
1

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.1

OBJECT-ORIENTED

MODELING AND DESIGN

Assoc.Prof. Feza BUZLUCA

Istanbul Technical University

Computer Engineering Department

http://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info

This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License. (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.2

Properties of Software Development and the Goal of the Course

Introduction

This course focuses on the challenges of developing "industrial-strength"
software.

• They have a very rich set of behaviors.

• They include many components, which cooperate with each other to fulfill
some functionalities.

• They are developed by teams including many members.

• They have a long life span. They must be adapted to new requirements.

• Their modules (components) must be reusable to decrease the cost of later
projects.

Programming is fun, but developing quality software is hard. (Philippe Kruchten)

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.3

Main Challenges:

Complexity:

• Software systems of this type are developed to solve problems in complex real-
world systems.

For example, banking systems, air or railway traffic control systems, cellular
phone switching systems, e-commerce systems, etc.

• Software inherits the complexity of the problem domain.

• Today, software products are often more complex than other engineering
artifacts such as buildings, bridges, or vehicles.

Many Components:

• Large software systems include many components, and teams with many
members develop them.

• Communication (interaction) and cohesion (harmony) between components are
essential.

• A component can be an object (a class), a group of classes such as a service in
SOA, a microservice, a package in Java, or another program.

Properties of Software Development (contd)

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.4

Changes:

• Software systems tend to have a long life span. Requirements change.

• They must be extensible (adding new functionalities according to new needs).

• They must be flexible to be adapted to changing requirements.

• They must be reusable (reducing the cost).

Example:
Assume that you design a software system for an e-commerce company.
The company has many different, changing discount policies.
For example,
• At the end of the season, there may be 30% or 50% discounts depending on the

item.
• In some weeks, on Mondays, it may be 10% and Thursdays, 5% off all sales.
• It may be 150TL off if the sale total exceeds 1000TL.
• For customers with a loyalty card, there may be other discounts.
The company may change these policies or create new sales promotions.
How can our software system adapt to these changes without a significant effort?
We want to sell our system to other companies that may have different policies.
How can we reuse components of our existing software system to reduce the cost?

Properties of Software Development (contd)

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.5

• The failure to handle the complexity of software results in projects that are

o late,

o over budget (cost is too high, return on investment (ROI) is low),

o and deficient in their stated requirements (also with some errors).

• Lack of flexibility causes that software cannot to be easily extended,
modified, improved, and reused.

• Software maintenance costs are between 50% and 90% of total software life-
cycle costs.

Maintenance: Changes (improvement, correction, adding new functionalities)
that must be made to software after it is delivered to the customer.

• Software errors may cause loss of lives and jobs.

In 2019, the Boeing 737 Max crash was caused by flaws in software design
and not by the pilots or the airline’s performance.

The consequences of failures

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.6

The ability to deliver a software system

1. that meets the quality needs of different stakeholders (user, developer,
customer …)

o Functionality
o Performance (speed, accuracy, etc.)
o Efficiency (processor, memory, network, etc.)
o Reliability (error free)
o Security (access control)
o Maintainability (modify, extend, reuse)
o …

2. on time,
3. within budget.

Once the systems are operational, the challenges of being on time, on budget,
and with the expected quality do not disappear.
They need to be sustained and evolved to meet changing needs and changing
environments.

Goal of a software development Project:

Some of the
software quality
attributes

Just writing a code that runs somehow is not sufficient!

You should consider the quality needs of the system's stakeholders.

2

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.7

ISO (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) prepared standards for quality models.

You may find definitions of the quality attributes of a software system in the
following standard.

ISO/IEC 25010: Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models

This standard includes two quality models.

A) Quality in use model:

This is the external quality of the system; the impact on stakeholders (customers,
direct and indirect users, etc.) in specific contexts of use.

B) Product Quality:

These characteristics relate to the software development team.

You can get the standards in İTÜ campus from the website of the British
Standards Online: http://bsol.bsigroup.com/

Details of the quality models are covered in the graduate course "BLG 625
Software Design Quality".

Quality characteristics of a software system

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.8

Expectations (requirements) and the Software Architect

Source: D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques
for software architecture design,” ACM Computing Surveys, vol. 43, pp. 1-28, Oct. 2011.

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.9

(1) From: http://www.photoeverywhere.co.uk
(2) From: http://www.cafepress.co.uk/

(1)

(2)

Software
Engineer

Experience

Software

Besides meeting the
functional requirements of
the stakeholders,

our objective is to learn
how to deal with
complexity,

handle changes,

build extensible, flexible,
reusable, error-free
software systems,

and as a consequence,
reduce the (maintenance)
cost.

For this reason, this course
presents object-oriented
design principles and
software design patterns.

The Goal of the Course

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.10

“Progress is possible only if we train ourselves to think about programs
without thinking of them as pieces of executable code.”

Edsger W. Djikstra (1930-2002)

We cannot handle software systems as just long texts.
We must consider software systems as complex machines that consist of many
components and layers.
Sometimes we must change, replace, fix, or reuse these components.

class ProductSpecification

{

private:

ItemID id;
Money price;

string specification;

public:

ProductSpecification(const ItemID &id, const Money &price, const

string &spec) {

this->id = id;
this->price = price;

specification = spec;

}

const ItemID & getItemId() { return id; }

const Money & getPrice() { return price; }

const string & getSpecification() { return specification; }
};

class Sale

{

………..

…………

From Instagram @whatchandlove

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.11

Our Tools:

• Software development is both an art and an engineering.

• There isn't any magic formula or any silver bullet (unfortunately).

Intuition and experiences play essential roles.

• Bjarne Stroustrup: "There are no 'cookbook' methods that can replace
intelligence, experience, and good taste in design and programming."

Some helpful tools:

• Knowledge of Object-Oriented Programming (OOP course)

• Software development process: (SwEng. course)

The Unified Process (UP): Iterative and evolutionary development

• Use case methodology (SwEng. course)

• Object-oriented design principles (This course)

• Software design patterns (This course)

• The Unified Modeling Language (UML) (OOP and this course)

• Software testing (BLG 475E)

• Software quality measurement and assessment (BLG 625 PhD Course)

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.12

Object-Oriented (OO) Tools:

OO Basics:

• Encapsulation, Data hiding
• Inheritance
• Polymorphism

OO Design Principles (examples):
• Strive for loosely coupled designs.
• Find what varies and encapsulate it.
• Favor object composition (has-a) over class inheritance (is-a).
• Design to interface, not to implementation.

OO Design Patterns (example):
• Strategy:

Problem: How to design for varying but related algorithms or policies?
Solution: Define each algorithm/policy/strategy in a separate class with
a common interface.

OO Design Patterns show you how to build systems with good OO design qualities.

They are proven object-oriented experiences.

Patterns rely on OO basics and principles.

3

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.13

Analyst/ Software Architect / Developer
(Software Engineer)

Programming Language

Real World

Problem
Domain

Abstraction
Modeling

Design
Implementation

Design PatternsDesign Principles
Use cases, Analysis

Program

Solution World

Software
Domain

The World of a Software Engineer

Problem Scenarios Domain model Design model Program (code) Software
(product)

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.14

Basic Concepts
Steps of software development :

• Specification (Requirements) (SE course)
Understanding what the user wants. Writing use cases.

• Domain analysis (SE and this course)
Understanding the system (the problem). What should the system do?

• Design (This course)
Designing the system as collaborating objects.
Assignment of responsibilities to classes.

• Implementation (Programming, data structures)
Coding (Programming)

• Evaluation (Testing and graduate courses)
Testing, measurement, performance analysis, quality assessment

• Evolution: (SE, this course, and graduate courses)
Management, improvement, refactoring

This course focuses on the design level, i.e., the assignment of responsibilities to
objects.

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.15

Object-Oriented Analysis (OOA):

If a civil engineer is building bridges, all s/he needs to know is about bridges.

Unlike this, if you are developing software, you need to know
1. about software domain (because that is what you are building) and
2. about the problem domain (because that is what you are building a solution for).

Here, analysis means understanding.

The analysis (domain) model represents the real world (problem domain).

It does not include our decisions or solutions.

Object-Oriented Design (OOD):

Software classes are designed.

Responsibilities are assigned to classes. All requirements of the system are met.

Object-oriented design principles and software design patterns are used.

The design (software) model represents the solution world.

It includes our decisions or solutions.

Analysis: Understanding. The answer to "what"?
Design: Solution. The answer to "how"?

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.16

Before we go into details of the topics, I give an example to show the big picture.

Dice game: We need software that simulates a player rolling two dice. If the
total is seven, the player wins; otherwise, the player loses. (Taken from C.Larman)

A Simple Example:

1. Understanding Requirements, Defining Use Cases
We write scenarios (stories) that show how the system interacts with its
environment.

Example:

Basic flow:
1. The player rolls two dice.
2. The system adds the dice face values and prints the total.
3. The game ends.

Alternative flows:
2. a. The dice face values total 7. The system prints that the player wins.
2. b. The dice face values do not total 7. The system prints that the player

loses.

With the help of use cases, we will discover the entities (classes) and
responsibilities of the system.

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.17

Identification of the concepts, attributes, and associations that are considered
noteworthy. The objective is to understand the system.
A domain model is not a description of software objects but a visualization of the
concepts or mental models of the real-world (problem domain).
It is also called a conceptual class/object model.

Player

name

DiceGame

Plays
1

1

Die

faceValue

1 2Rolls

1

2

Includes

Conceptional class

Attribute

name of association

A Player rolls two dice

This diagram presents
real world concepts
(not a program).

2. Analysis, Defining the Domain Model

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.18

Defining software classes, their responsibilities, and collaborations.

Design artifacts are presented with two different UML diagrams.

a. Interaction Diagram:

roll()

die1:Die

d1:=getFaceValue ()

roll()

die2:Die

d2:=getFaceValue ()

Message to the object
die2 object

of class Die

:DiceGame

result:=play()

Body of the method

Any object of

class DiceGame

3. Design (Solution Model), Assigning object responsibilities

4

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.19

A static view of the class definitions.
In contrast to the domain model showing real-world classes, this diagram shows
software classes.

DiceGame

-die1: Die
-die2: Die

+play(): bool

Die

-faceValue:int

+getFaceValue():int
+roll()

1 2

Notice that although this design class diagram is not the
same as the domain model (slide 1.17), some class names
and content are similar.

Steps after design:
4. Coding, 5. Testing, 6. Evaluation, 7. Evolution

Software class

Private attributes

Public methods

Direction of relation

(message call)

This diagram presents
software concepts.

b. Class Diagram (Design Model)

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.20

We will create two main models:

1. Domain model

2. Design model

• Domain (analysis) models aid our understanding of especially complex systems
and help to ensure we have correctly interpreted the system under
development.

The domain model is also the source of software classes in the design model.

• Design models can be used to ensure that all systems requirements are met.

A model also permits us to evaluate our design against criteria such as safety
or flexibility before implementation (coding).

Models help us capture and record our software design decisions as we
progress toward implementation.

This proves to be an essential communication vehicle for the development team.

For example, airplanes can be prototyped in fiberglass and tested in wind
tunnels before they are really constructed.

Why Modeling?

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.21

Related Courses:

BLG 252E
Object-Oriented Programming

BLG 411E
Software Engineering

Prerequisite

BLG 468E
Object-Oriented Modeling

and Design

Use case

Software
development process

OOP Basics

UML

Programming

BLG 625
Software Design Quality

(Graduate course)

2012 - 2023 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

Object-Oriented Modeling and Design

1.22

Text books:

Craig Larman, Applying UML and Patterns, An Introduction to
OOA/D and Iterative Development, 3/e, 2005.

Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns:
Elements of Reusable Object-Oriented Software, Reading MA,
Addison-Wesley, 1995.

Eric Freeman, Elisabeth Robson, Head First Design Patterns:
Building Extensible and Maintainable Object-Oriented
Software, O’REILLY, 2nd ed. 2020.
You may also use the 1st edition (2004) of this book.

