mathbb{R} \to \mathbb{R}$ $f(x) = x^{2}$ $g: \mathbb{R} \to \mathbb{R}$ $g(x) = x + 5$ $g \circ f: \mathbb{R} \to \mathbb{R}$ $(g \circ f)(x) = x^{2} + 5$ $f \circ g: \mathbb{R} \to \mathbb{R}$ $(f \circ g)(x) = (x + 5)^{2}$	
	57 / 82		58 / 82
Composite Function Theorems		Composite Function Theorems	
Theorem $f: X \to Y, g: Y \to Z$ $f \text{ is one-to-one } \land g \text{ is one-to-one} \Rightarrow g \circ f \text{ is one-to-one}$ Proof. $(g \circ f)(x_1) = (g \circ f)(x_2)$ $\Rightarrow g(f(x_1)) = g(f(x_2))$ $\Rightarrow f(x_1) = f(x_2)$ $\Rightarrow x_1 = x_2$		Theorem $f: X \to Y, g: Y \to Z$ $f \text{ is onto } \land g \text{ is onto } \Rightarrow g \circ f \text{ is onto}$ Proof. $\forall z \in Z \exists y \in Y g(y) = z$ $\forall y \in Y \exists x \in X f(x) = y$ $\Rightarrow \forall z \in Z \exists x \in X g(f(x)) = z$	
	59 / 82		60 / 82

Identity Function	Inverse Function
Definition identity function: 1_X $1_X : X \to X$ $1_X(x) = x$	Definition $f: X \to Y$ is invertible: $\exists f^{-1}: Y \to X [f^{-1} \circ f = 1_X \land f \circ f^{-1} = 1_Y]$ $\blacktriangleright f^{-1}$: inverse of function f
61/82	62 / 82
Inverse Function Examples	Inverse Function
$f: \mathbb{R} \to \mathbb{R}$ f(x) = 2x + 5 $f^{-1}: \mathbb{R} \to \mathbb{R}$ $f^{-1}(x) = \frac{x-5}{2}$ $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(2x+5) = \frac{(2x+5)-5}{2} = \frac{2x}{2} = x$ $(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(\frac{x-5}{2}) = 2\frac{x-5}{2} + 5 = (x-5) + 5 = x$	Theorem If a function is invertible, its inverse is unique. Proof. $f: X \to Y$ $g, h: Y \to X$ $g \circ f = 1_X \land f \circ g = 1_Y$ $h \circ f = 1_X \land f \circ h = 1_Y$ $h = h \circ 1_Y = h \circ (f \circ g) = (h \circ f) \circ g = 1_X \circ g = g$
63 / 82	64 / 82

Invertible Function	Invertible Function
Theorem A function is invertible if and only if it is one-to-one and onto.	If invertible then one-to-one. $f: X \to Y$ If invertible then onto. $f: X \to Y$ $f(x_1) = f(x_2)$ y $\Rightarrow f^{-1}(f(x_1)) = f^{-1}(f(x_2))$ $= 1_Y(y)$ $\Rightarrow (f^{-1} \circ f)(x_1) = (f^{-1} \circ f)(x_2)$ $= (f \circ f^{-1})(y)$ $\Rightarrow 1_X(x_1) = 1_X(x_2)$ $= f(f^{-1}(y))$ $\Rightarrow x_1 = x_2$ \Box
65	/ 82 66 / 8
Invertible Function	Pigeonhole Principle
If bijective then invertible. $f: X \to Y$ • f is onto $\Rightarrow \forall y \in Y \exists x \in X f(x) = y$ • let $g: Y \to X$ be defined by $x = g(y)$ • is it possible that $g(y) = x_1 \neq x_2 = g(y)$? • this would mean: $f(x_1) = y = f(x_2)$ • but f is one-to-one	Definition pigeonhole principle (Dirichlet drawers): If m pigeons go into n holes and $m > n$, then at least one hole contains more than one pigeon. • $f: X \to Y$ $ X > Y \Rightarrow f$ is not one-to-one • $\exists x_1, x_2 \in X \ [x_1 \neq x_2 \land f(x_1) = f(x_2)]$
but <i>r</i> is one-to-one	
67	/82 68/8

Pigeonhole Principle Examples	Generalized Pigeonhole Principle
 Among 367 people, at least two have the same birthday. In an exam where the grades are integers between 0 and 100, how many students have to take the exam to make sure that at least two students will have the same grade? 	Definition generalized pigeonhole principle: If <i>m</i> objects are distributed to <i>n</i> drawers, then at least one of the drawers contains $\lceil m/n \rceil$ objects. example Among 100 people, at least $\lceil 100/12 \rceil = 9$ were born in the same month.
69 / 83	2 70 / 82
Pigeonhole Principle Example	Pigeonhole Principle Example
Theorem $S = \{1, 2, 3, \dots, 9\}, T \subset S, T = 6$ $\exists s_1, s_2 \in T \ [s_1 + s_2 = 10]$	Theorem $S \subseteq \mathbb{Z}^+, \forall a \in S \ [a \le 14], S = 6$ $T = \mathcal{P}(S) - \emptyset$ $X = \{\Sigma_A \mid A \in T\}, \Sigma_A : sum of the elements in A$ X < T Proof Attempt holes: $1 \le \Sigma_A \le 9 + \dots + 14 = 69$ holes: $1 \le s_A \le 10 + \dots + 14 = 60$ holes: $1 \le s_A \le 10 + \dots + 14 = 60$ holes: $1 \le s_A \le 10 + \dots + 14 = 60$
71/8	2 72/82

Pigeonhole Principle Example	Pigeonhole Principle Example
Theorem $S = \{1, 2, 3, \dots, 200\}, T \subset S, T = 101$ $\exists s_1, s_2 \in T [s_2 s_1]$ • first, show that: $\forall n \exists ! p [n = 2^r p \land r \in \mathbb{N} \land \exists t \in \mathbb{Z} [p = 2t + 1]]$ • then, use this to prove the main theorem	Theorem $\forall n \exists ! p \ [n = 2^r p \land r \in \mathbb{N} \land \exists t \in \mathbb{Z} \ [p = 2t + 1]]$ Proof of existence. $n = 1: \ r = 0, p = 1$ $n \leq k: \text{ assume } n = 2^r p$ n = k + 1: $n = 2: \qquad r = 1, p = 1$ $n \text{ prime } (n > 2): \ r = 0, p = n$ $\neg(n \text{ prime}): \qquad n = n_1 n_2$ $n = 2^{r_1} p_1 \cdot 2^{r_2} p_2$ $n = 2^{r_1 + r_2} \cdot p_1 p_2$
Pigeonhole Principle Example	Recursive Functions
Theorem $S = \{1, 2, 3,, 200\}, T \subset S, T = 101$ $\exists s_1, s_2 \in T [s_2 s_1]$ Proof. • $P = \{p \mid p \in S, \exists i \in \mathbb{Z} [p = 2i + 1]\}, P = 100$ • $f : S \to P, r \in \mathbb{N}, s = 2^r p \to f(s) = p$ • $ T = 101 \Rightarrow$ at least two elements have the same image in P : $f(s_1) = f(s_2) \Rightarrow s_1 = 2^{r_1} p, s_2 = 2^{r_2} p$ $\frac{s_1}{s_2} = \frac{2^{r_1} p}{2^{r_2} p} = 2^{r_1 - r_2}$	Definition recursive function: a function defined in terms of itself f(n) = h(f(m)) • <i>inductively defined function</i> : a recursive function where the size is reduced at every step $f(n) = \begin{cases} k & \text{if } n = 0\\ h(f(n-1)) & \text{if } n > 0 \end{cases}$
75 / 82	

Recursion Examples	Greatest Common Divisor
$f91(n) = \begin{cases} n-10 & \text{if } n > 100\\ f91(f91(n+11)) & \text{if } n \le 100 \end{cases}$ $n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{if } n > 0 \end{cases}$	$gcd(a, b) = \begin{cases} b & \text{if } b \mid a \\ gcd(b, a \mod b) & \text{if } b \nmid a \end{cases}$ $gcd(333, 84) = gcd(84, 333 \mod 84)$ $= gcd(84, 81)$ $= gcd(81, 84 \mod 81)$ $= gcd(81, 3)$ $= 3 \end{cases}$
Fibonacci Sequence	77/82 Fibonacci Sequence
$F_n = fib(n) = \begin{cases} 1 & \text{if } n = 1\\ 1 & \text{if } n = 2\\ fib(n-2) + fib(n-1) & \text{if } n > 2 \end{cases}$ $F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 \dots \\ 1 1 2 3 5 8 13 21 \dots \end{cases}$	Theorem $\sum_{i=1}^{n} F_i^2 = F_n \cdot F_{n+1}$ Proof. $n = 2: \qquad \sum_{i=1}^{2} F_i^2 = F_1^2 + F_2^2 = 1 + 1 = 1 \cdot 2 = F_2 \cdot F_3$ $n = k: \qquad \sum_{i=1}^{k} F_i^2 = F_k \cdot F_{k+1}$ $n = k + 1: \qquad \sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^{k} F_i^2 + F_{k+1}^2$ $= F_k \cdot F_{k+1} + F_{k+1}^2$ $= F_{k+1} \cdot (F_k + F_{k+1})$ $= F_{k+1} \cdot F_{k+2}$
	79 / 82 80 /

Ackermann Function

$$ack(x, y) = \begin{cases} y+1 & \text{if } x = 0\\ ack(x-1, 1) & \text{if } y = 0\\ ack(x-1, ack(x, y-1)) & \text{if } x > 0 \land y > 0 \end{cases}$$

