License

Discrete Mathematics

Relations and Functions
H. Turgut Uyar Ayșegül Gençata Yayımlı Emre Harmancı

2001-2023

(C) 2001-2023 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- NonCommercial - You may not use the material for commercial purposes.
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Topics

Relations
Introduction
Relation Properties
Equivalence Relations

Functions
Introduction
Pigeonhole Principle
Recursion

Relation

Definition
relation: $\alpha \subseteq A \times B \times C \times \cdots \times N$

- tuple: element of relation
- binary relation: $\alpha \subseteq A \times B$
- a $a b \quad: \quad(a, b) \in \alpha$

Relation Example

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, B=\left\{b_{1}, b_{2}, b_{3}\right\} \\
& \alpha=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{3}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{3}\right),\left(a_{4}, b_{1}\right)\right\}
\end{aligned}
$$

Relation Composition

- $M_{\alpha \beta}=M_{\alpha} \cdot M_{\beta}$
- using logical operations:
$1: T \quad 0: F \quad: \wedge \quad+: \vee$
example
$M_{\alpha}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right] \quad M_{\beta}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right] \quad M_{\alpha \beta}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$

Relation Composition

Definition
relation composition:
$\alpha \subseteq A \times B, \beta \subseteq B \times C$
$\alpha \beta=\{(a, c) \mid a \in A, c \in C, \exists b \in B[a \alpha b \wedge b \beta c]\}$
example

Relation Composition Associativity

$$
(\alpha \beta) \gamma=\alpha(\beta \gamma)
$$

$$
\begin{aligned}
& (a, d) \in(\alpha \beta) \gamma \\
\Leftrightarrow & \exists c[(a, c) \in \alpha \beta \wedge(c, d) \in \gamma] \\
\Leftrightarrow & \exists c[\exists b[(a, b) \in \alpha \wedge(b, c) \in \beta] \wedge(c, d) \in \gamma] \\
\Leftrightarrow & \exists b[(a, b) \in \alpha \wedge \exists c[(b, c) \in \beta \wedge(c, d) \in \gamma]] \\
\Leftrightarrow & \exists b[(a, b) \in \alpha \wedge(b, d) \in \beta \gamma] \\
\Leftrightarrow & (a, d) \in \alpha(\beta \gamma)
\end{aligned}
$$

Relation Composition Theorems

$$
\alpha(\beta \cup \gamma)=\alpha \beta \cup \alpha \gamma
$$

$$
(a, c) \in \alpha(\beta \cup \gamma)
$$

$\Leftrightarrow \quad \exists b[(a, b) \in \alpha \wedge(b, c) \in(\beta \cup \gamma)]$
$\Leftrightarrow \quad \exists b[(a, b) \in \alpha \wedge((b, c) \in \beta \vee(b, c) \in \gamma)]$
$\Leftrightarrow \quad \exists b[((a, b) \in \alpha \wedge(b, c) \in \beta)$

$$
\vee((a, b) \in \alpha \wedge(b, c) \in \gamma)]
$$

$\Leftrightarrow \quad(a, c) \in \alpha \beta \vee(a, c) \in \alpha \gamma$
$\Leftrightarrow \quad(a, c) \in \alpha \beta \cup \alpha \gamma$

Converse Relation Theorems

- $\left(\alpha^{-1}\right)^{-1}=\alpha$
- $(\alpha \cup \beta)^{-1}=\alpha^{-1} \cup \beta^{-1}$
- $(\alpha \cap \beta)^{-1}=\alpha^{-1} \cap \beta^{-1}$
- $\bar{\alpha}^{-1}=\overline{\alpha^{-1}}$
- $(\alpha-\beta)^{-1}=\alpha^{-1}-\beta^{-1}$

Converse Relation

Definition
$\alpha^{-1}=\{(b, a) \mid(a, b) \in \alpha\}$

- $M_{\alpha^{-1}}=M_{\alpha}^{T}$

Converse Relation Theorems

$$
\bar{\alpha}^{-1}=\overline{\alpha^{-1}}
$$

$$
(b, a) \in \bar{\alpha}^{-1}
$$

$\Leftrightarrow \quad(a, b) \in \bar{\alpha}$
$\Leftrightarrow \quad(a, b) \notin \alpha$
$\Leftrightarrow \quad(b, a) \notin \alpha^{-1}$
$\Leftrightarrow \quad(b, a) \in \overline{\alpha^{-1}}$

Converse Relation Theorems

$(\alpha \cap \beta)^{-1}=\alpha^{-1} \cap \beta^{-1}$.

$$
\begin{aligned}
& (b, a) \in(\alpha \cap \beta)^{-1} \\
\Leftrightarrow & (a, b) \in(\alpha \cap \beta) \\
\Leftrightarrow & (a, b) \in \alpha \wedge(a, b) \in \beta \\
\Leftrightarrow & (b, a) \in \alpha^{-1} \wedge(b, a) \in \beta^{-1} \\
\Leftrightarrow & (b, a) \in \alpha^{-1} \cap \beta^{-1}
\end{aligned}
$$

Relation Composition Converse

Theorem
$(\alpha \beta)^{-1}=\beta^{-1} \alpha^{-1}$
Proof.

$$
\begin{aligned}
& (c, a) \in(\alpha \beta)^{-1} \\
\Leftrightarrow & (a, c) \in \alpha \beta \\
\Leftrightarrow & \exists b[(a, b) \in \alpha \wedge(b, c) \in \beta] \\
\Leftrightarrow & \exists b\left[(b, a) \in \alpha^{-1} \wedge(c, b) \in \beta^{-1}\right] \\
\Leftrightarrow & (c, a) \in \beta^{-1} \alpha^{-1}
\end{aligned}
$$

Reflexivity

reflexive
$\alpha \subseteq A \times A$
$\forall a \in A[a \alpha a]$

- $E \subseteq \alpha$
- irreflexive:
$\forall a \in A[\neg(a \alpha a)]$

Reflexivity Examples

$$
\begin{aligned}
\mathcal{R}_{1} & \subseteq\{1,2\} \times\{1,2\} \\
\mathcal{R}_{1} & =\{(1,1),(1,2),(2,2)\} \\
& \mathcal{R}_{1} \text { is reflexive }
\end{aligned}
$$

Reflexivity Examples

$$
\begin{aligned}
& \mathcal{R} \subseteq\{1,2,3\} \times\{1,2,3\} \\
& \mathcal{R}=\{(1,2),(2,1),(2,3)\}
\end{aligned}
$$

- \mathcal{R} is irreflexive

Reflexivity Examples

$$
\begin{aligned}
& \mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z} \\
& \mathcal{R}=\{(a, b) \mid a b \geq 0\}
\end{aligned}
$$

- \mathcal{R} is reflexive

Symmetry

symmetric

$\alpha \subseteq A \times A$
$\forall a, b \in A[a \alpha b \leftrightarrow b \alpha a]$

- $\alpha^{-1}=\alpha$
- antisymmetric:
$\forall a, b \in A[a \alpha b \wedge b \alpha a \rightarrow a=b]$

Symmetry Examples

$$
\begin{aligned}
& \mathcal{R} \subseteq\{1,2,3\} \times\{1,2,3\} \\
& \mathcal{R}=\{(1,2),(2,1),(2,3)\}
\end{aligned}
$$

- \mathcal{R} is not symmetric
- also not antisymmetric

$$
4
$$

Symmetry Examples

$$
\begin{aligned}
& \mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z} \\
& \mathcal{R}=\{(a, b) \mid a b \geq 0\}
\end{aligned}
$$

- \mathcal{R} is symmetric

Symmetry Examples

$$
\begin{aligned}
& \mathcal{R} \subseteq\{1,2,3\} \times\{1,2,3\} \\
& \mathcal{R}=\{(1,1),(2,2)\}
\end{aligned}
$$

- \mathcal{R} is symmetric and antisymmetric

Transitivity

transitive

$\alpha \subseteq A \times A$
$\forall a, b, c \in A[a \alpha b \wedge b \alpha c \rightarrow a \alpha c]$

- $\alpha^{2} \subseteq \alpha$
- antitransitive:
$\forall a, b, c \in A[a \alpha b \wedge b \alpha c \rightarrow \neg(a \alpha c)]$

Transitivity Examples

$$
\begin{aligned}
& \mathcal{R} \subseteq\{1,2,3\} \times\{1,2,3\} \\
& \mathcal{R}=\{(1,2),(2,1),(2,3)\}
\end{aligned}
$$

- \mathcal{R} is antitransitive

Transitivity Examples

$$
\begin{aligned}
& \mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z} \\
& \mathcal{R}=\{(a, b) \mid a b \geq 0\}
\end{aligned}
$$

- \mathcal{R} is not transitive
- also not antitransitive

Converse Relation Properties

Theorem

Reflexivity, symmetry, and transitivity are preserved in the converse relation.

Closures

- reflexive closure:
$r_{\alpha}=\alpha \cup E$
- symmetric closure:
$s_{\alpha}=\alpha \cup \alpha^{-1}$
- transitive closure:
$t_{\alpha}=\bigcup_{i=1,2,3, \ldots} \alpha^{i}=\alpha \cup \alpha^{2} \cup \alpha^{3} \cup \ldots$

Special Relations

predecessor - successor
$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$
$\mathcal{R}=\{(a, b) \mid a-b=1\}$

- irreflexive
- antisymmetric
- antitransitive

Special Relations

adjacency

$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$
$\mathcal{R}=\{(a, b)| | a-b \mid=1\}$

- irreflexive
- symmetric
- antitransitive

Special Relations

partial order
$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$
$\mathcal{R}=\{(a, b) \mid a \leq b\}$

- reflexive
- antisymmetric
- transitive

Special Relations

limited difference

$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}, m \in \mathbb{Z}^{+}$
$\mathcal{R}=\{(a, b)| | a-b \mid \leq m\}$

- reflexive
- symmetric

Special Relations

preorder

$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$
$\mathcal{R}=\{(a, b)| | a|\leq|b|\}$

- reflexive
- transitive

Special Relations

comparability
$\mathcal{R} \subseteq \mathbb{U} \times \mathbb{U}$
$\mathcal{R}=\{(a, b) \mid(a \subseteq b) \vee(b \subseteq a)\}$

- reflexive
- symmetric

Special Relations

- siblings?
- irreflexive
- symmetric
- transitive
- can a relation be symmetric and transitive, but irreflexive?

Compatibility Relation Example

$$
\begin{aligned}
A= & \left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \\
\mathcal{R}= & \left\{\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right),\right. \\
& \left(a_{3}, a_{3}\right),\left(a_{4}, a_{4}\right), \\
& \left(a_{1}, a_{2}\right),\left(a_{2}, a_{1}\right), \\
& \left(a_{2}, a_{4}\right),\left(a_{4}, a_{2}\right), \\
& \left.\left(a_{3}, a_{4}\right),\left(a_{4}, a_{3}\right)\right\}
\end{aligned}
$$

Compatibility Relations

Definition
compatibility relation: γ

- reflexive
- symmetric
- when drawing, lines instead of arrows
- matrix representation as a triangle matrix

Compatibility Relation Example

$$
A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}
$$

$$
\mathcal{R}=\left\{\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right),\right.
$$

$\left.\begin{array}{l} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array} \begin{array}{cccc}a_{1} & a_{2} & a_{3} & a_{4} \\ a_{4} & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]$
$\left(a_{3}, a_{3}\right),\left(a_{4}, a_{4}\right)$,
a_{4}
$\left(a_{1}, a_{2}\right),\left(a_{2}, a_{1}\right)$,
$\left(a_{2}, a_{4}\right),\left(a_{4}, a_{2}\right)$,

$$
\left.\left(a_{3}, a_{4}\right),\left(a_{4}, a_{3}\right)\right\}
$$

$\left.\begin{array}{l} \\ a_{2} \\ a_{3} \\ a_{4}\end{array} \begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ 1 & & \\ 0 & 0 & \\ 0 & 1 & 1\end{array}\right]$

Compatibility Relations

- $\alpha \alpha^{-1}$ is a compatibility relation example
- P : persons, L : languages
- $P=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\}$
- $L=\left\{l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right\}$
- $\alpha \subseteq P \times L$

Compatibility Relation Example

- $\alpha \alpha^{-1} \subseteq P \times P$
$\left.M_{\alpha \alpha^{-1}}=\begin{array}{c} \\ p_{1} \\ p_{2} \\ p_{3} \\ p_{4} \\ p_{5} \\ p_{6}\end{array} \begin{array}{cccccc}p_{2} & p_{3} & p_{4} & p_{5} & p_{6} \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1\end{array}\right]$

Compatibility Relation Example

$$
M_{\alpha}=\begin{gathered}
\\
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6}
\end{gathered}\left[\begin{array}{lllll}
l_{1} & l_{2} & l_{3} & l_{4} & l_{5} \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

$$
M_{\alpha^{-1}}=\begin{gathered}
\\
I_{1} \\
l_{2} \\
l_{2} \\
I_{3} \\
I_{4} \\
I_{5}
\end{gathered}\left[\begin{array}{cccccc}
1 & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

,

Compatibility Block

Definition
compatibility block: $C \subseteq A$
$\forall a, b[a \in C \wedge b \in C \rightarrow a \gamma b]$

- maximal compatibility block: not a subset of another compatibility block
- an element can be a member of more than one MCB
- complete cover: C_{γ} set of all MCBs

Compatibility Block Example

- $C_{1}=\left\{p_{4}, p_{6}\right\}$

- $C_{2}=\left\{p_{2}, p_{4}, p_{6}\right\}$
- $C_{3}=\left\{p_{1}, p_{2}, p_{4}, p_{6}\right\}$ (MCB)

$$
\begin{aligned}
C_{\gamma}= & \left\{\left\{p_{1}, p_{2}, p_{4}, p_{6}\right\},\right. \\
& \left\{p_{3}, p_{4}, p_{6}\right\}, \\
& \left.\left\{p_{4}, p_{5}\right\}\right\}
\end{aligned}
$$

Equivalence Relations

Definition
equivalence relation: ϵ

- reflexive
- symmetric
- transitive
- equivalence classes (partitions)
- every element is a member of exactly one equivalence class
- complete cover: C_{ϵ}

```
Equivalence Relation Example
\(\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}\)
\(\mathcal{R}=\{(a, b) \mid \exists m \in \mathbb{Z}[a-b=5 m]\}\)
    - \(\mathcal{R}\) partitions \(\mathbb{Z}\) into 5 equivalence classes
```


References

Required Reading: Grimaldi

- Chapter 5: Relations and Functions
- 5.1. Cartesian Products and Relations
- Chapter 7: Relations: The Second Time Around
- 7.1. Relations Revisited: Properties of Relations
- 7.4. Equivalence Relations and Partitions

Functions

Definition

function: $f: X \rightarrow Y$
$\forall x \in X \forall y_{1}, y_{2} \in Y\left[\left(x, y_{1}\right),\left(x, y_{2}\right) \in f \rightarrow y_{1}=y_{2}\right]$

- X : domain, Y : codomain
- $y=f(x) \quad: \quad(x, y) \in f$
- y : image of x under f
- $f: X \rightarrow Y, X^{\prime} \subseteq X$
subset image: $f\left(X^{\prime}\right)=\left\{f(x) \mid x \in X^{\prime}\right\}$

Subset Image Examples

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=x^{2} \\
& f(\mathbb{Z})=\{0,1,4,9,16, \ldots\} \\
& f(\{-2,1\})=\{1,4\}
\end{aligned}
$$

Range

Definition
$f: X \rightarrow Y$
range: $f(X)$

One-to-One Functions

Definition
$f: X \rightarrow Y$ is one-to-one (or injective):
$\forall x_{1}, x_{2} \in X\left[f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}\right]$

One-to-One Function Examples

- one-to-one
- not one-to-one
$f: \mathbb{R} \rightarrow \mathbb{R}$
$f(x)=3 x+7$
$g: \mathbb{Z} \rightarrow \mathbb{Z}$
$g(x)=x^{4}-x$
$f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 3 x_{1}+7=3 x_{2}+7$
$\Rightarrow 3 x_{1}=3 x_{2}$
$\Rightarrow x_{1} \quad=x_{2}$
$g(0)=0^{4}-0=0$
$g(1)=1^{4}-1=0$

Onto Functions

Definition
$f: X \rightarrow Y$ is onto (or surjective):
$\forall y \in Y \exists x \in X[f(x)=y]$

- $f(X)=Y$

Onto Function Examples

$f: \mathbb{R} \rightarrow \mathbb{R}$

- not onto
$f(x)=x^{3}$
$f: \mathbb{Z} \rightarrow \mathbb{Z}$
$f(x)=3 x+1$
Bijective Functions
Definition
$f: X \rightarrow Y$ is bijective:
f is one-to-one and onto

Function Composition

Definition

$f: X \rightarrow Y, g: Y \rightarrow Z$
$g \circ f: X \rightarrow Z$
$(g \circ f)(x)=g(f(x))$

- not commutative
- associative: $f \circ(g \circ h)=(f \circ g) \circ h$

Composition Commutativity Example

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=x^{2} \\
& g: \mathbb{R} \rightarrow \mathbb{R} \\
& g(x)=x+5 \\
& g \circ f: \mathbb{R} \rightarrow \mathbb{R} \\
& (g \circ f)(x)=x^{2}+5 \\
& f \circ g: \mathbb{R} \rightarrow \mathbb{R} \\
& (f \circ g)(x)=(x+5)^{2}
\end{aligned}
$$

Composite Function Theorems

Theorem
$f: X \rightarrow Y, g: Y \rightarrow Z$
f is one-to-one $\wedge g$ is one-to-one $\Rightarrow g \circ f$ is one-to-one
Proof.

$$
\begin{array}{rlll}
& & (g \circ f)\left(x_{1}\right) & =(g \circ f)\left(x_{2}\right) \\
\Rightarrow & g\left(f\left(x_{1}\right)\right) & =g\left(f\left(x_{2}\right)\right) \\
\Rightarrow & f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow & x_{1} & =x_{2}
\end{array}
$$

Composite Function Theorems

Theorem
$f: X \rightarrow Y, g: Y \rightarrow Z$
f is onto $\wedge g$ is onto $\Rightarrow g \circ f$ is onto
Proof.
$\forall z \in Z \exists y \in Y g(y)=z$
$\forall y \in Y \exists x \in X f(x)=y$
$\Rightarrow \forall z \in Z \exists x \in X \quad g(f(x))=z$

Identity Function

Definition

identity function: 1_{X}

$$
\begin{aligned}
& 1_{X}: X \rightarrow X \\
& 1_{x}(x)=x
\end{aligned}
$$

Inverse Function

Definition

$f: X \rightarrow Y$ is invertible:
$\exists f^{-1}: Y \rightarrow X\left[f^{-1} \circ f=1_{X} \wedge f \circ f^{-1}=1_{Y}\right]$

- f^{-1} : inverse of function f

```
Inverse Function Examples
\(f: \mathbb{R} \rightarrow \mathbb{R}\)
\(f(x)=2 x+5\)
\(f^{-1}: \mathbb{R} \rightarrow \mathbb{R}\)
\(f^{-1}(x)=\frac{x-5}{2}\)
\(\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(2 x+5)=\frac{(2 x+5)-5}{2}=\frac{2 x}{2}=x\)
\(\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f\left(\frac{x-5}{2}\right)=2 \frac{x-5}{2}+5=(x-5)+5=x\)
```


Inverse Function Examples

```
\(\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f\left(\frac{x-5}{2}\right)=2 \frac{x-5}{2}+5=(x-5)+5=x\)
```


Inverse Function

Theorem
If a function is invertible, its inverse is unique.
Proof.
$f: X \rightarrow Y$
$g, h: Y \rightarrow X$
$g \circ f=1_{X} \wedge f \circ g=1_{Y}$
$h \circ f=1_{X} \wedge f \circ h=1_{Y}$
$h=h \circ 1_{Y}=h \circ(f \circ g)=(h \circ f) \circ g=1_{X} \circ g=g$

Invertible Function

Theorem
A function is invertible if and only if it is one-to-one and onto.

Invertible Function

If invertible then one-to-one.

$$
f: X \rightarrow Y
$$

$$
f\left(x_{1}\right)=f\left(x_{2}\right)
$$

$$
\Rightarrow \quad f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right)
$$

$$
\Rightarrow \quad\left(f^{-1} \circ f\right)\left(x_{1}\right)=\left(f^{-1} \circ f\right)\left(x_{2}\right)
$$

$$
\Rightarrow \quad 1_{X}\left(x_{1}\right)=1_{X}\left(x_{2}\right)
$$

If invertible then onto. $f: X \rightarrow Y$
y
$=1_{Y}(y)$
$=\left(f \circ f^{-1}\right)(y)$
$=f\left(f^{-1}(y)\right)$

$$
\Rightarrow \quad x_{1}=x_{2}
$$

Invertible Function

If bijective then invertible.
$f: X \rightarrow Y$

- f is onto $\Rightarrow \forall y \in Y \exists x \in X f(x)=y$
- let $g: Y \rightarrow X$ be defined by $x=g(y)$
- is it possible that $g(y)=x_{1} \neq x_{2}=g(y)$?
- this would mean: $f\left(x_{1}\right)=y=f\left(x_{2}\right)$
- but f is one-to-one

Pigeonhole Principle

Definition

pigeonhole principle (Dirichlet drawers):
If m pigeons go into n holes and $m>n$,
then at least one hole contains more than one pigeon.

- $f: X \rightarrow Y$
$|X|>|Y| \Rightarrow f$ is not one-to-one
- $\exists x_{1}, x_{2} \in X\left[x_{1} \neq x_{2} \wedge f\left(x_{1}\right)=f\left(x_{2}\right)\right]$

Pigeonhole Principle Examples

- Among 367 people, at least two have the same birthday.
- In an exam where the grades are integers between 0 and 100, how many students have to take the exam to make sure that at least two students will have the same grade?

Generalized Pigeonhole Principle

Definition
generalized pigeonhole principle:
If m objects are distributed to n drawers,
then at least one of the drawers contains $\lceil m / n\rceil$ objects.
example
Among 100 people, at least $\lceil 100 / 12\rceil=9$ were born
in the same month.

Pigeonhole Principle Example

Theorem
$S=\{1,2,3, \ldots, 9\}, T \subset S,|T|=6$
$\exists s_{1}, s_{2} \in T\left[s_{1}+s_{2}=10\right]$

Pigeonhole Principle Example

Theorem
$S \subseteq \mathbb{Z}^{+}, \forall a \in S[a \leq 14],|S|=6$
$T=\mathcal{P}(S)-\emptyset$
$X=\left\{\Sigma_{A} \mid A \in T\right\}, \Sigma_{A}$: sum of the elements in A
$|X|<|T|$

Proof Attempt

- holes:
$1 \leq \Sigma_{A} \leq 9+\cdots+14=69$
- pigeons: $2^{6}-1=63$

Proof.
consider $T-S$

- holes:
$1 \leq s_{A} \leq 10+\cdots+14=60$
- pigeons: $2^{6}-2=62$

Pigeonhole Principle Example

Theorem
$S=\{1,2,3, \ldots, 200\}, T \subset S,|T|=101$
$\exists s_{1}, s_{2} \in T\left[s_{2} \mid s_{1}\right]$

- first, show that:
$\forall n \exists!p\left[n=2^{r} p \wedge r \in \mathbb{N} \wedge \exists t \in \mathbb{Z}[p=2 t+1]\right]$
- then, use this to prove the main theorem

Pigeonhole Principle Example

Theorem
$S=\{1,2,3, \ldots, 200\}, T \subset S,|T|=101$
$\exists s_{1}, s_{2} \in T\left[s_{2} \mid s_{1}\right]$
Proof.

- $P=\{p \mid p \in S, \exists i \in \mathbb{Z}[p=2 i+1]\},|P|=100$
- $f: S \rightarrow P, r \in \mathbb{N}, s=2^{r} p \rightarrow f(s)=p$
- $|T|=101 \Rightarrow$ at least two elements have the same image in P : $f\left(s_{1}\right)=f\left(s_{2}\right) \Rightarrow s_{1}=2^{r_{1}} p, s_{2}=2^{r_{2}} p$

$$
\frac{s_{1}}{s_{2}}=\frac{2^{r_{1}} p}{2^{r_{2}} p}=2^{r_{1}-r_{2}}
$$

Pigeonhole Principle Example

Theorem
$\forall n \exists!p\left[n=2^{r} p \wedge r \in \mathbb{N} \wedge \exists t \in \mathbb{Z}[p=2 t+1]\right]$

Proof of existence.
$n=1: r=0, p=1$
$n \leq k$: assume $n=2^{r} p$
$n=k+1$:

$$
n=2:
$$

n prime $(n>2): r=0, p=n$
$\neg(n$ prime $):$

$$
n=n_{1} n_{2}
$$

Proof of uniqueness.
if not unique:

$$
r=1, p=1
$$

$n=2^{r_{1}} p_{1}=2^{r_{2}} p_{2}$
$\Rightarrow 2^{r_{1}-r_{2}} p_{1}=p_{2}$
$\Rightarrow \quad 2 \mid p_{2}$

$$
n=2^{r_{1}} p_{1} \cdot 2^{r_{2}} p_{2}
$$

$$
n=2^{r_{1}+r_{2}} \cdot p_{1} p_{2}
$$

Recursive Functions

Definition
recursive function: a function defined in terms of itself
$f(n)=h(f(m))$

- inductively defined function: a recursive function where the size is reduced at every step

$$
f(n)= \begin{cases}k & \text { if } n=0 \\ h(f(n-1)) & \text { if } n>0\end{cases}
$$

Recursion Examples

$$
\begin{gathered}
f 91(n)= \begin{cases}n-10 & \text { if } n>100 \\
f 91(f 91(n+11)) & \text { if } n \leq 100\end{cases} \\
n! \\
= \begin{cases}1 & \text { if } n=0 \\
n \cdot(n-1)! & \text { if } n>0\end{cases}
\end{gathered}
$$

Greatest Common Divisor

$$
\begin{aligned}
& \operatorname{gcd}(a, b)= \begin{cases}b & \text { if } b \mid a \\
\operatorname{gcd}(b, a \bmod b) & \text { if } b \nmid a\end{cases} \\
& \begin{aligned}
\operatorname{gcd}(333,84) & =\operatorname{gcd}(84,333 \bmod 84) \\
& =\operatorname{gcd}(84,81) \\
& =\operatorname{gcd}(81,84 \bmod 81) \\
& =\operatorname{gcd}(81,3) \\
& =3
\end{aligned}
\end{aligned}
$$

Fibonacci Sequence

$$
\begin{aligned}
& F_{n}=\operatorname{fib}(n)= \begin{cases}1 & \text { if } n=1 \\
1 & \text { if } n=2 \\
\operatorname{fib}(n-2)+\operatorname{fib}(n-1) & \text { if } n>2\end{cases} \\
& \begin{array}{lllllllll}
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & \ldots
\end{array}
\end{aligned}
$$

Fibonacci Sequence

Theorem
$\sum_{i=1}^{n} F_{i}^{2}=F_{n} \cdot F_{n+1}$
Proof.
$n=2: \quad \sum_{i=1}^{2} F_{i}^{2}=F_{1}{ }^{2}+F_{2}{ }^{2}=1+1=1 \cdot 2=F_{2} \cdot F_{3}$
$n=k: \quad \sum_{i=1}^{k} F_{i}^{2}=F_{k} \cdot F_{k+1}$
$n=k+1: \quad \sum_{i=1}^{k+1} F_{i}^{2}=\sum_{i=1}^{k} F_{i}^{2}+F_{k+1}^{2}$
$=F_{k} \cdot F_{k+1}+F_{k+1}{ }^{2}$
$=F_{k+1} \cdot\left(F_{k}+F_{k+1}\right)$
$=F_{k+1} \cdot F_{k+2}$

Ackermann Function

$$
\operatorname{ack}(x, y)= \begin{cases}y+1 & \text { if } x=0 \\ \operatorname{ack}(x-1,1) & \text { if } y=0 \\ \operatorname{ack}(x-1, \operatorname{ack}(x, y-1)) & \text { if } x>0 \wedge y>0\end{cases}
$$

References

Required reading: Grimaldi

- Chapter 5: Relations and Functions
- 5.2. Functions: Plain and One-to-One
5.3. Onto Functions: Stirling Numbers of the Second Kind
5.5. The Pigeonhole Principle
5.6. Function Composition and Inverse Functions

